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Abstract

A matrix M : A×X → {−1, 1} corresponds to the following learning problem: An unknown
element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of
samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen uniformly at random and
bi = M(ai, x).

Assume that k, ℓ, r are such that any submatrix of M of at least 2−k · |A| rows and at least
2−ℓ · |X| columns, has a bias of at most 2−r. We show that any learning algorithm for the
learning problem corresponding to M requires either a memory of size at least Ω (k · ℓ), or at
least 2Ω(r) samples. The result holds even if the learner has an exponentially small success
probability (of 2−Ω(r)).

In particular, this shows that for a large class of learning problems, any learning algorithm
requires either a memory of size at least Ω ((log |X|) · (log |A|)) or an exponential number of
samples, achieving a tight Ω ((log |X|) · (log |A|)) lower bound on the size of the memory, rather
than a bound of Ω

(
min

{
(log |X|)2, (log |A|)2

})
obtained in previous works [R17, MM18].

Moreover, our result implies all previous memory-samples lower bounds, as well as a number
of new applications.

Our proof builds on [R17] that gave a general technique for proving memory-samples lower
bounds.
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1 Introduction

Can one prove unconditional lower bounds on the number of samples needed for learning, under
memory constraints? The study of the resources needed for learning, under memory constraints
was initiated by Shamir [S14] and by Steinhardt, Valiant and Wager [SVW16]. While the main
motivation for studying this question comes from learning theory, the problem is also relevant to
computational complexity and cryptography [R16, VV16, KRT16].

Steinhardt, Valiant and Wager conjectured that any algorithm for learning parities of size n
requires either a memory of size Ω(n2) or an exponential number of samples. This conjecture
was proven in [R16], showing for the first time a learning problem that is infeasible under super-
linear memory constraints. Building on [R16], it was proved in [KRT16] that learning parities
of sparsity ℓ is also infeasible under memory constraints that are super-linear in n, as long as
ℓ ≥ ω(log n/ log log n). Consequently, learning linear-size DNF Formulas, linear-size Decision
Trees and logarithmic-size Juntas were all proved to be infeasible under super-linear memory
constraints [KRT16] (by a reduction from learning sparse parities).

Can one prove similar memory-samples lower bounds for other learning problems?
As in [R17], we represent a learning problem by a matrix. Let X, A be two finite sets of size

larger than 1 (where X represents the concept-class that we are trying to learn and A represents
the set of possible samples). Let M : A × X → {−1, 1} be a matrix. The matrix M represents
the following learning problem: An unknown element x ∈ X was chosen uniformly at random. A
learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is
chosen uniformly at random and bi = M(ai, x).

Let n = log |X| and n′ = log |A|.
A general technique for proving memory-samples lower bounds was given in [R17]. The

main result of [R17] shows that if the norm of the matrix M is sufficiently small, then any
learning algorithm for the corresponding learning problem requires either a memory of size at least

Ω
(
(min{n, n′})2

)
, or an exponential number of samples. This gives a general memory-samples

lower bound that applies for a large class of learning problems.
Independently of [R17], Moshkovitz and Moshkovitz also gave a general technique for proving

memory-samples lower bounds [MM17]. Their initial result was that if M has a (sufficiently strong)
mixing property then any learning algorithm for the corresponding learning problem requires either
a memory of size at least 1.25 ·min{n, n′} or an exponential number of samples [MM17]. In a recent
subsequent work [MM18], they improved their result, and obtained a theorem that is very similar to
the one proved in [R17]. (The result of [MM18] is stated in terms of a combinatorial mixing property,
rather than matrix norm. The two notions are closely related (see in particular Corollary 5.1 and
Note 5.1 in [BL06])).

Our Results

The results of [R17] and [MM18] gave a lower bound of at most Ω
(
(min{n, n′})2

)
on the size of the

memory, whereas the best that one could hope for, in the information theoretic setting (that is, in
the setting where the learner’s computational power is unbounded), is a lower bound of Ω (n · n′),
which may be significantly larger in cases where n is significantly larger than n′, or vice versa.

In this work, we build on [R17] and obtain a general memory-samples lower bound that applies
for a large class of learning problems and shows that for every problem in that class, any learning
algorithm requires either a memory of size at least Ω (n · n′) or an exponential number of samples.

Our result is stated in terms of the properties of the matrix M as a two-source extractor. Two-
source extractors, first studied by Santha and Vazirani [SV84] and Chor and Goldreich [CG88], are
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central objects in the study of randomness and derandomization. We show that even a relatively
weak two-source extractor implies a relatively strong memory-samples lower bound. We note that
two-source extractors have been extensively studied in numerous of works and there are known
techniques for proving that certain matrices are relatively good two-source extractors.

Our main result can be stated as follows (Corollary 3): Assume that k, ℓ, r are such that any
submatrix of M of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias of at most
2−r. Then, any learning algorithm for the learning problem corresponding to M requires either a
memory of size at least Ω (k · ℓ), or at least 2Ω(r) samples. The result holds even if the learner has
an exponentially small success probability (of 2−Ω(r)).

A more detailed result, in terms of the constants involved, is stated in Theorem 1 in terms of
the properties of M as an L2-Extractor, a new notion that we define in Definition 2.1, and is closely
related to the notion of two-source extractor. (The two notions are equivalent up to small changes
in the parameters.)

All of our results (and all applications) hold even if the learner is only required to weakly learn
x, that is, to output a hypothesis h : A → {−1, 1} with a non-negligible correlation with the x-th
column of the matrix M . We prove in Theorem 2 that even if the learner is only required to output
a hypothesis that agrees with the x-th column of M on more than a 1/2 + 2−Ω(r) fraction of the
rows, the success probability is at most 2−Ω(r).

As in [R16, KRT16, R17], we model the learning algorithm by a branching program. A branching
program is the strongest and most general model to use in this context. Roughly speaking, the
model allows a learner with infinite computational power, and bounds only the memory size of the
learner and the number of samples used.

As mentioned above, our result implies all previous memory-samples lower bounds, as well as
new applications. In particular:

1. Parities: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n, from random linear equations
over F2. It was proved in [R16] (and follows also from [R17]) that any learning algorithm
requires either a memory of size Ω(n2) or an exponential number of samples. The same result
follows by Corollary 3 and the fact that inner product is a good two-source extractor [CG88].

2. Sparse parities: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n of sparsity ℓ, from
random linear equations over F2. In Section 5.2, we reprove the main results of [KRT16]. In
particular, any learning algorithm requires:

(a) Assuming ℓ ≤ n/2: either a memory of size Ω(n · ℓ) or 2Ω(ℓ) samples.

(b) Assuming ℓ ≤ n0.9: either a memory of size Ω(n · ℓ0.99) or ℓΩ(ℓ) samples.

3. Learning from sparse linear equations: A learner tries to learn x = (x1, . . . , xn) ∈
{0, 1}n, from random sparse linear equations, of sparsity ℓ, over F2. In Section 5.3, we prove
that any learning algorithm requires:

(a) Assuming ℓ ≤ n/2: either a memory of size Ω(n · ℓ) or 2Ω(ℓ) samples.

(b) Assuming ℓ ≤ n0.9: either a memory of size Ω(n · ℓ0.99) or ℓΩ(ℓ) samples.

4. Learning from low-degree equations: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n,
from random multilinear polynomial equations of degree at most d, over F2. In Section 5.4,
we prove that if d ≤ 0.99 · n, any learning algorithm requires either a memory of size

Ω
((

n
≤d

)
· n/d

)
or 2Ω(n/d) samples.
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5. Low-degree polynomials: A learner tries to learn an n′-variate multilinear polynomial p
of degree at most d over F2, from random evaluations of p over Fn′

2 . In Section 5.5, we prove

that if d ≤ 0.99 · n′, any learning algorithm requires either a memory of size Ω
((

n′

≤d

)
· n′/d

)

or 2Ω(n′/d) samples.

6. Error-correcting codes: A learner tries to learn a codeword from random coordinates:
Assume that M : A×X → {−1, 1} is such that for some |X|−1 ≤ ǫ < 1, any pair of different
columns of M , agree on at least 1−ǫ

2 · |A| and at most 1+ǫ
2 · |A| coordinates. In Section 5.6,

we prove that any learning algorithm for the learning problem corresponding to M requires

either a memory of size Ω
(
(log |X|)·(log(1/ǫ))

)
or
(
1
ǫ

)Ω(1)
samples. We also point to a relation

between our results and statistical-query dimension [K98, BFJKMR94].

7. Random matrices: Let X,A be finite sets, such that, |A| ≥ (2 log |X|)10 and |X| ≥
(2 log |A|)10. Let M : A × X → {−1, 1} be a random matrix. Fix k = 1

2 log |A| and
ℓ = 1

2 log |X|. With very high probability, any submatrix of M of at least 2−k · |A| rows
and at least 2−ℓ · |X| columns, has a bias of at most 2−Ω(min{k,ℓ}). Thus, by Corollary 3, any
learning algorithm for the learning problem corresponding to M requires either a memory of

size Ω ((log |X|) · (log |A|)), or
(
min{|X|, |A|}

)Ω(1)
samples.

We note also that our results about learning from sparse linear equations have applications in
bounded-storage cryptography. This is similar to [R16, KRT16], but in a different range of the
parameters. In particular, for every ω(log n) ≤ ℓ ≤ n, our results give an encryption scheme that
requires a private key of length n, and time complexity of O(ℓ log n) per encryption/decryption of
each bit, using a random access machine. The scheme is provenly and unconditionally secure as
long as the attacker uses at most o(nℓ) memory bits and the scheme is used at most 2o(ℓ) times.

Generalization to Non-Product Distributions: In addition to all these results, we give in
Section 6 a generalization of Theorem 1 to the case where the samples a ∈ A depend on the unknown
concept x ∈ X. In this case, b is redundant and the learning problem is described by the joint
distribution p : A×X → [0, 1] of joint random variable (A,X ). The joint distribution corresponds
to the following learning problem: An unknown element x ∈ X was chosen uniformly at random.
A learner tries to learn x from a stream of samples, a1, a2, . . ., where for every i, ai ∈ A is chosen
(independently) according to the conditional distribution pA|X=x. We stress that in Section 6, the
joint distribution pA,X is not a product distribution. We assume for simplicity that the marginal
pX is the uniform distribution over X.

Our main result in Section 6, Theorem 9, requires that for some p, the distribution pA|X=x is
bounded by 2p · pA (that is, for every a′ ∈ A, x′ ∈ X, Pr(A = a′|X = x′) ≤ 2p · Pr(A = a′)). We
view this assumption as quite natural and general. The assumption limits the information that
each sample gives about the concept to at most p bits. In addition, the theorem requires that the
matrix M̃ = pA|X=x − pA (viewed as a matrix M̃ : A ×X → [−1, 1]) satisfies an “extractor-like”
property that is similar to the ones used in Theorem 1 and Corollary 3. Roughly speaking, the
property holds if for some k, ℓ, r, any submatrix of M̃ of at least 2−k probability mass of rows
(under the distribution pA), and at least 2−ℓ · |X| columns, satisfies the following: In almost every
row a′ (of the submatrix), the average of all entries is at most 2−r · pA(a

′), (and in that sense the
row is roughly unbiased). Under these assumptions, Theorem 9 shows that any learning algorithm

for the corresponding learning problem requires either a memory of size at least Ω
(
k·ℓ
p

)
, or at least

2Ω(r) samples. (Intuitively, we loose a factor of p in the bound on the memory-size, because each
sample a may give up to p bits of information about the concept x).
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We note that besides the obvious motivation of studying non-product distributions of concepts
and samples, Theorem 9 can also be used to handle cases where the output b is longer than one
bit and cases where the output’s distribution is non-uniform. For example, the theorem implies
that for any finite field F, learning a string x ∈ F

n from random linear equations, requires either a
memory of size Ω(n2 log |F|), or an exponential number of equations. This bound is tight and can
be viewed as a generalization of the memory-samples lower bound for parity learning, to general
finite fields. (See Section 6.5 for more details.)

Techniques

Our proof follows the lines of the proof of [R17] and builds on that proof. The proof of [R17]
considered the norm of the matrix M , and thus essentially reduced the entire matrix to only one
parameter. In our proof, we consider the properties of M as a two-source extractor, and hence we
have three parameters (k, ℓ, r), rather than one. Considering these three parameters, rather than
one, enables a more refined analysis, resulting in a stronger lower bound with a slightly simpler
proof.

A proof outline is given in Section 3.

Motivation and Discussion

Many previous works studied the resources needed for learning, under certain information,
communication or memory constraints (see in particular [S14, SVW16, R16, VV16, KRT16, MM17,
R17, MT17, MM18] and the many references given there). A main message of some of these works
is that for some learning problems, access to a relatively large memory is crucial. In other words,
in some cases, learning is infeasible, due to memory constraints.

From the point of view of human learning, such results may help to explain the importance of
memory in cognitive processes. From the point of view of machine learning, these results imply that
a large class of learning algorithms cannot learn certain concept classes. In particular, this applies
to any bounded-memory learning algorithm that considers the samples one by one. In addition,
these works are related to computational complexity and have applications in cryptography.

Related Work

Independently of our work, Beame, Oveis Gharan and Yang also gave a combinatorial property
of a matrix M , that holds for a large class of matrices and implies that any learning algorithm
for the corresponding learning problem requires either a memory of size Ω ((log |X|) · (log |A|)) or
an exponential number of samples (when |A| ≤ |X|) [BOGY17]. Their property is based on a
measure of how matrices amplify the 2-norms of probability distributions that is more refined than
the 2-norms of these matrices. Their proof also builds on [R17].

They also show, as an application, tight time-space lower bounds for learning low-degree
polynomials, as well as other applications.

2 Preliminaries

Denote by UX : X → R
+ the uniform distribution over X. Denote by log the logarithm to base 2.

Denote by
(

n
≤k

)
=
(
n
0

)
+
(
n
1

)
+ . . .+

(
n
k

)
.

