Jointly Optimal Routing and Caching
for Arbitrary Network Topologies

Stratis Ioannidis
Northeastern University
Electrical and Computer Engineering
360 Huntington Avenue, 409DA
Boston, MA, USA
ioannidis@ece.neu.edu

ABSTRACT

We study a problem of fundamental importance to ICNs, namely,
minimizing routing costs by jointly optimizing caching and routing
decisions over an arbitrary network topology. We consider both
source routing and hop-by-hop routing settings. The respective
offline problems are NP-hard. Nevertheless, we show that there
exist polynomial time approximation algorithms producing solu-
tions within a constant approximation from the optimal. We also
produce distributed, adaptive algorithms with the same approxima-
tion guarantees. We simulate our adaptive algorithms over a broad
array of different topologies. Our algorithms reduce routing costs
by several orders of magnitude compared to prior art, including
algorithms optimizing caching under fixed routing.

CCS CONCEPTS

» Networks — Network performance analysis;

KEYWORDS

Caching, forwarding, routing, distributed optimization

ACM Reference format:

Stratis Ioannidis and Edmund Yeh. 2017. Jointly Optimal Routing and Caching
for Arbitrary Network Topologies. In Proceedings of ICN ’17, Berlin, Germany,
September 26-28, 2017, 11 pages.

DOI: 10.1145/3125719.3125730

1 INTRODUCTION

Optimally placing resources in a network and routing requests
toward them is a problem as old as the Internet itself. It is of para-
mount importance in information centric networks (ICNs) [28, 50],
but also naturally arises in a variety of networking applications
such as web-cache design [12, 33, 51], wireless/femtocell networks
[37, 39, 45], and peer-to-peer networks [14, 35], to name a few. Mo-
tivated by this problem, we study a caching network, i.e., a network
of nodes augmented with additional storage capabilities. In such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN °17, Berlin, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5122-5/17/09...$15.00

DOI: 10.1145/3125719.3125730

71

Edmund Yeh
Northeastern University
Electrical and Computer Engineering
360 Huntington Avenue, 409DA
Boston, MA, USA
eyeh@ece.neu.edu

a network, some nodes act as designated content servers, perma-
nently storing content and serving as “caches of last resort”. Other
nodes generate requests for content that are forwarded towards
these designated servers. If, however, an intermediate node in the
path towards a server stores the requested content, the request is
satisfied early: i.e., the request ceases to be forwarded, and a content
copy is sent over the reverse path towards the request’s source.

This abstract setting naturally captures ICNs. Designated servers
correspond to traditional web servers permanently storing content,
while nodes generating requests correspond to customer-facing
gateways. Intermediate, cache-enabled nodes correspond to storage-
augmented routers in the Internet’s backbone: such routers forward
requests but, departing from traditional network-layer protocols,
immediately serve requests for content they store. An extensive
body of research, both theoretical [8, 12, 22, 23, 26, 36, 41, 42] and
experimental [12, 28, 33, 35, 43, 51], has focused on modeling and
analyzing networks of caches in which routing is fixed, and requests
follow predetermined paths. For example, shortest paths to the
nearest designated server are often used. Given routes to be fol-
lowed, and the demand for items, the above works aim to model
and analyze (theoretically or empirically) the behavior of different
caching algorithms deployed over intermediate nodes.

It is not a priori clear whether fixed routing and, more specifi-
cally, routing towards the nearest server is the appropriate design
choice for such networks. This is of special interest in the context
of ICNs, where delegating routing decisions to another protocol
amounts to an “incremental” deployment. For example, in such a
deployment, requests can be forwarded towards the closest desig-
nated web servers over paths determined according to, e.g., existing
routing protocols such as OSPF or BGP [31]. Subsequent caching
decisions by intermediate routers affect only where-within a given
path-requests are satisfied. An alternative is to jointly optimize both
routing and caching decisions simultaneously. Doing so however
poses a significant challenge, precisely because this joint optimiza-
tion is inherently combinatorial. Indeed, jointly optimizing routing
and caching decisions with the objective of, e.g., minimizing rout-
ing costs, is an NP-hard problem, and constructing a distributed
approximation algorithm is far from trivial [9, 21, 26, 45].

