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Abstract— We study the throughput and delay characteristics
of wireless caching networks, where users are mainly interested
in retrieving content stored in the network, rather than in main-
taining source–destination communication. Nodes are assumed
to be uniformly distributed in the network area. Each node
has a limited-capacity content store, which it uses to cache
contents. We propose an achievable caching and transmission
scheme whereby requesters retrieve content from the caching
point, which is closest in the Euclidean distance. We establish
the throughput and delay scaling of the achievable scheme, and
show that the throughput and delay performance are order-
optimal within a class of schemes. We then solve the caching
optimization problem, and evaluate the network performance
for a Zipf content popularity distribution, letting the number of
content types and the network size both go to infinity. Finally,
we extend our analysis to heterogeneous wireless networks where,
in addition to wireless nodes, there are a number of base stations
uniformly distributed at random in the network area. We show
that in order to achieve a better performance in a heterogeneous
network in the order sense, the number of base stations needs to
be greater than the ratio of the number of nodes to the number
of content types. Furthermore, we show that the heterogeneous
network does not yield performance advantages in the order sense
if the Zipf content popularity distribution exponent exceeds 3/2.

Index Terms— Wireless caching networks, throughput and
delay scaling, Ad hoc networks, heterogeneous wireless networks,
content centric networking.

I. INTRODUCTION AND RELATED WORK

T
WO fundamental trends in networking are: first, the bulk

of network traffic today, and of its projected enormous

growth, consists mainly of content disseminated to multiple

users. Second, network content is accessed increasingly in

wireless environments. A basic problem, of both theoretical

and practical interest, is the characterization of performance

and scaling in large-scale wireless networks for content distri-

bution. This paper addresses this key question. We focus on the

well-known random wireless network model, where nodes are

uniformly distributed in a network area. Rather than assum-

ing a wireless communication network consisting of source-

destination pairs, however, we investigate a wireless caching

network infrastructure where users are mainly interested in

retrieving content stored in the network. Combining caching

schemes with the proposed request forwarding, we derive the

throughput and delay scalings of the content-centric wireless

network and solve the caching optimization problem. We then
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extend our analysis to heterogeneous wireless networks with

base stations as well as wireless nodes.

As the number of users of wireless technology continues to

grow exponentially, the scaling behavior of wireless networks

has been of wide interest. Xue and Kumar [1] pioneered this

study within the context of wireless communication networks

consisting of source-destination pairs. They focus on a random

network model where n nodes are distributed independently

and uniformly on a unit disk. Each node has a randomly

chosen destination node and can transmit at W bits per sec-

ond provided that the interference is sufficiently small. Each

node can simultaneously serve as a source, a destination,

and as a relay for other source-destination pairs. It was

shown [1] that the per-source-destination-pair throughput

scales as Θ(1/
√

n log n),1 where n is the number of wireless

nodes in the network. Subsequent work was devoted to char-

acterizing the tradeoff between throughput and delay [2]–[9].

In particular, El Gamal [5] and El Gamal et al. [6] study both

static and mobile wireless networks, and show that the optimal

per-node throughput and network delay for the static wireless

network scenario are λ(n) = Θ(1/(n
√

a(n))) and D(n) =
Θ(1/

√

a(n)), respectively, where n is the number of wireless

nodes in the network, and a(n) is the appropriately chosen

cell size such that a(n) = Ω (log n/n).
Liu et al. [8] extend the ad hoc network model to a hybrid

model in which a sparse number of base stations are placed

in the wireless network. They show that for a hybrid network

of n nodes and m base stations, if m = o(
√

n), the benefit of

including additional base stations on capacity is insignificant

in the order sense. However, for m = Ω(
√

n), the throughput

capacity increases linearly with the number of base stations,

improving the scaling of the network’s performance over the

pure ad hoc case.

As shown in these papers, the throughput of wireless

networks scales poorly with number of users. In general, for

a static wireless network, the maximum common rate sus-

tainable for all flows in the network scales inversely with the

number of hops. Grossglauser and Tse [4] show that mobility

can improve the throughput of wireless networks. In particular,

they show that direct communication between sources and des-

tinations alone cannot achieve high throughput. They propose

a two-hop scheme in which the per-node throughput is Θ(1).
This result, however, comes with the price of large delays.

1We use the following notation. We say f(n) = O(g(n)) if there exists
n0 > 0 and a constant M such that |f(n)| ≤ M |g(n)| ∀n ≥ n0. We say
f(n) = o(g(n)) if for any constant ε > 0 there exists n(ε) > 0 such that
|f(n)| ≤ ε|g(n)| ∀n ≥ n(ε). We say f(n) = Ω(g(n)) if g(n) = O(f(n)),
and f(n) = ω(g(n)) if g(n) = o(f(n)). Finally, we say f(n) = Θ(g(n))
if f(n) = O(g(n)) and f(n) = Ω(g(n)).
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Specifically, the delay associated with their scheme is later

shown to be Θ(n log n). In [10], network coding is used to

improve the delay of mobile wireless networks. By employing

Reed-Solomon codes, the authors improve the delay of the

two-hop scheme in [4] from Θ(n log n) to Θ(n).
In wireless networks running popular applications such

as on-demand video and web browsing, caching content

objects closer to requesters can significantly decrease the

number of required hops, and has the potential to substantially

improve throughput and delay scalings. Recently, new content-

centric networking architectures such as Named Data Net-

working (NDN) [11] and Content-Centric Networking (CCN)

[12] have been developed to more directly enable efficient

content distribution using caching.

Given the above, a natural and important problem is the

characterization of performance and scaling in large-scale

wireless caching networks. The problem has received attention

recently in [13] and [14]. In [13], asymptotic properties of the

joint delivery and replication problem in a static grid-based

wireless network with multi-hop communication and caching

are presented. The objective here is the minimization of

average link capacity subject to content replication constraints.

Scaling laws for link capacities are derived, with the content

popularity following a Zipf distribution.

The paper [14] derives the throughput and delay per-

formance of content-centric mobile ad-hoc networks under

various mobility models on a random geometric graph, for

Zipf content popularity distributions. The paper makes the

assumption that at any given time, each node has at most

one pending content request in the network. It further con-

siders a request model in which the relation between the

throughput and delay is pre-determined as λ = 1
Ī+D̄

, where

λ is the average request throughput, D̄ is the average request

delay, and Ī is the average time between consecutive content

requests [14].

In [15], the asymptotic throughput capacity of content-

centric wireless networks is studied under the assumption

that a constant number of content objects with similar pop-

ularity are requested and cached with limited lifetime by

network users. By computing the average lifetime of the

cached content objects of each user, the network through-

put is derived for both the grid and random network

models.

In [16], a content placement problem in a wireless femto-

cellular network using helper nodes is studied. The paper

considers a one-hop communication scheme where nodes are

connected to a set of helper nodes according to a bipartite

graph. Each node is also connected to the base station.

The paper focuses on the minimization of the average total

downloading delay for a given content popularity distribution

and network topology. The authors show that the uncoded

optimal file assignment is NP-hard, and demonstrate a greedy

strategy with performance which is provably within a factor

2 of the optimum.

Caire and Molisch [17] analyze base-station-assisted device-

to-device wireless networks with caching capability. They

examine a cellular grid network model in which communica-

tion among wireless nodes or between wireless nodes and the

base station is limited to one hop, and derive the asymptotic

throughput-outage tradeoff for the network model.

In this paper, we characterize the throughput and delay

scaling behavior of wireless caching networks, using the

random geometric model as studied in [1] and [5] and in many

related papers (previously within the context of traditional

source-destination communication networks). We assume that

contents follow a general popularity distribution, and that each

node has a limited-capacity content store, which it uses to

cache contents according to a proposed caching scheme. Users

employ multi-hop communication to retrieve the requested

content from content stores caching the requested object.

We propose an achievable caching and transmission scheme

whereby holders of each content item are independently and

uniformly distributed in the network area, and transmission

proceeds according to a multi-hop, TDM, cellular scheme in

which requesters retrieve content from the holder which is

closest in Euclidean distance. We establish the throughput and

delay scaling of the achievable caching/transmission scheme,

and show that the throughput and delay performance are order-

optimal within a class of schemes.

The per-node throughput λ(n) and network delay D(n) of

the proposed achievable scheme is shown to satisfy2

D(n)λ(n) = Θ((na(n))−1) w.h.p. (1)

It can be seen from (1) that one can simultaneously increase

the throughput while decreasing delay, for a given n and a(n).
This is accomplished by intelligently designing the caching

and transmission scheme to decrease the number of transmis-

sions and the accompanying interference.

