
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018 737

Adaptive Caching Networks With

Optimality Guarantees

Stratis Ioannidis , Member, IEEE, and Edmund Yeh , Senior Member, IEEE

Abstract— We study the optimal placement of content over
a network of caches, a problem naturally arising in several
networking applications. Given a demand of content request
rates and paths followed, we wish to determine the content

placement that maximizes the expected caching gain, i.e., the
reduction of routing costs due to intermediate caching. The
offline version of this problem is NP-hard and, in general,
the demand and topology may be a priori unknown. Hence,
a distributed, adaptive approximation algorithm for placing
contents into caches is desired. We show that path replication,
a simple algorithm frequently encountered in literature, can be
arbitrarily suboptimal when combined with traditional eviction
policies. We propose a distributed, adaptive algorithm that
performs stochastic gradient ascent on a concave relaxation
of the expected caching gain, and constructs a probabilistic
content placement within a 1 − 1/e factor from the optimal,
in expectation. Motivated by our analysis, we also propose a novel
greedy eviction policy to be used with path replication, and show
through numerical evaluations that both algorithms significantly
outperform path replication with traditional eviction policies over
a broad array of network topologies.

Index Terms— Caching, ICN, CCN, pipage rounding, distrib-
uted optimization.

I. INTRODUCTION

WE CONSIDER a caching network, i.e., a network of

caches, each capable of storing a constant number of

content items. Certain nodes in the network act as designated

sources for content, and are guaranteed to always store spe-

cific items. Any node can generate a request for an item,

which is forwarded over a fixed path toward a designated

source. However, requests need not reach the end of this

path: forwarding stops upon reaching a node that has cached

the requested item. Whenever such a “cache hit” occurs, the

item is sent over the reverse path towards the node that

requested it.

Our goal is to allocate items to caches optimally,

i.e., in a way that minimizes the aggregate routing costs

due to content transfers across the network. This abstract

Manuscript received November 25, 2016; revised August 21, 2017; accepted
January 8, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor N. Hegde. Date of publication February 2, 2018; date of current
version April 16, 2018. This work was supported in part by the National
Science Foundation under Grant CNS-1718355, Grant CNS-1423250, and
Grant OAC-1659403, and in part by the Cisco Systems Research Grant.
This is an extended version of a paper that appeared in the ACM Inter-
national Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 2016) [1]. (Corresponding author: Stratis Ioannidis.)

The authors are with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
ioannidis@ece.neu.edu; eyeh@ece.neu.edu).

Digital Object Identifier 10.1109/TNET.2018.2793581

problem naturally captures—and is directly motivated

by—several important real-life networking applications.

These include content and information-centric net-

works (CCNs/ICNs) [2]–[4], core and edge content delivery

networks (CDNs) [5], [6], micro/femtocell networks [7],

and peer-to-peer networks [8], [9], to name a few. For

example, in hierarchical CDNs, requests for content can be

served by intermediate caches placed at the network’s edge,

e.g., within the same administrative domain (e.g., AS or ISP)

as the originator of the request; if, however, content is not

cached locally, the request can be forwarded to a core server,

which acts as a cache of last resort. Similarly, in CCNs,

named data items are stored at designated sources, and

requests for named content are forwarded to these sources.

Intermediate routers can cache items carried by responses,

and subsequently serve future requests. Both settings directly

map to the abstract problem we study here.

In these and many other applications, it is natural to

assume that the demand, determined by the frequencies of

requests and the paths they follow, is dynamic and not

a priori known. For this reason, we seek algorithms that

are adaptive, i.e., (a) discover an optimal item placement

without prior knowledge of this demand and (b) adapt to its

changes. Moreover, collecting information at a single central-

ized location may be impractical in large networks consisting

of different administrative domains. Distributed algorithms,

in which a node’s caching decisions rely only on locally

available information, allow the network to scale and are thus

preferable.

Path replication [8] is a simple, elegant caching algorithm

often encountered in the literature of the above networking

applications [2], [4], [9]–[12]. Cast in the context of our

problem, the algorithm roughly proceeds as follows: when an

item traverses the reverse path towards a node that requested it,

it is cached by every intermediate node encountered. When

caches are full, evictions are typicaly implemented using

traditional policies, like LRU, LFU, FIFO, etc. Path replication

is intuitively appealing in its simplicity, and it clearly attains

both of the above desirable properties: it is both distributed and

adaptive to demand. Unfortunately, the resulting allocations

of items to caches come with no guarantees: we show in this

paper that path replication combined with any of the above tra-

ditional eviction policies is arbitrarily suboptimal. To address

this, our main goal is to design a distributed, adaptive caching

algorithm with provable performance guarantees. To that end,

we make the following contributions:

• We set the problem of optimal caching network design

on a formal foundation. We do so by rigorously defining

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

738 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

the problem of finding an allocation, i.e., a mapping of

items to network caches, that maximizes the expected

caching gain, i.e., the routing cost reduction achieved

due to caching at intermediate nodes. The deterministic,

combinatorial version of the problem is NP-hard, though

it is approximable within a 1 − 1/e factor [7], [13].

• We prove that the ubiquitous path replication algorithm,

combined with LRU, LFU, or FIFO eviction policies,

leads to allocations that are arbitrarily suboptimal. Our

result extends to any myopic strategy, that ignores costs

incurred upstream due to cache misses.

• We construct a distributed, adaptive algorithm that con-

verges to a probabilistic allocation of items to caches

that is within a 1 − 1/e factor from the optimal, without

prior knowledge of the demand (i.e., items requested and

routes followed) or the network’s topology. The algorithm

performs a projected gradient ascent over a concave

objective approximating the expected caching gain.

• Motivated by this construction, we also propose a new

eviction policy to be used with path replication: whenever

an item is back-propagated over a path, the nodes on the

path have the opportunity to store it and evict an existing

content, according to a greedy policy we design.

• We prove that the problem of deterministic caching

gain maximization is equivalent to several probabilistic

variants. This equivalence has surprising implications. For

example, independent caches are as powerful as caches

whose contents are coupled, as they attain the same

maximal expected caching gain. Moreover, there is no

advantage in satisfying relaxed capacity constraints only

in expectation, when caches are independent.

• We conduct extensive simulations over a broad array

of both synthetic and real-life topologies. We show that

both algorithms significantly outperform path replication

combined with traditional eviction policies. In all cases

studied, the greedy heuristic performs exceptionally well,

achieving at least 95% of the gain achievable by the

projected gradient ascent algorithm, that comes with

provable guarantees.

The remainder of this paper is structured as follows.

We review related work in Section II. We formally introduce

our problem in Section III. Section IV contains our proof

of the suboptimality of path replication with traditional evic-

tion policies. We present an offline, centralized algorithm in

Section V, while our distributed, adaptive algorithm with opti-

mality guarantees and our proposed greedy heuristic appear

in Sections VI and VII, respectively. The equivalence of

deterministic and probabilistic variants of the expected caching

gain maximization problem is in Section VIII. Section IX

contains our evaluations, and we conclude in Section X.

II. RELATED WORK

Path replication is best known as the de facto caching

mechanism in content-centric networking [2], but has a

long history in networking literature. In their seminal paper,

Cohen and Shenker [8] show that path replication, combined

with constant rate of evictions leads to an allocation that

is optimal, in equilibrium, when nodes are visited through

uniform sampling. This is one of the few results on path

replication’s optimality—see also [14]; our work (c.f. Thm. 1)

proves that, unfortunately, this result does not generalize

to routing over arbitrary topologies. Many studies provide

numerical evaluations of path replication combined with sim-

ple eviction policies, like LRU, LFU, etc., over different

topologies (see, e.g., [4], [10], [11]). In the context of CDNs

and ICNs, Rosensweig et al. [3] study conditions under which

path replication with LRU, FIFO, and other variants, under

fixed paths, lead to an ergodic chain. Che et al. [12] approx-

imate the LRU policy hit probability through a TTL-based

eviction scheme; this approach has been refined and extended

in several recent works to model many traditional eviction

policies [15]–[18]; alternative analytical models are explored

in [19], [20]. None of the above works however study opti-

mality issues or guarantees.

Several papers have studied complexity and optimization

issues in offline caching problems [5], [7], [21]–[24]. With the

exception of [7], these works model the network as a bipartite

graph: nodes generating requests connect directly to caches,

and demands are satisfied in a single hop. Beyond content

placement, Deghan et al. [6] jointly optimize caching and

routing in this bipartite setting. In general, the pipage rounding

technique of Ageev and Sviridenko [13] (see also [25], [26])

yields again a constant approximation algorithm in the bipar-

tite setting, while approximation algorithms are also known

for several variants of this problem [5], [21]–[23].

Among these papers on offline caching, the recent paper by

Shanmugam et al. [7] is closest to the problem we tackle here;

we rely upon and expand this work. Shanmugam et al. consider

wireless nodes that download items from (micro/femtocel)

base stations in their vicinity. Base stations are visited in

a predefined order (e.g., in decreasing order of connection

quality), with the wireless service acting as a “cache of last

resort.” This can be cast as an instance of our problem, with

paths defined by the traversal sequence of base stations, and

the network graph defined as their union. The authors show

that determining the optimal allocation is NP-hard, and that

an 1 − 1/e approximation algorithm can be obtained through

pipage rounding; we review these results, framed in the context

of our problem, in Section V.

All of the above complexity papers [13], [21]–[23], includ-

ing [7], study offline, centralized versions of their respective

caching problems. Instead, we focus on providing adaptive,

distributed algorithms, that operate without any prior knowl-

edge of the demand or topology. In doing so, we we produce

distributed algorithms for (a) performing projected gradient

ascent over the concave objective used in pipage rounding, and

(b) rounding the solution across nodes; combined, these lead

to our distributed, adaptive caching algorithm with provable

guarantees (Thm. 3).

Adaptive replication schemes exist for asymptotically large,

single-hop CDNs [27]–[29], but these works do not explicitly

model a graph structure. The dynamics of the greedy path

replication algorithm we propose in Section VII resemble the

greedy algorithm used to make caching decisions in [29],

though our objective is different, and we cannot rely on a

mean-field approximation in our argument. These dynamics

are also similar (but not identical) to the dynamics of the

“continuous-greedy” algorithm used for submodular maxi-

mization [26] and the Frank-Wolfe algorithm [30]; these can

IOANNIDIS AND YEH: ADAPTIVE CACHING NETWORKS WITH OPTIMALITY GUARANTEES 739

TABLE I

NOTATION SUMMARY

potentially serve as a basis for formally establishing its con-

vergence, which we leave as future work.

