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Abstract— We study the throughput and delay characteristics
of wireless caching networks, where users are mainly interested
in retrieving content stored in the network, rather than in main-
taining source—destination communication. Nodes are assumed
to be uniformly distributed in the network area. Each node
has a limited-capacity content store, which it uses to cache
contents. We propose an achievable caching and transmission
scheme whereby requesters retrieve content from the caching
point, which is closest in the Euclidean distance. We establish
the throughput and delay scaling of the achievable scheme, and
show that the throughput and delay performance are order-
optimal within a class of schemes. We then solve the caching
optimization problem, and evaluate the network performance
for a Zipf content popularity distribution, letting the number of
content types and the network size both go to infinity. Finally,
we extend our analysis to heterogeneous wireless networks where,
in addition to wireless nodes, there are a number of base stations
uniformly distributed at random in the network area. We show
that in order to achieve a better performance in a heterogeneous
network in the order sense, the number of base stations needs to
be greater than the ratio of the number of nodes to the number
of content types. Furthermore, we show that the heterogeneous
network does not yield performance advantages in the order sense
if the Zipf content popularity distribution exponent exceeds 3/2.

Index Terms— Wireless caching networks, throughput and
delay scaling, Ad hoc networks, heterogeneous wireless networks,
content centric networking.

I. INTRODUCTION AND RELATED WORK

WO fundamental trends in networking are: first, the bulk

of network traffic today, and of its projected enormous
growth, consists mainly of content disseminated to multiple
users. Second, network content is accessed increasingly in
wireless environments. A basic problem, of both theoretical
and practical interest, is the characterization of performance
and scaling in large-scale wireless networks for content distri-
bution. This paper addresses this key question. We focus on the
well-known random wireless network model, where nodes are
uniformly distributed in a network area. Rather than assum-
ing a wireless communication network consisting of source-
destination pairs, however, we investigate a wireless caching
network infrastructure where users are mainly interested in
retrieving content stored in the network. Combining caching
schemes with the proposed request forwarding, we derive the
throughput and delay scalings of the content-centric wireless
network and solve the caching optimization problem. We then
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extend our analysis to heterogeneous wireless networks with
base stations as well as wireless nodes.

As the number of users of wireless technology continues to
grow exponentially, the scaling behavior of wireless networks
has been of wide interest. Xue and Kumar [1] pioneered this
study within the context of wireless communication networks
consisting of source-destination pairs. They focus on a random
network model where n nodes are distributed independently
and uniformly on a unit disk. Each node has a randomly
chosen destination node and can transmit at WW bits per sec-
ond provided that the interference is sufficiently small. Each
node can simultaneously serve as a source, a destination,
and as a relay for other source-destination pairs. It was
shown [1] that the per-source-destination-pair throughput
scales as ©(1/y/nlogn),! where n is the number of wireless
nodes in the network. Subsequent work was devoted to char-
acterizing the tradeoff between throughput and delay [2]-[9].
In particular, El Gamal [5] and El Gamal et al. [6] study both
static and mobile wireless networks, and show that the optimal
per-node throughput and network delay for the static wireless
network scenario are A(n) = O(1/(ny/a(n))) and D(n) =
O(1/+/a(n)), respectively, where n is the number of wireless
nodes in the network, and a(n) is the appropriately chosen
cell size such that a(n) = Q (logn/n).

Liu et al. [8] extend the ad hoc network model to a hybrid
model in which a sparse number of base stations are placed
in the wireless network. They show that for a hybrid network
of n nodes and m base stations, if m = o(y/n), the benefit of
including additional base stations on capacity is insignificant
in the order sense. However, for m = Q(y/n), the throughput
capacity increases linearly with the number of base stations,
improving the scaling of the network’s performance over the
pure ad hoc case.

As shown in these papers, the throughput of wireless
networks scales poorly with number of users. In general, for
a static wireless network, the maximum common rate sus-
tainable for all flows in the network scales inversely with the
number of hops. Grossglauser and Tse [4] show that mobility
can improve the throughput of wireless networks. In particular,
they show that direct communication between sources and des-
tinations alone cannot achieve high throughput. They propose
a two-hop scheme in which the per-node throughput is O(1).
This result, however, comes with the price of large delays.

IWe use the following notation. We say f(n) = O(g(n)) if there exists
no > 0 and a constant M such that |f(n)| < M|g(n)| Vn > ng. We say
f(n) = o(g(n)) if for any constant ¢ > O there exists n(e) > 0 such that
[f(n)] < €lg(n)] ¥n = n(e). We say f(n) = Q(g(n)) if g(n) = O(f(n)),
and f(n) = w(g(n)) if g(n) = o(f(n)). Finally, we say f(n) = ©(g(n))
if f(n) = O(g(n)) and f(n) = Q(g(n)).
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Specifically, the delay associated with their scheme is later
shown to be ©(nlogn). In [10], network coding is used to
improve the delay of mobile wireless networks. By employing
Reed-Solomon codes, the authors improve the delay of the
two-hop scheme in [4] from O(nlogn) to ©(n).

In wireless networks running popular applications such
as on-demand video and web browsing, caching content
objects closer to requesters can significantly decrease the
number of required hops, and has the potential to substantially
improve throughput and delay scalings. Recently, new content-
centric networking architectures such as Named Data Net-
working (NDN) [11] and Content-Centric Networking (CCN)
[12] have been developed to more directly enable efficient
content distribution using caching.

Given the above, a natural and important problem is the
characterization of performance and scaling in large-scale
wireless caching networks. The problem has received attention
recently in [13] and [14]. In [13], asymptotic properties of the
joint delivery and replication problem in a static grid-based
wireless network with multi-hop communication and caching
are presented. The objective here is the minimization of
average link capacity subject to content replication constraints.
Scaling laws for link capacities are derived, with the content
popularity following a Zipf distribution.

The paper [14] derives the throughput and delay per-
formance of content-centric mobile ad-hoc networks under
various mobility models on a random geometric graph, for
Zipf content popularity distributions. The paper makes the
assumption that at any given time, each node has at most
one pending content request in the network. It further con-
siders a request model in which the relation between the
throughput and delay is pre-determinfzd as \ = H%’ where
A is the average request throughput, D is the average request
delay, and I is the average time between consecutive content
requests [14].

In [15], the asymptotic throughput capacity of content-
centric wireless networks is studied under the assumption
that a constant number of content objects with similar pop-
ularity are requested and cached with limited lifetime by
network users. By computing the average lifetime of the
cached content objects of each user, the network through-
put is derived for both the grid and random network
models.

In [16], a content placement problem in a wireless femto-
cellular network using helper nodes is studied. The paper
considers a one-hop communication scheme where nodes are
connected to a set of helper nodes according to a bipartite
graph. Each node is also connected to the base station.
The paper focuses on the minimization of the average total
downloading delay for a given content popularity distribution
and network topology. The authors show that the uncoded
optimal file assignment is NP-hard, and demonstrate a greedy
strategy with performance which is provably within a factor
2 of the optimum.

Caire and Molisch [17] analyze base-station-assisted device-
to-device wireless networks with caching capability. They
examine a cellular grid network model in which communica-
tion among wireless nodes or between wireless nodes and the
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base station is limited to one hop, and derive the asymptotic
throughput-outage tradeoff for the network model.