For a random variable Z and an event E, we denote by PZ the distribution of the random
variables Z, and we denote by PZ|E the distribution of the random variable Z conditioned on the
event E.
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Viewing a Learning Problem as a Matrix

Let X, A be two finite sets of size larger than 1. Let n = log2 |X|.
Let M : A × X → {−1, 1} be a matrix. The matrix M corresponds to the following learning

problem: There is an unknown element x ∈ X that was chosen uniformly at random. A learner
tries to learn x from samples (a, b), where a ∈ A is chosen uniformly at random and b = M(a, x).
That is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2) . . ., where each at is
uniformly distributed and for every t, bt = M(at, x).

Norms and Inner Products

Let p ≥ 1. For a function f : X → R, denote by ‖f‖p the ℓp norm of f , with respect to the uniform
distribution over X, that is:

‖f‖p =
(

E
x∈RX

[|f(x)|p]
)1/p

.

For two functions f, g : X → R, define their inner product with respect to the uniform
distribution over X as

〈f, g〉 = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the function
corresponding to the a-th row of M . Note that for a function f : X → R, we have 〈Ma, f〉 = (M ·f)a

|X| .

L2-Extractors and L∞-Extractors

Definition 2.1. L2-Extractor: Let X,A be two finite sets. A matrix M : A×X → {−1, 1} is a

(k, ℓ)-L2-Extractor with error 2−r, if for every non-negative f : X → R with
‖f‖2
‖f‖1

≤ 2ℓ there are at

most 2−k · |A| rows a in A with
|〈Ma, f〉|
‖f‖1

≥ 2−r .

Let Ω be a finite set. We denote a distribution over Ω as a function f : Ω → R
+ such that∑

x∈Ω f(x) = 1. We say that a distribution f : Ω → R
+ has min-entropy k if for all x ∈ Ω, we have

f(x) ≤ 2−k.

Definition 2.2. L∞−Extractor: Let X,A be two finite sets. A matrix M : A × X → {−1, 1}
is a (k, ℓ ∼ r)-L∞-Extractor if for every distribution px : X → R

+ with min-entropy at least
(log(|X|)− ℓ) and every distribution pa : A → R

+ with min-entropy at least (log(|A|)− k),
∣∣∣∣
∑

a′∈A

∑

x′∈X

pa(a
′) · px(x′) ·M(a′, x′)

∣∣∣∣ ≤ 2−r.

Branching Program for a Learning Problem

In the following definition, we model the learner for the learning problem that corresponds to the
matrix M , by a branching program.

Definition 2.3. Branching Program for a Learning Problem: A branching program of length
m and width d, for learning, is a directed (multi) graph with vertices arranged in m + 1 layers
containing at most d vertices each. In the first layer, that we think of as layer 0, there is only
one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf. All vertices in the last
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layer are leaves (but there may be additional leaves). Every non-leaf vertex in the program has 2|A|
outgoing edges, labeled by elements (a, b) ∈ A× {−1, 1}, with exactly one edge labeled by each such
(a, b), and all these edges going into vertices in the next layer. Each leaf v in the program is labeled
by an element x̃(v) ∈ X, that we think of as the output of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A×{−1, 1} that are given as input,
define a computation-path in the branching program, by starting from the start vertex and following
at step t the edge labeled by (at, bt), until reaching a leaf. The program outputs the label x̃(v) of the
leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that x̃ = x,
where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am (where x
is uniformly distributed over X and a1, . . . , am are uniformly distributed over A, and for every t,
bt = M(at, x)).

3 Overview of the Proof

The proof follows the lines of the proof of [R17] and builds on that proof.
Assume that M is a (k, ℓ)-L2-extractor with error 2−r′ , and let r = min{k, ℓ, r′}. Let B be

a branching program for the learning problem that corresponds to the matrix M . Assume for a
contradiction that B is of length m = 2ǫr and width d = 2ǫkℓ, where ǫ is a small constant.

We define the truncated-path, T , to be the same as the computation-path of B, except that it
sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching a leaf if certain
“bad” events occur. Nevertheless, we show that the probability that T stops before reaching a leaf
is negligible, so we can think of T as almost identical to the computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote by
Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am), and we denote
by Px|v = Px|Ev

the distribution of the random variable x conditioned on the event Ev. Similarly,
for an edge e of the branching program B, let Ee be the event that T traverses the edge e. Denote,
Pr(e) = Pr(Ee), and Px|e = Px|Ee

.
A vertex v of B is called significant if

∥∥Px|v

∥∥
2
> 2ℓ · 2−n.

Roughly speaking, this means that conditioning on the event that T reaches the vertex v, a non-
negligible amount of information is known about x. In order to guess x with a non-negligible
success probability, T must reach a significant vertex. Lemma 4.1 shows that the probability that
T reaches any significant vertex is negligible, and thus the main result follows.

To prove Lemma 4.1, we show that for every fixed significant vertex s, the probability that T
reaches s is at most 2−Ω(kℓ) (which is smaller than one over the number of vertices in B). Hence,
we can use a union bound to prove the lemma.

The proof that the probability that T reaches s is extremely small is the main part of the
proof. To that end, we use the following functions to measure the progress made by the branching
program towards reaching s.

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of edges e
from layer-(i− 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉k,

Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

6



We think of Zi,Z ′
i as measuring the progress made by the branching program, towards reaching a

state with distribution similar to Px|s.
We show that each Zi may only be negligibly larger than Zi−1. Hence, since it’s easy to calculate

that Z0 = 2−2nk, it follows that Zi is close to 2−2nk, for every i. On the other hand, if s is in layer-i
then Zi is at least Pr(s) · 〈Px|s,Px|s〉k. Thus, Pr(s) · 〈Px|s,Px|s〉k cannot be much larger than 2−2nk.

Since s is significant, 〈Px|s,Px|s〉k > 2ℓk · 2−2nk and hence Pr(s) is at most 2−Ω(kℓ).
The proof that Zi may only be negligibly larger than Zi−1 is done in two steps: Claim 4.12

shows by a simple convexity argument that Zi ≤ Z ′
i. The hard part, that is done in Claim 4.10

and Claim 4.11, is to prove that Z ′
i may only be negligibly larger than Zi−1.

For this proof, we define for every vertex v, the set of edges Γout(v) that are going out of v,
such that Pr(e) > 0. Claim 4.10 shows that for every vertex v,∑

e∈Γout(v)

Pr(e) · 〈Px|e,Px|s〉k

may only be negligibly higher than

Pr(v) · 〈Px|v,Px|s〉k.
For the proof of Claim 4.10, which is the hardest proof in the paper, and the most important

place where our proof deviates from (and simplifies) the proof of [R17], we consider the function
Px|v · Px|s. We first show how to bound

∥∥Px|v · Px|s

∥∥
2
. We then consider two cases: If

∥∥Px|v · Px|s

∥∥
1

is negligible, then 〈Px|v,Px|s〉k is negligible and doesn’t contribute much, and we show that for

every e ∈ Γout(v), 〈Px|e,Px|s〉k is also negligible and doesn’t contribute much. If
∥∥Px|v · Px|s

∥∥
1

is non-negligible, we use the bound on
∥∥Px|v · Px|s

∥∥
2
and the assumption that M is a (k, ℓ)-L2-

extractor to show that for almost all edges e ∈ Γout(v), we have that 〈Px|e,Px|s〉k is very close to

〈Px|v,Px|s〉k. Only an exponentially small (2−k) fraction of edges are “bad” and give a significantly

larger 〈Px|e,Px|s〉k.
The reason that in the definitions of Zi and Z ′

i we raised 〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 to the
power of k is that this is the largest power for which the contribution of the “bad” edges is still
small (as their fraction is 2−k).

This outline oversimplifies many details. Let us briefly mention two of them. First, it is not
so easy to bound

∥∥Px|v · Px|s

∥∥
2
. We do that by bounding

∥∥Px|s

∥∥
2
and

∥∥Px|v

∥∥
∞
. In order to bound∥∥Px|s

∥∥
2
, we force T to stop whenever it reaches a significant vertex (and thus we are able to bound∥∥Px|v

∥∥
2
for every vertex reached by T ). In order to bound

∥∥Px|v

∥∥
∞
, we force T to stop whenever

Px|v(x) is large, which allows us to consider only the “bounded” part of Px|v. (This is related to the
technique of flattening a distribution that was used in [KR13]). Second, some edges are so “bad”
that their contribution to Z ′

i is huge so they cannot be ignored. We force T to stop before traversing
any such edge. (This is related to an idea that was used in [KRT16] of analyzing separately paths
that traverse “bad” edges). We show that the total probability that T stops before reaching a leaf
is negligible.

4 Main Result

Theorem 1. Let 1
100 < c < 2

3 . Fix γ to be such that 3c
2 < γ2 < 1. Let X, A be two finite sets. Let

n = log2 |X|. Let M : A×X → {−1, 1} be a matrix which is a (k′, ℓ′)-L2-extractor with error 2−r′,
for sufficiently large1 k′, ℓ′ and r′, where ℓ′ ≤ n. Let

r := min
{

r′

2 ,
(1−γ)k′

2 , (1−γ)ℓ′

2 − 1
}
. (1)

1By “sufficiently large” we mean that k′, ℓ′, r′ are larger than some constant that depends on γ.
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Let B be a branching program of length at most 2r and width at most 2c·k
′·ℓ′ for the learning problem

that corresponds to the matrix M . Then, the success probability of B is at most O(2−r).

Proof. Let
k := γk′ and ℓ := γℓ′/3. (2)

Note that by the assumption that k′, ℓ′ and r′ are sufficiently large, we get that k, ℓ and r are also

sufficiently large. Since ℓ′ ≤ n, we have ℓ+ r ≤ γℓ′

3 + (1−γ)ℓ′

2 < ℓ′

2 ≤ n
2 . Thus,

r < n/2− ℓ. (3)

Let B be a branching program of length m = 2r and width d = 2c·k
′·ℓ′ for the learning problem

that corresponds to the matrix M . We will show that the success probability of B is at most
O(2−r).

4.1 The Truncated-Path and Additional Definitions and Notation

We will define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Formally, we define T , together with several other
definitions and notations, by induction on the layers of the branching program B.

Assume that we already defined the truncated-path T , until it reaches layer-i of B. For a vertex
v in layer-i of B, let Ev be the event that T reaches the vertex v. For simplicity, we denote by
Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am), and we denote
by Px|v = Px|Ev

the distribution of the random variable x conditioned on the event Ev.
There will be three cases in which the truncated-path T stops on a non-leaf v:

1. If v is a, so called, significant vertex, where the ℓ2 norm of Px|v is non-negligible. (Intuitively,
this means that conditioned on the event that T reaches v, a non-negligible amount of
information is known about x).

2. If Px|v(x) is non-negligible. (Intuitively, this means that conditioned on the event that T
reaches v, the correct element x could have been guessed with a non-negligible probability).

3. If (M · Px|v)(ai+1) is non-negligible. (Intuitively, this means that T is about to traverse a
“bad” edge, which is traversed with a non-negligibly higher or lower probability than other
edges).

Next, we describe these three cases more formally.

Significant Vertices

We say that a vertex v in layer-i of B is significant if
∥∥Px|v

∥∥
2
> 2ℓ · 2−n.

Significant Values

Even if v is not significant, Px|v may have relatively large values. For a vertex v in layer-i of B,
denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x
′) > 22ℓ+2r · 2−n.
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Bad Edges

For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,
∣∣(M · Px|v)(α)

∣∣ ≥ 2−r′ .

The Truncated-Path T

We define T by induction on the layers of the branching program B. Assume that we already
defined T until it reaches a vertex v in layer-i of B. The path T stops on v if (at least) one of the
following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

4. v is a leaf.

Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the computational-
path).

4.2 Proof of Theorem 1

Since T follows the computation-path of B, except that it sometimes stops before reaching a leaf,
the success probability of B is bounded (from above) by the probability that T stops before reaching
a leaf, plus the probability that T reaches a leaf v and x̃(v) = x.

The main lemma needed for the proof of Theorem 1 is Lemma 4.1 that shows that the probability
that T reaches a significant vertex is at most O(2−r).

Lemma 4.1. The probability that T reaches a significant vertex is at most O(2−r).

Lemma 4.1 is proved in Section 4.3. We will now show how the proof of Theorem 1 follows from
that lemma.

Lemma 4.1 shows that the probability that T stops on a non-leaf vertex, because of the
first reason (i.e., that the vertex is significant), is small. The next two lemmas imply that the
probabilities that T stops on a non-leaf vertex, because of the second and third reasons, are also
small.

Claim 4.2. If v is a non-significant vertex of B then

Pr
x
[x ∈ Sig(v) | Ev] ≤ 2−2r.

Proof. Since v is not significant,

E
x′∼Px|v

[
Px|v(x

′)
]
=
∑

x′∈X

[
Px|v(x

′)2
]
= 2n · E

x′∈RX

[
Px|v(x

′)2
]
≤ 22ℓ · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x

′) > 22r · 22ℓ · 2−n
]
≤ 2−2r.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ Ev

]
= Pr

x

[(
Px|v(x) > 22r · 22ℓ · 2−n

) ∣∣ Ev

]
≤ 2−2r.
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Claim 4.3. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−2r.

Proof. Since v is not significant,
∥∥Px|v

∥∥
2
≤ 2ℓ · 2−n. Since Px|v is a distribution,

∥∥Px|v

∥∥
1
= 2−n.

Thus, ∥∥Px|v

∥∥
2∥∥Px|v

∥∥
1

≤ 2ℓ ≤ 2ℓ
′
.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| elements α ∈ A with
∣∣〈Mα,Px|v〉

∣∣ ≥ 2−r′ ·
∥∥Px|v

∥∥
1
= 2−r′ · 2−n

The claim follows since ai+1 is uniformly distributed over A and since k′ ≥ 2r (Equation (1)).