This state of affairs gives rise to the following questions. First, is
it possible to design distributed, adaptive, and tractable algorithms
Jjointly optimizing both routing and caching decisions over arbitrary
cache network topologies, with provable performance guarantees?
Identifying such algorithms is important precisely due to the com-
binatorial nature of the problem at hand. Second, presuming such
algorithms exist, do they yield significant performance improvements

ICN ’17, September 26-28, 2017, Berlin, Germany

over fixed routing protocols? Answering this question in the affirma-
tive may justify the potential increase in protocol complexity due
joint optimization. It can also inform future ICN design, indicating
whether full optimization is preferable, or whether an incremental
approach in which routing and caching are separate suffices.

Our goal is to provide rigorous, comprehensive answers to these
two questions. We make the following contributions:

e We show, by constructing a counterexample, that fixed rout-
ing (and, in particular, routing towards the nearest server)
can be arbitrarily suboptimal compared to jointly optimizing
caching and routing decisions. Intuitively, joint optimiza-
tion affects routing costs drastically because exploiting path
diversity increases caching opportunities.

e We propose a formal mathematical framework for joint
routing and caching optimization. We consider both source
routing and hop-by-hop routing strategies, the two predomi-
nant classes of routing protocols over the Internet [31].

o We study the offline version of the joint routing and caching
optimization problem, which is NP-hard, and construct a
polynomial-time 1 — 1/e approximation algorithm.

e We provide a distributed, adaptive algorithm that converges
to joint routing and caching strategies that are, globally,
within a 1 — 1/e approximation ratio from the optimal.

e We evaluate our distributed algorithm over 9 synthetic and
3 real-life network topologies, and show that it significantly
outperforms the state of the art: it reduces routing costs by a
factor between 10 and 1000, for a broad array of competitors,
including both fixed and dynamic routing protocols.

The remainder of this paper is organized as follows. We review
related work in Section 2, and present our mathematical model of
a caching network in Section 3. Our main results are presented in
Section 4. A numerical evaluation of our algorithms over several
topologies is presented in Section 5, and we conclude in Section 6.

2 RELATED WORK

There are several adaptive, distributed approaches determining
how to populate caches under fixed routing. A simple, elegant, and
ubiquitous algorithm is path replication [14], sometimes also re-
ferred to as “leave-copy-everywhere” (LCE) [33]: once a request
for an item reaches a cache, every downstream node receiving the
response caches the item. Several variants of this principle exist. In
“leave-copy-down” (LCD), a copy is placed only in the node immedi-
ately preceding the cache storing the requested item [32, 33], while
“move-copy-down” (MCD) also removes the present upstream copy.
Probabilistic variants have also been proposed [40]. To evict items,
traditional eviction policies like Least Recently Used (LRU), Least
Frequently Used (LFU), First In First Out (FIFO), and Random Re-
placement (RR) are typically used. Several works [33, 40, 43, 44, 48]
have experimentally studied the performance of these protocols and
variants over a broad array of topologies. Despite the advantages of
simplicity and elegance inherent in path replication, when targeting
an optimization objective such as, e.g., minimizing total routing
costs, path replication combined with all of the above eviction and
replication policies is known to be arbitrarily suboptimal [26].

78

Stratis loannidis and Edmund Yeh

There is a vast literature on the performance of eviction policies
like LRU, FIFO, LFU, etc., on a single cache, and the topic is classic
[2, 16, 20, 24, 30]. Nevertheless, the study of networks of caches still
poses significant challenges. A significant breakthrough in this area
has been the so-called Che approximation [12, 23], which postulates
that the hit rate of an LRU cache can be well approximated under
the assumption that items stay in the cache for a constant time. This
approximation is quite accurate in practice [23], and its success
motivated extensive research in so-called time-to-live (TTL) caches.
A series of recent works have focused on identifying how to set
TTLs to (a) approximate the behavior of known eviction policies, (b)
describe hit-rates in closed-form formulas [8, 12, 17, 22, 36]. Despite
these advances, none of the above works address issues of routing
cost minimization over multiple hops, which is our goal.

In their seminal paper [14] introducing path replication, Cohen
and Shenker also introduced the abstract problem of finding a con-
tent placement that minimizes routing costs. The authors show
that path replication combined with a constant rate of evictions
leads to an allocation that is optimal, in equilibrium, when nodes
are visited through uniform sampling. Unfortunately, this optimal-
ity breaks down when uniform sampling is replaced by routing
over arbitrary topologies [26]. Several papers have studied com-
plexity and optimization issues of cost minimization as an offline
caching problem under restricted topologies [4-6, 9, 21, 45]. With
the exception of [45], these works model the network as a bipartite
graph: nodes generating requests connect directly to caches, and
demands are satisfied a single hop, and do not readily generalize
to arbitrary topologies. In general, the pipage rounding technique
of Ageev and Sviridenko [3] (see also [10, 47]) yields again a con-
stant approximation algorithm in the bipartite setting, while ap-
proximation algorithms are also known for several variants of this
problem [5, 6, 9, 21]. Excluding [9], all these works focus only on
centralized solutions of the offline caching problem; none considers
jointly optimizing caching and routing decisions.