The path replication eviction policy we propose also relates

to greedy maximization techniques used in throughput-optimal

backpressure algorithms—see, e.g., Stolyar [31] and, more

recently, Yeh et al. [32], for an application to throughput-

optimal caching in ICN networks. We minimize routing costs

and ignore throughput issues, as we do not model congestion.

Investigating how to combine these two research directions,

capitalizing on commonalities between these greedy algo-

rithms, is an interesting open problem.

III. MODEL

We consider a network of caches, each capable of storing

at most a constant number of content items. Item requests are

routed over given (i.e., fixed) routes, and are satisfied upon

hitting the first cache that contains the requested item. Our goal

is to determine an item allocation (or, equivalently, the contents

of each cache), that minimizes the aggregate routing cost.

We describe our model in detail below. Table I summarizes

our notation.

A. Cache Contents and Designated Sources

We represent a network as a directed graph G(V, E).
Content items (e.g., files, or file chunks) of equal size are to be

distributed across network nodes. In particular, each node is

associated with a cache that can store a finite number of items.

We denote by C the set of content items available, i.e., the

catalog, and assume that G is symmetric, i.e., (i, j) ∈ E
if and only if (j, i) ∈ E. We denote by cv ∈ N the

cache capacity at node v ∈ V : exactly cv content items are

stored in this node. We denote by xvi ∈ {0, 1} the variable

indicating whether v ∈ V stores item i ∈ C. We denote by

X = [xvi]v∈V,i∈C ∈ {0, 1}|V |×|C| the matrix whose rows

comprise the indicator variables of each node. We refer to X
as the global allocation strategy or, simply, allocation. Note

that the capacity constraints imply that
∑

i∈C xvi = cv, for all

v ∈ V. We associate each item i in the catalog C with a fixed

set of designated sources Si ⊆ V , that always store i. That is,

xvi = 1, for all v ∈ Si. Without loss of generality, we assume

that Si are feasible, i.e.,
∑

i:v∈Si
xvi ≤ cv, for all v ∈ V.

B. Content Requests and Routing Costs

The network serves content requests routed over G. In short,

a request is determined by (a) the item requested, and (b) the

path that the request follows. Formally, a path p of length

|p| = K is a sequence {p1, p2, . . . , pK} of nodes pk ∈ V
such that (pk, pk+1) ∈ E, for every k ∈ {1, . . . , |p| − 1}.

Given a path p and a v ∈ p, denote by kp(v) the position of v
in p; i.e., kp(v) equals the k ∈ {1, . . . , |p|} such that pk = v.

Under this notation, a request r is a pair (i, p) where i ∈ C
is the item requested, and p is the path traversed to serve

this request. We say that a request (i, p) is well-routed if the

following natural assumptions hold:
(a) The path p is simple, i.e., it contains no loops.

(b) The terminal node in the path is a designated source node

for i, i.e., if |p| = K , pK ∈ Si.
(c) No other node in the path is a designated source node for

i, i.e., if |p| = K , pk /∈ Si, for k = 1, . . . , K − 1.
We denote by R the set of all requests. Without loss of

generality, we henceforth assume that all requests in R are

well-routed. Moreover, requests for each element in R arrive

according to independent Poisson processes; we denote by

λ(i,p) > 0 the arrival rate of a request (i, p) ∈ R.

An incoming request (i, p) is routed over the network G
following path p, until it reaches a cache that stores i. At that

point, a response message is generated, carrying the item

requested. The response is propagated over p in the reverse

direction, i.e., from the node where the “cache hit” occurred,

back to the first node in p, from which the request originated.

To capture costs (e.g., delay, money, etc.), we associate a

weight wuv ≥ 0 with each edge (u, v) ∈ E, representing

the cost of transferring an item across this edge. We assume

that (a) costs are solely due to response messages that carry

an item, while request forwarding costs are negligible, and

(b) requests and downloads are instantaneous (or, occur at

a smaller timescale compared to the request arrival process).

We do not assume that wuv = wvu.

When a request (i, p) ∈ R is well-routed, the cost Ci,p for

serving it can be written concisely in terms of the allocation:

C(i,p)(X) =
∑|p|−1

k=1 wpk+1pk

∏k
k′=1(1 − xpk′ i). (1)

Intuitively, (1) states that C(i,p) includes the cost of an edge

(pk+1, pk) in the path p if all caches preceding this edge in p
do not store i. If the request is well-routed, no edge (or cache)

appears twice in (1). Moreover, the last cache in p stores the

item, so the request is always served.

C. Maximizing the Caching Gain

As usual, we seek an allocation that minimizes the aggregate

expected cost. In particular, let C0 be the expected cost per

request, when requests are served by the designated sources

at the end of each path, i.e.,

C0 =
∑

(i,p)∈R λ(i,p)

∑|p|−1
k=1 wpk+1pk

. (2)

Since requests are well-routed, C0 is an upper bound on

the expected routing cost. Our objective is to determine a

feasible allocation X that maximizes the caching gain, i.e., the

expected cost reduction attained due to caching at intermediate

740 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 1. A simple caching network, with C = {1, 2}, S1 = {s1}, S2 = {s2}.
The cache at v has capacity cv = 1, and the cost of the edge between v and s2

is M ! 1. Node u requests item 1 with rate 1− α, and item 2 with rate α.

For α = 1/
√

M , path replication with LRU, LFU, or FIFO leads to an
arbitrarily suboptimal caching allocation, in steady state.

nodes, defined as:

F (X) ≡ C0 −
∑

(i,p)∈R λ(i,p)C(i,p)(X)

=
∑

(i,p)∈R

λ(i,p)

|p|−1
∑

k=1

wpk+1pk

(

1−
k

∏

k′=1

(1 − xpk′ i)
)

. (3)

In particular, we seek solutions to the following problem:

MAXCG

Maximize: F (X) (4a)

subj. to: X ∈ D1 (4b)

where D1 is the set of matrices X ∈ R
|V |×|C| satisfying the

capacity, integrality, and source constraints, i.e.:
∑

i∈C xvi = cv, for all v ∈ V, (5a)

xvi ∈ {0, 1}, for all v ∈ V, i ∈ C, and (5b)

xvi = 1, for all v ∈ Si and all i ∈ C. (5c)

Problem MAXCG is NP-hard (see [7] for a reduction from

the 2-Disjoint Set Cover Problem). Our objective is to solve

MAXCG using a distributed, adaptive algorithm, that pro-

duces an allocation within a constant approximation of the

optimal, without prior knowledge of the network topology,

edge weights, or the demand.

IV. PATH REPLICATION SUBOPTIMALITY

Before providing algorithms with guarantees for MAXCG,

we begin with a negative result: the simple path replication

algorithm described in the introduction, combined with LRU,

LFU, FIFO or RR (random replacement) evictions, is arbi-

trarily suboptimal. More specifically, the ratio between the

expected caching gain under the optimal policy and that under

path replication combined with these eviction policies can be

made arbitrarily large.

We prove this using the simple star network illustrated

in Figure 1, in which only one file can be cached at the

central node v. When serving requests from the bottom node u,

path replication with, e.g., LRU evictions, alternates between

storing either of the two files. However, the optimal allocation

is to permanently store file 2, (i.e., xv2 = 1): for large M ,

this allocation leads to a caching gain arbitrarily larger than

the one under path replication and LRU. As cv = 1, LFU,

FIFO, and RR coincide with LRU, so the result extends to

these policies as well. Formally, assume that request traffic

is generated only by node u: requests for items 1 and 2 are

routed through paths p1 = {u, v, s1} and p2 = {u, v, s2},

respectively. Let λ(1,p1) = 1−α, λ(2,p2) = α, for α ∈ (0, 1).
As illustrated in Figure 1, the routing cost is 1 over both

(s1, v), (v, u) and M ' 1 over (s2, v). Then, the following

holds:

Theorem 1: Let X(t) ∈ {0, 1}2 be the allocation of the

network in Figure 1 at time t, under path replication with an

LRU, LFU, FIFO, or RR policy. Then, for α = 1/
√

M ,

limt→∞ E[F (X(t))]/ maxX∈D1
F (X) = O(1/

√
M).

Proof: The worst case cost, when cache v is empty, is

C0 = α×(M +1)+(1−α)×2 = αM +2−α. Suppose that v
permanently caches item 2. This results in an expected routing

cost of α×1+(1−α)×2 = 2−α. Hence, an optimal allocation

X∗ necessarily has a caching gain F (X∗) ≥ αM + 2 − α −
(2 − α) = αM. Consider now the path replication algorithm,

in which an item is cached at v whenever it is back-propagated

over the reverse path. As cv = 1, all four policies coincide, and

yield exactly the same eviction decision. Moreover, as request

arrivals are independent Poisson, the steady state probabilities

that v stores item 1 or 2 are 1−α and α, respectively. Hence,

the expected routing cost in steady state is α2 + α(1 − α) ×
(M +1)+(1−α)α×2+(1−α)2 = 1+αM−α2M +α−α2,
leading to a caching gain of αM +2−α−(1+αM−α2 M +
α − α2) = α2 M + 1 − 2α + α2. Hence, the ratio of the

expected caching gain under path replication with LRU, LFU,

FIFO or RR evictions to F (X∗) is at most α + (1−α)2

αM ; the

theorem follows for α = 1/
√

M . !

Taking M to be arbitrarily large makes this ratio arbitrarily

small; thus, path replication with these eviction policies is

arbitrarily suboptimal. Clearly, the argument in the proof

applies to any eviction strategy that coincides with LRU when

cv = 1. More broadly speaking, the counterexample should

apply to any eviction strategy that is is insensitive to upstream

costs. Accounting for such upstream costs when caching seems

necessary for providing any optimality guarantees; all algo-

rithms we propose below indeed do so.