Next, we optimize the caching strategy to simultaneously

minimize the average network delay and maximize the net-

work throughput. Using the optimal caching strategy, we eval-

uate the network performance under a Zipf content popularity

distribution.

Finally, we investigate heterogeneous wireless networks

where, in addition to wireless nodes, there are a number of

base stations uniformly distributed at random in the network

area. We show the proposed model and optimization approach

can be naturally extended to the heterogeneous case. The

solution of the content placement optimization problem shows

that the number of base stations needs to be greater than the

ratio of the number of nodes to the number of content types

in order to achieve a better performance in a heterogeneous

network in the order sense. For the case where the number

of content objects is greater than the number of wireless

nodes, this condition reduces to having at least one base

station in the network. In addition, we show that for the

Zipf content popularity distribution with exponent α ≥ 3/2,

the performance of the wireless ad hoc network is of the same

order as for the heterogeneous wireless network, independent

of number of base stations.

In contrast to related work, this paper offers the following

unique contributions. First, our paper uses the well-known

random dense geometric network model, which was used

in many previous papers on throughput and delay scaling

2We say an event holds with high probability (w.h.p.) if the event occurs
with probability 1 as n goes to infinity.
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in traditional source-destination wireless communication net-

works (e.g., [1] and [5]). This allows for a more direct perfor-

mance comparison between wireless communication networks

and content-centric wireless networks. Specifically, this paper

clearly shows that caching in wireless content-centric networks

allows us to increase the throughput and decrease delay

simultaneously. Second, in contrast to related work, our paper

demonstrates an achievable caching and transmission scheme

and at the same time shows that the throughput and delay

performance of the achievable scheme is optimal within a

class of schemes. Third, our paper is the first to characterize

the throughput and delay scaling in heterogeneous wireless

content-centric networks.

Finally, we note that an earlier version of this paper pub-

lished in [18] focused solely on the ad hoc case. In addition,

our paper published in [19] did not include the optimality proof

of the achievable scheme. Further, the cell size a(n) was fixed

to be 2 log n/n in both [18] and [19], whereas the results in

this paper allow for a more general a(n).

II. NETWORK MODEL

We analyze a content-centric wireless network model where

n nodes are independently and uniformly distributed over

a unit-sized torus. From these nodes originate requests for

content objects. There are M distinct content objects, where

M scales as nβ , 0 < β < 1. Note that we assume β < 1
in order for the network to have sufficient memory to store

at least one copy of each content object. All content objects

are assumed to have the same size. Each node is assumed to

have a local cache, named the Content Store, which can store

copies of content objects. All Content Stores are assumed to

have the same size: K content units.

Time is slotted: t = 0, 1, 2, . . . . Assuming an infinite

backlog of requests at each node, all nodes generate requests

for content objects at each time t. Each content request is for

content object m, 1 ≤ m ≤ M , with probability pm, inde-

pendent of all other requests. Content requests are admitted

into the network at the rate of the achievable throughput for

a feasible scheme.

Since the content popularity distribution is assumed to be

time-invariant, we implement a static caching allocation in

the initial phase of the network operation. Let χm be the

set of nodes which cache content object m in their Content

Store, where Xm = |χm|. We call the nodes in χm the

holders of content m. The holders are specifically chosen as

follows. For each content m, choose one of the
(

n
Xm

)

sets

of Xm nodes, uniformly at random and independent of the

set choices for all other contents, and designate the nodes

in the chosen set as the holders of content m. This ensures

that for each m, there are exactly Xm holders distributed

uniformly and independently in the network. In addition,

the sets of holders are chosen independently across different

contents.

In order for a caching allocation {Xm}M
m=1 to be feasible,

the constraint on total caching space must be satisfied:
M
∑

m=1

Xm ≤ nK. (2)

The total caching constraint in (2) is a relaxed version of the

individual caching constraints. For ease of presentation and

analysis, we use (2) for the throughput-delay analysis and

optimization problem.

For concreteness, we consider the content delivery mech-

anism embodied in the NDN architecture [11]. Specifically,

requests for content objects are submitted using Interest Pack-

ets, which are forwarded toward Content Stores caching the

requested content object using multi-hop communication.3

When the Interest Packet reaches a node caching the requested

content object, a Data Packet containing the requested con-

tent object is transmitted in the reverse direction along the

path taken by the corresponding Interest Packet, back to the

requesting node.4

Transmissions in wireless networks are subject to multi-user

interference. Our model for a successful wireless transmission

in this environment follows the Protocol Model given in [5].

Suppose node i transmits a packet at time t. Then, a node j
can receive this packet successfully if and only if for any

other node k transmitting simultaneously, |Uk − Uj | ≥ (1 +
∆)|Ui − Uj|, where Ui is the location of node i, | · | denotes

Euclidean distance, and ∆ is a positive constant. During a

successful transmission, the transmitter sends at a rate of W
bits per second, which is a constant independent of n. Another

model for transmission is the Physical Model [1]. Since these

two models are essentially equivalent (assuming a path loss

exponent of greater than 1 and equal node transmission powers

in the Physical Model) [1], we focus on the Protocol Model

in this paper.

To simplify our analysis, we adopt the fluid model for packet

transmission considered in [5]. In the fluid model, we allow the

size of the content unit, and therefore the sizes of the Interest

Packets and Data Packets, to be arbitrarily small, depending on

the number of nodes in the network. Thus, the time required

for transmitting an Interest Packet or Data Packet is much

smaller than a time slot. Nevertheless, a packet received by

a node in a given time slot cannot be transmitted by the

node until the next time slot. Thus, all packets waiting for

transmission at a given node will be transmitted by the node

in one time slot. The fluid model makes unnecessary detailed

analysis of the scheduling of individual packets. As explained

below, we will specifically assume that the packet size scales

in proportion to the per-node throughput of the achievable

scheme.

III. THROUGHPUT AND DELAY

Transmission and caching in the wireless network are

coordinated and controlled by a scheme. More precisely, a

scheme π is a sequence of policies {πn}, where πn determines

the (static) caching allocation, as well as the scheduling of

3Assume that routing (topology discovery and data reachability) has already
been accomplished in the network, so that each node knows to which other
nodes it can forward an Interest Packet to reach a Content Store caching the
requested object. Equivalently, in an NDN network, the Forward Information
Base (FIB) has already been populated at each node for each content object.

4Note that Interest Packets are usually much smaller in size than the
corresponding Data Packet. If a node requests a content object which is cached
in its local Content Store, the request can be satisfied immediately and there
is no need to generate an Interest Packet. Since the Content Store has limited
cache space, this is not usually the case. For ease of analysis, we assume in
this paper that if the requested content is in the local cache, the node still
generates an Interest Packet for it, transmits it to the nearest holder excluding
itself, and uses the network to retrieve the content object.
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transmissions in each time slot, for a network of n nodes.

For a given scheme, the throughput and delay are defined as

follows:

Definition 1 (Throughput): For a given scheme πn, let

Bπn(i, t) be the total number of bits of all content objects

received by the requesting node i up to time t. The long-term

throughput of node i is lim inft→∞
1
t Bπn(i, t). The average

throughput over all nodes is

λ′
πn

(n) =
1

n

n
∑

i=1

lim inf
t→∞

1

t
Bπn(i, t).

The throughput of πn, is defined as the expectation over

all realizations of node positions {U1, U2, . . . , Un}, of the

corresponding average throughput:

λπn(n) � E
[

λ′
πn

(n)
]

.

Definition 2 (Delay): For a given πn, let Dπn(i, k) be the

delay of the k-th request for any content object by node i
(measured from the moment the Interest Packet leaves i for

the closest holder until the corresponding Data Packet arrives

at i from the holder). The delay (over all content requests) for

node i is lim supr→∞
1
r

∑r
k=1 Dπn(i, k). The average delay

over all nodes is

D′
πn

(n) =
1

n

n
∑

i=1

lim sup
r→∞

1

r

r
∑

k=1

Dπn(i, k).

The delay of πn is defined as the expectation over all realiza-

tions of node positions {U1, U2, . . . , Un}, of the corresponding

average delay:

Dπn(n) � E
[

D′
πn

(n)
]

.