In earlier work [26], we consider a setting in which routes are
fixed, and only caching decisions are optimized in an adaptive, dis-
tributed fashion. We extend [26] to incorporate routing decisions,
both through source and hop-by-hop routing. We show that a vari-
ant of pipage rounding [3] can be used to construct a poly-time
approximation algorithm, that also lends itself to a distributed, adap-
tive implementation. Crucially, our evaluations in Section 5 show
that jointly optimizing caching and routing significantly improves
performance compared to fixed routing, reducing the routing costs
by as much as three orders of magnitude compared to [26].

Several recent works study caching and routing jointly, in more
restrictive settings than the ones we consider here. The benefit of
routing towards nearest replicas, rather than towards nearest des-
ignated servers, has been observed empirically [11, 13, 19]. Deghan
et al. [18], Abedini and Shakkotai [1], and Xie et al. [49] all study
joint routing and content placement schemes in a bipartite, single-
hop setting. In all three cases, minimizing the single-hop routing
cost reduces to solving a linear program; Naveen et al. [37] ex-
tend this to other, non-linear (but still convex) objectives of the hit
rate, still under single-hop, bipartite routing constraints. None of
these approaches generalize to a multi-hop setting, which leads to
non-convex formulations (see Section 3.6); addressing this lack of

Jointly Optimal Routing and Caching

convexity is one of our technical contributions. Closer to our work,
a multi-hop, multi-path setting is formally analyzed by Carofiglio
et al. [11] under the assumption that requests by different users
follow non-overlapping paths. The authors show that under appro-
priate conditions on request arrival rates, this assumption leads to
a convex optimization problem. Our approach addresses the lack
of convexity in its full generality, for arbitrary topologies, request
arrival rates, and overlapping paths.

The problem we study is also related to more general placement
problems, including the allocation of virtual machines (VMs) to
hosts in cloud computing [7, 25, 34, 46]-see also [29], that jointly
optimizes placement and routing in this context. This is a harder
problem: heterogeneity of host resources and VM requirements
leads to multiple knapsack-like constraints (one for each resource)
per host. Our storage constraints are simpler; as a result, in con-
trast to [7, 25, 29, 34, 46], we can provide poly-time, distributed
algorithms with provable approximation guarantees.

3 MODEL

We begin by presenting our formal model, extending [26] to ac-
count for both caching and routing decisions. Our analysis applies
to two routing variants: (a) source routing and (b) hop-by-hop rout-
ing. In both cases, we study two types of strategies: deterministic
and randomized. For example, in source routing, requests for an
item originating from the same source may be forwarded over sev-
eral possible paths, given as input. In deterministic source routing,
only one is selected and used for all subsequent requests with this
origin. In contrast, a randomized strategy samples a new path to
follow independently with each new request. We also use similar
deterministic and randomized analogues both for caching strategies
as well as for hop-by-hop routing strategies.

Randomized strategies subsume deterministic ones, and are ar-
guably more flexible and general. This begs the question: why
study both? There are three reasons. First, optimizing deterministic
strategies naturally relates to submodular maximization subject to
matroid constraints, allowing us to leverage related combinatorial
optimization techniques. Second, the online, distributed algorithms
we propose to construct randomized strategies rely on the solution
to the offline, deterministic problem. Finally, and most importantly:
deterministic strategies turn out to be equivalent to randomized
strategies! As we show in Thm. 4.4, the smallest routing cost at-
tained by randomized strategies is exactly the same as the one
attained by deterministic strategies.

3.1 Network Model and Content Requests

Consider a network represented as a directed, symmetric! graph
G(V,E). Content items (e.g., files, or file chunks) of equal size are to
be distributed across network nodes. Each node is associated with
a cache that can store a finite number of items. We denote by C
the set of possible content items, i.e., the catalog, and by ¢, € N
the cache capacity at node v € V: exactly ¢, content items can
be stored in v. The network serves content requests routed over
the graph G. A request (i, s) is determined by (a) the item i € C
requested, and (b) the source s € V of the request. We denote
by R C C x V the set of all requests. Requests of different types

1A directed graph is symmetric when (i, j) € E implies that (j, i) € E.