We can now use Lemma 4.1, Claim 4.2 and Claim 4.3 to prove that the probability that T stops
before reaching a leaf is at most O(2−r). Lemma 4.1 shows that the probability that T reaches a
significant vertex and hence stops because of the first reason, is at most O(2−r). Assuming that
T doesn’t reach any significant vertex (in which case it would have stopped because of the first
reason), Claim 4.2 shows that in each step, the probability that T stops because of the second
reason, is at most 2−2r. Taking a union bound over the m = 2r steps, the total probability that T
stops because of the second reason, is at most 2−r. In the same way, assuming that T doesn’t reach
any significant vertex (in which case it would have stopped because of the first reason), Claim 4.3
shows that in each step, the probability that T stops because of the third reason, is at most 2−2r.
Again, taking a union bound over the 2r steps, the total probability that T stops because of the
third reason, is at most 2−r. Thus, the total probability that T stops (for any reason) before
reaching a leaf is at most O(2−r).

Recall that if T doesn’t stop before reaching a leaf, it just follows the computation-path of B.
Recall also that by Lemma 4.1, the probability that T reaches a significant leaf is at most O(2−r).
Thus, to bound (from above) the success probability of B by O(2−r), it remains to bound the
probability that T reaches a non-significant leaf v and x̃(v) = x. Claim 4.4 shows that for any
non-significant leaf v, conditioned on the event that T reaches v, the probability for x̃(v) = x is at
most 2−r, which completes the proof of Theorem 1.

Claim 4.4. If v is a non-significant leaf of B then

Pr[x̃(v) = x | Ev] ≤ 2−r.

Proof. Since v is not significant,

E
x′∈RX

[
Px|v(x

′)2
]
≤ 22ℓ · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | Ev] = Px|v(x
′) ≤ 2ℓ · 2−n/2 ≤ 2−r

since r ≤ n/2− ℓ (Equation (3)). In particular,

Pr[x̃(v) = x | Ev] ≤ 2−r.

This completes the proof of Theorem 1.
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4.3 Proof of Lemma 4.1

Proof. We need to prove that the probability that T reaches any significant vertex is at most
O(2−r). Let s be a significant vertex of B. We will bound from above the probability that T
reaches s, and then use a union bound over all significant vertices of B. Interestingly, the upper
bound on the width of B is used only in the union bound.

The Distributions Px|v and Px|e

Recall that for a vertex v of B, we denote by Ev the event that T reaches the vertex v. For
simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over
x, a1, . . . , am), and we denote by Px|v = Px|Ev

the distribution of the random variable x conditioned
on the event Ev.

Similarly, for an edge e of the branching program B, let Ee be the event that T traverses the
edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over x, a1, . . . , am), and Px|e = Px|Ee

.

Claim 4.5. For any edge e = (v, u) of B, labeled by (a, b), such that Pr(e) > 0, for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v) or M(a, x′) 6= b

Px|v(x
′) · c−1

e if x′ 6∈ Sig(v) and M(a, x′) = b

where ce is a normalization factor that satisfies,

ce ≥ 1
2 − 2 · 2−2r.

Proof. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0. Since Pr(e) > 0,
the vertex v is not significant (as otherwise T always stops on v and hence Pr(e) = 0). Also, since
Pr(e) > 0, we know that a 6∈ Bad(v) (as otherwise T never traverses e and hence Pr(e) = 0).

If T reaches v, it traverses the edge e if and only if: x 6∈ Sig(v) (as otherwise T stops on v) and
M(a, x) = b and ai+1 = a. Therefore, for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v) or M(a, x′) 6= b

Px|v(x
′) · c−1

e if x′ 6∈ Sig(v) and M(a, x′) = b

where ce is a normalization factor, given by

ce =
∑

{x′ : x′ 6∈Sig(v) ∧ M(a,x′)=b}

Px|v(x
′) = Pr

x
[(x 6∈ Sig(v)) ∧ (M(a, x) = b) | Ev].

Since v is not significant, by Claim 4.2,

Pr
x
[x ∈ Sig(v) | Ev] ≤ 2−2r.

Since a 6∈ Bad(v),
∣∣∣Pr
x
[M(a, x) = 1 | Ev]− Pr

x
[M(a, x) = −1 | Ev]

∣∣∣ =
∣∣(M · Px|v)(a)

∣∣ ≤ 2−r′ ,

and hence
Pr
x
[M(a, x) 6= b | Ev] ≤ 1

2 + 2−r′ .

Hence, by the union bound,

ce = Pr
x
[(x 6∈ Sig(v)) ∧ (M(a, x) = b) | Ev] ≥ 1

2 − 2−r′ − 2−2r ≥ 1
2 − 2 · 2−2r

(where the last inequality follows since r ≤ r′/2, by Equation (1)).
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Bounding the Norm of Px|s

We will show that
∥∥Px|s

∥∥
2
cannot be too large. Towards this, we will first prove that for every edge

e of B that is traversed by T with probability larger than zero,
∥∥Px|e

∥∥
2
cannot be too large.

Claim 4.6. For any edge e of B, such that Pr(e) > 0,
∥∥Px|e

∥∥
2
≤ 4 · 2ℓ · 2−n.

Proof. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0. Since Pr(e) > 0,
the vertex v is not significant (as otherwise T always stops on v and hence Pr(e) = 0). Thus,

∥∥Px|v

∥∥
2
≤ 2ℓ · 2−n.

By Claim 4.5, for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v) or M(a, x′) 6= b

Px|v(x
′) · c−1

e if x′ 6∈ Sig(v) and M(a, x′) = b

where ce satisfies,
ce ≥ 1

2 − 2 · 2−2r > 1
4

(where the last inequality holds because we assume that k′, ℓ′, r′ and thus r are sufficiently large.)
Thus, ∥∥Px|e

∥∥
2
≤ c−1

e ·
∥∥Px|v

∥∥
2
≤ 4 · 2ℓ · 2−n

Claim 4.7. ∥∥Px|s

∥∥
2
≤ 4 · 2ℓ · 2−n.

Proof. Let Γin(s) be the set of all edges e of B, that are going into s, such that Pr(e) > 0. Note
that ∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x
′) =

∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x

′),

and hence by Jensen’s inequality,

Px|s(x
′)2 ≤

∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x

′)2.

Summing over x′ ∈ X, we obtain,
∥∥Px|s

∥∥2
2
≤

∑

e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e

∥∥2
2
.

By Claim 4.6, for any e ∈ Γin(s),

∥∥Px|e

∥∥2
2
≤
(
4 · 2ℓ · 2−n

)2
.

Hence,
∥∥Px|s

∥∥2
2
≤
(
4 · 2ℓ · 2−n

)2
.
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Similarity to a Target Distribution

Recall that for two functions f, g : X → R
+, we defined

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

Claim 4.8.
〈Px|s,Px|s〉 > 22ℓ · 2−2n.

Proof. Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s

∥∥2
2
> 22ℓ · 2−2n.

Claim 4.9.
〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑

z∈X

Px|s(z) = 2−2n.

Measuring the Progress

For i ∈ {0, . . . ,m}, let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. For
i ∈ {1, . . . ,m}, let Γi be the set of edges e from layer-(i − 1) of B to layer-i of B, such that
Pr(e) > 0. Recall that k = γk′ (Equation (2)).

For i ∈ {0, . . . ,m}, let
Zi =

∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉k.

For i ∈ {1, . . . ,m}, let
Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi,Z ′
i as measuring the progress made by the branching program, towards reaching

a state with distribution similar to Px|s.
For a vertex v of B, let Γout(v) be the set of all edges e of B, that are going out of v, such that

Pr(e) > 0. Note that ∑

e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v).
The next four claims show that the progress made by the branching program is slow.

Claim 4.10. For every vertex v of B, such that Pr(v) > 0,
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k ≤ 〈Px|v,Px|s〉k ·

(
1 + 2−r

)k
+
(
2−2n+2

)k
.

13



Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty and
thus the left hand side is equal to zero and the right hand side is positive, so the claim follows
trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R
+ as follows. For any x′ ∈ X,

P (x′) =

{
0 if x′ ∈ Sig(v)

Px|v(x
′) if x′ 6∈ Sig(v)

Note that by the definition of Sig(v), for any x′ ∈ X,

P (x′) ≤ 22ℓ+2r · 2−n. (4)

Define f : X → R
+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x
′).

By Claim 4.7 and Equation (4),

‖f‖2 ≤ 22ℓ+2r · 2−n ·
∥∥Px|s

∥∥
2
≤ 22ℓ+2r · 2−n · 4 · 2ℓ · 2−n = 23ℓ+2r+2 · 2−2n. (5)

By Claim 4.5, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x
′) =

{
0 if M(a, x′) 6= b

P (x′) · c−1
e if M(a, x′) = b

where ce satisfies,
ce ≥ 1

2 − 2 · 2−2r.

Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x
′) · Px|s(x

′) =

{
0 if M(a, x′) 6= b

f(x′) · c−1
e if M(a, x′) = b

and hence, we have

〈Px|e,Px|s〉 = E
x′∈RX

[Px|e(x
′) · Px|s(x

′)] = E
x′∈RX

[f(x′) · c−1
e · 1{x′∈X : M(a,x′)=b}]

= E
x′∈RX

[
f(x′) · c−1

e · (1+b·M(a,x′))
2

]
= (‖f‖1 + b · 〈Ma, f〉) · (2ce)−1

< (‖f‖1 + |〈Ma, f〉|) ·
(
1 + 2−2r+3

)
(6)

(where the last inequality holds by the bound that we have on ce, because we assume that k′, ℓ′, r′

and thus r are sufficiently large).
We will now consider two cases:

Case I: ‖f‖1 < 2−2n

In this case, we bound |〈Ma, f〉| ≤ ‖f‖1 (since f is non-negative and the entries of M are in {−1, 1})
and (1 + 2−2r+3) < 2 (since we assume that k′, ℓ′, r′ and thus r are sufficiently large) and obtain
for any edge e ∈ Γout(v),

〈Px|e,Px|s〉 < 4 · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v) ≤ 1, Claim 4.10 follows, as the left hand side of the claim is smaller than the

second term on the right hand side.
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Case II: ‖f‖1 ≥ 2−2n

For every a ∈ A, define

t(a) =
|〈Ma, f〉|
‖f‖1

.

By Equation (6),

〈Px|e,Px|s〉k < ‖f‖k1 · (1 + t(a))k ·
(
1 + 2−2r+3

)k
. (7)

Note that by the definitions of P and f ,

‖f‖1 = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1), and at
most one edge e(a,−1) ∈ Γout(v), labeled by (a,−1), and we have

Pr(e(a,1))

Pr(v) +
Pr(e(a,−1))

Pr(v) ≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing over all

e ∈ Γout(v), by Equation (7),
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k · E

a∈RA

[
(1 + t(a))k

]
·
(
1 + 2−2r+3

)k
. (8)

It remains to bound
E

a∈RA

[
(1 + t(a))k

]
, (9)

using the properties of the matrix M and the bounds on the ℓ2 versus ℓ1 norms of f .
By Equation (5), the assumption that ‖f‖1 ≥ 2−2n, Equation (1) and Equation (2), we get

‖f‖2
‖f‖1

≤ 23ℓ+2r+2 ≤ 2ℓ
′
.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| rows a ∈ A with

t(a) = |〈Ma,f〉|
‖f‖1

≥ 2−r′ . We bound the expectation in Equation (9), by splitting the expectation into
two sums

E
a∈RA

[
(1 + t(a))k

]
= 1

|A| ·
∑

a : t(a)≤2−r′

(1 + t(a))k + 1
|A| ·

∑

a : t(a)>2−r′

(1 + t(a))k . (10)

We bound the first sum in Equation (10) by (1+2−r′)k. As for the second sum in Equation (10),
we know that it is a sum of at most 2−k′ · |A| elements, and since for every a ∈ A, we have t(a) ≤ 1,
we have

1
|A| ·

∑

a : t(a)>2−r′

(1 + t(a))k ≤ 2−k′ · 2k ≤ 2−2r

(where in the last inequality we used Equations (1) and (2)). Overall, using Equation (1) again,
we get

E
a∈RA

[
(1 + t(a))k

]
≤ (1 + 2−r′)k + 2−2r ≤ (1 + 2−2r)k+1. (11)

Substituting Equation (11) into Equation (8), we obtain∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k ·

(
1 + 2−2r

)k+1 ·
(
1 + 2−2r+3

)k

< 〈Px|v,Px|s〉k ·
(
1 + 2−r

)k

(where the last inequality uses the assumption that r is sufficiently large). This completes the proof
of Claim 4.10.
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Claim 4.11. For every i ∈ {1, . . . ,m},
Z ′
i ≤ Zi−1 ·

(
1 + 2−r

)k
+
(
2−2n+2

)k
.

Proof. By Claim 4.10,

Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k =
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k

≤
∑

v∈Li−1

Pr(v) ·
(
〈Px|v,Px|s〉k ·

(
1 + 2−r

)k
+
(
2−2n+2

)k)

= Zi−1 ·
(
1 + 2−r

)k
+
∑

v∈Li−1

Pr(v) ·
(
2−2n+2

)k

≤ Zi−1 ·
(
1 + 2−r

)k
+
(
2−2n+2

)k

Claim 4.12. For every i ∈ {1, . . . ,m},
Zi ≤ Z ′

i.

Proof. For any v ∈ Li, let Γin(v) be the set of all edges e ∈ Γi, that are going into v. Note that
∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ Li and every x′ ∈ X,

Px|v(x
′) =

∑

e∈Γin(v)

Pr(e)
Pr(v) · Px|e(x

′),

and hence
〈Px|v,Px|s〉 =

∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉.

Thus, by Jensen’s inequality,

〈Px|v,Px|s〉k ≤
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k.

Summing over all v ∈ Li, we get

Zi =
∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉k ≤
∑

v∈Li

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k

=
∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k = Z ′
i.

Claim 4.13. For every i ∈ {1, . . . ,m},
Zi ≤ 24k+2r · 2−2k·n.

Proof. By Claim 4.9, Z0 = (2−2n)k. By Claim 4.11 and Claim 4.12, for every i ∈ {1, . . . ,m},
Zi ≤ Zi−1 ·

(
1 + 2−r

)k
+
(
2−2n+2

)k
.