V. A CENTRALIZED, OFFLINE ALGORITHM

Before presenting our distributed, adaptive algorithm

for solving MAXCG, we first discuss how to obtain a

polynomial-time approximation in a centralized, offline fash-

ion. To begin with, MAXCG is a submodular maximization

problem under matroid constraints: hence, a solution within

a 1/2 approximation from the optimal can be constructed

by a greedy algorithm.1 The solution we present below, due

to Shanmugam et al. [7], improves upon this ratio using a

technique called pipage rounding [13].

In short, the resulting approximation algorithm consists of

two steps: (a) a convex relaxation step, that relaxes the integer

program to a convex optimization problem, whose solution is

within a constant ratio from the optimal, and (b) a rounding

step, in which the (possibly) fractional solution is rounded to

produce a solution to the original integer program. The convex

relaxation plays an important role in our distributed, adaptive

algorithm; as a result, we briefly overview pipage rounding

1Starting from items placed only at designated sources, this algorithm
iteratively adds items to caches, selecting at each step a feasible assignment
xvi = 1 that leads to the largest increase in the caching gain.

IOANNIDIS AND YEH: ADAPTIVE CACHING NETWORKS WITH OPTIMALITY GUARANTEES 741

as applied to MAXCG below, referring the interested reader

to [7], [13] for further details.

Convex Relaxation: To construct a convex relaxation of

MAXCG, suppose that variables xvi, v ∈ V , i ∈ C,

are independent Bernoulli random variables. Let µ be the

corresponding joint probability distribution defined over matri-

ces in {0, 1}|V |×|C|, and denote by Pµ[·], Eµ[·] the probability

and expectation w.r.t. µ, respectively. Let yvi, v ∈ V , i ∈ C,

be the (marginal) probability that v stores i, i.e.,

yvi = Pµ[xvi = 1] = Eµ[xvi]. (6)

Denote by Y = [yvi]v∈V,i∈C ∈ R
|V |×|C| the matrix comprising

the marginal probabilities (6). Then, for F given by (3):

Eµ[F (X)]

=
∑

(i,p)∈R

λ(i,p)

|p|−1
∑

k=1

wpk+1pk

(

1 − Eµ

[

k
∏

k′=1

(1 − xpk′ i)
]

)

=
∑

(i,p)∈R

λ(i,p)

|p|−1
∑

k=1

wpk+1pk

(

1 −
k

∏

k′=1

(

1 − Eµ

[

xpk′ i

])

)

= F (Y). (7)

The second equality holds by independence and the fact that

path p is simple (no node appears twice). This extension of

F to the domain [0, 1]|V |×|C| is known as the multi-linear

relaxation of F [7], [13], [25], [26]. Consider the problem:

Maximize: F (Y) (8a)

subject to: Y ∈ D2, (8b)

where D2 is the set of matrices Y = [yvi]v∈V,i∈C ∈ R
|V |×|C|

satisfying the capacity and source constraints, with the inte-

grality constraints relaxed, i.e.:
∑

i∈C yvi = cv, for all v ∈ V, (9a)

yvi ∈ [0, 1], for all v ∈ V, i ∈ C, and (9b)

yvi = 1, for all v ∈ Si and all i ∈ C. (9c)

Note that an allocation X sampled from a µ with marginals

Y ∈ D2 only satisfies the capacity constraints in expectation;

hence, X may not be in D1. Moreover, if X∗ and Y ∗ are

optimal solutions to (4) and (8), respectively, then

F (Y ∗) ≥ F (X∗), (10)

as (8) maximizes the same function over a larger domain.

The multi-linear relaxation (8a) is not concave, so (8) is

not a convex optimization problem. Nonetheless, (8) can be

approximated as follows. Define L : D2 → R as:

L(Y) =
∑

(i,p)∈R

λ(i,p)

|p|−1
∑

k=1

wpk+1pk
min{1,

k
∑

k′=1

ypk′ i}. (11)

Note that L is concave, and consider now the problem:

Maximize: L(Y) (12a)

Subject to: Y ∈ D2. (12b)

Then, the optimal value of (12) is guaranteed to be within a

constant factor from the optimal value of (8)–and, by (10),

from the optimal value of (4) as well. In particular:

Theorem 2 ([7], [13]): Let Y ∗, and Y ∗∗ be optimal solu-

tions to (8) and (12), respectively. Then,

F (Y ∗) ≥ F (Y ∗∗) ≥ (1 − 1

e
)F (Y ∗). (13)

Proof: To begin with, for all Y ∈ D2, we have:

(1 − 1

e
)L(Y) ≤ F (Y) ≤ L(Y). (14)

To see this, note that

F (Y) =
∑

(i,p)∈R

λ(i,p)

|p|−1
∑

k=1

wpk+1pk
Eµ

[

min
{

1,

k
∑

k′=1

xpk′ i

}]

≤
∑

(i,p)∈R

λ(i,p)

|p|−1
∑

k=1

wpk+1pk
min

{

1,

k
∑

k′=1

Eµ

[

xpk′ i

]}

by the concavity of the min operator, so F (Y) ≤ L(Y).
On the other hand, by Goemans and Williamson [33],

1 − ∏k
k′=1(1 − ypk′ i)≥

(

1 − (1 − 1/k)k
)

min
{

1,
∑k

k′=1 ypk′ i

}

,

and the first inequality of the statement of the lemma follows

as (1 − 1/k)k ≤ 1
e . By the optimality of Y ∗ in D2, clearly

F (Y ∗∗) ≤ F (Y ∗). By (14) and the optimality of Y ∗∗,

F (Y ∗) ≤ L(Y ∗) ≤ L(Y ∗∗) ≤ e
e−1F (Y ∗∗). !

Problem (12) is convex; in fact, by introducing auxiliary

variables, it can be converted to a linear program and, as such,

Y ∗∗ can be computed in strongly polynomial time (see [13]).

Rounding: To produce an integral solution to MAXCG,

the solution Y ∗∗ of (12) is rounded. The rounding scheme

is based on the following property of F : given a fractional

solution Y ∈ D2, there is always a way to convert it to a

Y ′ ∈ D2 with at least one fewer fractional entry than Y ,

for which F (Y ′) ≥ F (Y). To see this, suppose that Y
contains a fractional entry, say yvi ∈ (0, 1), for some v ∈ V ,

i ∈ C. Then, as capacity constraints are integral, there must

exist another entry yvi′ ∈ (0, 1)–i.e., fractional entries come

in pairs. Observe now that F , restricted to only these two

entries, is a convex function. As such, it is maximized at

the extrema of the set of values that the pair (yvi, yvi′) may

take, presuming all other entries are constant. This implies that

we can construct Y ′ by transferring equal mass between yvi

and yvi′ , increasing one and decreasing the other, so that at

least one of them becomes 0 or 1. Pairwise convexity ensures

that among the two possible mass transfers one yields a Y ′

s.t. F (Y ′) ≥ F (Y), while transferring equal mass ensures

that Y ′ ∈ D2. Thus, one can construct an integral solution as

follows:
1) Start from Y ∗∗, an optimal solution to the problem (12).

2) If the solution is fractional, find two variables yvi, yvi′

that are fractional.

3) Use the rounding described above to transform (at least)

one of these two variables to either 0 or 1, while

increasing the caching gain F .

4) Repeat steps 2-3 until there are no fractional variables.
As each rounding step reduces the number of fractional

variables by at least 1, the above algorithm concludes in at

most |V |× |C| steps, producing an integral solution X ′ ∈ D1.

Since each rounding step can only increase F , X ′ satisfies:

F (X ′) ≥ F (Y ∗∗)
(13)

≥ (1 − 1
e)F (Y ∗)

(10)

≥ (1 − 1
e)F (X∗),

i.e., is a (1 − 1
e)-approximate solution to MAXCG.

742 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

VI. A DISTRIBUTED, ADAPTIVE ALGORITHM

We now describe our distributed, adaptive algorithm for

solving MAXCG. The algorithm performs a projected gradient

ascent over function L, effectively solving the convex prob-

lem (12) in a distributed, adaptive fashion. The concavity of L
ensures convergence (in contrast to maximizing non-concave

F directly), while Theorem 2 ensures that the caching gain

attained in steady state is within an 1− 1
e ≈ 0.62 factor from

the optimal. We describe the algorithm in detail below.

We deal with the following two challenges. First, in each

step of gradient ascent, a node must estimate the contribution

of its own caching allocation to the gradient of the (global)

function L. The estimation should rely only on information

locally available, which has been obtained via messages pass-

ing through the node; additional care needs to be taken as L
is not differentiable in the entire domain D2, so a subgradient

needs to be estimated instead. Second, both the final and

the intermediate solutions of convex relaxation (12) during

gradient ascent produce fractional values Y ∈ D2. To place

contents in each cache, discrete allocations X ∈ D1 need to

be constructed from Y . Our algorithm cannot rely on pipage

rounding to construct X : pipage rounding is inherently serial,

as it is applied to pairs of fractional variables sequentially.

It also presumes that, at each rounding step, all other variables

are both fixed and globally known. As such, pipage rounding

cannot be used to produce a distributed, adaptive algorithm.

We address both challenges, proving that both (a) a feasible

randomized rounding of any Y ∈ D2, and (b) the subgradient

of L w.r.t. Y can be computed in a distributed, adaptive

fashion.

A. Algorithm Overview and Optimality Guarantee

We begin by giving an overview of our distributed, adap-

tive algorithm. We partition time into periods of equal

length T > 0, during which each node v ∈ V collects mea-

surements from messages routed through it. Each node keeps

track of its own marginals yv ∈ [0, 1]|C|: intuitively, as in (6),

each yvi captures the probability that node v ∈ V stores item

i ∈ C. We refer to yv as the state at node v; these values,

as well as the cache contents of a node, remain constant during

a measurement period. When the period ends, each node (a)

adapts its state vector yv , and (b) reshuffles the contents of its

cache, in a manner we describe below.

State Adaptation: A node v ∈ V uses local measurements

collected from messages it receives during a period to produce

a random vector zv ∈ R
|C|
+ that is an unbiased estimator of a

subgradient of L w.r.t. to yv. That is, if Y (k) ∈ R
|V |×|C| is the

(global) matrix of marginals at the k-th measurement period,

zvi = zvi(Y
(k)) is a random variable satisfying:

E
[

zv(Y
(k))

]

∈ ∂yvL(Y (k)) (15)

where ∂yvL(Y) is the set of subgradients of L w.r.t yv.