79

ICN 17, September 26-28, 2017, Berlin, Germany

Common Notation
Network graph, with nodes V and edges E
Item catalog
[Cache capacity at node v € V

Wyo Weight of edge (u, v) € E
R Set of requests (i, s), with i € C and source s € V
A, s) Arrival rate of requests (i, s) € R
Si Set of designated servers of i € C
Xovi Variable indicating whether v € V storesi € C
Evi Marginal probability that v stores i
X Global caching strategy of x,,;s, in {0, 1}1VIXICI
= Expectation of caching strategy matrix X
T Duration of a timeslot in online setting
Wyo weight/cost of edge (u, v)
supp(-) Support of a probability distribution
conv(-) Convex hull of a set
Source Routing

Pi,s) Set of paths request (i, s) € R can follow
Psg Total number of paths
P A simple path of G
kp(v) The position of node v € p in path p.
i, s).p Variable indicating whether (i, s) € R is forwarded over p € P(; 5)
Pl.s).p Marginal probability that s routes request for i over p
r Routing strategy of r(;, 5 ps, in {0, 1 }Z(ivs)ER .9,
P Expectation of routing strategy vector r
Dsr Feasible strategies (r, X) of MAXCG-S
RNS Route to nearest server
RNR Route to nearest replica

Hop-by-Hop Routing
G DAG with sinks in S;
E® Edges in DAG G
G(bs) Subgraph of e including only nodes reachable from s
7)(';’5) Set of paths in G'>*) from s to u.
Py Total number of paths
r,(fi), Variable indicating whether u forwards a request for i to v
pg) Marginal probability that u forwards a request for i to v
r Routing strategy of r,““,s, in {0, 1}2ieC |E(l)‘.
P Expectation of routing strategy vector r
Dhy Feasible strategies (r, X) of MaxCG-HH

Table 1: Notation Summary

(i, s) € R arrive according to independent Poisson processes with
arrival rates A; ¢y > 0, (i,s) € R.

For each item i € C there is a fixed set of designated server nodes
S; C V, that always store i. A node v € S; permanently stores i
in excess memory outside its cache. Thus, the placement of items to
designated servers is fixed and outside the network’s design.

A request (i, s) is routed over a path in G towards a designated
server. However, forwarding terminates upon reaching any inter-
mediate cache that stores i. At that point, a response carrying i is
sent over the reverse path, i.e., from the node where the cache hit
occurred, back to source node s. Both caching and routing decisions
are network design parameters, which we define formally below.

3.2 Caching Strategies

We study two types or caches: deterministic and randomized.
Deterministic caches. For each node v € V, we define v’s caching
strategy as a vector x, € {0, 1}|C‘, where x,,; € {0,1}, fori € C, is
the binary variable indicating whether v stores content item i. As
v can store no more than c,, items, we have that:

(1)

We define the global caching strategy as the matrix X = [xyi]yev,icc €

Yiec Xvi < ¢, forallv e V.

{0, 1}VIXICI whose rows comprise the caching strategies of each
node.

ICN ’17, September 26-28, 2017, Berlin, Germany

> 000

L s saass

u u

oo 0 0 o
D— 0 ¢

Figure 1: Source Routing vs. Hop-by-Hop routing. In source
routing, shown left, source node u on the bottom left can
choose among 5 possible paths to route a request to one of
the designated servers storing i (s1,s2). In hop-by-hop rout-
ing, each intermediate node in the network selects the next
hop among one of its neighbors in a DAG, whose sinks are
the designated servers.

Randomized caches. In the case of randomized caches, the caching
strategies x, v € V, are random variables. We denote by:

&vi = Plxyi = 1] = E[xy,:] € [0,1], fori e C, (2)

the marginal probability that node v caches item i, and by E =
[Evilvev,iec = EIX] € [0, 1]|V|X‘C|, the corresponding expecta-
tion of the global caching strategy.