Hence, for every i ∈ {1, . . . ,m},
Zi ≤

(
2−2n+2

)k ·m ·
(
1 + 2−r

)km
.

Since m = 2r,
Zi ≤ 2−2k·n · 22k · 2r · ek ≤ 2−2k·n · 24k+2r.
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Proof of Lemma 4.1

We can now complete the proof of Lemma 4.1. Assume that s is in layer-i of B. By Claim 4.8,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉k > Pr(s) ·
(
22ℓ · 2−2n

)k
= Pr(s) · 22ℓ·k · 2−2k·n.

On the other hand, by Claim 4.13,

Zi ≤ 24k+2r · 2−2k·n.

Thus, using Equation (1) and Equation (2), we get

Pr(s) ≤ 24k+2r · 2−2ℓ·k ≤ 24k
′ · 2−(2γ2/3)·(k′ℓ′).

Recall that we assumed that the width of B is at most 2ck
′ℓ′ for some constant c < 2/3, and that

the length of B is at most 2r. Recall that we fixed γ such that 2γ2/3 > c. Taking a union bound
over at most 2r · 2ck′ℓ′ ≤ 2k

′ · 2ck′ℓ′ significant vertices of B, we conclude that the probability that
T reaches any significant vertex is at most 2−Ω(k′ℓ′). Since we assume that k′ and ℓ′ are sufficiently
large, 2−Ω(k′ℓ′) is certainly at most 2−k′ , which is at most 2−r.

4.4 Lower Bounds for Weak Learning

In this section, we show that under the same conditions of Theorem 1, the branching program
cannot even weakly-learn the function. That is, we show that the branching program cannot
output a hypothesis h : A → {−1, 1} with a non-negligible correlation with the function defined by
the true unknown x. We change the definition of the branching program and associate with each
leaf v a hypothesis hv : A → {−1, 1}. We measure the success as the correlation between hv and
the function defined by the true unknown x.

Formally, for any x ∈ X, let M (x) : A → {−1, 1} be the function corresponding to the x-
th column of M . We define the value of the program as E

[∣∣〈hv,M (x)〉
∣∣], where the expectation

is over x, a1, . . . , am (recall that x is uniformly distributed over X and a1, . . . , am are uniformly
distributed over A, and for every t, bt = M(at, x)). The following claim bounds the expected
correlation between hv and M (x), conditioned on reaching a non-significant leaf.

Claim 4.14. If v is a non-significant leaf, then

E
x

[ ∣∣∣〈hv,M (x)〉
∣∣∣
∣∣∣ Ev

]
≤ O(2−r/2).

Proof. We expand the expected correlation between hv and M (x), squared:

E
x

[ ∣∣∣〈hv,M (x)〉
∣∣∣
∣∣∣ Ev

]2
≤ E

x

[
〈hv,M (x)〉2

∣∣∣ Ev

]
=
∑

x′∈X

Px|v(x
′) · 〈hv,M (x′)〉2

=
∑

x′∈X

Px|v(x
′) · E

a,a′∈RA
[hv(a) ·M(a, x′) · hv(a′) ·M(a′, x′)]

= E
a,a′∈RA

[
hv(a) · hv(a′) ·

∑

x′∈X

Px|v(x
′) ·M(a, x′) ·M(a′, x′)

]

≤ E
a,a′∈RA

[∣∣∣∣∣
∑

x′∈X

Px|v(x
′) ·M(a, x′) ·M(a′, x′)

∣∣∣∣∣

]

= E
a∈RA

[
E

a′∈RA

[∣∣∣∣∣
∑

x′∈X

Px|v(x
′) ·M(a, x′) ·M(a′, x′)

∣∣∣∣∣

]]
.
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Next, we show that Ea′∈RA

[∣∣∑
x′∈X Px|v(x

′) ·M(a, x′) ·M(a′, x′)
∣∣] ≤ 4 ·2−r for any a ∈ A. Fix

a ∈ A. Let qa : X → R be the function defined by qa(x
′) = Px|v(x

′) · M(a, x′) for x′ ∈ X. Since
|qa(x′)| = |Px|v(x

′)| for any x′ ∈ X and since v is a non-significant vertex, we get

‖qa‖2 =
∥∥Px|v

∥∥
2
≤ 2ℓ · 2−n and ‖qa‖1 =

∥∥Px|v

∥∥
1
= 2−n.

Hence,
‖qa‖2
‖qa‖1

≤ 2ℓ. We would like to use the fact that M is a (k′, ℓ′)-L2-extractor with error 2−r′

to show that there aren’t many rows of M with a large inner product with qa. However, qa can get
negative values and the definition of L2-extractors only handles non-negative functions f : X → R

+.
To solve this issue, we use the following lemma, proved in Section 5.1.

Lemma 4.15. Suppose that M : A×X → {−1, 1} is a (k′, ℓ′)-L2-extractor with error at most 2−r.

Let f : X → R be any function (i.e., f can get negative values) with
‖f‖2
‖f‖1

≤ 2ℓ
′−r. Then, there are

at most 2 · 2−k′ · |A| rows a ∈ A with |〈Ma,f〉|
‖f‖1

≥ 2 · 2−r.

Since M is a (k′, ℓ′)-L2-extractor with error at most 2−r′ , and since r < r′, we have that M

is also a (k′, ℓ′)-L2-extractor with error at most 2−r. Since
‖qa‖2
‖qa‖1

≤ 2ℓ ≤ 2ℓ
′−r, we can apply

Lemma 4.15 with f = qa, and error 2−r. We get that there are at most 2 · 2−k′ · |A| rows a′ ∈ A

with
|〈qa,Ma′ 〉|

‖qa‖1
≥ 2 · 2−r. Thus,

E
a′∈RA

[∣∣∣∣∣
∑

x′∈X

qa(x
′) ·M(a′, x′)

∣∣∣∣∣

]
= E

a′∈RA

[ |〈qa,Ma′〉|
‖qa‖1

]
≤ 2 · 2−k′ + 2 · 2−r ≤ 4 · 2−r .

Overall, we get that Ex

[
|〈hv,M (x)〉|

∣∣ Ev

]2 ≤ 4 · 2−r. Taking square roots of both sides of the
last inequality completes the proof.

Lemma 4.1, Claim 4.2 and Claim 4.3 show that the probability that T stops before reaching a
leaf is at most O(2−r). Combining this with Claim 4.14 we get that (under the same conditions of
Theorem 1)

E[
∣∣∣〈hv,M (x)〉

∣∣∣] ≤ Pr[T stops] +O(2−r/2) ≤ O(2−r/2),

where the expectation and probability are taken over x ∈R X and a1, . . . , am ∈R A. We get the
following theorem as a conclusion.

Theorem 2. Let 1
100 < c < 2

3 . Fix γ to be such that 3c
2 < γ2 < 1.

Let X, A be two finite sets. Let n = log2 |X|. Let M : A×X → {−1, 1} be a matrix which is a
(k′, ℓ′)-L2-extractor with error 2−r′, for sufficiently large2 k′, ℓ′ and r′, where ℓ′ ≤ n. Let

r := min
{

r′

2 ,
(1−γ)k′

2 , (1−γ)ℓ′

2 − 1
}
.

Let B be a branching program of length at most 2r and width at most 2c·k
′·ℓ′ for the learning

problem that corresponds to the matrix M . Then,

E[
∣∣∣〈hv,M (x)〉

∣∣∣] ≤ O(2−r/2) .

In particular, the probability that the hypothesis agrees with the function defined by the true
unknown x, on more than 1/2 + 2−r/4 of the inputs, is at most O(2−r/4).

2By “sufficiently large” we mean that k′, ℓ′, r′ are larger than some constant that depends on γ.

18



4.5 Main Corollary

Corollary 3. There exists a sufficiently small constant c > 0 such that:
Let X, A be two finite sets. Let M : A×X → {−1, 1} be a matrix. Assume that k, ℓ, r ∈ N are

such that any submatrix of M of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias of
at most 2−r.

Let B be a branching program of length at most 2c·r and width at most 2c·k·ℓ for the learning
problem that corresponds to the matrix M . Then, the success probability of B is at most 2−Ω(r).

Proof. By Lemma 5.2 (stated and proved below), there exist k′ = k + Ω(r), ℓ′ = ℓ + Ω(r), and
r′ = Ω(r), such that: any submatrix of M of at least 2−k′ · |A| rows and at least 2−ℓ′ · |X| columns,
has a bias of at most 2−r′ .

By Lemma 5.4 (stated and proved below), M is an (Ω(k)+Ω(r),Ω(ℓ)+Ω(r))-L2-extractor with
error 2−Ω(r).

The corollary follows by Theorem 1.

5 Applications

5.1 Some Useful Lemmas

5.1.1 Handling Negative Functions

In the following lemma, we show that up to a small loss in parameters an L2-extractor has similar
guarantees for any function f : X → R with bounded ℓ2-vs-ℓ1-norm regardless of whether or not f
is non-negative.

Lemma 5.1. Suppose that M : A×X → {−1, 1} is a (k′, ℓ′)-L2-extractor with error at most 2−r.

Let f : X → R be any function with
‖f‖2
‖f‖1

≤ 2ℓ
′−r. Then, there are at most 2 · 2−k′ · |A| rows a ∈ A

with |〈Ma,f〉|
‖f‖1

≥ 2 · 2−r.

Proof. Let f+, f− : X → R
+ be the non-negative functions defined by

f+(x) =

{
f(x), f(x) > 0

0, otherwise
f−(x) =

{
|f(x)|, f(x) < 0

0, otherwise

for x ∈ X. We have f(x) = f+(x)− f−(x) for all x ∈ X. We split into two cases:

1. If ‖f+‖1 < 2−r · ‖f‖1, then |〈Ma, f+〉| ≤ ‖f+‖1 < 2−r · ‖f‖1 for all a ∈ A.

2. If ‖f+‖1 ≥ 2−r · ‖f‖1, then f+ is a non-negative function with

‖f+‖2
‖f+‖1

≤ ‖f‖2
‖f‖1 · 2−r

≤ 2ℓ
′
.

Thus, we may use the assumption that M is an L2-extractor to deduce that there are at most
2−k′ · |A| rows a ∈ A with |〈Ma, f+〉| ≥ ‖f+‖1 · 2−r.

In both cases, there are at most 2−k′ · |A| rows a ∈ A with |〈Ma, f+〉| ≥ ‖f‖1 · 2−r. Similarly, there
are at most 2−k′ · |A| rows a ∈ A with |〈Ma, f−〉| ≥ ‖f‖1 · 2−r. Thus, for all but at most 2 · 2−k′ · |A|
of the rows a ∈ A we have

|〈Ma, f〉| ≤ |〈Ma, f+〉|+ |〈Ma, f−〉| < 2 · ‖f‖1 · 2−r .
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5.1.2 Error vs. Min-Entropy

Lemma 5.2. Let M : A ×X → {−1, 1} be a matrix. Let k, ℓ, r be such that any submatrix of M
of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias of at most 2−r.

Then, there exist k′ = k + Ω(r), ℓ′ = ℓ+ Ω(r), and r′ = Ω(r), such that: any submatrix of M
of at least 2−k′ · |A| rows and at least 2−ℓ′ · |X| columns, has a bias of at most 2−r′.

Proof. Assume without loss of generality that k, ℓ, r are larger than some sufficiently large absolute
constant.

We will show that there exists k′ = k+Ω(r), such that, any submatrix of M of at least 2−k′ · |A|
rows and at least 2−ℓ · |X| columns, has a bias of at most 2−Ω(r). The proof of the lemma then
follows by applying the same claim again on the transposed matrix.

Let k′ = k + r
10 . Assume for a contradiction that there exist T ⊆ A of size at least 2−k′ · |A|

and S ⊆ X of size at least 2−ℓ · |X|, such that the bias of T × S is larger than, say, 2−r/2. By the
assumption of the lemma, |T | < 2−k · |A|.

Let T ′ be an arbitrary set of 2−k · |A| rows in A \ T . By the assumption of the lemma, the bias
of T ′ × S is at most 2−r. Therefore, the bias of (T ′ ∪ T )× S is at least

|T |
|T ′∪T | · 2

−r/2 − |T ′|
|T ′∪T | · 2

−r ≥ 1
2 · 2−r/10 · 2−r/2 − 2−r > 2−r.

Thus, (T ′ ∪ T )× S contradicts the assumption of the lemma.

5.1.3 L2-Extractors and L∞-Extractors

We will show that M being an L2-Extractor is equivalent to M being an L∞-Extractor (barring
constants).

Lemma 5.3. If a matrix M : A×X → {−1, 1} is a (k, ℓ)-L2-Extractor with error 2−r, then M is
also a (k − ξ, 2ℓ ∼ (min{r, ξ} − 1))-L∞-Extractor, ∀0 < ξ < k.

Taking ξ = k
2 , we get that if M is a (k, ℓ)-L2-Extractor with error 2−r, then M is also a

(Ω(k),Ω(ℓ) ∼ (Ω(min{r, k})))-L∞-Extractor.

Proof. We pick a ξ (0 < ξ < k). To prove that M is a (k − ξ, 2ℓ ∼ (min{r, ξ} − 1))-L∞-Extractor, it
suffices to prove the statement of the L∞-Extractors for any two uniform distributions over subsets
A1 ⊆ A and X1 ⊆ X of size at least |A|

2k−ξ and |X|
22ℓ

respectively. This follows from the fact that
any distribution with min-entropy at least h can be written as a convex combination of uniform
distributions on sets of size at least 2h [CG88].

For a distribution px, which is uniform over a subset X1 ⊆ X of size at least |X|
22ℓ

,

‖px‖2
‖px‖1

=

( |X|
|X1|

) 1
2

≤ 2ℓ.