In this paper, we characterize the throughput and delay
scaling behavior of wireless caching networks, using the
random geometric model as studied in [1] and [5] and in many
related papers (previously within the context of traditional
source-destination communication networks). We assume that
contents follow a general popularity distribution, and that each
node has a limited-capacity content store, which it uses to
cache contents according to a proposed caching scheme. Users
employ multi-hop communication to retrieve the requested
content from content stores caching the requested object.

We propose an achievable caching and transmission scheme
whereby holders of each content item are independently and
uniformly distributed in the network area, and transmission
proceeds according to a multi-hop, TDM, cellular scheme in
which requesters retrieve content from the holder which is
closest in Euclidean distance. We establish the throughput and
delay scaling of the achievable caching/transmission scheme,
and show that the throughput and delay performance are order-
optimal within a class of schemes.

The per-node throughput A(n) and network delay D(n) of
the proposed achievable scheme is shown to satisfy?

D(n)A(n) = O((na(n))™")  w.h.p. (1

It can be seen from (1) that one can simultaneously increase
the throughput while decreasing delay, for a given n and a(n).
This is accomplished by intelligently designing the caching
and transmission scheme to decrease the number of transmis-
sions and the accompanying interference.

Next, we optimize the caching strategy to simultaneously
minimize the average network delay and maximize the net-
work throughput. Using the optimal caching strategy, we eval-
uate the network performance under a Zipf content popularity
distribution.

Finally, we investigate heterogeneous wireless networks
where, in addition to wireless nodes, there are a number of
base stations uniformly distributed at random in the network
area. We show the proposed model and optimization approach
can be naturally extended to the heterogeneous case. The
solution of the content placement optimization problem shows
that the number of base stations needs to be greater than the
ratio of the number of nodes to the number of content types
in order to achieve a better performance in a heterogeneous
network in the order sense. For the case where the number
of content objects is greater than the number of wireless
nodes, this condition reduces to having at least one base
station in the network. In addition, we show that for the
Zipf content popularity distribution with exponent o > 3/2,
the performance of the wireless ad hoc network is of the same
order as for the heterogeneous wireless network, independent
of number of base stations.

In contrast to related work, this paper offers the following
unique contributions. First, our paper uses the well-known
random dense geometric network model, which was used
in many previous papers on throughput and delay scaling

2We say an event holds with high probability (w.h.p.) if the event occurs
with probability 1 as n goes to infinity.
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in traditional source-destination wireless communication net-
works (e.g., [1] and [5]). This allows for a more direct perfor-
mance comparison between wireless communication networks
and content-centric wireless networks. Specifically, this paper
clearly shows that caching in wireless content-centric networks
allows us to increase the throughput and decrease delay
simultaneously. Second, in contrast to related work, our paper
demonstrates an achievable caching and transmission scheme
and at the same time shows that the throughput and delay
performance of the achievable scheme is optimal within a
class of schemes. Third, our paper is the first to characterize
the throughput and delay scaling in heterogeneous wireless
content-centric networks.

Finally, we note that an earlier version of this paper pub-
lished in [18] focused solely on the ad hoc case. In addition,
our paper published in [19] did not include the optimality proof
of the achievable scheme. Further, the cell size a(n) was fixed
to be 2logn/n in both [18] and [19], whereas the results in
this paper allow for a more general a(n).

II. NETWORK MODEL

We analyze a content-centric wireless network model where
n nodes are independently and uniformly distributed over
a unit-sized torus. From these nodes originate requests for
content objects. There are M distinct content objects, where
M scales as n®, 0 < § < 1. Note that we assume 3 < 1
in order for the network to have sufficient memory to store
at least one copy of each content object. All content objects
are assumed to have the same size. Each node is assumed to
have a local cache, named the Content Store, which can store
copies of content objects. All Content Stores are assumed to
have the same size: K content units.

Time is slotted: ¢ = 0,1,2,.... Assuming an infinite
backlog of requests at each node, all nodes generate requests
for content objects at each time ¢. Each content request is for
content object m,1 < m < M, with probability p,,, inde-
pendent of all other requests. Content requests are admitted
into the network at the rate of the achievable throughput for
a feasible scheme.

Since the content popularity distribution is assumed to be
time-invariant, we implement a static caching allocation in
the initial phase of the network operation. Let y,, be the
set of nodes which cache content object m in their Content
Store, where X,,, = |xm|. We call the nodes in x,, the
holders of content m. The holders are specifically chosen as
follows. For each content m, choose one of the ( Xfln) sets
of X,, nodes, uniformly at random and independent of the
set choices for all other contents, and designate the nodes
in the chosen set as the holders of content m. This ensures
that for each m, there are exactly X,, holders distributed
uniformly and independently in the network. In addition,
the sets of holders are chosen independently across different
contents.

In order for a caching allocation {X,,}M_, to be feasible,
the constraint on total caching space must be satisfied:

M
Z Xm < nk.
m=1
The total caching constraint in (2) is a relaxed version of the
individual caching constraints. For ease of presentation and

)
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analysis, we use (2) for the throughput-delay analysis and
optimization problem.

For concreteness, we consider the content delivery mech-
anism embodied in the NDN architecture [11]. Specifically,
requests for content objects are submitted using Interest Pack-
ets, which are forwarded toward Content Stores caching the
requested content object using multi-hop communication.?
When the Interest Packet reaches a node caching the requested
content object, a Data Packet containing the requested con-
tent object is transmitted in the reverse direction along the
path taken by the corresponding Interest Packet, back to the
requesting node.*

Transmissions in wireless networks are subject to multi-user
interference. Our model for a successful wireless transmission
in this environment follows the Protocol Model given in [5].
Suppose node ¢ transmits a packet at time ¢. Then, a node j
can receive this packet successfully if and only if for any
other node & transmitting simultaneously, |Uy — U;| > (1 +
A)|U; — Uj|, where U is the location of node 4, | - | denotes
Euclidean distance, and A is a positive constant. During a
successful transmission, the transmitter sends at a rate of W
bits per second, which is a constant independent of n. Another
model for transmission is the Physical Model [1]. Since these
two models are essentially equivalent (assuming a path loss
exponent of greater than 1 and equal node transmission powers
in the Physical Model) [1], we focus on the Protocol Model
in this paper.

To simplify our analysis, we adopt the fluid model for packet
transmission considered in [5]. In the fluid model, we allow the
size of the content unit, and therefore the sizes of the Interest
Packets and Data Packets, to be arbitrarily small, depending on
the number of nodes in the network. Thus, the time required
for transmitting an Interest Packet or Data Packet is much
smaller than a time slot. Nevertheless, a packet received by
a node in a given time slot cannot be transmitted by the
node until the next time slot. Thus, all packets waiting for
transmission at a given node will be transmitted by the node
in one time slot. The fluid model makes unnecessary detailed
analysis of the scheduling of individual packets. As explained
below, we will specifically assume that the packet size scales
in proportion to the per-node throughput of the achievable
scheme.

III. THROUGHPUT AND DELAY

Transmission and caching in the wireless network are
coordinated and controlled by a scheme. More precisely, a
scheme 7 is a sequence of policies {7, }, where 7,, determines
the (static) caching allocation, as well as the scheduling of

3 Assume that routing (topology discovery and data reachability) has already
been accomplished in the network, so that each node knows to which other
nodes it can forward an Interest Packet to reach a Content Store caching the
requested object. Equivalently, in an NDN network, the Forward Information
Base (FIB) has already been populated at each node for each content object.