3.3 Source Routing Strategies

Recall that requests are routed towards designated server nodes. In
source routing, for every request (i, s) € C X V, there exists a P; ;)
of paths that the request can follow towards a designated server
in S;. A source node s can forward a request among any of these
paths, but we assume each response follows the same path as its
corresponding request. Formally, a path p of length |p| = K is a
sequence {p1, p2, . . ., px } of nodes py € V such that (pg, pr+1) € E,
for every k € {1,...,|p| — 1}. We make the following natural
assumptions on the set of paths #;). For every p € $(; ;): (a) p
starts at s, i.e., p1 = s; (b) p is simple, i.e., it contains no loops; (c)
the last node in p is a designated server for item i, i.e., if [p| = K,
pk € Si; and (d) no other node in p is a designated server for i,
ie,if |p| =K, py ¢ Si,fork =1,...,K — 1. Given a path p and a
v € p, denote by kj(v) is the position of v in p; i.e., ky(v) equals
tok € {1,...,|p|} such that pp = v. As in the case of caches, we
consider both deterministic and randomized routing strategies.
Deterministic Routing. Given sets 7(;), (i,s) € R, the routing
strategy of a source s € V w.r.t. request (i,s) € R is a vector
ri,s) € 10, 1}1P69], where T(i,s),p € {01} is a binary variable
indicating whether s selected path p € #; ;). These satisfy:

®)
indicating that exactly one path is selected. Let Psg =
2(i,s)eR 1P, s)| be the total number of paths. We refer to the vector
r= [r(i,s),p](i,s)eR,peP(Ls) € {0,1}7, as the global routing strategy.
Randomized Routing. In the case of randomized routing, vari-
ables r(; 5), (i, s) € R are random. We randomize routing by allow-
ing requests to be routed over a random path in ;), selected
independently of all past requests (at s or elsewhere). We denote by

P(i,s).p = P[r(i,s),p =1]= E[r(i,s),p]’ forpe P(i,s)’ (4)
the probability that path p is selected by s, and by p =
[Pi.s).pli.s)er per,.,, = Elrl € [0, 1]¥ the expectation of the
global routing strategy r.

2pePiy Mis).p = 1. forall (i,s) € R.

80

Stratis loannidis and Edmund Yeh

Remark. We make no a priori assumptions on Psg, the total number
of paths used during source routing; moreover, we allow paths to
overlap. The complexity of our offline algorithm, and the rate of
convergence of our distributed, adaptive algorithm depend on Psg.
In practice, if the number of possible paths is, e.g., exponential in
|V], it makes sense to restrict each #; ;) to a small subset of possible
paths, or to use hop-by-hop routing instead, which, as discussed
below, restricts the maximum number of paths considered.

3.4 Hop-by-Hop Routing Strategies

Under hop-by-hop routing, each node along the path makes an
individual decision on where to route a request message. When
a request for item i arrives at an intermediate node v € V, node
v determines how to forward the request to one of its neighbors.
The decision depends on i but not on the request’s source. This
limits the paths a request may follow, making hop-by-hop routing
less expressive than source routing. On the other hand, reducing
the space of routing strategies reduces complexity. In adaptive
algorithms, it also speeds up convergence, as routing decisions
w.r.t. i are “learned” across requests by different sources.

To ensure loop-freedom, we must assume that forwarding deci-
sions are restricted to a subset of possible neighbors in G. For each
i € C, we denote by GOV, ED) a graph that has the following
properties: (a) G) is a subgraph of G, i.e., E) C E; (b) G is a
directed acyclic graph (DAG); and (c) a node v in G¥) is a sink if and
only if it is a designated server for i, i.e., v € S;. Note that, given
G and S;, G can be constructed in polynomial time using, e.g.,
the Bellman-Ford algorithm [15]. Indeed, requiring that v forwards
requests for i € C only towards neighbors with a smaller distance
to a designated server in S; results in such a DAG. A distance-
vector protocol [31] can form this DAG in a distributed fashion. We
assume that every node v € V can forward a request for item i only
to a neighbor in G, Then, the above properties of G ensure both
loop freedom and successful termination.

Deterministic Routing. For any node s € V, let G(-%) be the in-
duced subgraph of G which results from removing any nodes
in G not reachable from s. For any u in G(9), let Pl) be

(i,s)
the set of all paths in G from s to u, and denote by Py =

(i.syec Suev IPE)| We denote by rif), € {0, 1}, for (u,v) € B0,
i € C, the decision variable indicating whether u forwards a request
for i to v. The global routing strategy is r = [rﬁig]iec’(u’v)eEm €
{0, 1}21'50 |EU)‘, and satisfies

©)

2, 0)eED r,(jz), =1, forallveV,ieC.