The throughput and delay quantities λ′
πn

(n) and D′
πn

(n) are

random variables, since they depend on the realization of node

positions. The quantities λπn(n) and Dπn(n) are ensemble

averages. Note that due to the stationarity and ergodicity of the

content request sequences, the throughput and delay quantities

in Definitions 1 and 2 are well defined. That is, the random

content request sequences are averaged over in the throughput

and delay definitions. To study the asymptotical behavior of

λπn(n) and Dπn(n), we will let the number of nodes n go to

infinity.

Recall from Section II that for each m, there are Xm holders

distributed uniformly and independently in the network area.

Furthermore, the sets of holders are chosen independently

across different contents. To analyze the throughput and delay

scaling of the content-centric wireless network, we combine

this caching allocation scheme with an achievable multi-

hop, TDM, cellular transmission scheme [5]. In this scheme,

the unit torus is divided into square cells, each with area a(n).5

We use the following sequence of lemmas to construct the

transmission and caching scheme yielding the main throughput

and delay scaling result.

The following lemma from [5] shows that with an appro-

priately chosen cell area a(n), each cell has at least one node

5We ignore the imperfection of the square cells as well as edge effects due
to 1/a(n) not being a perfect square.

w.h.p., so that multi-hop relaying of packets through adjacent

cells is possible.

Lemma 1 [5]: If a(n) ≥ 2 log n/n, then each cell has at

least one node w.h.p..

For a(n) satisfying Lemma 1, we set the transmission radius

to be r(n) =
√

8 a(n). This allows each node to transmit to

nodes within its cell and to the 8 neighboring cells. It is then

clear that multi-hop packet relaying through adjacent cells can

take place w.h.p.

The next lemma from [5] makes possible the establishment

of an interference-free TDM transmission schedule where each

cell becomes active (i.e. any of the nodes in the cell transmits)

regularly once every N + 1 time slots, where N is specified

in Lemma 2, and no two simultaneously active cells interfere

with each other. Here, two simultaneously active cells interfere

if the transmission of a node in one active cell affects the

success of a simultaneous transmission by a node in the other

active cell.

Lemma 2 [5]: Under the Protocol model, the number of

cells that interfere with any given cell is bounded above by a

constant N = 16(1 + ∆)2, independent of n.

We consider a transmission scheme where an Interest Packet

requesting content object m is forwarded along the direct line

connecting the requesting node to the closest (in Euclidean

distance) holder of content object m, using multi-hop com-

munication. The next lemma computes the expected Euclidean

distance from a given node requesting content m to the closest

holder of content m.

Lemma 3: Let χm be the set of holders of content m, inde-

pendently and uniformly distributed in the unit-sized network

area, where Xm = |χm|. For any node requesting content m,

the average Euclidean distance from the requesting node to

the closest holder of content m is Θ( 1√
Xm

).
Proof: Please see Appendix A. �

Assume a(n) ≥ 2 log n/n and r(n) =
√

8 a(n) ≥
4
√

log n/n. Consider a fixed node i requesting content object

m. Let LH,R(i, m) be the straight line connecting i to the

closest holder of content m. From Lemma 3,

E [|LH,R(i, m)|] = Θ

(

1√
Xm

)

. (3)

where |L| denotes the Euclidean length of line L. Let Hi,m be

the number of hops along a path (sequence of nodes) which

originates at requester i and ends at the closest holder of

content m, and lies within the set of cells intersecting the

LH,R(i, m) line, where there is exactly one node per cell along

the path. By Lemma 1, we can find at least one node per cell

w.h.p. Therefore, we can construct the described path w.h.p.

Note that since we are requiring the path to have exactly one

node per cell, the path is not necessarily the shortest path (in

terms of the number of hops) connecting requester i and the

closest holder of content m, which lies within the set of cells

intersecting the LH,R(i, m) line. On the other hand, we show

in the following lemma that the expected value of Hi,m is of

the same order as the expected value of H ′
i,m, where H ′

i,m is

the minimum number of hops along the shortest path.
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Lemma 4: For a(n) ≥ 2 log n/n, and each m = 1, . . . , M ,

E[Hi,m] = Θ
(

E[H ′
i,m]

)

= Θ

(

max

{

1
√

a(n)Xm

, 1

})

w.h.p. (4)

Proof: Please see Appendix B. �

We now prove a key lemma, characterizing the number of

LH,R(i, m) lines passing through each cell as n becomes large.

The result may be seen as an analogue of [5, Lemma 3] for

the wireless caching network environment.

Lemma 5: For a(n) ≥ 2 log n/n, the number of LH,R lines

passing through each cell is

Θ

(

n
M
∑

m=1

pm max {
√

a(n)/Xm, a(n)}
)

w.h.p.

Proof: For a given content request vector

(m1, m2, . . . , mn) at time t and a given node i, we know that

Hi,mi = Hi,m, w.p. pm, for m = 1, 2, . . . , M . Therefore,

E[Hi,mi ] =

M
∑

m=1

pmE[Hi,m]

= Θ

(

M
∑

m=1

pm max

{

1
√

a(n)Xm

, 1

})

. (5)

There are 1/a(n) cells. Fix a cell j and let Y j
i,mi

be the

indicator of the event that the LH,R(i, mi) line passes through

cell j. That is,

Y j
i,mi

=

{

1, if LH,R(i, mi) passes through cell j

0, otherwise

for 1 ≤ i ≤ n, 1 ≤ j ≤ 1/a(n) and 1 ≤ mi ≤ M . We know

that Y j
i,mi

= Y j
i,m, w.p. pm, for m = 1, 2, . . . , M . Hence,

we obtain E[Y j
i,mi

] =
∑M

m=1 pmE[Y j
i,m]. Summing up the

total number of hops for any m in two different ways gives

us:

n
∑

i=1

1/a(n)
∑

j=1

Y j
i,m =

n
∑

i=1

Hi,m. (6)

Taking the expectation on the both sides of (6), and noting

that E[Hi,m] is the same for each node i and E[Y j
i,m] is equal

for every i and j due to symmetry of the torus, we have

n
∑

i=1

1/a(n)
∑

j=1

E
[

Y j
i,m

]

=
n
∑

i=1

E [Hi,m] .

nE[Y j
i,m]/a(n) = nE[Hi,m].

Therefore,

E[Y j
i,m] = a(n) · E [Hi,m]

= Θ
(

max {
√

a(n)/Xm, a(n)}
)

. (7)

Now,

E[Y j
i,mi

] =

M
∑

m=1

pmE[Y j
i,m]

= Θ

(

M
∑

m=1

pm max {
√

a(n)/Xm, a(n)}
)

. (8)

The total number of LH,R lines passing through a fixed

cell j, is given by Y =
∑n

i=1 Y j
i,mi

. Hence, E[Y ] =

Θ(n
∑M

m=1 pm max {
√

a(n)/Xm, a(n)}). Recall that nodes

are independently and uniformly distributed in the unit-sized

network area and requesters request contents independently

from one another. Moreover, across different contents, the sets

of holders are chosen independently. Therefore, it can be

shown that for each cell j, (Y j
i,mi

)i=1,··· ,n is a set of inde-

pendent random variables satisfying 0 ≤ Y j
i,mi

≤ 1. Applying

the Chernoff bound yields [20]

P{Y > (1 + δ)E[Y ]} ≤ exp

(

−δ2E[Y ]

3

)

. (9)

Choosing δ =
√

6 logn/E[Y ], we are guaranteed that

δ = o(1). This is true as we are assuming that a(n) =
Ω(log n/n). Also, as explained later, there is no need for any

content object to have more than Θ(1/a(n)) holders. Due to

the total caching capacity constraint,
∑M

m=1 Xm ≤ nK , and

the fact that M = Θ(nβ), where 0 < β < 1, we are assured

that E[Y ] = ω(na(n)), or equivalently, E[Y ] = ω(log n),
resulting in δ = o(1). Substituting δ in (9), we have

P{Y > (1 + δ)E[Y ]} ≤ 1/n2. (10)

Therefore, Y = O(E[Y ]) with probability ≥ 1 − 1/n2. Sim-

ilarly, by applying the Chernoff bound to the lower tail [20],

we have

P{Y < (1 − δ)E[Y ]} ≤ exp

(

−δ2E[Y ]

2

)

. (11)

Applying similar techniques as above, we can show that

Y = Ω(E[Y ]) with probability ≥ 1−1/n2. Now applying the

union bound over all 8/r2(n) cells, we see that the number

of LH,R lines passing through each cell of the network is

Θ(E[Y ]) = Θ

(

n

M
∑

m=1

pm max {
√

a(n)/Xm, a(n)}
)

.

with probability ≥ 1 − 1/n. �

We now present in detail the achievable caching and trans-

mission scheme. The transmission scheme can be seen as an

analogue of Scheme 1 in [5], for the wireless caching network

environment. The scheme is parameterized by the cell area

a(n), where a(n) = Ω(log n/n) and a(n) ≤ 1.