Using the fact that M is a (k, ℓ)-L2-Extractor with error 2−r, we know that there are at most |A|
2k

rows a with |(M · px)a| ≥ 2−r. Using the fact that pa is a uniform distribution over a set A1 of size

at least |A|
2k−ξ , we get
∣∣∣∣∣
∑

a′∈A

∑

x′∈X

pa(a
′) · px(x′) ·M(a′, x′)

∣∣∣∣∣ ≤
1

|A1|
·
∑

a′∈A1

|(M · px)a′ |

≤ 1

|A1|
·
( |A|

2k
+ |A1| · 2−r

)
≤ 2−ξ + 2−r

This proves that M is a (k − ξ, 2ℓ ∼ (min{r, ξ} − 1))-L∞-Extractor, ∀0 < ξ < k.
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Lemma 5.4. If a matrix M : A × X → {−1, 1} is a (k, ℓ ∼ r)-L∞-Extractor, then M is also a(
k − 1, ℓ−ξ−1

2

)
-L2-Extractor with error 2−r + 2−ξ+1, ∀1 ≤ ξ ≤ ℓ− 1.

Taking ξ = ℓ
2 , we get that if M is a (k, ℓ ∼ r)-L∞-Extractor, then M is also a (Ω(k),Ω(ℓ))-L2-

Extractor with error 2−Ω(min{r,ℓ}).
In this proof, we use the following notation. For two non-negative functions P,Q : X → R,

we denote by dist(P,Q) the ℓ1-distance between the two functions, that is

dist(P,Q) =
∑

x∈X

|P (x)−Q(x)| .

Note that dist(P,Q) = ‖P −Q‖1 · |X|.

Proof. We want to prove that for any 1 ≤ ξ ≤ ℓ − 1, and any non-negative function f : X → R

with
‖f‖2
‖f‖1

≤ 2
ℓ−ξ−1

2 , there are at most 2 · 2−k · |A| rows a ∈ A with |〈Ma,f〉|
‖f‖1

≥ 2−r + 2−ξ+1.

Let’s assume that there exists a non-negative function f : X → R for which the last statement
is not true. Let fp be a probability distribution on X defined by fp(x) =

f(x)∑
x f(x) =

f(x)
|X|·‖f‖1

. Then,

‖fp‖2 =
‖f‖2

|X| · ‖f‖1
≤ 2

ℓ−ξ−1
2

|X|

=⇒
(∑

x fp(x)
2

|X|

) 1
2

≤ 2
ℓ−ξ−1

2

|X|

=⇒
∑

x

fp(x)
2 ≤ 2ℓ−ξ−1−log(|X|)

Thus, there is strictly less than 2−ξ probability mass on elements x with fp(x) > 2ℓ−log(|X|)−1. Let
f̄p : X → R be the trimmed function that takes values fp(x) at x when fp(x) ≤ 2ℓ−log(|X|)−1 and 0
otherwise. We define a new probability distribution px : X → [0, 1] as

px(x
′) = f̄p(x

′) +
1−

∑
x′ f̄p(x

′)

|X| .

Informally, we are just redistributing the probability mass removed from fp. It is easy to see that
the new probability distribution px has min-entropy at least log(|X|)− ℓ, and

dist(px, fp) < 2−ξ+1 (12)

as dist(px, fp) ≤ dist(px, f̄p) + dist(f̄p, fp) < 2−ξ + 2−ξ.

Let Abad be the set of rows a ∈ A with |〈Ma,f〉|
‖f‖1

= |(M ·fp)a| ≥ 2−r+2−ξ+1. By our assumption,

|Abad| ≥ 2 · 2−k|A|. Let A1 and A2 be the set of rows a with (M · fp)a ≥ 2−r + 2−ξ+1 and
(M · fp)a ≤ −(2−r + 2−ξ+1) respectively. As Abad = A1 ∪ A2, w.l.o.g. |A1| ≥ |Abad|/2 ≥ 2−k|A|
(else we can work with A2 and the rest of the argument follows similarly). Let pa be a uniform
probability distribution over the set A1. Clearly pa has min-entropy at least log(|A|)− k.

As (M · fp)a ≥ 2−r + 2−ξ+1 for the entire support of pa, we get
∣∣∣∣ E
a∈RA1

[(M · fp)a]
∣∣∣∣ ≥ 2−r + 2−ξ+1. (13)

As the entries of M have magnitude at most 1, we have
∣∣∣∣ E
a∈RA1

[(M · (px − fp))a]

∣∣∣∣ ≤ E
a∈RA1

[
∑

x′∈X

|px(x′)− fp(x
′)|
]
= dist(px, fp) . (14)
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Combining Equations (12), (13) and (14) together gives
∣∣∣∣ E
a∈RA1

[(M · px)a]
∣∣∣∣ ≥ 2−r + 2−ξ+1 − dist(px, fp) > 2−r

Thus, we have two distributions pa and px with min-entropy at least log(|A|)− k and log(|X|)− ℓ
respectively contradicting the fact that M is a (k, ℓ ∼ r)-L∞-Extractor. Hence no such f exists
and M is a (k − 1, ℓ−ξ−1

2 )-L2-Extractor with error 2−r + 2−ξ+1.

5.1.4 Transpose

Lemma 5.5. If a matrix M : A ×X → {−1, 1} is a (k, ℓ)-L2-Extractor with error 2−r, then the
transposed matrix M t is an (Ω(ℓ),Ω(k))-L2-Extractor with error 2−Ω(min{r,k}).

Proof. As M is a (k, ℓ)-L2-Extractor with error 2−r, using Lemma 5.3, M is also a
(Ω(k),Ω(ℓ) ∼ (Ω(min{r, k})))-L∞-Extractor. The definition of L∞-Extractor is symmetric in its
rows and columns and hence, M t is also a (Ω(ℓ),Ω(k) ∼ (Ω(min{r, k})))-L∞-Extractor. Now, using
Lemma 5.4 on M t, we get that M t is also a (Ω(ℓ),Ω(k))-L2-Extractor with error 2−Ω(min{r,k}).

5.1.5 Lower Bounds for Almost Orthogonal Vectors

In this section, we show that a matrix M : A × X → {−1, 1} whose rows are almost
orthogonal is a good L2-extractor. A similar technique was used in many previous works (see
for example [GS71, CG88, A95, R05]). Motivated by the applications (e.g., learning sparse parities
and learning from low-degree equations) in which some pairs of rows are not almost orthogonal, we
relax this notion and only require that almost all pairs of rows are almost orthogonal. We formalize
this in the definition of (ǫ, δ)-almost orthogonal vectors.

Definition 5.6. (ǫ, δ)-almost orthogonal vectors: Vectors v1, . . . , vm ∈ {−1, 1}X are (ǫ, δ)-
almost orthogonal if for any i ∈ [m] there are at most δ ·m indices j ∈ [m] with |〈vi, vj〉| > ǫ.

Definition 5.6 generalizes the definition of an (ǫ, δ)-biased set from [KRT16].

Definition 5.7. (ǫ, δ)-biased set ([KRT16]): A set T ⊆ {0, 1}n is (ǫ, δ)-biased if there are at
most δ · 2n elements a ∈ {0, 1}n with |Ex∈RT [(−1)a·x]| > ǫ, (where a · x denotes the inner product
of a and x, modulo 2).

Definition 5.7 is a special case of Definition 5.6, where the vectors corresponding to a set
T ⊆ {0, 1}n are defined as follows. With every a ∈ {0, 1}n, we associate the vector va of length
|T |, whose x-th entry equals (−1)a·x for any x ∈ T . Indeed, T is (ǫ, δ)-biased iff the vectors
{va : a ∈ {0, 1}n} are (ǫ, δ)-almost orthogonal.

Lemma 5.8 (Generalized Johnson’s Bound). Let M ∈ {−1, 1}A×X be a matrix. Assume that
{Ma}a∈A are (ǫ, δ)-almost orthogonal vectors. Then, for any γ >

√
ǫ and any non-negative function

f : X → R
+, we have at most ( δ

γ2−ǫ
) · |A| rows a ∈ A with

|〈Ma, f〉| ≥ γ · ‖f‖2.

In particular, fixing γ =
√

ǫ+ δ1/2, we have that M is a (k, ℓ)-L2-extractor with error 2−r, for
k = 1

2 log(1/δ), and ℓ = r = Ω
(
min{log(1/ǫ), log(1/δ)}

)
.

22



Proof. Fix γ >
√
ǫ. Let I+ (respectively, I−) be the rows in A with high correlation (respectively,

anti-correlation) with f . More precisely:

I+ := {i ∈ A : 〈Mi, f〉 > γ · ‖f‖2} ,

I− := {i ∈ A : −〈Mi, f〉 > γ · ‖f‖2} .

Let I = I+ ∪ I−. Define z =
∑

i∈I+
Mi −

∑
i∈I−

Mi. We consider the inner product of f and z. We
have

(|I| · γ · ‖f‖2)2 < 〈f, z〉2 =
(

E
x∈RX

[
f(x) ·

(∑

i∈I+

Mi,x −
∑

i∈I−

Mi,x

)])2

≤ E
x∈RX

[
f(x)2

]
· E
x∈RX

[(∑

i∈I+

Mi,x −
∑

i∈I−

Mi,x

)2
]

(Cauchy-Schwarz)

≤ ‖f‖22 ·
∑

i∈I

∑

i′∈I

|〈Mi,Mi′〉|.

For any fixed i ∈ I, we break the inner-sum
∑

i′∈I |〈Mi,Mi′〉| according to whether or not
|〈Mi,Mi′〉| > ǫ. By the assumption onM , there are at most δ·|A| rows i′ for which the inner-product
is larger than ǫ. For these rows, the inner-product is at most 1. Thus, we get

(|I| · γ · ‖f‖2)2 < ‖f‖22 ·
∑

i∈I

∑

i′∈I

|〈Mi,Mi′〉| ≤ ‖f‖22 · |I| · (|A| · δ + ǫ · |I|).

That is,

|I| · γ2 < |A| · δ + ǫ · |I|.
Rearranging gives

|I| <
(

δ

γ2 − ǫ

)
· |A|,

which completes the first part of the proof.

We turn to the in particular part. Assume that
‖f‖2
‖f‖1

≤ 2ℓ. Thus, we proved that there are at

most
(

δ
γ2−ǫ

)
· |A| rows a ∈ A, such that,

|〈Ma, f〉| ≥ γ · 2ℓ · ‖f‖1.

Fixing γ =
√
ǫ+ δ1/2, k = log(1/δ1/2), and ℓ = r = 1

2 log(1/γ), we get that M is a (k, ℓ)-L2-
extractor with error 2−r (Definition 2.1). Finally, note that ℓ = r = Ω

(
min{log(1/δ), log(1/ǫ)}

)
,

which completes the proof.

5.2 Learning Sparse Parities

As an application of Lemma 5.8 and Theorem 1, we reprove the main result in [KRT16].

Lemma 5.9. Let T ⊆ {0, 1}n be an (ǫ, δ)-biased set, with ǫ ≥ δ. Define the matrix M :
{0, 1}n × T → {−1, 1} by M(a, x) = (−1)a·x. Then, the learning task associated with M (“parity
learning over T”) requires either at least Ω(log(1/ǫ) · log(1/δ)) memory bits or at least poly(1/ǫ)
samples.

Proof. The rows {Ma}a∈{0,1}n are (ǫ, δ)-almost orthogonal vectors. Thus, by Lemma 5.8, we get
that M is a (k, ℓ)-L2-extractor with error 2−r, for k = Ω(log(1/δ)) and r = ℓ = Ω(log(1/ǫ))
(assuming ǫ ≥ δ). By Theorem 1, we get the required memory-samples lower bound.
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Lemma 5.10 ([KRT16]). There exists a (sufficiently small) constant c > 0 such that the following
holds. Let Tℓ = {x ∈ {0, 1}n :

∑
i xi = ℓ}. For any ǫ > (8ℓ/n)ℓ/2, Tℓ is an (ǫ, δ)-biased set for

δ = 2 · e−ǫ2/ℓ·n/8. In particular, Tℓ is an (ǫ, δ)-biased set for

1. ǫ = 2−cℓ, δ = 2−cn, assuming ℓ ≤ cn.

2. ǫ = ℓ−cℓ, δ = 2−cn/ℓ0.01, assuming ℓ ≤ n0.9.

Let c > 0 be the constant mentioned in Lemma 5.10. The following lemma complements
Lemma 5.10 to the range of parameters cn ≤ ℓ ≤ n/2. It shows that Tℓ is (2−Ω(n), 2−Ω(n))-biased
in this case. The proof is a simple application of Parseval’s identity (see [KRT16]).

Lemma 5.11 ([KRT16, Lemma 4.1]). Let T ⊆ {0, 1}n be any set. Then, T is an (ǫ, δ)-biased set
for δ = 1

|T |·ǫ2
. In particular, T is (|T |−1/3, |T |−1/3)-biased.

We get the following as an immediate corollary.

Corollary 4. Let Tℓ = {x ∈ {0, 1}n :
∑

i xi = ℓ}.

1. Assuming ℓ ≤ n/2, parity learning over Tℓ requires either at least Ω(n · ℓ) memory bits or at
least 2Ω(ℓ) samples.

2. Assuming ℓ ≤ n0.9, parity learning over Tℓ requires either at least Ω(n · ℓ0.99) memory bits or
at least ℓΩ(ℓ) samples.

5.3 Learning from Sparse Linear Equations

Lemma 5.5 and the proof of Lemma 5.9 gives the following immediate corollary.

Lemma 5.12. Let T ⊆ {0, 1}n be an (ǫ, δ)-biased set, with ǫ ≥ δ. Then, the matrix M :
T × {0, 1}n → {−1, 1}, defined by M(a, x) = (−1)a·x is a (k, ℓ)-L2-extractor with error 2−r, for
ℓ = Ω(log(1/δ)) and k = r = Ω(log(1/ǫ)).

Thus, the learning task associated with M (“learning from equations in T”) requires either at
least Ω(log(1/ǫ) · log(1/δ)) memory bits or at least poly(1/ǫ) samples.

We get the following as an immediate corollary of Lemmas 5.10, 5.11 and 5.12.

Corollary 5. Let Tℓ = {x ∈ {0, 1}n :
∑

i xi = ℓ}.