4Note that Interest Packets are usually much smaller in size than the
corresponding Data Packet. If a node requests a content object which is cached
in its local Content Store, the request can be satisfied immediately and there
is no need to generate an Interest Packet. Since the Content Store has limited
cache space, this is not usually the case. For ease of analysis, we assume in
this paper that if the requested content is in the local cache, the node still
generates an Interest Packet for it, transmits it to the nearest holder excluding
itself, and uses the network to retrieve the content object.
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transmissions in each time slot, for a network of n nodes.
For a given scheme, the throughput and delay are defined as
follows:

Definition 1 (Throughput): For a given scheme T, let
By, (i,t) be the total number of bits of all content objects
received by the requesting node i up to time t. The long-term
throughput of node i is liminfy .o 1 Bx, (i,t). The average
throughput over all nodes is

= 1
liminf = B, (i,1).
t—oo '

i=1
The throughput of T, is defined as the expectation over
all realizations of node positions {Uy,Us, ..., Uy}, of the
corresponding average throughput:

Ar, (n) £ B [N (n)] .

Definition 2 (Delay): For a given m,, let D, (i, k) be the
delay of the k-th request for any content object by node i
(measured from the moment the Interest Packet leaves i for
the closest holder until the corresponding Data Packet arrives
at 1 from the holder). The delay (over all content requests) for
node i is limsup,_, o 37 _| Dy, (i,k). The average delay
over all nodes is

1< 1 «
D (n) = - Z lim sup — Z D, (i, k).
i=1 k=1

r—oo T

The delay of T, is defined as the expectation over all realiza-
tions of node positions {Uy,Us, ..., Uy}, of the corresponding
average delay:

Dr,(n) £ E Dy (n)].

The throughput and delay quantities . (n) and D], (n) are
random variables, since they depend on the realization of node
positions. The quantities A, (n) and D, (n) are ensemble
averages. Note that due to the stationarity and ergodicity of the
content request sequences, the throughput and delay quantities
in Definitions 1 and 2 are well defined. That is, the random
content request sequences are averaged over in the throughput
and delay definitions. To study the asymptotical behavior of
Ar, (n) and Dy, (n), we will let the number of nodes n go to
infinity.

Recall from Section II that for each m, there are X,,, holders
distributed uniformly and independently in the network area.
Furthermore, the sets of holders are chosen independently
across different contents. To analyze the throughput and delay
scaling of the content-centric wireless network, we combine
this caching allocation scheme with an achievable multi-
hop, TDM, cellular transmission scheme [5]. In this scheme,
the unit torus is divided into square cells, each with area a(n).’
We use the following sequence of lemmas to construct the
transmission and caching scheme yielding the main throughput
and delay scaling result.

The following lemma from [5] shows that with an appro-
priately chosen cell area a(n), each cell has at least one node

SWe ignore the imperfection of the square cells as well as edge effects due
to 1/a(n) not being a perfect square.
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w.h.p., so that multi-hop relaying of packets through adjacent
cells is possible.

Lemma 1 [5]: If a(n) > 2logn/n, then each cell has at
least one node w.h.p..

For a(n) satisfying Lemma 1, we set the transmission radius
to be r(n) = /8 a(n). This allows each node to transmit to
nodes within its cell and to the 8 neighboring cells. It is then
clear that multi-hop packet relaying through adjacent cells can
take place w.h.p.

The next lemma from [5] makes possible the establishment
of an interference-free TDM transmission schedule where each
cell becomes active (i.e. any of the nodes in the cell transmits)
regularly once every N + 1 time slots, where N is specified
in Lemma 2, and no two simultaneously active cells interfere
with each other. Here, two simultaneously active cells interfere
if the transmission of a node in one active cell affects the
success of a simultaneous transmission by a node in the other
active cell.

Lemma 2 [5]: Under the Protocol model, the number of
cells that interfere with any given cell is bounded above by a
constant N = 16(1 + A)?, independent of n.

We consider a transmission scheme where an Interest Packet
requesting content object m is forwarded along the direct line
connecting the requesting node to the closest (in Euclidean
distance) holder of content object m, using multi-hop com-
munication. The next lemma computes the expected Euclidean
distance from a given node requesting content m to the closest
holder of content m.

Lemma 3: Let X, be the set of holders of content m, inde-
pendently and uniformly distributed in the unit-sized network
area, where X, = |xm|. For any node requesting content m,
the average Euclidean distance from the requesting node to
the closest holder of content m is @(\/%)

Proof: Please see Appendix A. 0

Assume a(n) > 2logn/n and r(n) = +/8a(n) >
4+/logn/n. Consider a fixed node i requesting content object
m. Let Ly g(i,m) be the straight line connecting ¢ to the
closest holder of content m. From Lemma 3,

E{|Lun(i,m)] = © ( 3

)

where |L| denotes the Euclidean length of line L. Let H; ,,, be
the number of hops along a path (sequence of nodes) which
originates at requester ¢ and ends at the closest holder of
content m, and lies within the set of cells intersecting the
L r(i,m) line, where there is exactly one node per cell along
the path. By Lemma 1, we can find at least one node per cell
w.h.p. Therefore, we can construct the described path w.h.p.
Note that since we are requiring the path to have exactly one
node per cell, the path is not necessarily the shortest path (in
terms of the number of hops) connecting requester ¢ and the
closest holder of content m, which lies within the set of cells
intersecting the Ly, g (7, m) line. On the other hand, we show
in the following lemma that the expected value of H; ,, is of
the same order as the expected value of H;, , where H  is

i,m>

the minimum number of hops along the shortest path.
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Lemma 4: For a(n) > 2logn/n, and each m =1,..., M,

E[Him) = © (E[H],,])

1
=0 | max{ ————,1 w.h.p. 4
(et ]) e

Proof: Please see Appendix B. (]
We now prove a key lemma, characterizing the number of
Ly r(i,m) lines passing through each cell as n becomes large.
The result may be seen as an analogue of [5, Lemma 3] for
the wireless caching network environment.
Lemma 5: For a(n) > 2logn/n, the number of L g lines
passing through each cell is

C) <n Z Dm maX{\/a(n)/Xm,a(n)}> w.h.p.

Proof: For a given content request vector
(mq, ma,...,my) at time ¢ and a given node 7, we know that
H; o, = Him, W.p. P, for m =1,2,..., M. Therefore,

sz

me

m=1

M 1
e - 1Y),
(ZP m“{ X }> ®

There are 1/a(n) cells. Fix a cell j and let Yj ~ be the

indicator of the event that the Ly r (i, m;) line passes through

cell j. That is,
i 1, if Ly, r(i,m;) passes through cell j
Hmi 0, otherwise

for 1 <i<n, 1<jSl/a(n)andlgmigM.Weknow
that Yﬂm Y;jm, W.p. Pm, for m = 1,2,..., M. Hence,
we obtain E[Y;jm] = Zi\:{:lme[Yz ml- Summlng up the
total number of hops for any m in two different ways gives
us:

n

Y{m - Z Hi,m-

n 1/a(n)
2.2 ®)
i=1 j=1
Taking the expectation on the both sides of (6), and noting
that E[H; ] is the same for each node i and E[Y?, ] is equal

7,m
for every ¢ and j due to symmetry of the torus, we have

n l/a(n n

E[Yﬂm]/ a(n) = nEH;n].