A. Caching Scheme

For each content m, choose one of the
(

n
Xm

)

sets of Xm

nodes, uniformly at random and independent of the set choices

for all other contents, and designate the nodes in the chosen

set as the holders of content m. This ensures that for each

m, there are exactly Xm holders distributed uniformly and

independently in the network. In addition, the sets of holders

are chosen independently across different contents.
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B. Transmission Scheme

1) Divide the unit torus using a square grid into square

cells, each with area a(n).
2) For the given realization of the random network, check

that there is no empty cell.

3) If there is an empty cell, then use a time-division policy,

where each of the n requesters communicates directly

with the closest holder of the requested content object,

in a round-robin fashion.

4) Otherwise, use the following policy πn:

a) Each cell becomes active regularly once every

1 + N time-slots (Lemma 2). Cells which are

sufficiently far apart become active simultaneously.

That is, the scheme uses TDM between neighbor-

ing cells.

b) Requesting nodes transmit Interest Packets to the

closest holders by hops along the adjacent cells

intersecting the LH,R lines. Similarly, the holders

transmit Data Packets to the requesting nodes along

the same path taken by their corresponding Interest

Packets, in the reverse direction.

c) Each time slot is split into two sub-slots. In the first

sub-slot, each active cell transmits a single Interest

Packet for each of the LH,R lines passing through

the cell toward the closest holder. In the second

sub-slot, the active cell transmits a single Data

Packet for each of the LH,R lines passing through

the cell toward the requesting node.

We now derive the throughput and delay performance of

the achievable transmission and caching scheme described

above, for a given feasible caching allocation {Xm}M
m=1. We

further show that the achievable transmission/caching scheme

attains the order-optimal throughput and delay performance,

among all transmission/caching schemes where for each m,

the Xm holders are independently and uniformly distributed

in the network area, and each node has the same transmission

radius r(n) =
√

8a(n). As explained in Section IV, we then

optimize the delay and throughput of the achievable scheme

simultaneously by selecting optimal (Xm)M
m=1 subject to

caching constraints.

Theorem 1: For a(n) ≥ 2 log n/n, the throughput and

delay scaling of the achievable caching and transmission

scheme are given in

λ(n) = Θ

(

1

n
∑M

m=1 pm max {
√

a(n)/Xm, a(n)}

)

w.h.p.

(12)

D(n) = Θ

(

M
∑

m=1

pm max

{

1
√

a(n)Xm

, 1

})

w.h.p. (13)

Furthermore, the achievable transmission/caching scheme

attains the order-optimal throughput and delay performance,

among all transmission/caching schemes where for each m,

the Xm holders are independently and uniformly distributed

in the network area, and each node has the same transmission

radius r(n) =
√

8a(n).

Proof: First note that if the time-division policy with direct

communication is used, then the throughput is W/n with a

delay of 1. But since this happens with a vanishingly low

probability, as shown by Lemma 1, the throughput and delay

for the achievable scheme are determined by that of policy πn.

When policy πn is used, each cell has at least one node. This

assures us that requester-holder pairs can communicate with

each other by hops along adjacent cells on their LH,R lines.

From Lemma 2, each cell gets to transmit packets every 1+N
time-slots. Hence, the cell throughput is Θ(1). The total traffic

through each cell is due to all the LH,R lines passing through

the cell, which is Θ(n
∑M

m=1 pm max {
√

a(n)/Xm, a(n)})
w.h.p. This shows that

λ(n) = Θ

(

1

n
∑M

m=1 pm max {
√

a(n)/Xm, a(n)}

)

w.h.p.

(14)

Substituting a(n) = r2(n)/8, it follows that

λ(n) = Θ

(

1

n
∑M

m=1 pm max {r(n)/
√

Xm, r2(n)}

)

w.h.p.

(15)

Recall that by Lemma 2, each cell can be active once every

N + 1 time-slots, where N is constant and independent of

n. As we are assuming that packets scales in proportion to

the throughput λ(n) (fluid model), each packet arriving at a

node in the cell departs in the next active time-slot of the

cell. Hence, the packet delay is N + 1 times the number of

hops from the requester to the holder. For a given realization

of the random network, where node i is requesting mi for

i = 1, 2, . . . , n, and mi ∈ {1, 2, . . . , M}, let hi,mi be the

number of hops from the requester i to its closest holder of

content mi in the given realization. Furthermore, since the

Data Packet takes the same path as the corresponding Interest

Packet in reverse, the average delay of the network realization

is given by two times the mean sample of the hi,mi ’s, i.e.
2
n

∑n
i=1 hi,mi . As n → ∞, by the Law of Large Numbers,

2

n

n
∑

i=1

hi,mi � 2E[Hi,mi ]. (16)

Using (5), equation (13) follows.

Now consider any transmission/caching scheme where for

each m, the Xm holders are independently and uniformly

distributed in the network area, and each node has the same

transmission radius r(n) =
√

8a(n). We show that the

throughput and delay performance of such a scheme cannot

be strictly better than (12)-(13) in an order sense.

By [1, Th. 5.13] the common transmission radius must

satisfy r(n) = Ω(
√

log n/n) in order to have no isolated

node in the network w.h.p. Next, it is shown in [1] that under

the Protocol Model, the maximum number of simultaneous

transmissions feasible in a dense random network is no more

than

1
1
4π · π∆2r2(n)

4

=
16

∆2r2(n)
. (17)



3036 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

This is due to the fact that each transmission consumes an

area of radius ∆
2 r(n) around every transmitter, and at least

1
4π portion is within the unit torus.

Note that since each node transmits with radius r(n),
it follows from Lemma 4 that the minimum number of hops

that an Interest Packet requesting content mi travels from

requester i to reach the closest holder is H ′
i,mi

. Due to

symmetry on the torus, the bits per second being transmitted

simultaneously by the whole network for all the contents

must be at least nλ(n)E[H ′
i,mi

], where λ(n) is the per-node

throughput. Therefore, we have

nλ(n)E[H ′
i,mi

] ≤ W

1 + c
· 16

∆2r2(n)
. (18)

where 0 < c ≤ 1 is the ratio of the Interest Packet size to

the corresponding Data Packet size. Since H ′
i,mi

= H ′
i,m w.p.

pm, an upper bound on the per-node throughput is obtained:

λ(n) ≤ W

1 + c
· 16

∆2r2(n)n
∑M

m=1 pmE[H ′
i,m]

. (19)

By Lemma 4, it follows that

λ(n) = O

⎛

⎝

1

n
∑M

m=1 pm max { r(n)√
Xm

, r2(n)}

⎞

⎠ , (20)

thus showing that the throughput attained by the achievable

scheme in (15) is order-optimal.

Now for the network delay: under the fluid model, the aver-

age delay is simply 2(N +1) times the number of hops. Thus,

by Lemma 4 and by symmetry, the average delay is lower

bounded by E[H ′
i,mi

], which by Lemma 4, is equal in order

to E[Hi,mi ]. Thus, the delay attained by the achievable scheme

in (13) is order-optimal. �

Note that the per-node throughput and network delay given

in Theorem 1 satisfy the following relation:

D(n)λ(n) = Θ((na(n))−1) w.h.p., (21)

This holds for any feasible caching allocation set (Xm)M
m=1.

Equation (21) states that for a given n and a(n), maximizing

throughput is equivalent to minimizing the network delay.

In the next section, we find the optimized set (Xm)M
m=1

which minimizes the delay, or equivalently maximizes the

throughput.

IV. OPTIMIZED CACHING

We now optimize the delay and throughput of the achievable

transmission and caching scheme described in Section III,

by selecting the appropriate (Xm)M
m=1 subject to caching

constraints. We first relax the integer constraint on (Xm)M
m=1,

thus allowing Xm to be a non-negative real number.6

Furthermore, we enforce only the total caching constraint

in (2), which is a relaxation of the per node caching

constraint.