We specify how to produce such estimates in a distributed

fashion below, in Section VI-B. Having these estimates, each

node adapts its state as follows: at the conclusion of the

k-th period, the new state is computed as

y(k+1)
v ← PDv

2

(

y(k)
v + γk · zv(Y

(k))
)

, (16)

where γk > 0 is a gain factor and PDv
2

is the projection to v’s

set of relaxed constraints:

Dv
2 = {yv ∈ [0, 1]|C| :

∑

i∈C

yvi = cv, yvi = 1, for i s.t v ∈ Si}.

State Smoothening: Upon performing the state adapta-

tion (16), each node v ∈ V computes the following “sliding

average” of its current and past states:

ȳ(k)
v =

∑k
ℓ=⌊ k

2
⌋ γℓy

(ℓ)
v /

[

∑k
ℓ=⌊ k

2
⌋ γℓ

]

. (17)

This “state smoothening” is necessary precisely because of

the non-differentiability of L [34]. Note that ȳ
(k)
v ∈ Dv

2 , as a

convex combination of points in Dv
2 .

Cache Reshuffling: Finally, given ȳ
(k)
v , each node v ∈ V

reshuffles its contents, placing items in its cache independently

of all other nodes: that is, node v selects a random allocation

x
(k)
v ∈ {0, 1}|C| sampled independently of any other node

in V . Put differently, at any point in time, the (global)

allocation X ∈ D1 is sampled from a joint distribution µ
over D1 that has a product form; for every v, we construct

appropriate probability distributions µv, v ∈ V , such that:

µ(X) =
∏

v∈V µv(xv1, . . . , xv|C|). (18)

In particular, x
(k)
v is sampled from a distribution µv that has

the following two properties:

1) µv is a distribution over feasible allocations, satisfying

v’s capacity and source constraints, i.e., µv’s support is

a subset of:

Dv
1 = {xv ∈ {0, 1}|C| :

∑

j∈C

xvj = cv,

xvi = 1, for i s.t v ∈ Si}.

2) µv is consistent with the marginals ȳ
(k)
v ∈ Dv

2 , i.e.,

Eµv [x
(k)
vi] = Pµv [x

(k)
vi = 1] = ȳ

(k)
vi , for i ∈ C. (19)

It is not obvious that a µv that satisfies these properties exists.

We show below, in Section VI-C, that such a µv exists, it has

O(|C|) support, and can be computed in O(cv |C| log |C|) time.

As a result, having ȳ
(k)
v , each node v can sample a feasible

allocation xv from µv in O(cv|C| log |C|) time.

The complete projected gradient ascent algorithm is sum-

marized in Algorithm 1. Crucially, the resulting steady-state

allocations produced by projected gradient ascent are guaran-

teed to be within a constant approximation of the optimal,

in expectation:

Theorem 3: Let X(k) ∈ D1 be the allocation at the k-th

period of Algorithm 1. Then, if γk = Θ(1/
√

k),

limk→∞ E[F (X(k))] ≥
(

1 − 1
e

)

maxX∈D1
F (X).

We prove Theorem 3 below, in Section VI-D. Contrasting

this result to Theorem 1, we see that Algorithm 1 (a) is

distributed and adaptive, and (b) it attains, in steady state,

an expected caching gain with the same ratio to the optimal

offline allocation as pipage rounding. Note that a node may

need to retrieve new items, not presently in its cache, to

implement the sampled allocation x
(k)
v . This incurs additional

routing costs but, if T is large, this traffic is small compared

to regular response message traffic—we revisit this issue

IOANNIDIS AND YEH: ADAPTIVE CACHING NETWORKS WITH OPTIMALITY GUARANTEES 743

Algorithm 1 PROJECTED GRADIENT ASCENT

1: Execute the following at each v ∈ V :

2: Pick arbitrary state y
(0)
v ∈ Dv

2 .

3: for each period k ≥ 1 and each v ∈ V do

4: Compute the sliding average ȳ
(k)
v through (17).

5: Sample a x
(k)
v ∈ Dv

1 from a µv that satisfies (19).

6: Place items x
(k)
v in cache.

7: Collect measurements

8: At the end of the period, compute estimate zv of

∂yvL(Y (k)) through (20).

9: Compute new state y
(k+1)
v through (16).

10: end for

in Section VII. Moreover, we state these results under sta-

tionary demands but, in practice, we would prefer that caches

adapt to demand fluctuations. To achieve this, one would fix γ
to a constant positive value, ensuring that Algorithm 1 tracks

demand changes (see also Fig. 5). Though convergence to

a minimizer is not guaranteed in this case, the algorithm is

nonetheless guaranteed to reach states concentrated around an

optimal allocation (see, e.g., Chapter 8 of Kushner & Yin [35]).

Before proving Theorem 3, we present the two pieces

missing from our exposition, namely, the subgradient estimate

construction that satisfies (15) and the randomized rounding

algorithm that satisfies (19).

B. Distributed Sub-Gradient Estimation

We now describe how to compute the estimates zv of the

subgradients ∂yvL(Y (k)) in a measurement period, dropping

the superscript ·(k) for brevity. These estimates are computed

in a distributed fashion at each node, using only information

available from messages traversing the node. This computa-

tion requires additional “control” messages to be exchanged

between nodes, beyond the usual request and response traffic.

The estimation proceeds as follows.
1) Every time a node generates a new request (i, p), it also

generates an additional control message to be propagated

over p, in parallel to the request. This message is

propagated until a node u ∈ p s.t.
∑kp(u)

ℓ=1 ypℓi > 1
is found, or the end of the path is reached. This can

be detected by summing the state variables yvi as the

control message traverses nodes v ∈ p up to u.

2) Upon reaching either such a node or the end of the path,

the control message is sent down in the reverse direction.

Every time it traverses an edge in this reverse direction,

it adds the weight of this edge into a weight counter.

3) Every node on the reverse path “sniffs” the weight

counter field of the control message. Hence, every node

visited learns the sum of weights of all edges connecting

it to visited nodes further upstream towards u; i.e., vis-

ited node v ∈ p learns the quantity:

tvi =
∑|p|−1

k′=kv(p) wpk′+1pk′1 k′

ℓ=1
yp

ℓ
i≤1

.

4) Let Tvi be the set of quantities collected in this way

at node v regarding item i ∈ C during a measurement

period of duration T . At the end of the measurement

period, each node v ∈ V produces the following

estimates:

zvi =
∑

t∈Tvi
t/T, i ∈ C. (20)

Note that, in practice, this needs to be computed only

for i ∈ C for which v has received a control message.
Note that the control messages in the above construction

are “free” under our model, as they do not carry an

item. Moreover, they can be piggy-backed on/merged with

request/response messages, wherever the corresponding tra-

versed sub-paths of p overlap. It is easy to show that the above

estimate is an unbiased estimator of the subgradient:

Lemma 1: For zv = [zvi]i∈C ∈ R
|C|
+ the vector constructed

through coordinates (20),

E[zv(Y)] ∈ ∂yvL(Y) and E[∥zv∥2
2] < W 2|V |2|C|(Λ2 +

Λ

T
),

where W = max
(i,j)∈E

wij and Λ = max
v∈V,i∈C

∑

(i,p)∈R:v∈p

λ(i,p).

Proof: First, let:

∂yviL(Y) =
∑

(i,p)∈R:v∈p

λ(i,p)

|p|−1
∑

k′=kp(v)

wpk′+1pk′1 k′

ℓ=1
yp

ℓ
i≤1

,

(21a)

∂yviL(Y) =
∑

(i,p)∈R:v∈p

λ(i,p)

|p|−1
∑

k′=kp(v)

wpk′+1pk′1 k′

ℓ=1
yp

ℓ
i<1

.

(21b)

A vector z ∈ R
|C| belongs to the subgradient set ∂yvL(Y)

if and only if zi ∈ [∂yviL(Y), ∂yviL(Y)]. If L is differen-

tiable at Y w.r.t yvi, the two limits coincide and are equal

to ∂L
∂yvi

. It immediately follows from the fact that requests are

Poisson that E[zvi(Y)] = ∂yviL(Y), so indeed E[zv(Y)] ∈
∂yvL(Y). To prove the bound on the second moment, note that

E[z2
vi] = 1

T 2 E[(
∑

t∈Tvi
t)2] ≤ W 2|V |2

T 2 E

[

|Tvi|
2
]

as t ≤ W |V |.

On the other hand, |Tvi| is Poisson distributed with expectation
∑

(i,p)∈R:v∈p λ(i,p)T , and the lemma follows. !

C. Distributed Randomized Rounding

We now turn our attention to the distributed, randomized

rounding scheme executed each node v ∈ V . To produce a µv

over Dv
1 that satisfies (19), note that it suffices to consider µv

such that Eµv [xv] = ȳv, defined over the set:

D̄v
1 = {xv ∈ {0, 1}|C| :

∑

i∈C xvi = cv}. (22)

That is, subject to attaining correct marginals, one can ignore

the source constraints: to see this, note that if v ∈ Si,

ȳvi = 1 for any Y ∈ D2. Hence, (19) ensures that v stores

item i w.p. 1. We thus focus on constructing a distribution µv

over D̄v
1 , under a given set of marginals ȳv. Note that a “naïve”

construction in which xvi, v ∈ V , i ∈ C, are independent

Bernoulli variables with parameters ȳvi indeed satisfies (19),

but does not yield vectors xv ∈ D̄v
1 : indeed, such vectors only

satisfy the capacity constraint in expectation, and may contain

fewer or more items than cv.

Before we formally present our algorithm we first give some

intuition behind it, also illustrated in Figure 2. Let cv = 3,

C = {1, 2, 3, 4}, and consider a ȳv ∈ Dv
2 . To construct an

744 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 2. An allocation that satisfies Eµ[xvi] = ȳvi, when i∈C
ȳvi = cv .

