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Abstract—Social sensing plays an important role in crime
analytics and predictive policing. When humans play the role
of sensor, several issues around privacy and trust emerge that
must be carefully handled. We provide a framework for deploying
predictive crime models based upon crowd-sourced information
(crime reports, tips, Nextdoor posts, etc.) while protecting in-
dividual privacy and striving for a high level of algorithmic
transparency. For this purpose we introduce a novel online
Hawkes process estimation algorithm requiring no event history
coupled with an online k-means type algorithm based upon
the word movers distance. We illustrate the methodology using
synthetic data, crime report data from Los Angeles, and public
safety posts from Nextdoor in Indianapolis. In particular, we
show that privacy and transparency can be maintained without
sacrificing accuracy in space-time models of criminal incidents.
Furthermore, our methodology provides a framework for sharing
of information between private companies collecting crime tips
or public safety information, law enforcement agencies, and the
general public.

Index Terms—Social Sensing, Predictive Policing, Online
Hawkes Process, Topic Model, Word Movers Distance, Privacy

I. INTRODUCTION

Social sensing plays an important role in crime analytics

and predictive policing. For example, geolocated tweets are

predictive of future hit-and-run incidents [1], mobile phone

location data improves predictive models of crime hotspots

[2], and neural networks trained on Google street view images

can rank neighborhood crime levels based on the street level

image better than humans [3].

While these secondary sources (e.g. social media, IOT

sensors, etc.) may help to improve models of crime, human

reporting remains the best source of information on crime and

social disorder. Crime forecasts based upon calls-for-service

alone were top performing solutions in the 2017 NIJ crime

forecasting competition [4] and verified crime reports are the

main input to a majority of crime hotspot models used for

directing police patrols and interventions [5] [6]. Crime tips

are a valuable tool that police departments employ [7] and

more recently social networking platforms such as Nextdoor

have started to provide mechanisms for community members

to share information with law enforcement and each other.

When humans play the role of sensor, several issues around

privacy and trust emerge that must be carefully handled.

Communities have varying levels of trust in law enforcement

and under-reporting of crime can occur if community members

do not trust police to respond fairly and effectively. While a

small percentage of crime incident data is generated due to

police observation and arrests, the majority of data is collected

from citizen initiated reports where the reporter is a victim

or witness to a crime [8]. Mechanisms are put in place to

encourage reporting while protecting reporter privacy. For

example, crime tips are almost always anonymized and are

often deleted from databases after several weeks or months.

These issues are now arising in the private domain as well,

for example Nextdoor will forward public safety posts to law

enforcement only with the user’s permission and removes

social interactions and posts related to the original post.

The goal of this paper is to provide a framework for

deploying predictive crime models based upon crowd-sourced

information (crime reports, tips, Nextdoor posts, etc.) while

protecting individual privacy and striving for a high level of

algorithmic transparency. The latter condition is in response

to recent criticisms of algorithmic bias in predictive policing

models [9] and attempts to make predictive policing source

code open [10]. We provide a schematic for a privacy pre-

serving, crowd sourced crime model in Figure 1 similar to

the privacy preserving framework outlined in [11]. A real-

time crime model is maintained on a server, consisting of the

current spatial risk of each of several crime “topics” across

the city along with model parameters. When a user wishes to

make a crime report, the client side application checks out the

model from the server, the user’s post is categorized on the

client side, and the risk and model parameters are updated and

pushed back to the server. The risk model can also be checked

out by law enforcement for preventative patrols. Because the

model is updated on the client side, no direct user information

is pushed to the server and minimal user information (save for

the neighborhood and topic) may be inferred from the model

server.

The outline of the paper is as follows. In Section II,

we provide the details of our algorithm. In Section IIa, we

describe an online learning framework for space-time Hawkes

processes where no event history is required for updating

the intensity or its parameters. In Section IIb, we describe

an online k-means type algorithm utilizing the word movers

distance and word2vec to map crime report text to a topic. To

our knowledge this is the first online Hawkes process estima-

tion algorithm requiring no event history and the first online

algorithm for topic modeling with word movers distance. In

Section III, we exhibit several experiments using synthetic
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data, crime report data from Los Angeles, and public safety

posts from Nextdoor. In particular, we show that privacy and

transparency can be maintained without sacrificing accuracy

in space-time models of criminal incidents. Furthermore, our

methodology provides a framework for sharing of information

between private companies collecting crime tips or public

safety information, law enforcement agencies, and the gen-

eral public. We end with a discussion of our findings and

suggestions for future directions in Section IV.