Therefore,

EY? ]

i,m

a(n) - E[H;m]

=0 (max{\/m, a(n)}) . @)
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Now,
M
=Y pmE[Y/
M
=0 <Z Dm max{\/a(n)/Xm,a(n)}> . (8)

The total number of Ly r lines passing through a fixed
cell j, is given by Y = 37" Y/ . Hence, E[Y] =
O(n Z%zl pmmax {\/a(n)/Xm,a(n)}). Recall that nodes
are independently and uniformly distributed in the unit-sized
network area and requesters request contents independently
from one another. Moreover, across different contents, the sets
of holders are chosen independently. Therefore, it can be
shown that for each cell j, (Y/,, )i=1,.. n is a set of inde-
pendent random variables satisfying 0 < Yfm < 1. Applying
the Chernoff bound yields [20]

©)

P{Y > (1 +)E[Y]} <exp <—@) .

3

Choosing 6 = +/6logn/E[Y], we are guaranteed that
d = o(1). This is true as we are assuming that a(n) =
Q(logn/n). Also, as explained later, there is no need for any
content object to have more than ©(1/a(n)) holders. Due to
the total caching capacity constraint, > ., X, < nK, and
the fact that M = G(nﬁ), where 0 < 3 < 1, we are assured
that E[Y] = w(na(n)), or equivalently, E[Y] = w(logn),
resulting in 0 = o(1). Substituting ¢ in (9), we have

P{Y > (1 +§)E[Y]} < 1/n> (10)

Therefore, Y = O(E[Y]) with probability > 1 — 1/n%. Sim-
ilarly, by applying the Chernoff bound to the lower tail [20],
we have

P{Y < (1 =0)E[Y]} < exp (—@) :

Applying similar techniques as above, we can show that
Y = Q(E[Y]) with probability > 1—1/n2. Now applying the
union bound over all 8/7%(n) cells, we see that the number
of Ly g lines passing through each cell of the network is

=0 (n Z Pmmax {v/a(n)/ X, a(n)}) .

with probability > 1 — 1/n. O

We now present in detail the achievable caching and trans-
mission scheme. The transmission scheme can be seen as an
analogue of Scheme 1 in [5], for the wireless caching network
environment. The scheme is parameterized by the cell area
a(n), where a(n) = Q(logn/n) and a(n) < 1.

(1)

O(E[Y])

A. Caching Scheme

For each content m, choose one of the (' ) sets of X,,
nodes, uniformly at random and independent of the set choices
for all other contents, and designate the nodes in the chosen
set as the holders of content m. This ensures that for each
m, there are exactly X, holders distributed uniformly and
independently in the network. In addition, the sets of holders
are chosen independently across different contents.
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B. Transmission Scheme

1) Divide the unit torus using a square grid into square
cells, each with area a(n).

2) For the given realization of the random network, check
that there is no empty cell.

3) If there is an empty cell, then use a time-division policy,
where each of the n requesters communicates directly
with the closest holder of the requested content object,
in a round-robin fashion.

4) Otherwise, use the following policy m,,:

a) Each cell becomes active regularly once every
1 + N time-slots (Lemma 2). Cells which are
sufficiently far apart become active simultaneously.
That is, the scheme uses TDM between neighbor-
ing cells.

b) Requesting nodes transmit Interest Packets to the
closest holders by hops along the adjacent cells
intersecting the Ly g lines. Similarly, the holders
transmit Data Packets to the requesting nodes along
the same path taken by their corresponding Interest
Packets, in the reverse direction.

¢) Each time slot is split into two sub-slots. In the first
sub-slot, each active cell transmits a single Interest
Packet for each of the L g lines passing through
the cell toward the closest holder. In the second
sub-slot, the active cell transmits a single Data
Packet for each of the Ly g lines passing through
the cell toward the requesting node.

We now derive the throughput and delay performance of
the achievable transmission and caching scheme described
above, for a given feasible caching allocation { X, }M_,. We
further show that the achievable transmission/caching scheme
attains the order-optimal throughput and delay performance,
among all transmission/caching schemes where for each m,
the X,, holders are independently and uniformly distributed
in the network area, and each node has the same transmission
radius r(n) = y/8a(n). As explained in Section IV, we then
optimize the delay and throughput of the achievable scheme
simultaneously by selecting optimal (X,,)M_, subject to
caching constraints.

Theorem 1: For a(n) > 2logn/n, the throughput and
delay scaling of the achievable caching and transmission
scheme are given in

1
An)=06 w.h.p.
) <nzﬁf:1pm max {y/a(n)/ X, a<n>}> Y

(12)

M
D(n) =06 <Z D max{ﬁ,l}) w.h.p. (13)

Furthermore, the achievable transmission/caching scheme
attains the order-optimal throughput and delay performance,
among all transmission/caching schemes where for each m,
the X,, holders are independently and uniformly distributed
in the network area, and each node has the same transmission
radius r(n) = /8a(n).
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Proof: First note that if the time-division policy with direct
communication is used, then the throughput is W/n with a
delay of 1. But since this happens with a vanishingly low
probability, as shown by Lemma 1, the throughput and delay
for the achievable scheme are determined by that of policy .
When policy ,, is used, each cell has at least one node. This
assures us that requester-holder pairs can communicate with
each other by hops along adjacent cells on their L g lines.
From Lemma 2, each cell gets to transmit packets every 1+ NV
time-slots. Hence, the cell throughput is ©(1). The total traffic
through each cell is due to all the Ly g lines passing through

the cell, which is ©(n Znﬂf{:lpm max {y/a(n)/Xm,a(n)})
w.h.p. This shows that

1
M) — © w.h.p.
" <n2%1pmmax{m,a(n)}> '

(14)

Substituting a(n) = r?(n)/8, it follows that

1
A(n) =0 w.h.p.
() (nzg1pmmax{r(n)/\/Xm,rQ(n)}) b

15)

Recall that by Lemma 2, each cell can be active once every
N + 1 time-slots, where N is constant and independent of
n. As we are assuming that packets scales in proportion to
the throughput A(n) (fluid model), each packet arriving at a
node in the cell departs in the next active time-slot of the
cell. Hence, the packet delay is N + 1 times the number of
hops from the requester to the holder. For a given realization
of the random network, where node ¢ is requesting m; for
i =1,2,...,n, and m; € {1,2,..., M}, let h;,,, be the
number of hops from the requester ¢ to its closest holder of
content m; in the given realization. Furthermore, since the
Data Packet takes the same path as the corresponding Interest
Packet in reverse, the average delay of the network realization
is given by two times the mean sample of the h;,,,’s, i.e.
% > 1 him,. As n — oo, by the Law of Large Numbers,

2 n
=5 hiym, ~ 2E[Hi ). (16)
n

i=1
Using (5), equation (13) follows.

Now consider any transmission/caching scheme where for
each m, the X,, holders are independently and uniformly
distributed in the network area, and each node has the same
transmission radius r(n) = +/8a(n). We show that the
throughput and delay performance of such a scheme cannot
be strictly better than (12)-(13) in an order sense.

By [1, Th. 5.13] the common transmission radius must
satisfy 7(n) = Q(y/logn/n) in order to have no isolated
node in the network w.h.p. Next, it is shown in [1] that under
the Protocol Model, the maximum number of simultaneous
transmissions feasible in a dense random network is no more
than

1 16

L A2 T AZ2(p)
47 4

a7)
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This is due to the fact that each transmission consumes an

area of radius £7(n) around every transmitter, and at least
1

17 bortion is wichin the unit torus.