To illustrate the optimization process, we focus on the

commonly used Zipf distribution as the content popularity

6It can easily be shown that the integer constraint relaxation does not change
the order of the optimal delay and throughput scaling.

distribution [13], [14]. Let pm = m−α/Hα(M), where α
is the Zipf’s law exponent, and Hα(M) =

∑M
i=1 i−α is a

normalization constant, given by [13]

Hα(M) =

⎧

⎪

⎨

⎪

⎩

Θ(1), α > 1

Θ (log M) , α = 1

Θ(M1−α), α < 1

(22)

As can be seen, for the case Xm = Ω (a−1(n)), λ(n) and

D(n) are independent of the number of holders. Hence, there

is no need to cache more than one copy of any given content

object in any one cell. Also, note that by (21), minimizing

the delay is equivalent to maximizing the throughput. We

may obtain the minimum delay by solving the following

optimization problem:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min{Xm}
∑M

m=1

pm
√

a(n)Xm

subject to:
∑M

m=1 Xm ≤ nK

1 ≤ Xm ≤ a−1(n) for m = 1, 2, . . . , M

(23)

As the objective function is strictly convex, we are

assured that there is a unique global minimum. Defining

the non-negative Lagrange multipliers λ for the constraint
∑M

m=1 Xm ≤ nK , and taking into account the constraint

1 ≤ Xm ≤ a−1(n), the necessary conditions for a minimum

of D with respect to Xm, ∀m ∈ M are given in

∂D

∂Xm

⎧

⎪

⎨

⎪

⎩

≤ −λ if Xm = a−1(n)

= −λ if 1 < Xm < a−1(n)

≥ −λ if Xm = 1

(24)

For the Zipf distribution, it is clear that pm is strictly

decreasing in m and therefore so is Xm. Hence, let M1 =
{1, 2, . . . , m1 − 1} be the set of content objects such that

Xm = a−1(n) for m ∈ M1. Similarly, let M2 = {m1, m1 +
1, . . . , m2 − 1} and M3 = {m2, m2 + 1, . . . , M} be the set

of contents such that 1 < Xm < a−1(n) for m ∈ M2, and

Xm = 1 for m ∈ M3, respectively. From (24), we have

∀m ∈ M

pm

2
√

a(n)X3
m

⎧

⎪

⎨

⎪

⎩

≥ λ ∀m ∈ M1

= λ ∀m ∈ M2

≤ λ ∀m ∈ M3

(25)

Using the equality for the case m ∈ M2, we obtain

m1

m2
� (a(n))

3

2α . (26)

Clearly from (25), we have λ > 0 and hence,
∑M

m=1 Xm =
nK . Combining this with (26), we can derive m1 and m2. The

optimal number of holders of content m, X∗
m, is then given

by

X∗
m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a−1(n), m = 1, 2, . . . , m1 − 1
p2/3

m�m2−1

j=m1
p
2/3

j

nK ′, m = m1, . . . , m2 − 1

1, m = m2, . . . , M

(27)
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where K ′ � K − (m1 − 1)a−1(n)
n − (M−m2+1)

n . The average

delay is then w.h.p.:

D∗(n) = Θ

⎛

⎝

m1−1
∑

j=1

pj+

(

∑m2−1
j=m1

p
2/3
j

)3/2

√

nK ′a(n)

+

∑M
j=m2

pj
√

a(n)

)

. (28)

To gain more insight on the structure of the optimal solution,

we have the following lemma.

Lemma 6: As n → ∞, the scaling of indices m1 and m2

is given by

m1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(min{M, na(n)}),
α > 3/2

Θ

(

min{M,
na(n)

log n
}
)

,

α = 3/2

Θ

(

max{1, min{M, na(n),
(na(n))

3

2α

M
3

2α−1
}}
)

,

α < 3/2

(29)

m2 =

⎧

⎨

⎩

min{M + 1,
2α − 3

2α
nK(a(n))1−

3

2α }, α > 3/2

M + 1, α ≤ 3/2

(30)

Proof: Refer to Appendix C �

We can now compute the optimized delay and throughput

for the achievable scheme, assuming M = Θ(nβ) where

0 < β < 1, under the Zipf popularity distribution.

Theorem 2: For a(n) ≥ 2 log n/n, the throughput and

delay of the proposed scheme using Zipf distribution are

w.h.p.:

D∗(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(1), α > 3/2

Θ

(

max{1, (log M)3/2√
na(n)

}
)

, α = 3/2

Θ

(

max{1, M3/2−α√
na(n)

}
)

, 1 < α < 3/2

Θ

(

max{1,
√

M

log M
√

na(n)
}
)

, α = 1

Θ
(

max{1,
√

M
na(n)}

)

, α < 1

(31)

λ∗(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(
1

na(n)
), α > 3/2

Θ

(

max{ 1
n , 1

(log M)3/2

√
na(n)

}
)

, α = 3/2

Θ

(

max{ 1
n , Mα−3/2√

na(n)
}
)

, 1 < α < 3/2

Θ

(

max{ 1
n , log M√

Mna(n)
}
)

, α = 1

Θ

(

max{ 1
n , 1√

Mna(n)
}
)

, α < 1

(32)

Proof: We prove that the average delay is given by (31).

The average throughput given in (32) can be calculated easily

by equation (21). Substituting for the pj’s in equation (28)

using the Zipf distribution, we obtain

D =
Hα(m1 − 1)

Hα(M)
+

[H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]3/2

√

nK ′a(n)Hα(M)

+
Hα(M) − Hα(m2 − 1)

√

a(n)Hα(M)
. (33)

where K ′ = K − (m1−1)
2 log n − (M−m2+1)

n = Θ(1). Let the

three expressions on the RHS of (33) be denoted by D1, D2,

and D3, respectively.

Clearly, D1 = Θ(1), ∀α > 0. Also, if a(n) = 1 then m2 =
m1 + 1, and D2 = 0. It can easily be shown that D = Θ(1),
and λ = W/n, which coincides with the result of time-division

with direct communication policy. Hence, we assume here that

a(n) < 1. By Lemma 6, we know that for α ≤ 3/2, m2 =
M + 1. Therefore, D3 is zero, and D = Θ(max{1, D2}).

For α < 1:

D2 = Θ

(

(m2 − 1)3/2−α

√

na(n)M1−α

)

= Θ

(
√

M

na(n)

)

. (34)

For α = 1:

D2 = Θ

(

(m2 − 1)1/2

log M
√

na(n)

)

= Θ

( √
M

log M
√

na(n)

)

. (35)

For 1 < α < 3/2: similarly, we have D2 = Θ

(

M3/2−α√
na(n)

)

.

For α = 3/2: D2 = Θ

(

(log M)3/2√
na(n)

)

.

For α > 3/2: D2 = Θ( 1√
na(n)

) = o(1). Also, as shown in

the following, D3 = o(1). Therefore, D = Θ(D1) = Θ(1).
Now, if m2 = M + 1 then D3 = 0. Otherwise, m2 �
2α−3
2α Kn(a(n))1−

3

2α . Using straightforward calculation, it fol-

lows that D3 = Θ(
m1−α

2√
a(n)

) = o(1). �

To get more intuition about these results, we can substitute

a(n) = 2 logn/n, in (31) and (32). We have

D∗(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(1), α > 3/2

Θ(log M), α = 3/2

Θ(
M3/2−α

√
log M

), 1 < α < 3/2

Θ(

√
M

(log M)3/2
), α = 1

Θ(
√

M
log M ), α < 1

(36)

λ∗(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(
1

log M
), α > 3/2

Θ(
1

(log M)2
), α = 3/2

Θ(
Mα−3/2

√
log M

), 1 < α < 3/2

Θ(
√

log M
M ), α = 1

Θ(
1√

M log M
), α < 1

(37)
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V. HETEROGENEOUS WIRELESS NETWORKS

Thus far, we have considered a pure ad hoc wireless

network with caching, in which there are no base stations.

We now consider a more general heterogeneous wireless

network environment with caching and show that the proposed

model for ad hoc networks can be naturally extended to

the heterogeneous case. Consider a heterogeneous wireless

network where, in addition to uniformly distributed wireless

nodes, there are a number of base stations which are also

uniformly distributed at random in the network area. This

models the scenario where smaller cells, e.g. femtocells, are

deployed with random placement of base stations inside the

network area [21]. The base stations are distinguished from

the wireless nodes in that they are assumed to connect to the

wired backbone, and thus are assumed to have access to all

M content objects. Let f(n) be the number of base stations,

where f(n) is a non-decreasing function of n. For our analysis,

we assume f(n) = Θ(nµ), where 0 ≤ µ < 1.