Fig. 1: Schematic for a crowd-sourced crime model with

privacy.

II. PRIVACY PRESERVING, CROWD SOURCED HAWKES

PROCESS

A. Online learning of Hawkes processes without histories

We consider a Hawkes process defined on a spatial dis-

cretization G with spatial units g ∈ G,

λg(t) = µg +
∑

t>tj
gj=g

f(t− tj). (1)

In Equation 1, λg(t) is the intensity (rate) of events in spatial

unit g. The overall intensity is the superposition of a “back-

ground” rate µg , a Poisson process modeling spontaneous

events, and a “triggering” kernel f(t) that allows the overall

intensity to increase following recent events in the history of

the process in spatial unit g. The event times tj comprise the

history of the process, where gj is the grid cell in which event

j occurs.

For now we consider a single Hawkes process, but in

subsequent sections we will allow for multiple independent

Hawkes processes with intensities λl
g(t) corresponding to

different topics l. The Hawkes process is used to model

crime patterns such as burglary [12] and retaliatory violence

[13] where offenders repeat criminal activity shortly following

recent crimes.

Model parameters can be learned from data by maximizing

the log-likelihood function,

L =
∑

g∈G

[
∑

i
gi=g

log(λg(ti))−

∫ T

0

λg(t)dt]. (2)

Because inter-event times ti − tj appear in the likelihood

function, typically it is necessary to store the history of event

times and locations for model training. Recently introduced

online methods for Hawkes processes [14] require only a

sliding history in a moving window, however we would like

to develop an online learning algorithm that runs on the client

side without any history storage on the server.

For this purpose we assume the triggering kernel f(t) can

be approximated by a fixed basis of exponential kernels,

f(t) =
K
∑

k=1

θkωke
−ωkt. (3)

Here the parameters ωk set the decay timescale of each indi-

vidual exponential kernel and the θk are mixture parameters

setting the relative weight of each kernel. Because f(t) is a

Poisson process the θk need not sum to 1.

This choice of kernel in Equation 3 has several advantages.

By defining,

F g
k (t) =

∑

t>tj
gj=g

θkωke
−ωk(t−tj), (4)

we can then write the overall intensity as,

λg(t) = µg +
K
∑

k=1

F g
k (t). (5)

This allows a sequential update for the intensity,

λg(t
−

i ) = µg +

K
∑

k=1

e−ωk(ti−ti−1)F g
k (t

+
i−1), (6)

where t+ indicates the right-sided limit of F g
k . We therefore

only have to store µg , F g
k (t

+
i−1) and the time of the last event

ti−1 on the server and the user can perform the intensity update

on the client side.

The second advantage of the exponential kernel basis is that

µg and θk can be updated via an online stochastic gradient

descent step on the client side, with no event history required.

Following [15], the sgd update is given by,

µg ← µg + dt
[

µg/λg(t
−

i )− µg(ti − tgprev)
]

(7)

θk ← θk + dt
[

F g
k (t

−

i )/λg(t
−

i )− θk
]

, (8)

where g indexes the grid cell containing the new event with

time ti, and tgprev is the time of the last event in grid cell g
(which may not be the same as the time of the most recent

event overall ti−1). The update in Equation 7 is an EM-type

step [15] with the gradient multiplied by µg and the update

in Equation 8 has the gradient multiplied by θk. Empirically

these modifications allow for larger step sizes dt and quicker

convergence.
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B. Online word mover distance topic model

In the previous section we developed an online, client-side

estimation strategy for a space-time intensity of events of a

single category. In this section we develop an online, client-

side topic model for text reports accompanying crime and

social disorder events. The idea is that the event is first mapped

to a topic, and then the intensity and model parameters for the

topic are updated as in Equations 6, 7 and 8.

For this purpose we consider l = 1, ..., L topics, each

represented by kl = 1, ..., Cl centers. Each topic center wkl

may be viewed as a word2vec representation of a word,

though there may be no word in the corpus with that exact

representation. Next consider the word2vec transformation of

the bag of words V = {vi}
m
i=1 (with stop words removed) of

a given crime report. The word movers distance [16] of the

bag of words V to the centers Wl of a particular topic is given

by,

d(V,Wl) =
1

m

m
∑

i=1

min
kl∈Wl

‖vi − wkl
‖2. (9)

Thus the topic assigned to each report is the topic with the

closest set of centers according to the word movers distance.