1. Assuming ℓ ≤ n/2, learning from equations in Tℓ requires either at least Ω(n · ℓ) memory bits
or at least 2Ω(ℓ) samples.

2. Assuming ℓ ≤ n0.9, learning from equations in Tℓ requires either at least Ω(n · ℓ0.99) memory
bits or at least ℓΩ(ℓ) samples.

5.4 Learning from Low Degree Equations

In the following, we consider multilinear polynomials in F2[x1, . . . , xn] of degree at most d. We
denote by Pd the linear space of all such polynomials. We denote the bias of a polynomial
p ∈ F2[x1, . . . , xn] by

bias(p) := E
x∈Fn

2

[(−1)p(x)].

We rely on the following result of Ben-Eliezer, Hod and Lovett [BEHL12], showing that random
low-degree polynomials have very small bias with very high probability.
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Lemma 5.13 ([BEHL12, Lemma 2]). Let d ≤ 0.99 · n. Then,

Pr
p∈RPd

[|bias(p)| > 2−c1·n/d] ≤ 2
−c2·( n

≤d)

where 0 < c1, c2 < 1 are absolute constants.

Corollary 6. Let d, n ∈ N, with d ≤ 0.99 · n. Let M : Pd × F
n
2 → {−1, 1} be the matrix defined by

M(p, x) = (−1)p(x) for any p ∈ Pd and x ∈ F
n
2 . Then, the vectors {Mp : p ∈ Pd} are (ǫ, δ)-almost

orthogonal, for ǫ = 2−c1n/d and δ = 2
−c2( n

≤d), (where 0 < c1, c2 < 1 are absolute constants). In
particular, M is a (k, ℓ)-L2-extractor with error 2−r, for k = Ω

((
n
≤d

))
and r = ℓ = Ω(n/d).

Thus, the learning task associated with M (“learning from degree-d equations”) requires either

at least Ω
((

n
≤d

)
· n/d

)
≥ Ω((n/d)d+1) memory bits or at least 2Ω(n/d) samples.

Proof. We reinterpret [BEHL12, Lemma 2]. Since Pd is a linear subspace, for any fixed p ∈ Pd and
a uniformly random q ∈R Pd, we have that p + q is a uniformly random polynomial in Pd. Thus,

for any fixed p ∈ Pd, at most 2
−c2·( n

≤d) fraction of the polynomials q ∈ Pd have

|bias(p+ q)| ≥ 2−c1·n/d.

In other words, we get that {Mp : p ∈ Pd} are (ǫ, δ)-almost orthogonal vectors for ǫ = 2−c1·n/d

and δ = 2
−c2·( n

≤d). We apply Lemma 5.8 to get the “in particular” part, noting that in our case
Ω
(
min{log(1/ǫ), log(1/δ)}

)
= Ω(n/d). We apply Theorem 1 to get the “thus” part.

5.5 Learning Low Degree Polynomials

Lemma 5.5 and Corollary 6 gives the following immediate corollary.

Corollary 7. Let d, n ∈ N, with d ≤ 0.99 · n. Let M : Fn
2 × Pd → {−1, 1} be the matrix defined by

M(a, p) = (−1)p(a) for any p ∈ Pd and a ∈ F
n
2 . Then, M is a (k, ℓ)-L2-extractor with error 2−r,

for ℓ = Ω
((

n
≤d

))
and k = r = Ω(n/d).

Thus, the learning task associated with M (“learning degree-d polynomials”) requires either at

least Ω
((

n
≤d

)
· n/d

)
≥ Ω((n/d)d+1) memory bits or at least 2Ω(n/d) samples.

5.6 Relation to Statistical-Query-Dimension

Let C be a class of functions mapping A to {−1, 1}. The Statistical-Query-Dimension of C, denoted
SQdim(C), is defined to be the maximal m such that there exist functions f1, . . . , fm ∈ C with
|〈fi, fj〉| ≤ 1/m for all i 6= j [K98, BFJKMR94]. As a corollary of Lemma 5.5 and Lemma 5.8, we
get the following.

Corollary 8. Let C be a class of functions mapping A to {−1, 1}. Let SQdim(C) = m. Let
f1, . . . , fm ∈ C with |〈fi, fj〉| ≤ 1/m for any i 6= j. Define the matrix M : A × [m] → {−1, 1}
whose columns are the vectors f1, . . . , fm. Then, M is a (k, ℓ)-L2-extractor with error 2−r for
k = ℓ = r = Ω(logm).

Thus, the learning task associated with M requires either at least Ω(log2m) memory bits or at
least mΩ(1) samples.

Proof. Consider the rows of the matrix M t. By our assumption, the rows of M t are (1/m, 1/m)-
almost orthogonal. Thus, by Lemma 5.8, M t is a (k, ℓ)-L2-extractor with error 2−r, for k = ℓ =
r = Ω(logm). By Lemma 5.5, M is a (k, ℓ)-L2-extractor with error 2−r for k = ℓ = r = Ω(logm).
We apply Theorem 1 to get the “thus” part.
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In fact, we get the following (slight) generalization. Suppose that there are m′ ≥ m functions
f1, . . . , fm′ mapping A to {−1, 1} with |〈fi, fj〉| ≤ 1/m for all i 6= j. Then, the learning task
associated with the matrix whose columns are f1, . . . , fm′ requires either at least Ω(log(m) · log(m′))
memory bits or at least mΩ(1) samples.

5.7 Comparison with [R17]

Small Matrix Norm implies L2-Extractor. This paper generalizes the result of [R17] that if
a matrix M : A ×X → {−1, 1} is such that the largest singular value of M , σmax(M), is at most

|A| 12 |X| 12−ε, then the learning problem represented by M requires either a memory of size at least
Ω
(
(εn)2

)
or at least 2Ω(εn) samples, where n = log2 |X|. We use the following lemma:

Lemma 5.14. If a matrix M : A ×X → {−1, 1} satisfies σmax(M) ≤ |A| 12 · |X| 12−ε, then M is a
(k, ℓ)-L2-Extractor with error 2−r for every k, ℓ, r > 0 such that k+2ℓ+2r ≤ 2εn (n = log2(|X|)).

Theorem 1 and Lemma 5.14 with k = εn, ℓ = r = εn
4 , imply the main result of [R17].

Proof. As σmax(M) ≤ |A| 12 |X| 12−ε, for a non-negative function f : X → R, ‖M · f‖2 ≤ |X|1−ε ·‖f‖2.
In other words, (

E
a∈RA

[
|(M · f)a|2

])1/2

≤ |X|1−ε · ‖f‖2

=⇒
(

E
a∈RA

[
|〈Ma, f〉|2

])1/2

≤ |X|−ε · ‖f‖2

=⇒
(

E
a∈RA

[( |〈Ma, f〉|
‖f‖1

)2
])1/2

≤ 2−εn · ‖f‖2‖f‖1
Now if

‖f‖2
‖f‖1

≤ 2ℓ for some ℓ > 0, then

E
a∈RA

[( |〈Ma, f〉|
‖f‖1

)2
]
≤ 2−2εn+2ℓ .

Applying Markov’s inequality, we get that there are at most 2−2εn+2ℓ+2r · |A| rows a ∈ A with
|〈Ma,f〉|
‖f‖1

≥ 2−r.

5.8 Comparison with [MM18]

We will now show that our result subsumes the one of [MM18]. Moshkovitz and Moshkovitz [MM18]
consider matrices M : A×X → {−1, 1}, and a parameter d, with the property that for any A′ ⊆ A

and X ′ ⊆ X the bias of the submatrix MA′×X′ is at most d√
|A′|·|X′|

. They define m = |A|·|X|
d2

and

prove that any learning algorithm for the corresponding learning problem requires either a memory
of size Ω((logm)2) or mΩ(1) samples. We note that this is essentially the same result as the one
proved in [R17], and since it is always true that d2 ≥ max {|X|, |A|}, the bound obtained on the
memory is at most Ω

(
min

{
(log |X|)2, (log |A|)2

})
.

Note that if M satisfies that property (required by [MM18]), then, in particular, any submatrix
A′ ×X ′ of M of at least m−1/4 · |A| rows and at least m−1/4 · |X| columns, has a bias of at most

d√
|A′|·|X′|

= d√
|A|·|X|

·
√

|A|·|X|√
|A′|·|X′|

≤ m−1/2 ·m1/4 = m−1/4.

Thus, we can apply Corollary 3, with k, ℓ, r = 1
4 log(m) to obtain the same result.
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6 Generalization to Non-Product Distributions

We state time-space lower bounds for generalized joint distribution p : A × X → [0, 1] of joint
random variable (A,X ) on the space of samples a and secret x respectively. We denote by
pA,X : A×X → [0, 1] the joint distribution of (A,X ), by pA : A → [0, 1] the marginal distribution
of A, i.e. pA(a

′) =
∑

x′ pA,X (a
′, x′), by pX : X → [0, 1] the marginal distribution of X , i.e.

pX (x
′) =

∑
a′ pA,X (a

′, x′), and by pA|X=x : A → [0, 1] the conditional distribution of A given

X = x, i.e. pA|X=x(a
′) =

pA,X (a′,x)

pX (x) .

Viewing the Learning Problem as a Matrix

Let X, A be two finite sets of size larger than 1. Let n = log2 |X|.
Let M : A × X → [0, 1] be the matrix corresponding to a joint probability distribution pA,X

over space A × X defined by M(a, x) = pA|X=x(a). We assume that the marginal distribution
pX is a uniform distribution over X. Thus, M(a, x) = pA|X=x(a) = 2n · pA,X (a, x). Also, w.l.o.g.
assume that pA(a) > 0 for all a ∈ A.

The matrix M corresponds to the following learning problem: There is an unknown element
x ∈ X that was chosen uniformly at random. A learner tries to learn x from samples a, where
a ∈ A is chosen at random with probability M(a, x). That is, the learning algorithm is given a
stream of (independently chosen) samples, a1, a2 . . ., where each at has the probability distribution
pA|X=x.

Let M̃ : A×X → [−1, 1] be the normalized matrix corresponding to M defined by M̃(a, x) =
M(a, x)− pA(a).

New Definition of L2-Extractors for the Generalized Matrix

Definition 6.1. Let X,A be two finite sets and M : A ×X → [0, 1] be associated with probability
distribution pA,X (as defined above). M : A×X → [0, 1] is a (k, ℓ, p)-L2-Extractor with error 2−r,

if for every non-negative f : X → R with
‖f‖2
‖f‖1

≤ 2ℓ, the set of rows a in A with

|〈M̃a, f〉|
‖f‖1

≥ 2−r · pA(a)

has probability mass at most 2−k under distribution pA, and if

∀a ∈ A, x ∈ X :
M(a, x)

pA(a)
=

pA|X=x(a)

pA(a)
≤ 2p.

We prove that if the learning matrix M is a (k, ℓ, p)-L2-Extractor with error 2−r, then the
learning problem associated with M requires either Ω(kℓp ) memory size or 2Ω(r) samples. The proof
is similar to the proof of Theorem 1.

Branching Program for the Generalized Learning Problem

In the following definition, we model the learner for the learning problem that corresponds to the
matrix M , by a branching program.

Definition 6.2. Branching Program for the Learning Problem: A branching program of
length m and width d, for learning, is a directed (multi) graph with vertices arranged in m + 1
layers containing at most d vertices each. In the first layer, that we think of as layer 0, there is
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only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf. All vertices in the
last layer are leaves (but there may be additional leaves). Every non-leaf vertex in the program has
|A| outgoing edges, labeled by elements a ∈ A, with exactly one edge labeled by each such a, and all
these edges going into vertices in the next layer. Each leaf v in the program is labeled by an element
x̃(v) ∈ X, that we think of as the output of the program on that leaf.

Computation-Path: The samples a1, . . . , am ∈ A that are given as input, define a
computation-path in the branching program, by starting from the start vertex and following at step t
the edge labeled by at, until reaching a leaf. The program outputs the label x̃(v) of the leaf v reached
by the computation-path.

Success Probability: The success probability of the program is the probability that x̃ = x,
where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am (where x is
uniformly distributed over X and a1, . . . , am have the probability distribution pA|X=x (pA|X=x(a) =
M(a, x)).

6.1 Main Theorem

Theorem 9. Let 1
100 < c < 2

3 . Fix γ to be such that 3c
2 < γ2 < 1.

Let X, A be two finite sets. Let n = log2 |X|. Let M : A ×X → [0, 1] be a matrix associated
with probability distribution pA,X which is a (k′, ℓ′, p)-L2-extractor with error 2−r′ for p ≥ 1.

Letting Cγ,c > max{ 6
2γ2/3−c

, 1
1−γ } be some sufficiently large constant, we assume that r′ ≥ Cγ,c

and ℓ′, k′ ≥ Cγ,c · p. Let

r := min
{

r′

2 ,
(1−γ)k′−p

2 , (1−γ)ℓ′−p−1
2

}
. (15)

Let B be a branching program of length at most 2r and width at most 2ck
′ℓ′/p for the learning problem

that corresponds to the matrix M . Then, the success probability of B is at most O(2−r).

Proof. Let

k :=
γk′

p
and ℓ := γℓ′/3. (16)

Note that by the assumption that k′, ℓ′ and r′ are sufficiently large, we get that k, ℓ and r are also

sufficiently large. Since ℓ′ ≤ n, we have ℓ+ r ≤ γℓ′

3 + (1−γ)ℓ′

2 < ℓ′

2 ≤ n
2 . Thus,

r < n/2− ℓ. (17)

Let B be a branching program of length m = 2r and width d = 2ck
′ℓ′/p for the learning problem

that corresponds to the matrix M . We will show that the success probability of B is at most
O(2−r).

6.2 The Truncated-Path

Again, we will define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf, as defined below.

Recall that for a vertex v in layer-i of B, we denote by Ev the event that T reaches the vertex v.
We denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am),
and we denote by Px|v = Px|Ev

the distribution of the random variable x conditioned on the
event Ev. Similarly, we denote by Pai+1|v = Pai+1|Ev

the distribution of the random variable ai+1

conditioned on the event Ev.
The following are the three cases in which the truncated-path T stops on a non-leaf v, in layer-i

of B:
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1. If v is a, so called, significant vertex, where the ℓ2 norm of Px|v is non-negligible.