Note that since each node transmits with radius r(n),
it follows from Lemma 4 that the minimum number of hops
that an Interest Packet requesting content m,; travels from
requester i to reach the closest holder is H;, . Due to
symmetry on the torus, the bits per second being transmitted
simultaneously by the whole network for all the contents
must be at least nA(n)E[H; ,, ], where A(n) is the per-node
throughput. Therefore, we have

, - w16
“1+c AZr2(n)’
where 0 < ¢ < 1 is the ratio of the Interest Packet size to
the corresponding Data Packet size. Since H ,, = H/,, w.p.
DPm, an upper bound on the per-node throughput is obtained:

nA(n)E[H

z,ml]

(18)

w 16
Aln) < . o7 . (19
L+e AQTQ(TZ)TZ ZmZI me[Hzl,m]
By Lemma 4, it follows that
1
An)=0 . (20)

r(n)

M
N -1 Pmmax { Voot r2(n)}

thus showing that the throughput attained by the achievable
scheme in (15) is order-optimal.

Now for the network delay: under the fluid model, the aver-
age delay is simply 2(/N + 1) times the number of hops. Thus,
by Lemma 4 and by symmetry, the average delay is lower
bounded by E[H; ,, |, which by Lemma 4, is equal in order
to E[H; m,]. Thus, the delay attained by the achievable scheme
in (13) is order-optimal. ]

Note that the per-node throughput and network delay given
in Theorem 1 satisfy the following relation:

D(n)A(n) = O((na(n))™*) w.h.p., 21

This holds for any feasible caching allocation set (X,,)_,.

Equation (21) states that for a given n and a(n), maximizing
throughput is equivalent to minimizing the network delay.
In the next section, we find the optimized set (X,,)M_;
which minimizes the delay, or equivalently maximizes the
throughput.

IV. OPTIMIZED CACHING

We now optimize the delay and throughput of the achievable
transmission and caching scheme described in Section III,
by selecting the appropriate (X,,)M_; subject to caching
constraints. We first relax the integer constraint on (X,,,)_,,
thus allowing X,, to be a non-negative real number.®
Furthermore, we enforce only the total caching constraint
in (2), which is a relaxation of the per node caching
constraint.

To illustrate the optimization process, we focus on the

commonly used Zipf distribution as the content popularity

6Tt can easily be shown that the integer constraint relaxation does not change
the order of the optimal delay and throughput scaling.
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distribution [13], [14]. Let p,, = m~%/H,(M), where «
is the Zipf’s law exponent, and H, (M) = Zz]\il iT*is a
normalization constant, given by [13]

O(1), a>1
H,(M)={0(logM), a=1 (22)
(M=), a<1

As can be seen, for the case X, = Q (a=1(n)), \(n) and
D(n) are independent of the number of holders. Hence, there
is no need to cache more than one copy of any given content
object in any one cell. Also, note that by (21), minimizing
the delay is equivalent to maximizing the throughput. We
may obtain the minimum delay by solving the following

optimization problem:
. M Pm
mingx, 3> - NI
m

subject to:

M
Zm,:l Xm é nk
1< X, <at(n)

(23)

form=1,2,....M

As the objective function is strictly convex, we are
assured that there is a unique global minimum. Defining
the non-negative Lagrange multipliers A for the constraint
Zm:le < nK, and taking into account the constraint
1 < X,, < a!(n), the necessary conditions for a minimum
of D with respect to X,,,, Vm € M are given in

<-X if X, =at(n)
OD T <Xy <al(n) 24)
X, = 1 m < a n

>-)\ ifX,=1

For the Zipf distribution, it is clear that p,, is strictly
decreasing in m and therefore so is X,,,. Hence, let M; =
{1,2,...,m1 — 1} be the set of content objects such that
X = a1(n) for m € M;. Similarly, let My = {m, m; +
1,...,mg — 1} and M3 = {ma,ma + 1,..., M} be the set
of contents such that 1 < X,, < a~!(n) for m € My, and
X, = 1 for m € Ms, respectively. From (24), we have
VYm e M

>\ Vme My
Pm
———1q =)\ VYme My (25)
/ 3
2Valm X | <\ ym e My
Using the equality for the case m € M5, we obtain
= = (a(n)) . (26)

ma

Clearly from (25), we have A > 0 and hence, Z%zl X, =
nK . Combining this with (26), we can derive m and ms. The
optimal number of holders of content m, X, is then given

m?
by
a=t(n), m=12,...,m —1
2/3
* Pm / — _
Xm = Zmzfl 273 nk y T =M1, ..., M2 1 27
J=m1 =7
1, m=mao,...,M
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where K’ 2 K — (m; — 1)“7;(") - (M_Z”QH). The average
delay is then w.h.p.:

mi—1 (Zmz 1p2/3)‘3/2

D*(n):@ ij+ J=mi =g
= nK'a(n)
M
+Zj:m,2 bj ) (28)
a(n)

To gain more insight on the structure of the optimal solution,
we have the following lemma.

Lemma 6: As n — oo, the scaling of indices m1 and mo
is given by

O(min{ M, na(n)}),
a>3/2
0 (min{M, na(n) }> ,
logn
m = a=3/2 @)
C) <max{1,min{M,na(n) (na( )) }})
M5
a < 3/2
min{M + 1, 223 K (am) -1, a>3/2
me = T 2a ’
M +1, a<3/2
(30)
Proof: Refer to Appendix C U
We can now compute the optimized delay and throughput
for the achievable scheme, assuming M = ©(n”) where

0 < B < 1, under the Zipf popularity distribution.

Theorem 2: For a(n) > 2logn/n, the throughput and
delay of the proposed scheme using Zipf distribution are
w.h.p.:

o(1), a>3/2
O ( max{l, %}), a=3/2
D*(n) = (C) max{l,%} l<a<3/2
O | max{1, M\/m} a=1
() (max{l, m(n }) a<l1
(€29)
9(#(71))’ o> 3/2
O ( ma {"’(1gM)3/2\/W}>’ a=3/2
N(n) =46 max{%,%} 1<a<3/2
() max{n,\/%} , a=1
() max{;,m} , a<l1
(32)

Proof: We prove that the average delay is given by (31).
The average throughput given in (32) can be calculated easily
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by equation (21). Substituting for the p;’s in equation (28)
using the Zipf distribution, we obtain

D— Ho(my —1)  [Hza(mg —1) — Hza (mq — D)3/
~ Ho (M) /nK'a(n)Ha (M)

H,(M)— Hy(mz2 — 1).
va(n)Hy (M

(ml 1)

(33)

(]\1 mz—‘rl)

where K/ = K — = O(1). Let the
three expressions on the RHS of (33) be denoted by Dy, Do,
and D3, respectively.

Clearly, D; = ©(1),Va > 0. Also, if a(n) = 1 then mg =
mq + 1, and Dy = 0. It can easily be shown that D = O(1),
and A = W/n, which coincides with the result of time-division
with direct communication policy. Hence, we assume here that
a(n) < 1. By Lemma 6, we know that for o < 3/2, mgy =
M + 1. Therefore, D3 is zero, and D = O(max{1, Dy}).

For o« < 1:
(m2 _ 1)3/2—0{ M
Dy = — | = — . 34
=0 < T o na(n) (34)
For o = 1:

(ma — 1)1/2 VT
0 =0 —F—F—| =0 ———F—— | .
b <1ogM«/na(n)> <log MVna(n)) 39

L B M3/
For 1 < a < 3/2: similarly, we have Dy = © < /—m(n)> :

For a = 3/2: Dy = © ( lea2D’”
@ / 2 v/ na(n)
For v > 3/2: Dy = O(———) = o(1). Also, as shown in

na(

the following, D3 = o(1). Therefore, D = O(D1) = O(1).