Because topics may change over time, but also for cold

starts, we would like to update the topic centers as new

reports are generated. For this purpose we use a K-means like

heuristic,

wkl
← (1− dt)wkl

+ dt vi (10)

where Wl is topic of V (closest word movers distance) and vi
is the closest word in V to wkl

. Equation 10 is analogous to

Euclidean based online kmeans [17] where the learning rate

dt needs to go to zero for convergence. We do not have a

theoretical justification for this algorithm, but we show in the

next section that the algorithm works reasonably well for our

desired application.

Several practical issues remain for the implementation of

the online topic model. First, we need a word2vec model

for performing the transformations. In light of the privacy

concerns we are attempting to address, and also because we

may have limited data to start, we advocate for the use of

a pre-trained word2vec model. Here we use an open source

word2vec model trained on Google News [18] that could be

embedded within the application on the client. Second, we

need initial center words for each topic at the outset. Here

we propose using a set of seed words for each topic that are

either determined manually by a human expert or that are

chosen from a limited training data set where privacy need

not be maintained during training. We give specific examples

in the next section and henceforth refer to our topic model as

the Seeded Online Word Movers Distance (SOWMD) model.

Our overall algorithm for the crowd-sourced online Hawkes

process is given in Algorithm 1. The client receives the

intensity, model parameters, and topic centers from the server.

The user inputs text, the word2vec representation of the text is

categorized into a topic, and then the topic center is updated.

Next the Hawkes parameters and intensities of that topic are

updated and finally sent back to the server along with the

updated topic centers.

Algorithm 1: Crowd-sourced Online Hawkes

Server

Send: µl
g , F g,l

k (t+i−1), ω
l
k, tg,lprev , θlk, wkl

, dt

Receive: µl
g , F g,l

k (t+i ), t
g,l
prev , θlk, wkl

Client

Receive: µl
g , F g,l

k (t+i−1), ω
l
k, tg,lprev , θlk, wkl

, dt

UserInput: ti, xi, text

1. g ← Grid(xi) \\ Get grid cell of event location

2. V ← word2vec(text) \\ Get bag of word vectors

3. l = argmins d(V,Ws) \\ Get topic of event

4. wkl
← (1− dt)wkl

+ dt vi \\ Update centers

\\ Then update Hawkes parameters and intensity

5. µl
g ← µl

g + dt
[

µl
g/λ

l
g(t

−

i )− µl
g(ti − tg,lprev)

]

6. For each k: θlk ← θlk + dt
[

F g,l
k (t−i )/λ

l
g(t

−

i )− θlk
]

7. For each s,m, k:

F s,m
k (t+i ) ← e−ωk(ti−ti−1)F s,m

k (t+i−1) + θmk ωm
k 1s=g

m=l

8. tg,lprev ← ti
Send: µl

g , F g,l
k (t+i ), t

g,l
prev , θlk, wkl

III. EXPERIMENTAL RESULTS

A. Synthetic Hawkes process

We first test the online estimation algorithm developed in

Section IIA on a simulated Hawkes process. We simulate a

Hawkes process with µ = .1 and exponential triggering kernel

θω exp(−ωt) with parameters θ = .5 and ω = .3. For the

kernel basis we use ω1 = .5, ω2 = .1 and ω3 = .05 and

we use an online learning rate of dt = .01. In Figure 2

we track the parameter estimates and error over the course

of successive online gradient descent iterations. Quickly the

background rate µ converges to the true value. Here we fix

dt = .01 to track non-stationary trends in the background

rate, whereas online gradient descent will only converge when

dt → 0. The estimated (effective) parameter θ1 + θ2 + θ3
also converges to the true value of θ = .5. We note that

the l2 error of the triggering kernel decreases but does not

go to zero. This is because of the choice of using only

3 basis functions; our primary goal is to obtain reasonably

accurate privacy preserving models rather than solutions with

the highest accuracy.

B. Topic modeling of Los Angeles crime reports

Next we test the SOWMD topic model on crime report

data from 2009-2014 in Los Angeles. The dataset consists

of 805523 events containing an incident category, date, text

narrative (description of the event), and spatial coordinates of

where the event occurred. To obtain seeds for the SOWMD

model, we use the first 1000 events of the dataset and take the

10 most frequent words in each of the 10 crime types found in

the 1000 events. We use a pre-trained word2vec model trained

on Google News [18] to obtain word vectors for each word

(the same model is used across all of our experiments). These
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Fig. 2: Estimated µ vs online gradient descent iterations (far left), true θ vs estimated θ1 + θ2 + θ3 (middle left), l2 error of

triggering kernel vs iterations (middle right) and triggering kernel estimate at final iteration (far right).