After placing the 4 rectangles in a 3 × 1 grid, assigning probabilities µ1,
µ2, µ3, µ4 to each of the tuples {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
respectively, yields the desired marginals.

allocation with the desired marginal distribution, consider a

rectangle box of area cv ×1. For each i ∈ C, place a rectangle

of length ȳvi and height 1 inside the box, starting from the top

left corner. If a rectangle does not fit in a row, cut it, and place

the remainder in the row immediately below, starting again

from the left. As
∑|C|

i=1 ȳvi = cv, this space-filling method

completely fills (i.e., tessellates) the cv × 1 box.

Consider now, for each row, all fractional values τ ∈ [0, 1]
at which two horizontal rectangles meet. We call these values

the cutting points. Notice that there can be at most |C| − 1
such points. Then, partition the cv × 1 box vertically, splitting

it at these cutting points. This results in at most |C| vertical

partitions (also rectangles), with cv rows each. Note that each

one of these vertical partitions correspond to tuples comprising

cv distinct items of C. Each row of a vertical partition must

contain some portion of a horizontal rectangle, as the latter

tessellate the entire box. Moreover, no vertical partition can

contain the same horizontal rectangle in two rows or more

(i.e., a horizontal rectangle cannot “overlap” with itself),

because ȳvi ≤ 1, for all ȳvi ∈ C. The desired probability

distribution µv can then be constructed by setting (a) its

support to be the cv-tuples defined by each vertical partition,

and (b) the probability of each c-tuple to be the length of the

partition (i.e., the difference of the two consecutive cutting

points τ that define it). The marginal probability of an item

will then be exactly the length of its horizontal rectangle,

i.e., ȳvi, as desired.

The above process is described formally in Algorithm 2.

The following lemma establishes its correctness:

Lemma 2: Alg. 2 produces a µv over D̄v
1 s.t. (19) holds.

A proof can be found in Appendix X. Note that, contrary to

the “naïve” Bernoulli solution, the resulting variables xvi, xvj ,

where i ̸= j, may not be independent (even though allocations

are independent across caches). The algorithm’s complexity

is O(cv|C| log |C|): the sort in line 8 can be implemented

in O(|C| log |C|) time, while a match in 13 can be found

in O(log |C|) time if intervals are stored in a binary search

tree, whose construction is also O(|C| log |C|). Moreover,

the support of µv has size at most |C|, so representing this

distribution requires O(cv|C|) space. Finally, as Algorithm 1

requires only one sample from µv , in practice, there is no need

to construct the entire distribution: producing a single sample

xv reduces the complexity to O(|C| log |C| + cv log |C|).

D. Proof of Theorem 3

To prove Theorem 3, we first establish the convergence of

the smoothened marginals to a global maximizer of L:

Algorithm 2 RANDOMIZED ROUNDING ALGORITHM

1: Input: capacity cv, marginals ȳv ∈ R
|C| s.t. ȳv ≥ 0,

∑|C|
i=1 ȳvi = cv

2: Output: prob. distr. µv over {xv ∈ {0, 1}|C| :
∑|C|

i=1 xvi =
cv} s.t. Eµ[xvi] = ȳvi, for all i ∈ C.

3: sum ← 0
4: for all i ∈ C do

5: si ← sum; ti ← sum+ ȳvi; τi ← ti − ⌊ti⌋
6: sum ← ti
7: end for

8: Sort all τi in increasing order, remove duplicates, and

append 1 to the end of the sequence.

9: Let 0 = τ (0) < τ (1) < . . . < τ (K) = 1 be the resulting

sequence.

10: for all k ∈ {0, . . . , K − 1} do

11: Create new vector xv ∈ {0, 1}|C|; set x ← 0.

12: for all ℓ ∈ {0, . . . , cv − 1} do

13: Find i ∈ C such that (ℓ + τ (k), ℓ + τ (k+1)) ⊂ [si, ti].
14: Set xvi ← 1
15: end for

16: Set µv(xvi) = τ (k+1) − τ (k)

17: end for

18: return µv

Lemma 3: Let Ȳ (k) ∈ D2 be the smoothened marginals at

the k-th period of Algorithm 1. Then,

εk ≡ E[max
Y ∈D2

L(Y) − L(Ȳ (k))] ≤
D2 + M2

∑k
ℓ=⌊k/2⌋ γ2

ℓ

2
∑k

ℓ=⌊k/2⌋ γℓ

,

(23)

where D ≡
√

2|V |maxv∈V cv , M ≡
W |V |Λ

√

|V ||C|(1 + 1
ΛT). In particular, for γk = Θ(1/

√
k),

limk→∞ εk = 0.

Proof: Under dynamics (16) and (17), from Theo-

rem 14.1.1, page 215 of Nemirofski [34], we have that εk ≤
d2+m2 k

ℓ=⌊k/2⌋ γ2
ℓ

2 k
ℓ=⌊k/2⌋ γℓ

, where d = maxx,y∈D2
∥x− y∥2 ≤ D, and

m = supY ∈D2

√

∑

v∈V E[∥zv(Y)∥2
2] ≤ M,

where the last inequality follows from Lemma 1. !

Finally, Thm. 2 and Lemmas 2 and 3 imply that the

asymptotic expected caching gain under Algorithm 1 is within

a constant factor from the optimal, completing the proof

of Theorem 3. In particular, given Ȳ (k), by Lemma 2,

X(k) is sampled from a distribution µ over D1 that has

product form (18). This product form implies that, conditioned

on Ȳ (k), Eq. (7) holds; thus, E[F (X(k)) | Ȳ (k)] = F (Ȳ (k)),

so limk→∞ E[F (X(k))] = limk→∞ E[F (Ȳ (k))]. From

Lemma 3, limk→∞ E[L(Ȳ (k))] = maxY ∈D2
L(Y). This

implies limk→∞ µ(k)(D2 \ Ω) = 0 for µ(k) the distribution

of Ȳ (k), and Ω ≡ argmax Y ∈D2
L(Y) the set of Y ∗∗ ∈ D2

that are maximizers of L. From Theorem 2, F (Y ∗∗) ≥
(1 − 1/e)maxX∈D1

F (X) for any Y ∗∗ ∈ Ω. The theorem

therefore follows from the above observations, and the fact

that F is bounded in D2 \ Ω. !

IOANNIDIS AND YEH: ADAPTIVE CACHING NETWORKS WITH OPTIMALITY GUARANTEES 745

E. Rate of Convergence.

Lemma 3 can be use to characterize the rate of convergence

of our proposed algorithm. In particular, when D and M
are known, the rate of convergence implied by bound (23) is

optimized by setting γk = D
M

√
k

; under this gain, (23) becomes

εk ≤ O(1)MD√
k

, where O(1) is an absolute constant. When

D and M are not known, setting γk = 1/
√

k ensures

convergence, albeit at a slower rate. Finally, the relationship

between M and T establishes the tradeoff induced by timeslot

duration T . Larger values of T reduce M , giving more accu-

rate estimates of the subgradients in each timeslot and reducing

the iterations k till convergence. On the other hand, increasing

T also makes each timeslot longer; given D and M , (23) can

be used to quantify this tradeoff.

F. Extensions

Our model immediately captures a scenario where paths p
are random, and sampled independently for each request:

if requests for item i are Poisson with aggregate rate λi, and

the probability a path p is followed is q(i,p), the resulting

system behaves exactly as our model, with λ(i,p) = λiq(i,p).

Our algorithms and their analysis readily extend to the

case where routing costs (a) are incurred by both request

and response messages and (b) are random. In particu-

lar, to account for both query and response routing costs,

the weight of an edge wuv in (1) can be replaced by: αwuv +
βwvu where α, β capture, e.g., the lengths of response and

query messages, respectively. Moreover, (1) holds for random

costs with weights replaced by expected values, as long as cost

samples are independent random variables, also independent

of the allocation X . Provided random costs have finite means

and variances,2 our analysis extends to this setting.

Our analysis also extends to contents of unequal size: such

contents can be partitioned into equally sized “chunks,” which

would play the role of “items” in our model. Requesting a file

amounts to requesting all of its chunks simultaneously. We can

thus model this setting by considering “multi-item” requests,

whereby R comprises multiple item/path tuples, e.g., of the

form {(i1, p), (i2, p), . . . , (iL, p)}, arriving at Poisson epochs.

Even though request arrivals per chunk/item are no longer

independent, the expected caching gain objective F still has

the form (3): each multi-item request contributes multiple

summation terms of identical rates, one for each chunk in

the requested set. This is true even when requests per chunk

are piggy-backed over the same message, that is forwarded

until all chunks are found, presuming that routing costs are

proportional to the number chunks carried by a response. Our

algorithms and analysis directly extend to this setting; note

that this extension does not assume, or require, that chunks of

the same file are stored in the same cache, though an optimal

solution may indeed induce collocation.

VII. GREEDY PATH REPLICATION

Algorithm 1 has certain drawbacks. To implement an allo-

cation at the end of a measurement period, nodes may need

to retrieve new items, which itself incurs additional traffic

costs. There is also a timescale separation between how often

2So that the second moment in Lemma 1 remains bounded.

requests arrive and when adaptations happen; an algorithm

adapting at the request timescale may converge faster. Caches

are synchronized, and avoiding such coordination is preferable.

Finally, beyond request and response messages, additional con-

trol messages are required to estimate the subgradients of L.

In this section, we propose a novel greedy eviction policy,

to be used with the path replication algorithm, that has none

of the above drawbacks. This algorithm is a heuristic, and

we provide no formal guarantees on its performance w.r.t. the

optimal. That said, the algorithm has the following advantages.

First, it does not require any control traffic beyond the traffic

generated by message exchanges. It is asynchronous, and its

adaptations happen at the same timescale as requests. Each

node makes caching decisions only when it receives a response

message carrying an item: that is, a node decides whether to

store an item exactly when it passes through, and requires no

additional traffic to retrieve it. Finally, the eviction heuristic

is very simple (though harder to analyze than Algorithm 1).

Although we provide no guarantees for this algorithm, our

experiments (see Sec. IX) indicate that it converges to an

allocation attaining the same caching gain as Algorithm 1.

A. Algorithm Overview

In short, every v ∈ V maintains an estimate zv of ∂xvL(X),
i.e., a subgradient of L w.r.t. its allocation xv ∈ {0, 1}|C|.
At any point in time, v stores all i s.t. v ∈ Si; the remaining

slots are occupied with items of steepest gradient value,

namely, the items i that correspond to highest estimates zvi.