2. If Px|v(x) is non-negligible.

3. If
(M̃ ·Px|v)(ai+1)

pA(ai+1)
is non-negligible. (Intuitively, this means that T is about to traverse a “bad”

edge, which is traversed with a non-negligibly higher or lower probability than it’s probability
under pA and hence might give a lot of new information about x).

Next, we describe the three cases more formally. The definitions of significant vertices and
values remain the same (as in Section 4). We define them again just for convenience.

Significant Vertices

We say that a vertex v in layer-i of B is significant if
∥∥Px|v

∥∥
2
> 2ℓ · 2−n.

Significant Values

Even if v is not significant, Px|v may have relatively large values. For a vertex v in layer-i of B,
denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x
′) > 22ℓ+2r · 2−n.

Bad Edges

For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,
∣∣∣(M̃ · Px|v)(α)

∣∣∣ ≥ 2−r′ · pA(α).

We define the truncated-path T again just for completeness.

The Truncated-Path T

We define T by induction on the layers of the branching program B. Assume that we already
defined T until it reaches a vertex v in layer-i of B. The path T stops on v if (at least) one of the
following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

4. v is a leaf.

Otherwise, T proceeds by following the edge labeled by ai+1 (same as the computational-path).
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6.3 Proof of Theorem 9

Since T follows the computation-path of B, except that it sometimes stops before reaching a leaf,
the success probability of B is bounded (from above) by the probability that T stops before reaching
a leaf, plus the probability that T reaches a leaf v and x̃(v) = x.

The main lemma needed for the proof of Theorem 9 is Lemma 6.3 that shows that the probability
that T reaches a significant vertex is at most O(2−r).

Lemma 6.3. The probability that T reaches a significant vertex is at most O(2−r).

Lemma 6.3 is proved in Section 6.4. We will now show how the proof of Theorem 9 follows from
that lemma.

Lemma 6.3 shows that the probability that T stops on a non-leaf vertex, because of the
first reason (i.e., that the vertex is significant), is small. The next two lemmas imply that the
probabilities that T stops on a non-leaf vertex, because of the second and third reasons, are also
small.

Claim 6.4. If v is a non-significant vertex of B then

Pr
x
[x ∈ Sig(v) | Ev] ≤ 2−2r.

The proof is exactly the same as that of Claim 4.2.

Claim 6.5. If v is a non-significant vertex, in layer-i of B, then

Pr
ai+1

[ai+1 ∈ Bad(v) | Ev] ≤ 2−2r.

Proof. Since v is not significant,
∥∥Px|v

∥∥
2
≤ 2ℓ · 2−n. Since Px|v is a distribution,

∥∥Px|v

∥∥
1
= 2−n.

Thus, ∥∥Px|v

∥∥
2∥∥Px|v

∥∥
1

≤ 2ℓ ≤ 2ℓ
′
.

Since M is a (k′, ℓ′, p)-L2-extractor with error 2−r′ , there is at most 2−k′ probability mass on α ∈ A
(under pA) with ∣∣∣〈M̃α,Px|v〉

∣∣∣
∥∥Px|v

∥∥
1

= |(M̃ · Px|v)α| ≥ 2−r′ · pA(α).

However, in the statement of the claim, ai+1 has the probability distribution Pai+1|v, which is
defined as follows:

Pai+1|v(a
′) := Pr

ai+1

[ai+1 = a′ | Ev] =
∑

x′

Pr
ai+1,x

[ai+1 = a′, x = x′ | Ev]

=
∑

x′

Pr
x
[x = x′ | Ev] · Pr

ai+1

[ai+1 = a′ | x = x′, Ev]

=
∑

x′

Pr
x
[x = x′ | Ev] · Pr

ai+1

[ai+1 = a′ | x = x′].

The last equality follows because given x′, the sample ai+1 is chosen independently of the previous
samples. Therefore,

Pai+1|v(a) =
∑

x′

Px|v(x
′) · Pai+1|x=x′(a) =

∑

x′

Px|v(x
′) · pA|X=x′(a) ≤ 2p · pA(a), (18)
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where the last inequality follows from the assumption that ∀a, x′, pA|X=x′(a) ≤ 2p ·pA(a). We get

Pr
ai+1

[ai+1 ∈ Bad(v) | Ev] =
∑

a∈Bad(v)

Pai+1|v(a) ≤ 2p ·
∑

a∈Bad(v)

pA(a) ≤ 2−k′+p ,

which completes the proof since k′ − p ≥ 2r (Equation (15)).

We can now use Lemma 6.3, Claim 6.4 and Claim 6.5 to prove that the probability that T stops
before reaching a leaf is at most O(2−r). Lemma 6.3 shows that the probability that T reaches a
significant vertex and hence stops because of the first reason, is at most O(2−r). Assuming that
T doesn’t reach any significant vertex (in which case it would have stopped because of the first
reason), Claim 6.4 shows that in each step, the probability that T stops because of the second
reason, is at most 2−2r. Taking a union bound over the m = 2r steps, the total probability that T
stops because of the second reason, is at most 2−r. In the same way, assuming that T doesn’t reach
any significant vertex (in which case it would have stopped because of the first reason), Claim 6.5
shows that in each step, the probability that T stops because of the third reason, is at most 2−2r.
Again, taking a union bound over the 2r steps, the total probability that T stops because of the
third reason, is at most 2−r. Thus, the total probability that T stops (for any reason) before
reaching a leaf is at most O(2−r).

Recall that if T doesn’t stop before reaching a leaf, it just follows the computation-path of B.
Recall also that by Lemma 6.3, the probability that T reaches a significant leaf is at most O(2−r).
Thus, to bound (from above) the success probability of B by O(2−r), it remains to bound the
probability that T reaches a non-significant leaf v and x̃(v) = x. Claim 6.6 shows that for any
non-significant leaf v, conditioned on the event that T reaches v, the probability for x̃(v) = x is at
most 2−r, which completes the proof of Theorem 9.

Claim 6.6. If v is a non-significant leaf of B then

Pr[x̃(v) = x | Ev] ≤ 2−r.

The proof is the same as that of Claim 4.4.

This completes the proof of Theorem 9.

6.4 Proof of Lemma 6.3

Proof. We need to prove that the probability that T reaches any significant vertex is at most
O(2−r). Let s be a significant vertex of B. We will bound from above the probability that T
reaches s, and then use a union bound over all significant vertices of B. Interestingly, the upper
bound on the width of B is used only in the union bound.

The Distributions Px|v and Px|e

Recall that for a vertex v of B in layer-i, we denote by Ev the event that T reaches the vertex v.
For simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over
x, a1, . . . , am), and we denote by Px|v = Px|Ev

the distribution of the random variable x conditioned
on the event Ev. Similarly, we denote by Pai+1|v = Pai+1|Ev

the distribution of the random variable
ai+1 conditioned on the event Ev.

Similarly, for an edge e of the branching program B, let Ee be the event that T traverses the
edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over x, a1, . . . , am), and Px|e = Px|Ee

.
Similarly, for a pair (v, a) where v is a vertex of B in layer-i and a ∈ A is a possible sample we

denote by Px|a,v(x
′) the probability Pr[x = x′|Ev and (ai+1 = a)].
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Claim 6.7. For any edge e = (v, u) of B, labeled by a, such that Pr(e) > 0, for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v)

pA|X=x′ (a)·Px|v(x
′)

pA(a)·ce
if x′ 6∈ Sig(v)

where ce is a normalization factor that satisfies,

ce ≥ 1− 2 · 2−2r >
1

2
.

Proof. Let e = (v, u) be an edge of B, labeled by a, and such that Pr(e) > 0. Since Pr(e) > 0,
the vertex v is not significant (as otherwise T always stops on v and hence Pr(e) = 0). Also, since
Pr(e) > 0, we know that a 6∈ Bad(v) (as otherwise T never traverses e and hence Pr(e) = 0).
Assume that v is in layer-i of B.

If T reaches v, it traverses the edge e if and only if x 6∈ Sig(v) (as otherwise T stops on v) and
ai+1 = a. As an edge e is equivalent to the pair (v, a), for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v)

Px|a,v(x
′) · c−1

1 if x′ 6∈ Sig(v)

where c1 is a normalization factor, given by c1 = Prx[x /∈ Sig(v) | Ev]. Since v is not significant, by
Claim 6.4, c1 ≥ 1− 2−2r.

We rewrite Px|a,v(x
′):

Px|a,v(x
′) =

Pr[ai+1 = a|x = x′, Ev] · Px|v(x
′)

Pai+1|v(a)
=

pA|X=x′(a) · Px|v(x
′)

Pai+1|v(a)

Thus, for the non-significant values x′,

Px|e(x
′) =

pA|X=x′(a) · Px|v(x
′)

c1 · Pai+1|v(a)

Rearranging, we get that for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v)

pA|X=x′ (a)·Px|v(x
′)

pA(a)·ce
if x′ 6∈ Sig(v)

where ce is the normalization factor, defined as

ce = c1 ·
Pai+1|v

(a)

pA(a) .

Next, we show that ce ≥ 1− 2 · 2−2r. Recall that, by Equation (18),

Pai+1|v(a) =
∑

x′

Px|v(x
′)pA|X=x′(a) =

∑

x′

Px|v(x
′)M(a, x′) = (M · Px|v)a = pA(a) + (M̃ · Px|v)a.

Since a 6∈ Bad(v),

Pai+1|v(a)

pA(a)
=

pA(a) + (M̃ · Px|v)a

pA(a)
≥ 1− 2−r′ ≥ 1− 2−2r

(where the last inequality follows since r ≤ r′

2 , by Equation (15)). Using c1 ≥ 1− 2−2r we get

ce = c1 ·
Pai+1|v(a)

pA(a)
≥ (1− 2 · 2−2r) .
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Bounding the Norm of Px|s

We will show that
∥∥Px|s

∥∥
2
cannot be too large. Towards this, we will first prove that for every edge

e of B that is traversed by T with probability larger than zero,
∥∥Px|e

∥∥
2
cannot be too large.

Claim 6.8. For any edge e of B, such that Pr(e) > 0,
∥∥Px|e

∥∥
2
≤ 2p+1 · 2ℓ · 2−n.

Proof. Let e = (v, u) be an edge of B, labeled by a, and such that Pr(e) > 0. Since Pr(e) > 0, the
vertex v is not significant (as otherwise T always stops on v and hence Pr(e) = 0). Thus,

∥∥Px|v

∥∥
2
≤ 2ℓ · 2−n.

By Claim 6.7, for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v)

pA|X=x′ (a)Px|v(x
′)

pA(a)ce
if x′ 6∈ Sig(v)

where ce satisfies,
ce ≥ 1− 2 · 2−2r > 1

2

Thus,
∥∥Px|e

∥∥
2
≤ c−1

e ·
∥∥Px|v

∥∥
2
·max

x

pA|X=x(a)

pA(a)
≤ 2 · 2ℓ · 2−n · 2p

Claim 6.9. ∥∥Px|s

∥∥
2
≤ 2p+1 · 2ℓ · 2−n.

Proof. Let Γin(s) be the set of all edges e of B, that are going into s, such that Pr(e) > 0. Note
that ∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x
′) =

∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x

′),

and hence by Jensen’s inequality,

Px|s(x
′)2 ≤

∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x

′)2.

Summing over x′ ∈ X, we obtain,
∥∥Px|s

∥∥2
2
≤

∑

e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e

∥∥2
2
.

By Claim 6.8, for any e ∈ Γin(s),

∥∥Px|e

∥∥2
2
≤
(
2p+1 · 2ℓ · 2−n

)2
.

Hence,
∥∥Px|s

∥∥2
2
≤
(
2p+1 · 2ℓ · 2−n

)2
.
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Similarity to a Target Distribution

Recall that for two functions f, g : X → R
+, we defined

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

Claim 6.10.
〈Px|s,Px|s〉 > 22ℓ · 2−2n.

Proof. Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s

∥∥2
2
> 22ℓ · 2−2n.

Claim 6.11.
〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑

z∈X

Px|s(z) = 2−2n.

Measuring the Progress

For i ∈ {0, . . . ,m}, let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. For
i ∈ {1, . . . ,m}, let Γi be the set of edges e from layer-(i − 1) of B to layer-i of B, such that
Pr(e) > 0. Recall that k = γk′/p (Equation (16)).

For i ∈ {0, . . . ,m}, let
Zi =

∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉k.

For i ∈ {1, . . . ,m}, let
Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi,Z ′
i as measuring the progress made by the branching program, towards reaching

a state with distribution similar to Px|s.
For a vertex v of B, let Γout(v) be the set of all edges e of B, that are going out of v, such that

Pr(e) > 0. Note that ∑

e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v).
The next four claims show that the progress made by the branching program is slow.

Claim 6.12. For every vertex v of B, such that Pr(v) > 0,
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k ≤ 〈Px|v,Px|s〉k ·

(
1 + 2−r

)k
+
(
2−2n+p+1

)k
.
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Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty and
thus the left hand side is equal to zero and the right hand side is positive, so the claim follows
trivially. Thus, we can assume that v is not significant and is not a leaf, and is in layer-i of B.

Define P : X → R
+ as follows. For any x′ ∈ X,

P (x′) =

{
0 if x′ ∈ Sig(v)

Px|v(x
′) if x′ 6∈ Sig(v)

Note that by the definition of Sig(v), for any x′ ∈ X,

P (x′) ≤ 22ℓ+2r · 2−n. (19)

Define f : X → R
+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x
′).

By Claim 6.9 and Equation (19),

‖f‖2 ≤ 22ℓ+2r · 2−n ·
∥∥Px|s

∥∥
2
≤ 22ℓ+2r · 2−n · 2p+1 · 2ℓ · 2−n = 23ℓ+2r+p+1 · 2−2n. (20)

By Claim 6.7, for any edge e ∈ Γout(v), labeled by a, for any x′ ∈ X,

Px|e(x
′) =

{
0 if x′ ∈ Sig(v)

pA|X=x′ (a)·Px|v(x
′)

pA(a)·ce
if x′ 6∈ Sig(v)

where ce satisfies,
ce ≥ 1− 2 · 2−2r.