10 word vectors form the centers of each of the 10 clusters

we use to seed the SOWMD algorithm. We then apply the

online algorithm to the next 50000 events, as well as the LDA

algorithm provided with gensim [19]. In Table I we compare

SOWMD vs LDA using the UCI coherence measure [20],

which is based upon the frequency of pairs of topic words

relative to their individual frequencies and has good correlation

with human measures of topic cohesiveness [21]. On average

the SOWMD model has a higher UCI coherence level, as has

been reported for offline word movers distance models. Both

models have some coherent topics, for example topic 1 for

LDA refers to fraud whereas topic 1 for SOWMD refers to

assault. Several low coherence topics also emerge, topic 3 and

8 in the case of LDA and topic 4 in the case of SOWMD.

We note that, while the SOWMD algorithm was seeded with

crime type categories, as the algorithm moves forward in time

the topics evolve and are not meant to simply classify crime

type. We explore this effect more in the next section in terms

of the accuracy of the coupled SOWMD-online Hawkes model

when used for predicting space-time crime patterns.

C. Space-time crime prediction in Los Angeles

Building off of the experiment in the previous section, we

next test the full Algorithm 1 for simultaneous topic and

Hawkes intensity estimation. We again use the LAPD crime

data set, however this time we estimate an intensity λl
g(t) for

each of the 10 topics. We then use the estimated intensity to

rank all grid cells g in the city each day according to their

risk of incidents of type l. One popular choice for measuring

the accuracy of a crime ranking algorithm is the Predictive

Accuracy Index (PAI) [4], which measures the percentage of

incidents captured in the top k grid cells flagged for patrol.

The PAI is area normalized (by the area of the k cells) so that

a PAI of 1 corresponds to random predictions.

In Figure 3 we display the PAI for the online, crowd-sourced

Hawkes process for several topics learned by the algorithm.

For comparison, we use an offline Hawkes process [5] trained

on the given crime categories and display those results as a

baseline. The highest PAI corresponds to aggrevated assault

and the offline model. Violent crimes occurring on the street

network have a higher PAI because the incidents are more

highly concentrated compared to property crime. The online

model learns a similar category where the most frequent

words are attempted, stab, and knife. The PAI is not as

high as the offline assault model, but the online intensity

is still reasonably accurate. Additionally, for the next two

topics related to property and vehicle crime, the online model

outperforms the offline model in terms of vehicle theft and

burglary. One explanation for the improvement in accuracy

is that the SOWMD-Hawkes model may learn more coherent

topics compared to crime categories in some cases, therefore

leading to more concentrated Hawkes intensities and higher

PAI values.
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Fig. 3: PAI comparison of offline Hawkes process trained

using crime type categories and online Hawkes process using

SOWMD topic categories.

D. Modeling Nextdoor public safety posts in Indianapolis

In our final experiment, we apply the online joint SOWMD-

Hawkes model in Algorithm 1 to public safety posts from

Nextdoor. The dataset consists of 115 posts tagged as public

safety between July 1st and December 7th 2017 from the

Meridian-Kessler area of Indianapolis. We use a time only

Hawkes process and use the text of each post to extract the

topic. Because the dataset is limited in size, we seed the topic

model with simply the first 10 posts (comprising each of the

10 topics).

In Figure 4 we provide an example anonymized post and the

corresponding topic that was learned in training. Many posts

contain personal identifying information (names, address, etc.)

and in some posts a victim and/or perpetrator is identified.

For this reason, along with the fact that private companies

may only want to share limited data with law enforcement,
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TABLE I: Topic coherence comparison between LDA and Seeded Online Word Movers Distance (SOWMD) topic model.

LDA (Aggregate UCI=.13) UCI

1. used, info, without, personal, permission, card, credit, open, obtain, number 1.442228399
2. kill, stated, verbal, dispute, fled, threatened, going, phone, location, knife 0.475918243
3. id, theft, check, took, location, use, property, cash, forged, checks -1.901758853
4. fled, face, punched, approached, grabbed, head, struck, property, hit, left 0.371021747
5. fled, vehicle, property, window, door, location, side, rear, used, open 0.412661259
6. fled, vehicle, property, location, approached, demanded, took, s2, money, handgun 0.493246568
7. property, fled, removed, location, vehicle, entered, window, entry, direction, took 0.443388061
8. vehicle, order, return, court, failed, upon, location, child, mo, missing -2.994888929
9. became, times, causing, face, argument, struck, punched, verbal, angry, involved 1.571898116
10. entered, store, without, paying, location, exited, property, items, removed, concealed 1.027530669