Crucially, a gradient estimate zvi increases only when a packet

carrying i passes through v. This ensures that an item entering

the cache is always available. In more detail:
1) As in classic path replication, for each (i, p) ∈ R,

request messages are propagated until they reach a node

u caching the requested item i ∈ C, i.e., for which

xui = 1. Upon reaching such a node, a response

message carrying the item is backpropagated over p.

2) The response message for a request (i, p) contains a

weight counter that is initialized to zero by u. Whenever

the response traverses an edge in the reverse path,

the edge weight is added to the counter. The counter is

“sniffed” by every node in p that receives the response.

Hence, every node v in the path p that is visited by a

response learns the quantity:

tvi =
∑|p|−1

k′=kv(p) wpk′+1pk′1 k′

ℓ=1
xp

ℓ
i<1

, (24)

where, as before, kv(p) is the position of v in path p.

3) For each item i, each node v maintains again an estimate

zv ∈ R
|C|
+ of a subgradient in ∂xviL(X). This estimate

is maintained through an exponentially weighted moving

average (EWMA) of the quantities tvi collected above.

These are adapted each time v receives a response

message. If v receives a response message for i at time t,
then it adapts its estimates as follows: for all j ∈ C,

zvj(t) = zvj(t
′) · e−β(t−t′) + β · tvi · 1i=j , (25)

where β > 0 is the EWMA gain, and t′ < t is

the last time node v it received a response message

prior to t. Thus, all estimates zvj decay exponentially

746 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

between responses, while only zvi, corresponding to the

requested item i, contains an additional increment βtvi.

4) After receiving a response and adapting zv, the node (a)

sorts zvi, i ∈ C, in a decreasing order, and (b) stores

the top c′v items, where c′v = cv − |{i : v ∈ Si}| is v’s

capacity excluding permanent items.
The above steps are summarized in Algorithm 3. Note that,

upon the arrival of a response carrying item i, there are only

two possible outcomes after the new zv values are sorted:

either (a) the cache contents remain unaltered, or (b) item i,
which was previously not in the cache, is now placed in

the cache, and another item is evicted. These are the only

possibilities because, under (25), all items j ̸= i preserve

their relative order: the only item whose relative position may

change is i. As i is piggy-backed in the response, no additional

traffic is needed to acquire it.

Algorithm 3 GREEDY PATH REPLICATION

1: Execute the following at each v ∈ V :

2: Initialize zv = 0.

3: while (true) do

4: Wait for new response message.

5: Upon receipt of new message, extract counter tvi and i.
6: Update zv through (25).

7: Sort zvj , j ∈ C, in decreasing order.

8: if xvi = 0 and i is in top c′v items then

9: Set xvi ← 1; evict c′v + 1-th item.

10: end if

11: end while

B. Formal Properties

Though simpler to describe and implement, Algorithm 3

is harder to analyze than Algorithm 1. Nonetheless, some

intuition on its performance can be gained by looking into

its fluid dynamics.

Lemma 4: Let X(t) = [xvi(t)]v∈V,i∈C and Z(t) =
[zvi(t)]v∈V,i∈C be the allocation and subgradient estimation

matrices at time t ≥ 0. Their “fluid” trajectories are described

by the ODE:

X(t) ∈ arg max X∈D1
⟨X, Z(t)⟩ (26a)

dZ(t)

dt
= β

(

∂L(X(t)) − Z(t)
)

(26b)

where ⟨A, B⟩ = trace(AB⊤) is the inner product between

matrices A, B, and ∂L ∈ ∂L is a subgradient of L at X .

Proof: By the “baby Bernoulli” approximation of a

Poisson process (c.f. Chap. 2 p. 37 [36]), and the fact that

ex = 1 + x + o(x), for small δ > 0 the EWMA adaptations

have the form:

zvi(t + δ) = (1 − βδ)zvi(t) + βδφvi + o(δ)

where E[φvi] = ∂xviL(X), and ∂xviL is given by (21b);

note that the matrix ∂L is indeed a subgradient. The fluid

dynamics (26) then follow by taking δ to go to zero, and

replacing the φv’s by their expectation. !

The dynamics (26) are similar (but not identical) to the

“continuous greedy” algorithm for submodular maximiza-

tion [26] and the Frank-Wolfe algorithm [30]. Eq. (26b)

implies that Z(t) indeed “tracks” a subgradient of L at X .

On the other hand, the allocation selected by sorting—or,

equivalently, by (26a)—identifies the most valuable items at

each cache w.r.t. the present estimate of the subgradient.

Hence, even if zv is an inaccurate estimate of the subgradient

at v, the algorithm treats it as correct and places the “most

valuable” items in its cache. This is why we refer to this

algorithm as “greedy.” Note that (26a) also implies that

X(t) ∈ argmax Y ∈D2
⟨Y, Z(t)⟩. This is because, subject to

the capacity and source constraints, ⟨·, Z⟩ is maximized by

taking any set of top c′v items, so an integral solution indeed

always exists. The following lemma states that fixed points of

the ODE (26), provided they exist, must be at maximizers of L.

Lemma 5: Let X∗ ∈ D2 and Z∗ ∈ R
|V |×|C| be such

that X∗ ∈ argmax X∈D2
⟨X, Z∗⟩ and Z∗ ∈ ∂L(X∗). Then,

X∗ ∈ argmax X∈D2
L(X).

The lemma holds by the concavity of L, and is stated

as Theorem 27.4 of Rockafellar [37], so we omit its proof.

Though the conditions stated in the lemma are both necessary

and sufficient in our case, the lemma does not imply that a

integral solution (i.e., one in which X∗ ∈ D1) need exist.

In practice, the algorithm may converge to a chain-recurrent

set of integral solutions. Though we do not establish the

optimality properties of this set, our numerical evaluations

in Section IX show that this greedy heuristic attains a high

caching gain in practice, within 95% from the one attained by

the maximizer of L.

VIII. OFFLINE PROBLEM EQUIVALENCE

MAXCG is a deterministic, offline optimization problem.

The algorithms we propose in Section VI produce randomized

allocations. As randomized allocations are more expressive

than deterministic allocations, it is natural to ask whether

randomness helps: can we achieve a higher caching gain

under randomized allocations than under deterministic ones?

The answer is no; surprisingly, a broad array of randomized

allocations turn out to be equivalent to deterministic strategies.

We have already seen one probabilistic relaxation of

MAXCG, namely, the “independent Bernoulli” relaxation (8)

we discussed in Section V. Consider now the variant:

Max.: Eµ[F (X)] =
∑

X∈D1
µ(X)F (X) (27a)

subj. to: µ is a pr. distr. over D1 satisfying (18). (27b)

In this optimization, we seek randomized cache allocations

sampled from a joint distribution µ over D1 having product

form (18). In addition, consider the (more general) problem:

Maximize: Eµ[F (X)] =
∑

X∈D1
µ(X)F (X) (28a)

subj. to: µ is a pr. distr. over D1. (28b)

Our results–including, crucially, Lemma 2–have the following

surprising implication: all three relaxations (8), (27), and (28)

are in fact equivalent to MAXCG.

Theorem 4: Let X∗, Y ∗, µ∗, and µ∗∗ be optimal solutions

to (4),(8), (27), and (28), respectively. Then,

F (X∗) = F (Y ∗) = Eµ∗ [F (X)] = Eµ∗∗ [F (X)].

IOANNIDIS AND YEH: ADAPTIVE CACHING NETWORKS WITH OPTIMALITY GUARANTEES 747

TABLE II

GRAPH TOPOLOGIES AND EXPERIMENT PARAMETERS

Proof: We establish the following inequalities:

Eµ∗∗ [F (X)]≤F (X∗)≤F (Y ∗)≤Eµ∗ [F (x)]≤Eµ∗∗ [F (X)]

To see that Eµ∗∗ [F (X)] ≤ F (X∗), let D = supp(µ∗∗) ⊆ D1

be the support of µ∗∗. Let X ′ ∈ argmax X∈D F (X) be an

allocation maximizing F over D (as D is finite and non-

empty, this exists and is attained). Then, by construction,

Eµ∗∗ [F (X)] ≤ F (X ′) ≤ F (X∗), as X ′ ∈ D1. F (X∗) ≤
F (Y ∗) by (10), as (8) is a relaxation of (4). To see that

F (Y ∗) ≤ Eµ∗ [F (X)], note that, by Lemma 2, since Y ∗ ∈ D2,

there exists a measure µ′ that has a product form and whose

marginals are Y ∗. Since µ′ has a product form, it satis-

fies (7), and F (Y ∗) = Eµ′ [F (X)] ≤ Eµ∗ [F (X)]. Finally,

Eµ∗ [F (X)] ≤ Eµ∗∗ [F (X)], as the former is the expected cost

under a restricted class of distributions µ, namely, ones that

have the product form (18). !

Theorem 4 has several important implications. First,

deterministic allocations are as powerful as randomized allo-

cations. Second, the equivalence of (27) to (8) implies that sat-

isfying capacity constraints in expectation, rather than exactly,

does not improve the caching gain. Third, the equivalence

of (27) to (28) implies that considering only distributions in

which caches are independent entails no loss of generality:

independent caches are as powerful as fully randomized

caches. Finally, as MAXCG is NP-hard, so are all four

problems.

IX. NUMERICAL EVALUATION

We simulate Algorithms 1 and 3 over synthetic and real net-

works, and compare their performance to path replication com-

bined with LRU, LFU, FIFO, and random replacement (RR)

caches. Across the board, greedy path replication performs

exceptionally well, attaining at least 95% of the expected

caching gain attained by Algorithm 1, while both significantly

outperform traditional eviction policies.

Topologies: The networks we consider are summarized

in Table II. The first six graphs are deterministic. Graph

cycle is a simple cyclic graph, and lollipop is a

clique (i.e., complete graph), connected to a path graph of

equal size. Graph grid-2d is a two-dimensional square

grid, balanced-tree is a complete binary tree of

depth 6, and hypercube is a 7-dimensional hypercube.