We assume that each wireless node is assigned to the closest

base station in Euclidean distance. Thus, the network area is

divided into f(n) cellular regions. If the size of each cellular

region is large compared to the transmission range r(n)
(equivalently a(n)) of the wireless nodes, then a wireless node

transmits to its assigned base station via multi-hop relaying

through other wireless nodes.

We now consider a transmission and caching scheme for

the heterogeneous wireless network, which is similar to the

scheme considered for the ad hoc case. That is, the network

area is divided into a−1(n) squared cells each with area

a(n). Based on a TDM scheme, each node, including base

stations, transmit packets over the shared channel, subject

to the Protocol Model. For simplicity, we assume all the

nodes, including base stations, have the same transmission

range, r(n). Note that this is a reasonable assumption when

considering femtocells.

Each wireless node can request contents from its assigned

base station through multi-hop relaying. Each wireless node

requests content m with probability pm. If the closest wireless

holder of content m is closer to the requesting node than the

node’s assigned base station, then the content is retrieved from

the closest wireless holder. Otherwise, it is retrieved from the

base station.

Similar to the previous sections, we assume that the Xm

wireless holders of content m are uniformly distributed in

the network area. Since we are interested in evaluating the

performance of the wireless network, we assume that all

requests for content, upon reception at base stations, are satis-

fied immediately (i.e. a Data Packet is generated immediately).

In other words, we do not consider the delay within the wired

backbone network.

Unlike the pure ad hoc case in which we need to have at

least one copy of each content object in the caches of the

wireless nodes to satisfy all the requests, for the proposed

heterogeneous network we relax this restriction due to the

presence of the base stations. As a result, the number of

content types can exceed the number of nodes. i.e., β can

be ≥ 1.

As in Lemma 3, we can show that the average length of

the LH,R(i, m) line connecting the requesting node i to the

closest cache of content m (either a wireless holder or a base

station) is given by:

E [|LH,R(i, m)|] = Θ

(

1
√

Xm + f(n)

)

. (38)

Consequently, the average of number of hops along the

LH,R line is w.h.p.

E[Hi,mi ] = Θ

(

max

{

1,
1

√

a(n)(Xm + f(n))

})

. (39)

Using an approach similar to that in the proof of Lemma 5,

we see that for a(n) ≥ 2logn/n, the number of LH,R lines

passing through each cell (of area a(n)) is

Θ

(

n

M
∑

m=1

pm max

{

a(n),

√

a(n)

Xm + f(n)

})

w.h.p.

Therefore, the throughput and the delay of the achievable

scheme for the heterogeneous network model are given by:

λ(n) = Θ

⎛

⎝

1

n
∑M

m=1 pm max {a(n),
√

a(n)
Xm+f(n)}

⎞

⎠w.h.p.

(40)

D = Θ

(

M
∑

m=1

pm max

{

1,
1

√

a(n)(Xm + f(n))

})

w.h.p.

(41)

Combining the equations (40) and (41), we obtain the same

throughput and delay relation as in the ad hoc case given

in (21).

Next, we optimize the throughput and delay of the

achievable scheme for the heterogeneous network scenario

by choosing the appropriate (Xm)M
m=1 . Note that here

the constraints on Xm are 0 ≤ Xm ≤ a−1(n) −
f(n), as larger Xm’s do not change the order of

the throughput or delay. Thus, the optimization problem

is
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min{Xm}
∑M

m=1
pm√

a(n)(Xm+f(n))

subject to:
∑M

m=1 Xm ≤ nK

0 ≤ Xm ≤ a−1(n) − f(n) for m = 1, 2, . . . , M

(42)

Since the objective function is strictly convex, we are

assured that there is a unique global minimum. Defining

the non-negative Lagrange multipliers λ for the constraint
∑M

m=1 Xm ≤ nK , and taking into account the constraint

0 ≤ Xm ≤ a−1(n) − f(n), the necessary conditions for a

minimum of D with respect to Xm, ∀m ∈ M are given

∂D

∂Xm

⎧

⎪

⎨

⎪

⎩

≤ −λ if Xm = a−1(n) − f(n)

= −λ if 0 < Xm < a−1(n) − f(n)

≥ −λ if Xm = 0

(43)
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Given the Zipf distribution, let M1 = {1, 2, . . . , m1 − 1}
be the set of content objects such that Xm = a−1(n) − f(n)
for m ∈ M1. Similarly, let M2 = {m1, m1 + 1, . . . , m2 − 1}
and M3 = {m2, m2 + 1, . . . , M} be the set of contents such

that 0 < Xm < a−1(n) − f(n) for m ∈ M2, and Xm = 0
for m ∈ M3, respectively. From (43), we have ∀m ∈ M

pm

2
√

a(n)(Xm + f(n))3

⎧

⎪

⎨

⎪

⎩

≥ λ ∀m ∈ M1

= λ ∀m ∈ M2

≤ λ ∀m ∈ M3

(44)

Using the equality for the case ∀m ∈ M2, we obtain

m1

m2
� (a(n)f(n))

3

2α . (45)

From (44), we have λ > 0 and hence,
∑M

m=1 Xm = nK .

Combining this with (45), we can derive m1 and m2. The

optimal number of holders of content m, X∗
m, is then given

by

X∗
m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a−1(n) − f(n), m = 1, 2, . . . , m1 − 1
p2/3

m�m2−1

j=m1
p
2/3

j

nK ′ − f(n), m = m1, . . . , m2 − 1

0, m = m2, . . . , M

(46)

where K ′ � K − (m1 − 1)a−1(n)
n + (m2 − 1)f(n)

n . Hence,

the average delay is w.h.p.

D∗(n)=Θ

⎛

⎜

⎝

m1−1
∑

j=1

pj +

(

∑m2−1
j=m1

p
2/3
j

)3/2

√

a(n)nK ′
+

∑M
j=m2

pj
√

f(n)a(n)

⎞

⎟

⎠
.

(47)

We can now apply techniques similar to the one used in

the ad hoc case in order to estimate the indices m1 and m2,

and then compute the scalings of the delay and throughput.

So far we have considered a(n) ≥ 2 logn/n to be a general

parameter resulting in a trade-off between the throughput and

delay of the network: as a(n) increases (decreases), both

throughput and delay of the network decrease (increase).

In this section, we consider a single point of this trade-off

where a(n) = 2 log n/n, as this will give us more intuitive

formulas for delay and throughput. The generalization of this

result is a straightforward calculation following the approach

of the ad hoc case. Following this, we can estimate the indices

m1 and m2 as follows.

Lemma 7: Taking n → ∞, m1 and m2 scales as:

m1 =

⎧

⎪

⎨

⎪

⎩

Θ(log n) α > 3/2

Θ(1) α = 3/2

converging to 1 α < 3/2

(48)

m2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min{M + 1, Θ
(

( n
f(n) )

3

2α (log n)1−
3

2α

)

} α > 3/2

min{M + 1, Θ
(

n
f(n) log n

)

} α = 3/2

min{M + 1, Θ
(

n
f(n)

)

} α < 3/2

(49)

Proof: Refer to Appendix D. �

We now compute the throughput and delay of the proposed

heterogeneous network model as follows. Note that part 1 of

Theorem 3, considers the case where m2 = M + 1. For

α ≤ 3/2 this happens when β < 1 − µ, or equivalently

f(n) = o( n
M ) and f(n) ≥ 1. For α > 3/2, m2 = M + 1

if β ≤ 3
2α (1 − µ), or equivalently f(n) = O( n

M2α/3
)

and f(n) ≥ 1. On the other hand, part 2 of Theorem 3

shows the performance of the network when m2 ≤ M . For

α ≤ 3/2 this happens when β ≥ 1 − µ, or equivalently

f(n) = Ω( n
M ) and f(n) ≥ 1. In addition, for α > 3/2,

m2 ≤ M if β > 3
2α (1−µ), or equivalently f(n) = ω( n

M2α/3
)

and f(n) ≥ 1. Note that for any value of α, if f(n) =
Ω( n

M ) and f(n) ≥ 1 (or equivalently µ ≥ max{0, 1 −
β}), then the heterogeneous network performance follows

(50) and (51).

Theorem 3: For a(n) = 2 log n/n,

1) The throughput and delay performance of the achievable

scheme for the heterogeneous network, when m2 =
M+1 and the content popularity distribution follows the

Zipf distribution, is the same as given in (32) and (31),

respectively.