Now, if my = M + 1 then D3 = 0. Otherwise, mo =~

2a-3 )¢ n(a(n))1 25 Uzlng straightforward calculation, it fol-

lows that D3 = O(2z2 =o(1 O

= O(Zi) = olL). |

To get more intuition about these results, we can substitute

a(n) = 2logn/n, in (31) and (32). We have

7N
3

o(1), a>3/2
O(log M), a=3/2
M3/27o¢
1 2
Dy = O g TSI
VM
o aryr @~
O( log/IM), a<l
1
@(bgjy), a>3/2
ogarph  *=32
» Moz—3/2
A(n) = 1 9 (37
O logM)’ <a<3/
@( lo%/ll\l)7 a=1
1
1
N Aoear” @<
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V. HETEROGENEOUS WIRELESS NETWORKS

Thus far, we have considered a pure ad hoc wireless
network with caching, in which there are no base stations.
We now consider a more general heterogeneous wireless
network environment with caching and show that the proposed
model for ad hoc networks can be naturally extended to
the heterogeneous case. Consider a heterogeneous wireless
network where, in addition to uniformly distributed wireless
nodes, there are a number of base stations which are also
uniformly distributed at random in the network area. This
models the scenario where smaller cells, e.g. femtocells, are
deployed with random placement of base stations inside the
network area [21]. The base stations are distinguished from
the wireless nodes in that they are assumed to connect to the
wired backbone, and thus are assumed to have access to all
M content objects. Let f(n) be the number of base stations,
where f(n) is a non-decreasing function of n. For our analysis,
we assume f(n) = O(n*), where 0 < p < 1.

We assume that each wireless node is assigned to the closest
base station in Euclidean distance. Thus, the network area is
divided into f(n) cellular regions. If the size of each cellular
region is large compared to the transmission range 7(n)
(equivalently a(n)) of the wireless nodes, then a wireless node
transmits to its assigned base station via multi-hop relaying
through other wireless nodes.

We now consider a transmission and caching scheme for
the heterogeneous wireless network, which is similar to the
scheme considered for the ad hoc case. That is, the network
area is divided into a~!(n) squared cells each with area
a(n). Based on a TDM scheme, each node, including base
stations, transmit packets over the shared channel, subject
to the Protocol Model. For simplicity, we assume all the
nodes, including base stations, have the same transmission
range, 7(n). Note that this is a reasonable assumption when
considering femtocells.

Each wireless node can request contents from its assigned
base station through multi-hop relaying. Each wireless node
requests content m with probability p,,. If the closest wireless
holder of content m is closer to the requesting node than the
node’s assigned base station, then the content is retrieved from
the closest wireless holder. Otherwise, it is retrieved from the
base station.

Similar to the previous sections, we assume that the X,,
wireless holders of content m are uniformly distributed in
the network area. Since we are interested in evaluating the
performance of the wireless network, we assume that all
requests for content, upon reception at base stations, are satis-
fied immediately (i.e. a Data Packet is generated immediately).
In other words, we do not consider the delay within the wired
backbone network.

Unlike the pure ad hoc case in which we need to have at
least one copy of each content object in the caches of the
wireless nodes to satisfy all the requests, for the proposed
heterogeneous network we relax this restriction due to the
presence of the base stations. As a result, the number of
content types can exceed the number of nodes. i.e., 5 can
be > 1.
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As in Lemma 3, we can show that the average length of
the Ly g(i,m) line connecting the requesting node ¢ to the
closest cache of content m (either a wireless holder or a base
station) is given by:

El|Lg r(i,m)|]] =6 < (38)

)
X+ fn) )

Consequently, the average of number of hops along the
Ly g line is w.h.p.

1
E[H; ;| =0 [ max {1, . (39
] ( { \/a(n)(Xerf(n))}) &

Using an approach similar to that in the proof of Lemma 5,
we see that for a(n) > 2logn/n, the number of Ly r lines
passing through each cell (of area a(n)) is

C) nf: max } a(n) _aom) w.h
m:1pm ) X+ f(n) -.p.

Therefore, the throughput and the delay of the achievable
scheme for the heterogeneous network model are given by:

An) = © — 1 = w.h.p.
n Zm:l Pm MmMax {a(n), #@(M}
(40)
M 1
D:@ m INax 1’ wh .
z::lp { Van)(Xm + f(n)) }) 3
(41

Combining the equations (40) and (41), we obtain the same
throughput and delay relation as in the ad hoc case given
in (21).

Next, we optimize the throughput and delay of the
achievable scheme for the heterogeneous network scenario
by choosing the appropriate (X,,)M_; . Note that here
the constraints on X,, are 0 < X,, < a !(n) —
f(n), as larger X,,’s do not change the order of
the throughput or delay. Thus, the optimization problem
is

Pm

. M
mingx, y > mo1 Tae o

subject to:
SM X, <nK
0< X, <a '(n) - f(n)

(42)

form=1,2,....M

Since the objective function is strictly convex, we are
assured that there is a unique global minimum. Defining
the non-negative Lagrange multipliers A for the constraint
Z%zl X, < nK, and taking into account the constraint
0 < X,, < a'(n) — f(n), the necessary conditions for a
minimum of D with respect to X,,, Vm € M are given

5D < -\ if X, =a'(n)— f(n)
X = -\ if0< X, <al(n)- f(n) (43)
"l>=) i X, =0
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Given the Zipf distribution, let M; = {1,2,...,m; — 1}
be the set of content objects such that X,,, = a~'(n) — f(n)
for m € M;. Similarly, let Ms = {my,m1 +1,...,mg—1}
and Ms = {maq, ma + 1,..., M} be the set of contents such
that 0 < X,, < a~1(n) — f(n) for m € My, and X,,, = 0
for m € Ms, respectively. From (43), we have Vm € M

> A VYm € My
Pm
=X Vme M, (44)
3
2/a X TP | 23 v et
Using the equality for the case Vm € My, we obtain
mq 3
— 20, 45
T 2 (o) () @s)

From (44), we have A > 0 and hence, Zi\:{:l X, = nKk.
Combining this with (45), we can derive m; and ms. The
optimal number of holders of content m, X, is then given

by
a=t(n) — f(n), m=12,...,m —1
2/3
X' = an('—f(n),m:ml,...,mg—l
0, m:mg,...,M
(46)

where K" 2 K — (my — 1) 4 (m, — 1)£%) Hence,
the average delay is w.h.p.

my—1 (ZT”Q—l p2/3) iz ZM D
D*(n)=0© e N i
) ; b Van)nK'’ Vv fn)a(n)

(47)

We can now apply techniques similar to the one used in
the ad hoc case in order to estimate the indices m; and mo,
and then compute the scalings of the delay and throughput.
So far we have considered a(n) > 2logn/n to be a general
parameter resulting in a trade-off between the throughput and
delay of the network: as a(n) increases (decreases), both
throughput and delay of the network decrease (increase).
In this section, we consider a single point of this trade-off
where a(n) = 2logn/n, as this will give us more intuitive
formulas for delay and throughput. The generalization of this
result is a straightforward calculation following the approach
of the ad hoc case. Following this, we can estimate the indices
my and mo as follows.