Graph expander is a Margulies-Gabber-Galil expander [38].

The next 5 graphs are random, i.e., were sampled from a prob-

ability distribution. Graph erdos-renyi is an Erdős-Rényi

graph with parameter p = 0.1, and regular is a

3-regular graph sampled uniformly at random (u.a.r.). The

watts-strogatz graph is a graph generated according

to the Watts-Strogatz model of a small-world network [39]

comprising a cycle and 4 randomly selected edges, while

small-world is the graph by Kleinberg [40], comprising

a grid with additional long range edges. The preferential

attachment model of Barabási and Albert [41], which yields

powerlaw degrees, is used for barabasi-albert. Finally,

the last 3 graphs represent the Deutche Telekom, Abilene, and

GEANT backbone networks [4].

Experiment Setup: We evaluate the performance of different

adaptive strategies over the graphs in Table II. Given a graph

G(V, E), we generate a catalog C, and assign a cache to each

node in the graph. For every item i ∈ C, we designate a node

selected u.a.r. from V as a source for this item. We set the

capacity cv of every node v so that c′v = cv − |{i : v ∈ Si}|
is constant among all nodes in V . We assign a weight to each

edge in E selected u.a.r. from the interval [1, 100]. We then

generate a set of requests R as follows. First, to ensure path

overlaps, we select |Q| nodes in V u.a.r., that are the only

nodes that generate requests; let Q be the set of such query

nodes. We generate a set of requests starting from a random

node in Q, with the item requested selected from C according

to a Zipf distribution with parameter 1.2. The request is then

routed over the shortest path between the node in Q and the

designated source for the requested item. We assign a rate

λ(i,p) = 1 to every request (i, p) ∈ R.

The values of |C|, |R|, |Q|, and cv for each experiment

are given in Table II. For each experiment, we also pro-

vide in the last column the quantity F (Y ∗∗), for Y ∗∗ ∈
argmax Y ∈D2

L(Y), i.e., the expected caching gain under a

product form distribution that maximizes the relaxation L.

By Thm. 2, this is within 1 − 1/e from the optimal expected

caching gain.

Caching Algorithms and Measurements: We evaluate the

performance of Algorithms 1 and 3, denoted by PGA (for Pro-

jected Gradient Ascent) and GRD (for Greedy), respectively.

In the case of PGA, we tried different measurement periods

T = 1.0, 10.0, 20.0, termed PGA1, PGA10, and PGA20,

respectively. We implemented the algorithm both with state

smoothening (17) and without (whereby allocations are sam-

pled from marginals Y (k) directly). For brevity, we report only

the non-smoothened versions, as time-average performance

was nearly identical for both versions.

We also compare to path replication with LRU, LFU, FIFO,

and RR eviction policies. In all cases, we simulate the network

for 5000 time units. We collect measurements at epochs of

a Poisson process with rate 1.0 (to leverage the PASTA

property). In particular, at each measurement epoch, we extract

the current allocation X , and compute the expected caching

gain (ECG) as F (X). In addition, we keep track of the

actual cost of each request routed through the network, and

compute the time average caching gain (TACG), measured as

the difference of the cost of routing till the item source, minus

the time average cost per request.

Results: Figure 4 shows the trajectories of the expected

caching gain ECG and the time average caching gain TACG

748 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 3. Ratio of expected caching gain ECG to F (Y ∗∗), as given in Table II under different networks and caching strategies. The greedy algorithm GRD

performs almost as well as PGA in all cases. Both algorithms significantly outperform the remaining eviction policies.

Fig. 4. Trajectories of the expected caching gain ECG and the time average
caching gain TACG under the LRU, GRD, and PGA algorithms, the latter with
T = 1 and T = 20. The value F (Y ∗∗) is shown in a dashed line.

under the LRU, GRD, and PGA1 and PGA20 algorithms.

All algorithms converge relatively quickly to a steady state.

PGA20 converges the slowest but it indeed reaches F (Y ∗∗),
as expected. In addition, the greedy heuristic GRD performs

exceptionally well, converging very quickly (faster than PGA1)

to a value close to F (Y ∗∗). In contrast, the allocations reached

in steady state by LRU are highly suboptimal, close to 50%

of F (Y ∗∗). Moreover, LRU exhibits high variability, spending

considerable time in states with as low as 35% of F (Y ∗∗).
We note that the relatively low variability of both GRD and

PGA is a desirable feature in practice, as relatively stable

caches are preferred by network administrators.

The above observations hold across network topologies

and caching algorithms. In Figure 3, we plot the relative

performance w.r.t. ECG of all eight algorithms, normalized to

F (Y ∗∗). We compute this as follows: to remove the effect of

initial conditions, we focus on the interval [1000, 5000], and

average the ECG values in this interval.

We see that, in all cases, PGA attains F (Y ∗∗) for all three

values of the measurement period T . Moreover, the simple

Fig. 5. ECG trajectories under changing demand distributions for PGA with
fixed γ = 0.1 and GRD with β = 0.1. Demands change every Tch time
units, where Tch = 100 (left) and Tch = 25 (right). The value F (Y ∗∗)
as demands evolve is shown in a dashed line. Both track changes, but GRD
adapts faster.

heuristic GRD has excellent performance: across the board,

it attains more than 95% of F (Y ∗∗), sometimes even out-

performing PGA. Both algorithms consistently outperform all

other eviction policies. We observe that RR and LFU perform

quite well in several cases, and that “hard” instances for one

appear to be “easy” for the other.

The differentiating instances, where performance is

reversed, are the cycle and lollipop graphs: though

small, these graphs contain long paths, in contrast to the

remaining graphs that have a relatively low diameter. Intu-

itively, the long-path setting is precisely the scenario where

local/myopic strategies like LRU, LFU, and FIFO make sub-

optimal decisions, while RR’s randomization helps.

Finally, to illustrate adaptability, the ECG trajectory of our

algorithms under non-stationary demands is shown in Fig. 5.

In this experiment, new rates λ(i,p), (i, p) ∈ R, are selected

u.a.r. from the range [0, 100] every Tch time units. This leads

to a sharp change in the optimal cache allocation. Experiments

for PGA1 and GRD are shown. The gain is set to a constant

IOANNIDIS AND YEH: ADAPTIVE CACHING NETWORKS WITH OPTIMALITY GUARANTEES 749

γ = 0.1 to ensure that adaptation persists, and β is set to 0.1.

Both algorithms closely track changes in demand, though GRD

adapts much faster.

X. CONCLUSIONS

The main intuition from our analysis is that caching deci-

sions must account for upstream costs to attain optimality

guarantees. Establishing guarantees for Algorithm 3 remains

an open question, of great interest especially in light of its

performance in simulations. We believe that its relationship

to the “continuous greedy” [26] and Frank-Wolfe [30] algo-

rithms, as well as the algorithm in [29], can serve as a basis

to characterizing its convergence. Determining the limit points

of the fluid dynamics in (26) is key in this task.

Jointly optimizing caching and routing decisions is another

open problem, even more pertinent in the presence of conges-

tion, as in [32]. Ideally, one would reason about congestion

within the context of MAXCG to produce joint routing and

caching algorithms with delay and throughput optimality

guarantees. Finally, Shanmugam et al. [7] show that caching

fountain-coded content has interesting connections to the

relaxation L; studying adaptive caching schemes in this setting

also an important open question.

APPENDIX

PROOF OF LEMMA 2

We now prove the correctness of Algorithm 2, by showing

that it produces a µv over D̄v
1 with marginals ȳv. For all i ∈ C,

denote by si =
∑i−1

k=0 ȳvk, ti = si + ȳvi, τi = ti − ⌊ti⌋, the

quantities computed at line 5 of the algorithm. Then, s0 = 0,

t|C| = cv, and τi is the fractional part of ti. Let 0 = τ (0) <

τ (1) < . . . < τ (K) = 1 be the sequence of sorted τi’s, with

duplicates removed, as in lines 8-9 of the algorithm. Note that,

by construction, K can be at most |C|. For ℓ ∈ {0, . . . , c−1},

k ∈ {0, . . . , K − 1}, let Ak
ℓ = (ℓ + τ (k), ℓ + τ (k+1)) be the

open intervals in Line 13. Then, the following lemma holds.

Lemma 6: For every ℓ ∈ {1, . . . , c − 1} and k ∈
{0, . . . , K−1}, there exists exactly one i ∈ C s.t. Ak

ℓ ⊂ [si, ti].
Moreover, any such i must have ȳvi > 0.

Proof: By construction τ (k) < τ (k+1), so Ak
ℓ is a non-

empty interval in [0, cv]. For every i ∈ C, [si, ti] are closed

intervals (possibly of length zero, if ȳvi = 0) such that
⋃

i∈C [si, ti] = [0, cv]. Hence, there must be at least one [si, ti]

s.t. Ak
ℓ ∩[si, ti] ̸= ∅. To see that there can be no more than one,

suppose that Ak
ℓ intersects more than one sets. Then it must

intersect at least two consecutive sets, say [sj , tj], [sj+1, tj+1]
where, by construction tj = sj+1. This means that tj ∈ Ak

ℓ ,

which in turn implies that τj = tj − ⌊tj⌋ ∈ (τ (k), τ (k+1)),
which is a contradiction, as the sequence τ (·) is sorted. Hence,

Ak
ℓ ∩ [si, ti] ̸= ∅ for exactly one i ∈ C. For the same reason

as above, ti cannot belong to Ak
ℓ ; if it did, then its fractional

part τi would belong to (τ (k), τ (k+1)), a contradiction. Neither

can si; if si ∈ Ak
ℓ , then si > 0, so i > 0. This means that

si = ti−1, and if ti−1 ∈ Ak
ℓ , we again reach a contradiction.

Hence, the only way that Ak
ℓ ∩ [si, ti] ̸= ∅ is if Ak

ℓ ⊂ [si, ti].
Moreover, this implies that si ≤ τ (k) and τ (k+1) ≤ ti, which

in turn implies that ȳvi = ti − si > 0, so the last statement

also follows. !