2) The throughput and delay of the achievable scheme,

when m2 ≤ M , are w.h.p.:

D∗(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(1) α > 3/2

Θ (log n) α = 3/2

Θ

⎛

⎜

⎝

(
n

f(n)
)3/2−α

√
log n

⎞

⎟

⎠
1 < α < 3/2

Θ

(
√

n

f(n) logn

)

α ≤ 1

(50)

λ∗(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Θ(
1

log n
) α > 3/2

Θ

(

1

(log n)2

)

α = 3/2

Θ

⎛

⎜

⎝

1
√

log n(
n

f(n)
)3/2−α

⎞

⎟

⎠
1 < α < 3/2

Θ

(
√

f(n)

n logn

)

α ≤ 1

(51)

Proof: We compute the average delay. The average

throughput follows by (21). Substituting for the pj’s in equa-

tion (47) using the Zipf distribution, we have

D =
Hα(m1)

Hα(M)
+

[H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]3/2

√
K ′ log nHα(M)

+

√

n

f(n) logn
· Hα(M) − Hα(m2 − 1)

Hα(M)
. (52)

where K ′ → K − (m1−1)
log n as n → ∞. Similar to the proof

of Theorem 2, let the three expressions on the RHS of (52)

be denoted by D1, D2, and D3, respectively. Moreover, when

m2 = M + 1, D3 = 0. Hence, the equation (52) is simplified

to equation (33), given that m2 = M + 1. As shown in (30),
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Fig. 1. (a) The scaling of delay for the heterogeneous and ad hoc network models for various values of α, vs. number of nodes, for β = 0.9, and for
µ = 0.4. (b) The logarithmic scaling of per-node throughput for the heterogeneous and ad hoc network models for various values of α, vs. number of nodes,
for β = 0.9, and, for µ = 0.4. (c) The logarithmic scaling of per-node throughput for the heterogeneous and ad hoc network models for various values of µ,
vs. number of nodes, for β = 0.9, and, for α = 0.8. (d) The scaling of delay for the heterogeneous and ad hoc network models for various values of µ, vs.
number of nodes, for β = 0.9, and, for α = 0.8.

this always holds for α ≤ 3/2. In addition, for α > 3/2, if we

assign m2 = M + 1, we still get the same result as shown in

the proof of Theorem 2.

Now we prove the results for the second part of the theorem,

where m2 ≤ M . By Lemma 7, we know for α ≤ 3/2, K ′ →
K and D1 = o(1). For α > 3/2, D1 = Θ(1).

For α < 1: by (49), m2 = Θ( n
f(n) ). Following (52),

D2 � n(1−µ)(3/2−α)

√
log nM1−α

, D3 � n
1−µ

2

√
log n

. (53)

It can easily be shown that D2 = o(D3). Thus, D = Θ(D3).
For α = 1: Similarly, by using (52), it follows that D3 is

given by (53). For D2 we have

D2 � n(1−µ)(3/2−α)

√
log n log M

. (54)

Now since log M = Θ(log n), we have D2 = Θ

(

n
1−µ

2

(log n)3/2

)

.

Clearly, D2 = o(D3). Hence, D = Θ(D3).
For 1 < α < 3/2: By using the same technique as in the

previous part, we can see that D3 = Θ(D2) and therefore,

D = Θ(D2). we have

D2 � m
3/2−α
2√
log n

= Θ

(

n(1−µ)(3/2−α)

√
log n

)

. (55)

D3 � m1−α
2 · n 1−µ

2

√
log n

= Θ

(

n(1−µ)(3/2−α)

√
log n

)

. (56)

For α = 3/2: using Lemma 7, it follows from (52) that

D2 �

(

log n1−µ

log n

)3/2

√
log n

= Θ(log n). (57)

D3 � m
−1/2
2 · n 1−µ

2

√
log n

= Θ(1). (58)

Therefore, D = Θ(D2).
For α > 3/2: using a similar calculation, we have

D2 � m
3/2−α
1√
log n

= o(1), D3 � m1−α
2 n

1−µ
2

√
log n

= o(1). (59)

To show the last equation in (59), let’s consider the power

of n in D3: 3
2α (1 − µ)(1 − α) + 1−µ

2 = (1 − µ)( 3
2α −

1) < 0. Hence, D3 → 0 as n → ∞. Therefore,

D = Θ(D1) = Θ(1). �

Comparing the results for the heterogeneous network in

Theorem 3 with those for the pure ad hoc network given in
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Theorem 2, for α 
= 1 and a(n) = Θ( log n
n ), we conclude that

the number of base stations in the network needs to be greater

than n
M = n1−β to improve the order of the performance

metrics (throughput and delay). For the scenario where β ≥ 1,

this condition reduces to f(n) ≥ 1. In other words, if β ≥ 1,

the heterogeneous network always outperforms the pure ad

hoc network. Also, note that for α ≥ 3/2, the performance of

the heterogeneous network is the same as that for the pure ad

hoc case. Intuitively, this is because for large α’s, the majority

of content requests are for the most popular content objects,

hence, caching the most popular content objects will almost

eliminate the need for base stations.

We have plotted the theoretical results given in (50) and (51)

in Figures 1a and 1b , respectively, to demonstrate the scaling

of the network delay and per-node throughput for α = 0.8 and

α = 1.2. The constants are normalized to focus on the scaling

of the curves. In addition, we have plotted the performance of

the ad hoc network model for the same values of α. In both

figures, β = 0.9 and f(n) = n0.4. Note that for α ≥ 3/2,

the performance of the heterogeneous network is the same

in order as that for the ad hoc case. In Figures 1c and 1d,

the scaling of the per-node throughput and network delay

is shown for α = 0.8, β = 0.9, and various values of µ,

along with the corresponding scaling for the pure ad hoc case.

As predicted, by adding more base stations to the network,

the performance of the network, both in terms of throughput

and delay, is improved.

VI. CONCLUSIONS

We have investigated the asymptotic behavior of wireless

caching networks. We presented an achievable caching and

transmission scheme whereby requesters retrieve content from

the holder which is closest in Euclidean distance. We estab-

lished the throughput and delay scaling of the achievable

caching/transmission scheme, and showed that the throughput

and delay performance are order-optimal within a class of

schemes. We then optimized the caching strategy to simul-

taneously minimize the average network delay and maximize

the network throughput. Using the optimal caching strategy,

we evaluated the network performance under a Zipf content

popularity distribution.

Furthermore, we investigated heterogeneous wireless net-

works where, in addition to wireless nodes, there are a number

of base stations uniformly distributed at random in the network

area. We showed that in order to achieve a better performance

in a heterogeneous network in the order sense, the number of

base stations needs to be greater than the ratio of the number

of nodes to the number of content types. For the case where

the number of content objects is greater than the number

of wireless nodes, this condition reduces to having at least

one base station in the network. In addition, we demonstrated

that for the Zipf content popularity distribution with exponent

α ≥ 3/2, the performance of the wireless ad hoc network is

of the same order as for the heterogeneous wireless network,

independent of number of base stations.

APPENDIX

A. Proof of Lemma 3

Since the holders are independently and uniformly distrib-

uted, the probability that no holder is within distance less

than or equal to τ of the requester is Pr(d ≥ τ) = (1−πτ2)Xm

for 0 ≤ τ ≤ 1/
√

π. Therefore, the average distance from the

requester to the closest holder is

E[d] =

∫ ∞

0

Pr(d ≥ τ)dτ =

∫ 1
√

π

0

(1 − πτ2)Xmdτ.

Using a change of variable
√

πτ = cos θ and applying

integration by parts, we have

E[d] =
1√
π

∫ π
2

0

(sin θ)2Xm+1dθ

=
1√
π

2Xm

2Xm + 1
· 2Xm − 2

2Xm − 1
· . . . 2

3
·
∫ π

2

0

sin θdθ (60)

=
1√
π

2Xm

2Xm + 1
· 2Xm − 2

2Xm − 1
· . . . 2

3
(61)

= Θ(
1√
Xm

). (62)

where (60) is derived from
∫

sinn xdx = − 1

n
sinn−1 x cosx +

n − 1

n

∫

sinn−2 xdx.

(63)

(62) is followed from the fact that

n2

n1 + 1
≤
(

g(n1)

g(n2)

)2

≤ n2 + 1

n1
, (64)

where

g(n) =
n − 1

n
· n − 3

n − 2
· . . . 2

3
, (65)

and n1 and n2 are two arbitrary odd integers. Therefore,

g(2Xm + 1) = Θ(1/
√

Xm).