Lemma 7: Taking n — oo, my and ms scales as:

O(logn) a>3/2
my =< O(1) a=3/2 (48)
converging to 1 « < 3/2
mmu4+L@(ﬁ%ﬁamywk%)}a>3m
min{M +1,0 ( 75 | } a<3/2
(49)
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Proof: Refer to Appendix D. 0
We now compute the throughput and delay of the proposed
heterogeneous network model as follows. Note that part 1 of
Theorem 3, considers the case where my = M + 1. For
a < 3/2 this happens when § < 1 — p, or equivalently
fln) = o(é%) and f(n) > 1. For @« > 3/2, mga = M + 1
it 8 < 52(1 — p), or equivalently f(n) = O(5pma7m)
and f(n) > 1. On the other hand, part 2 of Theorem 3
shows the performance of the network when my < M. For
a < 3/2 this happens when § > 1 — p, or equivalently
f(n) = Q(§5) and f(n) > 1. In addition, for a > 3/2,
my < M if 3> 32 (1—p), or equivalently f(n) = w(53%75)
and f(n) > 1. Note that for any value of «, if f(n) =
Q(7) and f(n) > 1 (or equivalently ; > max{0,1 —
(4}), then the heterogeneous network performance follows
(50) and (51).
Theorem 3: For a(n) = 2logn/n,
1) The throughput and delay performance of the achievable
scheme for the heterogeneous network, when mo =
M +1 and the content popularity distribution follows the
Zipf distribution, is the same as given in (32) and (31),
respectively.
2) The throughput and delay of the achievable scheme,
when mo < M, are w.h.p.:

o(1) a>3/2
O (logn a=3/2
(L)3/270¢
D'n)={e @W l<a<3/2 (50
6(\/ f(n)logn) asl
egén) 0> 3/2
1
© <(1ogn)2> S
rn = L l<a<3/2
gty | 1T
(Vioer) ast
(51D

Proof: We compute the average delay. The average
throughput follows by (21). Substituting for the p;’s in equa-
tion (47) using the Zipf distribution, we have

5 _ Ha(m) [Hza (m2 — 1) = Hza (mq — 1))/
= Ha (M) VETog nHa (M)
n Hy(M)— Hy(mg — 1)
Fologn m.on O

where K/ — K — % as n — oo. Similar to the proof
of Theorem 2, let the three expressions on the RHS of (52)
be denoted by D1, Do, and D3, respectively. Moreover, when
mo = M + 1, D3 = 0. Hence, the equation (52) is simplified
to equation (33), given that mo = M + 1. As shown in (30),
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this always holds for o < 3/2. In addition, for a > 3/2, if we
assign mo = M + 1, we still get the same result as shown in
the proof of Theorem 2.

Now we prove the results for the second part of the theorem,
where mo < M. By Lemma 7, we know for o < 3/2, K’ —
K and Dy = o(1). For a > 3/2, D; = ©(1).

For a < 1: by (49), mo = @(%) Following (52),

n(lfﬂ)(3/270‘) n%

—_ Dy~ ——. 53
ViegnMi-a’ 3 Viogn (53)

9

It can easily be shown that Dy = o(D3). Thus, D = ©(Ds3).
For a = 1: Similarly, by using (52), it follows that D3 is
given by (53). For D, we have

n n(1—1)(3/2—a) s

2 ViognlogM ' (>4
1—p

Now since log M = ©(logn), we have Dy = © <M>

(log n)3/2
Clearly, Dy = o(D3). Hence, D = ©(Ds3).
For 1 < a < 3/2: By using the same technique as in the
previous part, we can see that D3 = O(D3) and therefore,

D = ©(D3). we have

3/2-a (1-1)(3/2—a)
Dy~ —e(t———). (55)
Viogn Vlogn
SN S —)(3/2—
b R N O 56
— Viogn Viogn '

For av = 3/2: using Lemma 7, it follows from (52) that

1—n 3/2
log »—
( g logn)

Dy ~ =0 . 57
2 \/m ( Og n) ( )
my /% . i
Dy~ —2 _——  —09(1). 58
Therefore, D = O(Dy).
For o > 3/2: using a similar calculation, we have
3/2—a - lznp

Dy~ ™ =o0(1), D3~ T 77 o(1). (59)

Vdlogn Vdiogn

To show the last equation in (59), let’s consider the power

of nin D3t 2=(1 —p)(1 —a) + 54 = (1 - p)( -
1) < 0. Hence, D3 — 0 as n — oo. Therefore,
D =6(Dy) = 6(1). 0

Comparing the results for the heterogeneous network in
Theorem 3 with those for the pure ad hoc network given in
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Theorem 2, for « # 1 and a(n) = @(loi ), we conclude that
the number of base stations in the network needs to be greater
than 7 = n'=P to improve the order of the performance
metrics (throughput and delay). For the scenario where 3 > 1,
this condition reduces to f(n) > 1. In other words, if § > 1,
the heterogeneous network always outperforms the pure ad
hoc network. Also, note that for o > 3/2, the performance of
the heterogeneous network is the same as that for the pure ad
hoc case. Intuitively, this is because for large «’s, the majority
of content requests are for the most popular content objects,
hence, caching the most popular content objects will almost
eliminate the need for base stations.

We have plotted the theoretical results given in (50) and (51)
in Figures la and 1b , respectively, to demonstrate the scaling
of the network delay and per-node throughput for = 0.8 and
« = 1.2. The constants are normalized to focus on the scaling
of the curves. In addition, we have plotted the performance of
the ad hoc network model for the same values of «. In both
figures, 3 = 0.9 and f(n) = n%%. Note that for a > 3/2,
the performance of the heterogeneous network is the same
in order as that for the ad hoc case. In Figures 1c and 1d,
the scaling of the per-node throughput and network delay
is shown for a = 0.8, § = 0.9, and various values of p,
along with the corresponding scaling for the pure ad hoc case.
As predicted, by adding more base stations to the network,
the performance of the network, both in terms of throughput
and delay, is improved.

VI. CONCLUSIONS

We have investigated the asymptotic behavior of wireless
caching networks. We presented an achievable caching and
transmission scheme whereby requesters retrieve content from
the holder which is closest in Euclidean distance. We estab-
lished the throughput and delay scaling of the achievable
caching/transmission scheme, and showed that the throughput
and delay performance are order-optimal within a class of
schemes. We then optimized the caching strategy to simul-
taneously minimize the average network delay and maximize
the network throughput. Using the optimal caching strategy,
we evaluated the network performance under a Zipf content
popularity distribution.

Furthermore, we investigated heterogeneous wireless net-
works where, in addition to wireless nodes, there are a number
of base stations uniformly distributed at random in the network
area. We showed that in order to achieve a better performance
in a heterogeneous network in the order sense, the number of
base stations needs to be greater than the ratio of the number
of nodes to the number of content types. For the case where
the number of content objects is greater than the number
of wireless nodes, this condition reduces to having at least
one base station in the network. In addition, we demonstrated
that for the Zipf content popularity distribution with exponent
a > 3/2, the performance of the wireless ad hoc network is
of the same order as for the heterogeneous wireless network,
independent of number of base stations.

APPENDIX
A. Proof of Lemma 3

Since the holders are independently and uniformly distrib-
uted, the probability that no holder is within distance less
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than or equal to 7 of the requester is Pr(d > 7) = (1—m72)%m
for 0 < 7 < 1/y/m. Therefore, the average distance from the
requester to the closest holder is

Eld] = /OOO Pr(d > 7)dr = /Oﬁ(l — ar?)Xmdr.