The above lemma implies that Line 13 of the algorithm

always finds a unique i ∈ C, for every ℓ ∈ {1, . . . , cv − 1}
and k ∈ {0, . . . , K−1}. Denote this item by i(k, ℓ). The next

lemma states that all such items obtained for different values

of ℓ are distinct:

Lemma 7: For any two ℓ, ℓ′ ∈ {1, . . . , cv − 1} with ℓ ̸= ℓ′,
i(k, ℓ) ̸= i(k, ℓ′).

Proof: Suppose that i(k, ℓ) = i(k, ℓ′) for some ℓ′ > ℓ.

From Lemma 6, both Ak
ℓ ⊂ [si, ti] and Ak

ℓ′ ⊂ [si, ti]. Thus,

si ≤ ℓ + τ (k) and ℓ′ + τ (k) < ti. On the other hand, ℓ′ > ℓ,

so ℓ′ ≥ ℓ+1. So the above imply that ȳvi = ti−si > ℓ′−ℓ ≥ 1,

a contradiction, as any feasible ȳvi must be at most 1. !

Observe that µv constructed by the algorithm is indeed a

probability distribution, as (a) the differences τ (k+1) − τ (k)

are, by construction, positive, and (b) their sum is 1. Moreover,

the above two lemmas imply that the vectors xv constructed

by the algorithm contain exactly cv non-zero elements, so µv

is indeed a distribution over D1. The last lemma establishes

that the constructed distribution has the desirable marginals,

thereby completing the proof of correctness.

Lemma 8: If ȳvi > 0, then
∑

x∈supp(µv):xvi=1

µv(xv) = ȳvi.

Proof: Note that the sets Ak
ℓ are disjoint, have non-

empty interior, and their union U =
⋃

ℓ,k Ak
ℓ has Borel

measure (i.e., length) cv. Consider an i ∈ C s.t. ȳvi > 0.

Then, there must be a set Ak
ℓ that intersects [si, ti]; if not,

then the union U would have Borel measure at most

1 − ȳvi, a contradiction. As in the proof of Lemma (6),

the set Ak
ℓ that intersects [si, ti] must be a subset of [si, ti].

Consider the remainder, i.e., the set difference [si, ti] \ Ak
ℓ .

By the same argument as above, if this remainder

has non-zero Borel measure, there must be an interval

Ak′

ℓ′ ∈ U , different from Ak
ℓ , that intersects it. As before, this

set must be included in [si, ti], and as it is disjoint from Ak
ℓ ,

it will be included in the remainder. We can therefore construct

a sequence of such sets Ak
ℓ ∈ U that are included in [si, ti],

so long as their remainder has non-zero Borel measure. Since

there are finitely many such sets, this sequence will be finite,

and when it terminates the remainder will have Borel measure

zero. Hence, the union of these disjoint sets has Borel measure

exactly ȳvi.

Every interval in this sequence corresponds to an allocation

xv constructed by the algorithm s.t. xvi = 1. By Lemma 7,

each interval corresponds to a distinct allocation. Moreover,

since the remainder of this construction has Borel measure

zero, no other set in U can intersect [si, ti]. Finally, the prob-

ability of these allocations under µv is equal to the sum of the

Borel measures of this sets; as they are disjoint, the latter is

equal to the Borel measure of their union, which is ȳvi. !

REFERENCES

[1] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in Proc. SIGMETRICS, 2016, pp. 113–124.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. CoNEXT,
2009, pp. 1–12.

[3] E. J. Rosensweig, D. S. Menasche, and J. Kurose, “On the steady-state
of cache networks,” in Proc. INFOCOM, Apr. 2013, pp. 863–871.

[4] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Paris, France, Tech. Rep., 2011.

750 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

[5] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. INFOCOM, Mar. 2010, pp. 1–9.

[6] M. Dehghan et al., “On the complexity of optimal routing and
content caching in heterogeneous networks,” in Proc. INFOCOM,
Apr./May 2015, pp. 936–944.

[7] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distrib-
uted caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[8] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” in Proc. SIGCOMM, 2002, pp. 177–190.

[9] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and repli-
cation in unstructured peer-to-peer networks,” in Proc. 16th Int. Conf.

Supercomput., 2002, pp. 84–95.
[10] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for

hierarchical Web caches,” in Proc. IEEE Int. Conf. Perform., Comput.,

Commun., Apr. 2004, pp. 445–452.
[11] Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache management,”

IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6, pp. 505–519,
Jun. 2004.

[12] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
Modeling, design and experimental results,” IEEE J. Sel. Areas Com-

mun., vol. 20, no. 7, pp. 1305–1314, Sep. 2002.
[13] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new

method of constructing algorithms with proven performance guarantee,”
J. Combinat. Optim., vol. 8, no. 3, pp. 307–328, 2004.

[14] S. Ioannidis and P. Marbach, “Absence of evidence as evidence of
absence: A simple mechanism for scalable P2P search,” in Proc.
INFOCOM, Apr. 2009, pp. 576–584.

[15] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxi-
mation for LRU cache performance,” in Proc. 24th Int. Teletraffic Congr.,
2012, Art. no. 8.

[16] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to
the performance analysis of caching systems,” in Proc. INFOCOM,
Apr./May 2014, pp. 2040–2048.

[17] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Perform. Eval., vol. 79, pp. 2–23, Sep. 2014.

[18] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of TTL-
based cache networks,” in Proc. VALUETOOLS, Oct. 2012, pp. 1–10.

[19] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy,
“Performance evaluation of the random replacement policy for networks
of caches,” Perform. Eval., vol. 72, pp. 16–36, Feb. 2014.

[20] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling data
transfer in content-centric networking,” in Proc. 23rd Int. Teletraffic

Congr., 2011, pp. 111–118.
[21] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms

for data placement problems,” SIAM J. Comput., vol. 38, no. 4,
pp. 1411–1429, 2008.

[22] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algorithms for distributed
data management,” J. Comput. Syst. Sci., vol. 51, no. 3, pp. 341–358,
1995.

[23] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in Proc. SODA, 2006, pp. 611–620.

[24] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and
K. K. Ramakrishnan, “Optimal content placement for a large-scale VoD
system,” in Proc. CoNext, 2010, Art. no. 4.

[25] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
submodular set function subject to a matroid constraint (extended
abstract),” in Integer Programming and Combinatorial Optimization.
Berlin, Germany: Springer, 2007, pp. 182–196.

[26] J. Vondrák, “Optimal approximation for the submodular welfare problem
in the value oracle model,” in Proc. STOC, 2008, pp. 67–74.

[27] M. Leconte, M. Lelarge, and L. Massoulié, “Designing adaptive repli-
cation schemes in distributed content delivery networks,” in Proc. ITC,
Sep. 2015, pp. 28–36.

[28] M. Leconte, M. Lelarge, and L. Massoulié, “Bipartite graph structures
for efficient balancing of heterogeneous loads,” in Proc. SIGMETRICS,
2012, pp. 41–52.

[29] S. Ioannidis, L. Massoulié, and A. Chaintreau, “Distributed caching
over heterogeneous mobile networks,” in Proc. SIGMETRICS, 2010,
pp. 311–322.

[30] K. L. Clarkson, “Coresets, sparse greedy approximation, and the
Frank–Wolfe algorithm,” ACM Trans. Algorithms, vol. 6, no. 4, 2010,
Art. no. 63.

[31] A. L. Stolyar, “Maximizing queueing network utility subject to sta-
bility: Greedy primal-dual algorithm,” Queueing Syst., vol. 50, no. 4,
pp. 401–457, 2005.

[32] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP:
A framework for joint dynamic forwarding and caching in named data
networks,” in Proc. ICN, 2014, pp. 117–126.

[33] M. X. Goemans and D. P. Williamson, “New 3

4
-approximation algo-

rithms for the maximum satisfiability problem,” SIAM J. Discrete Math.,
vol. 7, no. 4, pp. 656–666, 1994.

[34] A. Nemirovski, Efficient Methods in Convex Programming (Lecture
Notes). Atlanta, GA, USA: Georgia Tech., 1994. [Online]. Available:
https://www2.isye.gatech.edu/nemirovs/Lect_EMCO.pdf

[35] H. Kushner and G. Yin, Stochastic Approximation and Recursive Algo-

rithms and Applications, vol. 35. Berlin, Germany: Springer, 2003.
[36] R. G. Gallager, Discrete Stochastic Processes, vol. 321. Berlin,

Germany: Springer, 2012.
[37] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA:

Princeton Univ. Press, 1970.
[38] O. Gabber and Z. Galil, “Explicit constructions of linear-sized super-

concentrators,” J. Comput. Syst. Sci., vol. 22, no. 3, pp. 407–420, 1981.
[39] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’

networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
[40] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-

tive,” in Proc. STOC, 2000, pp. 163–170.
[41] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-

works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

Stratis Ioannidis received the B.Sc. degree in elec-
trical and computer engineering from the National
Technical University of Athens, Greece, in 2002 and
the M.Sc. and Ph.D. degrees in computer science
from the University of Toronto, Canada, in 2004 and
2009, respectively. He is currently an Assistant Pro-
fessor with the Electrical and Computer Engineering
Department, Northeastern University, Boston, MA,
USA, where he also holds a courtesy appointment
with the College of Computer & Information Sci-
ences. He was a Research Scientist with the Tech-

nicolor research centers in Paris, France, and Palo Alto, CA, USA, and at
Yahoo Labs in Sunnyvale, CA, USA. He is the recipient of an NSF CAREER
Award, a Google Faculty Research Award, and a Best Paper Award at the
2017 ACM Conference on Information-centric Networking.

Edmund Yeh received the B.S. degree in electrical
engineering with Distinction and Phi Beta Kappa
from Stanford University in 1994, the M.Phil. degree
in engineering from Cambridge University on the
Winston Churchill Scholarship in 1995, and the
Ph.D. in electrical engineering and computer science
from MIT under Professor R. Gallager in 2001.
He was an Assistant and Associate Professor of elec-
trical engineering, computer science, and statistics at
Yale University. He is currently a Professor of elec-
trical and computer engineering with Northeastern

University, Boston, USA. He was the recipient of the Alexander von Humboldt
Research Fellowship, the Army Research Office Young Investigator Award,
and the Best Paper Award at the 2017 ACM Conference on Information-
centric Networking and at the 2015 IEEE International Conference on
Communications Communication Theory Symposium.