B. Proof of Lemma 4

We compute the result for E[Hi,m]. The same argument

may be used to find E[H ′
i,m]. To compute E[Hi,m], we con-

sider the case where the holder is within one hop of the

requester, and the case where the holder is farther than one

hop away. We have

E[Hi,m] = E[Hi,m||LH,R(i, m)| ≤
√

a(n)]

× Pr(|LH,R(i, m)| ≤
√

a(n))

+E[Hi,m||LH,R(i, m)| >
√

a(n)]

× Pr(|LH,R(i, m)| >
√

a(n)).

Clearly, E[Hi,m||LH,R(i, m)| ≤
√

a(n)] = 1. Also,

since the side-length of each cell is
√

a(n), it can

be shown that E[Hi,m||LH,R(i, m)| >
√

a(n)] =
Θ(E[|LH,R(i, m)|]/

√

a(n)) = Θ(1/
√

a(n)Xm).
Letting α(n) ≡ Pr(|LH,R(i, m)| >

√

a(n)), it follows that

E[Hi,m] = Θ

(

1 +

[

1
√

a(n)Xm

− 1

]

α(n)

)

. (66)

Note that α(n) = Pr(d >
√

a(n)) = (1 − πa(n))Xm .

Expanding α(n) using the binomial form, and noting that
(

n
k

)k ≤
(

n
k

)

≤ nk

k! , for n ≥ k ≥ 1, we have

1 +

Xm
∑

i=1

(−1)i (πa(n)Xm)i

ii
≤ α(n) ≤ e−πa(n)Xm . (67)
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Now, as n → ∞, for Xm = ω(1/a(n)), e−πa(n)Xm → 0,

and hence α(n) → 0, implying that E[Hi,m] = 1. For Xm =
Θ(1/a(n)), both bounds in (67), and consequently α(n), are

constant, leading to E[Hi,m] = Θ(1). On the other hand, for

Xm = o(1/a(n)), a(n)Xm → 0, resulting in both bounds

in (67) converging to 1, as n → ∞. Substituting α(n) = 1
in (66) gives E[Hi,m] = Θ( 1√

a(n)Xm

). Therefore, the average

number of hops can be re-written as

E[Hi,m] = Θ

(

max

{

1
√

a(n)Xm

, 1

})

w.h.p. (68)

C. Proof of Lemma 6
As M = o(n), then M − m2 = o(n). Therefore, K ′ →

K − (m1 − 1)a−1(n)
n as n → ∞. Clearly, K ′ = Θ (1), hence,

m1 = O(na(n)). Now, by definition, m1 is the smallest index

for which the number of holders is less than a−1(n). That is,

Xm1
< a−1(n). Using (27), it follows that

nK ′a(n) < m
2α
3

1 [H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]. (69)

Now, if m1 > 1, attempting to decrease the index m1 by one

would result in

p
2/3
m1−1

∑m2−1
j=m1−1 p

2/3
j

nK ′ ≥ a−1(n).

Hence, we have

nK ′a(n) ≥ (m1−1)
2α
3 [H 2α

3

(m2−1)−H 2α
3

(m1−2)]. (70)

Hence, for m1 > 1, an approximation of m1 can be obtained

from:

nK ′a(n) � m
2α
3

1 [H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]. (71)

Similarly, by the definition of m2, we know Xm2−1 > 1

nK ′ > (m2 − 1)
2α
3 [H 2α

3

(m2 − 1) − H 2α
3

(m1 − 1)]. (72)

Now if m2 ≤ M , attempting to increase the index m2 by one

would lead to

p
2/3
m2

∑m2

j=m1
p
2/3
j

nK ′ ≤ 1.

Thus, it follows that

nK ′ ≤ m
2α
3

2 [H 2α
3

(m2) − H 2α
3

(m1 − 1)]. (73)

Therefore, for m2 ≤ M , m2 can be computed approximately

by:

nK ′ � (m2 − 1)
2α
3 [H 2α

3

(m2 − 1) − H 2α
3

(m1 − 1)]. (74)

For α > 3/2: Using (71), we have

na(n)K−(m1−1) � (m1−1)
2α
3

[−(m1−1)1−
2α
3 ]

1 − 2α
3

. (75)

which leads to m1 � 1 + 2α−3
2α na(n)K.

Now if m2 ≤ M , following (26) we have

m2 � m1(a(n))−
3

2α � 2α − 3

2α
nK(a(n))1−

3

2α . (76)

For α = 3/2: Assuming m2 ≤ M , and by using (74)

and (26), we have

m2 − 1 � nK − (m1 − 1)a−1(n)

log m2
. (77)

It follows that, m2 − 1 � nK
log m2

.

This contradicts m2 = O(nβ), where β < 1. Hence m2 =
M + 1. Assuming m1 > 1, and using (71), we have

m1 − 1 � nKa(n) − (m1 − 1)

log m2
. (78)

resulting in m1 = Θ(na(n)
log n ).

For α < 3/2: Assuming m2 ≤ M , and by using (74),

it follows that

m2 − 1

1 − 2α/3
� nK ′. (79)

Clearly, this contradicts the m2 ≤ M assumption. Therefore,

m2 = M + 1. Now using (71) we have

(m1 − 1)
2α
3 � nKa(n) − (m1 − 1)

[H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]

� nKa(n)

M1−2α/3
. (80)

leading to m1 = Θ

(

(na(n))
3

2α

M
3

2α
−1

)

.

D. Proof of Lemma 7

Since µ < 1, K ′ → K − (m1−1)
2 log n as n → ∞. By definition,

m1 is the smallest index for which the number of holders is

less than a−1(n) − f(n). Using (46), it follows that

2K ′ log n < m
2α
3

1 [H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]. (81)

Now, if m1 > 1, attempting to decrease the index m1 by one

would result in

p
2/3
m1−1

∑m2−1
j=m1−1 p

2/3
j

nK ′ − f(n) ≥ a−1(n) − f(n).

Hence, we have

2K ′ log n ≥ (m1−1)
2α
3 [H 2α

3

(m2−1)−H 2α
3

(m1−2)]. (82)

For m1 > 1, an approximation of m1 can be obtained from:

2K ′ log n � m
2α
3

1 [H 2α
3

(m2 − 1) − H 2α
3

(m1 − 1)]. (83)

Similarly, by the definition of m2, we know Xm2−1 > 0.

Using (46), it follows that

nK ′

f(n)
> (m2−1)

2α
3 [H 2α

3

(m2−1)−H 2α
3

(m1−1)]. (84)

If m2 ≤ M , attempting to increase the index m2 by one would

lead to

p
2/3
m2

∑m2

j=m1
p
2/3
j

nK ′ − f(n) ≤ 0.

It follows that

nK ′

f(n)
≤ m

2α
3

2 [H 2α
3

(m2) − H 2α
3

(m1 − 1)]. (85)

Therefore, for m2 ≤ M , m2 can be computed approximately

by:

nK ′

f(n)
� (m2−1)

2α
3 [H 2α

3

(m2−1)−H 2α
3

(m1−1)]. (86)
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For α > 3/2: By using (83), we have

2 log n(K− (m1−1)

2 logn
) � (m1−1)

2α
3

[−(m1−1)1−
2α
3 ]

1− 2α
3

. (87)

which leads to m1 − 1 � K log n
log m2

.

Now if m2 ≤ M , following (45) we have

m2 = Θ

(

(

n

f(n)

)
3

2α

(log n)1−
3

2α

)

. (88)

For α = 3/2: using (83), we have

m1 − 1 � 2 log n

(

K − (m1 − 1)

2 logn

)

. (89)

which leads to m1 − 1 � K log n
log m2

. Now, if m2 = M + 1,

then m1 = Θ(1). Otherwise, if m2 ≤ M , combining

this result with (45), we have m1 = Θ(1), and m2 =
Θ (n/(f(n) logn)).

For α < 3/2: using (82) we have

(m1 − 1)
2α
3 ≤

2 log n(K − (m1−1)
2 log n )

m
1−2α/3
2

. (90)

Using straightforward calculations, it follows that

(m1 − 1)
2α
3 ≤ 2K log n

m
1−2α/3
2

. (91)

If m2 = M + 1 then clearly, the RHS converges to zero.

Therefore, m1 → 1 as n grows. Otherwise, if m2 ≤ M ,

by using (86) we have

m2 − 1

1 − 2α/3
�

n(K − (m1−1)
2 log n )

f(n)
= Θ(

n

f(n)
). (92)

By plugging in this result in (91), the RHS converges to zero,

as previously. Thus, m1 → 1 as n grows.
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