Using a change of variable /77 = cosf and applying

integration by parts, we have

Eld) = % /0 " (sin)m+1dg

2X,,  2X,,—2 2 /3 )
= — . = 0de (60
72X+ 12X — g ), Sinde ©0)
1 2X,, 2X,, — 2 2
= — . fee e T (61)
VT2X, +1 2X,—1 '3
1
= 0(—). 62
where (60) is derived from
1 -1
/Sin" zdz = —=sin” 'z cosz + n-- sin” 2 zdzx.
n n
(63)
(62) is followed from the fact that
2
na <<g(n1)> §ng—f—l7 (64)
ny+1 g(na) ny
where
n—1 n- 3 2
= = 65
g(n) = ———— .3, (65)

and n; and no are two arbitrary odd integers. Therefore,
g(QXm + 1) = 6(1/\/ Xm)
B. Proof of Lemma 4

We compute the result for E[H;,,]. The same argument
may be used to find E[H],,]. To compute E[H; ], we con-
sider the case where the holder is within one hop of the
requester, and the case where the holder is farther than one
hop away. We have

ElHim| = E[Him||Lu,r(i,m)] < va(n)]
X Pr(|Lg,r(i,m)| <
+E[H; m||Ly r(i,m)| >
x Pr(|Lg r(i,m)| >
Clearly, E[H;m||Lu r(i,m)] < /a(n)] = 1. Also,

since the side-length of each cell is +/a(n), it can
be shown that F] M,L||LHR(' )| > a(n)] =

O(E[|La,r(i,m)|]/v/al 1/v/a(n) Xom).

e/
Letting a(n) = Pr(|LH7R( m)| > y/a(n)), it follows that
1

7a(n)Xm — 11 a(n)) . (66)

Note that a(n) = Pr(d > /a(n)) = (1 — wa(n))Xm.
Expanding «(n) using the binomial form, and noting that

(%)’“g()g% for n > k > 1, we have

E[Hi,m] =0 <1 +

i
A Xn)” ) < ememXn (67)

Ly
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Now, as n — oo, for X,,, = w(1/a(n)), e~ (WX

and hence a(n) — 0, implying that E[H; ,,] = 1. For X,, =
O(1/a(n)), both bounds in (67), and consequently «(n), are
constant, leading to E[H; ] = ©(1). On the other hand, for
Xm = o(1/a(n)), a(n)X,, — 0, resulting in both bounds
in (67) converging to 1, as n — oco. Substituting «(n) = 1

in (60) gives E[H; ;| = @(W) Therefore, the average

number of hops can be re-written as

1
ElH; =0 max{ —,1 w.h.p. 68
[Him] < { e }) p.  (68)

C. Proof of Lemma 6

As M = o(n), then M — mg = o(n). Therefore, K’ —
K—(my — 1)@ as n — oo. Clearly, K/ = © (1), hence,
my = O(na(n)). Now, by definition, m is the smallest index
for which the number of holders is less than a~*(n). That is,
Xom, < a 1(n). Using (27), it follows that

nK'a(n) < m1 [H2a (m2 = 1) = Hza (mq — 1)]. (69)

Now, if m; > 1, attempting to decrease the index m; by one
would result in

m (),

2/3
pm1 1

1 2/3
E;n:zmlflpj/

Hence, we have
nK'a(n) > (m1—1)% [Hza (ma—1) = Haa (m1 —2)]. (70)

Hence, for m; > 1, an approximation of m; can be obtained
from:

nK'a(n )le [Hao (m2 — 1) = Haa (my — 1)]. (71)
Similarly, by the definition of mso, we know X,,,,_1 > 1
nK'> (my—1)% [HQQ( ma — 1) — Haa (m1 —1)]. (72)

Now if my < M, attempting to increase the index mso by one
would lead to

nkK' >a”

H(n).

2/3
pm/2

2/3
S Py
Thus, it follows that
2a
nK' <my’ [Hza (m2) — Haa (my —1)]. (73)
Therefore, for mo < M, mo can be computed approximately
by:

nK' <1.

nK' ~ (msy — 1) [Hm( ma—1) —HTo(ml -1 (74
For v > 3/2: Using (71), we have
2 | —1 1_2_0
na(n)K —(my—1) ~ (my—1)% [=(m 2)(1 il (75)
RER
which leads to my ~ 1 + 22=3na(n)K.
Now if my < M, following (26) we have
20 —
mo ~ ml(a(n))’% ~ 2 3nK(a(n))1*%. (76)

2
For @ = 3/2: Assuming m2 < M, and by using (74)

and (26), we have
nkK — (my; —1)a™

log mo

1
My — 1~ () 77
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nk
log mao *

This contradicts ma = O(n”), where 3 < 1. Hence my =
M + 1. Assuming m; > 1, and using (71), we have

It follows that, mqg — 1 ~

1 nKa(n)— (m; — 1) (78)
1 - log mo .
resulting in m; = 6(7{;1;2) )-

For @ < 3/2: Assuming my < M, and by using (74),
it follows that

m2—1 ’
2 LK
1-2a/3 " (79)

Clearly, this contradicts the mo < M assumption. Therefore,
= M + 1. Now using (71) we have
nKa(n) — (mq — 1)
[Hza (my — 1) = Haa (my — 1)]
nKa(n)
M1-2a/3"

3
leading to m; = © (M)

(m1 — ]_)Ta ~

(80)

M2a~!

D. Proof of Lemma 7

Since p < 1, K’ — K — as n — oo. By definition,
m is the smallest index for which the number of holders is
less than a~!(n) — f(n). Using (46), it follows that

2K'10gn<m1 [Hzo (m2 — 1) — Hae (m1 — 1)) (81)

Now, if m; > 1, attempting to decrease the index m; by one
would result in

2/3
pml 1
mo—1 2/3
2 jZmy-1P;

Hence, we have

nK'— f(n) >a"'(n) — f(n).

2K'logn > (my—1) % [Haa (my—1) — Hza (m1—2)]. (82)
For my > 1, an approximation of m; can be obtained from:

2K'1ognf:m1%a[H (m2 —1) = Hza (mq — 1)]. (83)

2a
3

Similarly, by the definition of ms2, we know X,,,_; > 0.
Using (46), it follows that

TZK/ 2a

Ty > (ma= ) [Hag (ma— 1)~ H (1 1)

If mg < M, attempting to increase the index mso by one would
lead to

(84)

pgn/zg /
__Pr: KT f(n) <0,
m 2/3
ijzml p;
It follows that
nK’ 20

Therefore, for mo < M, mo can be computed approximately
by:

TZK/ 2a
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For o > 3/2: By using (83), we have

(mi=1), s [ = 1)

which leads to m; — 1 ~ @.
og ma

Now if my < M, following (45) we have

n

mo = © (m) & (logn)'~ 2=

(88)
For oo = 3/2: using (83), we have
-1
m1—1~210gn<K—M>. (89)
2logn
which leads to m; — 1 =~ ﬁ;%g. Now, if my = M + 1,
then m; = ©O(1). Otherwise, if ma < M, combining
this result with (45), we have m; = ©O(1), and mgo =
O (n/(f(n)logn)).

For v < 3/2: using (82) we have

2logn(K — L=b)
<

20 21
(my—1)% < 1—2a/3 - 0)
my
Using straightforward calculations, it follows that
22 _ 2Klogn
my

If me = M + 1 then clearly, the RHS converges to zero.
Therefore, m; — 1 as n grows. Otherwise, if my < M,
by using (86) we have

mg —1 n(K — (;nié;b)) _ n
Ty R 1o B TS L

By plugging in this result in (91), the RHS converges to zero,
as previously. Thus, m; — 1 as n grows.
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