Therefore, for any edge e ∈ Γout(v), labeled by a, for any x′ ∈ X,

Px|e(x
′) · Px|s(x

′) = f(x′) · pA|X=x′ (a)

pA(a) · c−1
e

and hence, we have

〈Px|e,Px|s〉 = E
x′∈RX

[Px|e(x
′) · Px|s(x

′)] = E
x′∈RX

[f(x′) · c−1
e · pA|X=x′ (a)

pA(a) ]

= E
x′∈RX

[
f(x′) · c−1

e ·
(
1 + M̃(a,x′)

pA(a)

)]
=
(
‖f‖1 +

〈M̃a,f〉
pA(a)

)
· (ce)−1

<
(
‖f‖1 +

|〈M̃a,f〉|
pA(a)

)
·
(
1 + 2−2r+2

)
(21)

(where the last inequality holds by the bound that we have on ce, because we assume that k′, ℓ′, r′

and thus r are sufficiently large).
We will now consider two cases:

Case I: ‖f‖1 < 2−2n

In this case, we bound |〈M̃a,f〉|
pA(a) ≤ (2p−1)·‖f‖1 (since f is non-negative and M̃(a,x)

pA(a) ∈ [−1, 2p−1]∀a ∈
A, x ∈ X) and since (1 + 2−2r+2) < 2 (since we assume that k′, ℓ′, r′ and thus r are sufficiently
large) we obtain for any edge e ∈ Γout(v),

〈Px|e,Px|s〉 < 2p+1 · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v) ≤ 1, Claim 6.12 follows, as the left hand side of the claim is smaller than the

second term on the right hand side.
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Case II: ‖f‖1 ≥ 2−2n

For every a ∈ A, define

t(a) =
|〈M̃a, f〉|

pA(a) ‖f‖1
.

By Equation (21),

〈Px|e,Px|s〉k < ‖f‖k1 · (1 + t(a))k ·
(
1 + 2−2r+2

)k
. (22)

Note that by the definitions of P and f ,

‖f‖1 = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Thus, summing over all e ∈ Γout(v), by Equation (22),
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k · E

a∼Pai+1|v

[
(1 + t(a))k

]
·
(
1 + 2−2r+2

)k
. (23)

It remains to bound
E

a∼Pai+1|v

[
(1 + t(a))k

]
, (24)

using the properties of the matrix M and the bounds on the ℓ2 versus ℓ1 norms of f .
By Equation (20), the assumption that ‖f‖1 ≥ 2−2n, Equation (15) and Equation (16), we get

‖f‖2
‖f‖1

≤ 23ℓ+2r+p+1 ≤ 2ℓ
′
.

Since M is a (k′, ℓ′, p)-L2-extractor with error 2−r′ , there is at most 2−k′ probability mass on rows

a ∈ A with t(a) = |〈M̃a,f〉|
pA(a)‖f‖1

≥ 2−r′ under probability distribution pA. Now, by Equation 18, for

all a ∈ A we have Pai+1|v(a) ≤ 2p · pA(a), thus there is at most 2−k′+p probability mass according

to the distribution Pai+1|v on rows a with t(a) ≥ 2−r′ .
We bound the expectation in Equation (24), by splitting the expectation into two sums

E
a∼Pai+1|v

[
(1 + t(a))k

]
=

∑

a : t(a)≤2−r′

Pai+1|v(a) · (1 + t(a))k +
∑

a : t(a)>2−r′

Pai+1|v(a) · (1 + t(a))k (25)

We bound the first sum in Equation (25) by (1+2−r′)k. As for the second sum in Equation (25),
we know that it is a sum of at most 2−k′+p probability mass, and since for every a ∈ A, we have
t(a) ≤ 2p − 1, we have

∑

a : t(a)>2−r′

Pai+1|v(a) · (1 + t(a))k ≤ (2−k′+p) · 2pk ≤ 2−2r

(where in the last inequality we used Equations (15) and (16)). Overall, using Equation (15) again,
we get

E
a∼Pai+1|v

[
(1 + t(a))k

]
≤ (1 + 2−r′)k + 2−2r ≤ (1 + 2−2r)k+1. (26)

Substituting Equation (26) into Equation (23), we obtain
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k ·

(
1 + 2−2r

)k+1 ·
(
1 + 2−2r+2

)k

< 〈Px|v,Px|s〉k ·
(
1 + 2−r

)k

(where the last inequality uses the assumption that r is sufficiently large). This completes the proof
of Claim 6.12.
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Claim 6.13. For every i ∈ {1, . . . ,m},
Z ′
i ≤ Zi−1 ·

(
1 + 2−r

)k
+
(
2−2n+p+1

)k
.

Proof. By Claim 6.12,

Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k =
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k

≤
∑

v∈Li−1

Pr(v) ·
(
〈Px|v,Px|s〉k ·

(
1 + 2−r

)k
+
(
2−2n+p+1

)k)

= Zi−1 ·
(
1 + 2−r

)k
+
∑

v∈Li−1

Pr(v) ·
(
2−2n+p+1

)k

≤ Zi−1 ·
(
1 + 2−r

)k
+
(
2−2n+p+1

)k

Claim 6.14. For every i ∈ {1, . . . ,m},
Zi ≤ Z ′

i.

The proof is the same as the proof of Claim 4.12.

Claim 6.15. For every i ∈ {1, . . . ,m},
Zi ≤ 2(p+3)k+2r · 2−2k·n.

Proof. By Claim 6.11, Z0 = (2−2n)k. By Claim 6.13 and Claim 6.14, for every i ∈ {1, . . . ,m},
Zi ≤ Zi−1 ·

(
1 + 2−r

)k
+
(
2−2n+p+1

)k
.

Hence, for every i ∈ {1, . . . ,m},
Zi ≤

(
2−2n+p+1

)k ·m ·
(
1 + 2−r

)km
.

Since m = 2r,
Zi ≤ 2−2k·n · 2(p+1)k · 2r · ek ≤ 2−2k·n · 2(p+3)k+2r.

Proof of Lemma 6.3

We can now complete the proof of Lemma 6.3. Assume that s is in layer-i of B. By Claim 6.10,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉k > Pr(s) ·
(
22ℓ · 2−2n

)k
= Pr(s) · 22ℓ·k · 2−2k·n.

On the other hand, by Claim 6.15,

Zi ≤ 2(p+3)k+2r · 2−2k·n.

Thus, using Equation (15), Equation (16) and the assumption p ≥ 1, we get

Pr(s) ≤ 2(p+3)k+2r · 2−2ℓ·k ≤ 24k
′ · 2−(2γ2/3)·

k′

p ·ℓ′
.

Recall that we assumed that the width of B is at most 2ck
′ℓ′/p for some constant c < 2/3,

and that the length of B is at most 2r. Recall that we fixed γ such that 2γ2/3 > c. Taking a
union bound over at most 2r · 2ck′ℓ′/p ≤ 2k

′ · 2ck′ℓ′/p significant vertices of B, we conclude that the
probability that T reaches any significant vertex is at most

2−(2γ2/3)·k′ℓ′/p · 2ck′ℓ′/p · 25k′ ≤ 2−k′ ≤ 2−r,

where the first inequality uses the assumption ℓ′ ≥ p · 6
(2γ2/3)−c

. This completes the proof of the

lemma.
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6.5 Applications

The generalized model allows us to prove time-space lower bounds for learning problems with longer
outputs. The learning problem with longer outputs is defined as follows: A learner tries to learn
x (uniformly chosen from X) from a stream of samples, (a1, b1), (a2, b2), ... where for every i, ai is
uniformly distributed over A and bi ∈ B is a function f of ai and x, where |B| = 2p. Note that in
the standard model, defined in Section 2, p = 1.

The matrix M : (A×B)×X → [0, 1] corresponding to the above learning problem is defined as

M((a, b), x) =

{
0 if f(a, x) 6= b
1
|A| if f(a, x) = b

Recall that the associated joint distribution is defined as

p(A,B),X ((a, b), x) = 2−n ·M((a, b), x)

and the normalized matrix M̃ : (A×B)×X → [−1, 1] is defined as

M̃((a, b), x) =

{
− 1

|A| · Prx′∈RX [f(a, x′) = b] if f(a, x) 6= b
1
|A| −

1
|A| · Prx′∈RX [f(a, x′) = b] if f(a, x) = b

Next, we give an example of such a bound. We can prove that learning from linear equations
over a field F, (that is, given a secret x ∈ F

n, learning from samples (a1, b1), ... ∈ F
n+1 such that

ai is uniformly distributed over F
n and 〈ai, x〉 = bi), requires either Ω(n2 log |F|) memory size or

2Ω(n log |F|) samples. Note that we can learn by storing the first ≈ n samples, implying a tight
n2 log |F| upper bound on the memory. The lower bound follows from the corresponding learning
matrix M being a (Ω(n log |F|),Ω(n log |F|), log |F|)-L2-Extractor. In fact, this follows from the

associated matrix, M ′((a, b), x) = M((a,b),x)
p(A,B)((a,b))

− 1, having low spectral norm (≤ |F| · 2
n log |F|

2 ). To

see it, note that the matrix M ′ satisfies (M ′)t · (M ′) = c · I where c = |F|n · |F| · (|F| − 1) and I is
the identity matrix on X.

References

[A95] Noga Alon: Tools from Higher Algebra. In Handbook of Combinatorics, R.L.Graham,
M.Grotschel and L.Lovasz, eds, North Holland (1995), Chapter 32: 1749-1783 22

[BEHL12] Ido Ben-Eliezer, Rani Hod, Shachar Lovett: Random low-degree polynomials are hard
to approximate. Computational Complexity, 21(1): 63–81 (2012) 24, 25

[BFJKMR94] Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay
Mansour, Steven Rudich: Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. STOC 1994: 253-262 3, 25

[BL06] Yonatan Bilu, Nathan Linial: Lifts, Discrepancy and Nearly Optimal Spectral Gap.
Combinatorica 26(5): 495-519 (2006) 1

[BOGY17] Paul Beame, Shayan Oveis Gharan, Xin Yang: Time-Space Tradeoffs for Learning from
Small Test Spaces: Learning Low Degree Polynomial Functions. Manuscript (2017) 4

[CG88] Benny Chor, Oded Goldreich: Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM J. Comput. 17(2): 230-261 (1988) 1, 2, 20, 22

38



[GS71] Ronald Graham, Joel Spencer: A Constructive Solution to a Tournament Problem. Canad.
Math. Bull. 14: 45-48 (1971) 22

[K98] Michael J. Kearns: Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM 45(6):
983-1006 (1998) 3, 25

[KR13] Gillat Kol, Ran Raz: Interactive channel capacity. STOC 2013: 715-724 7

[KRT16] Gillat Kol, Ran Raz, Avishay Tal: Time-Space Hardness of Learning Sparse Parities.
STOC 2017: 1067-1080 1, 2, 3, 4, 7, 22, 23, 24

[MM17] Dana Moshkovitz, Michal Moshkovitz: Mixing Implies Lower Bounds for Space Bounded
Learning. Proceedings of the 2017 Conference on Learning Theory, PMLR 65:1516-1566, 2017.
Also in: Electronic Colloquium on Computational Complexity (ECCC) 24: 17 (2017) 1, 4

[MM18] Dana Moshkovitz, Michal Moshkovitz: Mixing Implies Strong Lower Bounds for Space
Bounded Learning. ITCS 2018: 28:1-28:20. Also in: Electronic Colloquium on Computational
Complexity (ECCC) 24: 116 (2017) 1, 4, 26

[MT17] Michal Moshkovitz, Naftali Tishby: Mixing Complexity and its Applications to Neural
Networks. CoRR abs/1703.00729 (2017) 4

[R05] Ran Raz: Extractors with weak random seeds. STOC 2005: 11-20 22

[R16] Ran Raz: Fast Learning Requires Good Memory: A Time-Space Lower Bound for Parity
Learning. FOCS 2016: 266-275 1, 2, 3, 4

[R17] Ran Raz: A Time-Space Lower Bound for a Large Class of Learning Problems. FOCS 2017
(to appear). Also in: Electronic Colloquium on Computational Complexity (ECCC) 24: 20
(2017) 1, 2, 4, 6, 7, 26

[S14] Ohad Shamir: Fundamental Limits of Online and Distributed Algorithms for Statistical
Learning and Estimation. NIPS 2014: 163-171 1, 4

[SV84] Miklos Santha, Umesh V. Vazirani: Generating Quasi-Random Sequences from Slightly-
Random Sources. FOCS 1984: 434-440 1

[SVW16] Jacob Steinhardt, Gregory Valiant, Stefan Wager: Memory, Communication, and
Statistical Queries. COLT 2016: 1490-1516 1, 4

[VV16] Gregory Valiant, Paul Valiant: Information Theoretically Secure Databases. Electronic
Colloquium on Computational Complexity (ECCC) 23: 78 (2016) 1, 4

39


	Introduction
	Preliminaries
	Overview of the Proof
	Main Result
	The Truncated-Path and Additional Definitions and Notation
	Proof of Theorem 1
	Proof of Lemma 4.1
	Lower Bounds for Weak Learning
	Main Corollary

	Applications
	Some Useful Lemmas
	Handling Negative Functions
	Error vs. Min-Entropy
	L2-Extractors and L-Extractors
	Transpose
	Lower Bounds for Almost Orthogonal Vectors

	Learning Sparse Parities
	Learning from Sparse Linear Equations
	Learning from Low Degree Equations
	Learning Low Degree Polynomials
	Relation to Statistical-Query-Dimension
	Comparison with Raz17
	Comparison with MM2

	Generalization to Non-Product Distributions
	Main Theorem
	The Truncated-Path
	Proof of Theorem 9
	Proof of Lemma 6.3
	Applications