SOWMD (Aggregate UCI=.81) UCI

1. pushed, grabbed, punched, dispute, approached, causing, face, verbal, kicked, hands 1.044113194
2. property, vehicle, removed, window, entered, smashed, location, fled, took, door 0.445021529
3. vehicle, vandalized, window, fled, smashed, tires, rear, approached, slashed, parked 0.329571273
4. vehicle, stated, became, used, verbal, face, kill, money, causing, approached -0.126301107
5. used, info, personal, open, employment, obtain, id, identity, without, ssn 1.304224724
6. used, info, personal, obtain, employment, gain, ssn, identity, property, tax 0.930475982
7. threatened, kill, fear, called, shoot, harm, knife, life, gun, verbally 0.808682825
8. used, identity, info, personal, gain, purchases, permission, card, purchase, name 1.456026639
9. fled, location, property, vehicle, removed, entered, door, window, took, dir 0.425668881
10. used, info, id, card, without, personal, permission, credit, obtain, open 1.447870606

we believe a privacy preserving Hawkes process could find

application in partnerships between companies like Nextdoor,

public agencies, and the general public.

Fig. 4: Example anonymized Nextdoor post and corresponding

topic.

In Figure 5 we plot the learned intensities for the top four

topics. The topics have four general themes: car break-ins

common in the area, packages stolen from houses, bikes stolen,

and a fourth topic where people are posting that they see

police in the area. These type of intensities could serve several

functions. They could alert police to areas in the city where

patrols or other interventions are needed. They also might give

citizens valuable information on social disorder and crime in

their city. For example, knowing that the risk of package theft

increases several-fold in October 2017 is valuable information

for community members to access. Currently users can only

see posts from their neighborhood, presumably for privacy

reasons, but privacy preserving intensities such as those in

Figure 5 might be shared across neighborhoods without ex-

posing sensitive information.

IV. DISCUSSION

A. On the transparency of Algorithm 1

On the one hand, Algorithm 1 is transparent in the sense

that the source code is open and lives on the client side of

the application. That being said, a deep neural network might

also satisfy the same conditions while being viewed as less

transparent than a logistic regression. The most opaque step

is step 2, where word2vec is used to represent word vectors

in a low dimensional space. However, the overall SOWMD

algorithm has an intuitive description: a topic is chosen for the

text such that the words in the topic are semantically closest on

average to the words of the text. The Hawkes parameter and

intensity updates 5-7 are fairly simple and the main takeaway

from a user perspective is that, by posting a crime report,

the user is increasing the estimated risk of incidents (of the

categorized topic) in their neighborhood g. In the scenario

where police are patrolling based upon the estimated intensity,

then filing a crime report through the application may be

viewed as a probabilistic request for extra patrols in one’s

neighborhood.

B. On the privacy of Algorithm 1

In terms of privacy we have ignored formal definitions such

as differential privacy [22]. Instead, we have focused on the

goals of 1) storing minimal user information 2) reducing the

risk of identification using geolocation information and 3) min-

imizing the risk of identification using the text from the report.

In terms of 1), no historical data is stored save for the most

recent event time in each grid cell. Some information still may

be inferred in terms of 2) and 3). For example, if the grid cell

size is small enough then the location of the reporter is known

up to that distance scale. This is consistent with methods police

agencies currently employ to reduce geolocation identification,

namely rounding to the nearest block or some other larger

geographical unit. Some information on the text of the report

may also be inferred from the SOWMD word center update,

in particular the words semantically closest to the centers of

the selected topic. This risk can be reduced by keeping the

number of centers small or only updating the center if the

closest report word is sufficiently close in the word vector

space (for example to prevent the person’s last name from

being exposed even when it is a far distance from all centers).
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safety posts in the Meridian-Kessler neighborhood in Indianapolis from July-November 2017.

C. Future directions

The experiments here were conducted on historical data and

the impact of incorporating crowd-sourced information from

crime tips, Nextdoor, and similar sources has to date not been

tested in the field. Future research may focus on the impact of

this type of crowd-sourcing, in terms of the impact on crime

rates as well as perceptions of predictive policing. Similar

Hawkes process models also arise in other social settings

and recent applications include Twitter resharing [23], IPTV

viewing behavior [24], and human mobility [25]. The methods

here may provide computationally efficient, privacy preserving

alternatives to recently introduced Hawkes-topic models based

upon LDA [26].
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