Note that, in contrast to source routing strategies, that have length
Psgr, hop-by-hop routing strategies have length at most |C||E|.
Randomized Routing. As in the case of source routing, we also
consider randomized hop-by-hop routing strategies, whereby each
request is forwarded independently from previous routing decisions
to one of the possible neighbors. We again denote by

=10 ec.woerd = BNl u.o)er®

i . (i)
= [PIri =] e opeo € 10110 127,

Jointly Optimal Routing and Caching

the vector of corresponding (marginal) probabilities of routing
decisions at each node v.

3.5 Offline vs. Online Setting

To reason about the caching networks we have proposed, we con-
sider two settings: the offline and online setting. In the offline setting,
all problem inputs (demands, network topology, cache capacities,
etc.) are known apriori to, e.g., a system designer. At time ¢ = 0, the
system designer selects (a) a caching strategy X, and (b) a routing
strategy r. Both can be either deterministic or randomized, but both
are also static: they do not change as time progresses. In the case
of caching, cache contents (selected deterministically or at random
at t = 0) remain static for all ¢+ > 0. In the case of routing deci-
sions, the distribution over paths (in source routing) or neighbors
(in hop-by-hop routing) remains static, but each request is routed
independently of previous requests.

In the online setting, no a priori knowledge of the demand, i.e.,
the rates of requests A(i,s)) (i,s) € R is assumed. Both caching and
routing strategies change through time via a distributed, adaptive
algorithm. Time is slotted, and each slot has duration T > 0. During
a timeslot, both caching and and routing strategies remain fixed.
Nodes have access only to local information: they are aware of their
graph neighborhood and state information they maintain locally.
They exchange messages, including both normal request and re-
sponse traffic, as well as (possibly) control messages, and may adapt
their state. At the conclusion of a time slot, each node changes its
caching and routing strategies. Changes made by v depend only on
its neighborhood, its current local state, as well as on messages that
node v received in the previous timeslot. Both caching and routing
strategies during a timeslot may be deterministic or randomized.
Implementing a caching strategy at the conclusion of a timeslot in-
volves changing cache contents, which incurs additional overhead;
if T is large, however, this cost is negligible compared to the cost of
transferring items during a timeslot.

3.6 Optimal Routing and Caching

We are now ready to formally pose the problem of jointly opti-
mizing caching and routing. We pose here the offline problem, in
which problem inputs are given, and static caching and routing
strategies are determined (jointly) at time ¢ = 0. Nonetheless, we
will devise distributed, adaptive algorithms that do not a priori
know the demand, but still converge to (probabilistic) strategies
that are within a constant approximation of the (offline) optimal.
To capture costs (e.g., latency, money, etc.), we associate a weight
wyo > 0 with each edge (u,v) € E, representing the cost of trans-
ferring an item across this edge. We assume that costs are solely
due to response messages that carry an item, while request for-
warding costs are negligible. We do not assume that wy;, = wyy.
We describe the cost minimization objectives under source and
hop-by-hop routing below.
Source Routing. The cost for serving a request (i,s) € R under
source routing is:

) lpl-1 k
CglR,S)(r,X): Z i s).p prk+1pkﬁ(1—xpk,,-). 7)
PEPUs) k=1 k'=1

81

ICN 17, September 26-28, 2017, Berlin, Germany

Intuitively, (7) states that CglR’ %) includes the cost of an edge (P41, Pk)
in the path p if (a) p is selected by the routing strategy, and (b) no
cache preceding this edge in p stores i.

In the deterministic setting, we seek a global caching and routing
strategy (r, X) minimizing the aggregate expected cost, defined as:

Csr(r,X) = X1 5)er A, 5)C” (1. X), ®)
with Cg;’s) given by (7). That is, we wish to solve:
MiINnCosT-SR
Minimize: Csg(r, X) (9a)
subj. to: (r,X) € Dsgr (9b)

where Dsg ¢ RP® x RIVIXIC ig the set of (r, X) satisfying the
routing, capacity, and integrality constraints, i.e.:

2ieC Xvi = Co, forallv e V, (10a)
Zpep(iys) Tisup =1 for all (i, s) € R, (10b)
xpi € {0, 1}, forallv e V,i € C, and (10c¢)
T(i,s),p € 10,1}, forallp € P;), (i,s) € R. (10d)

This problem is NP-hard, even in the case where routing is fixed:
see Shanmugam et al. [45] for a reduction from the 2-Disjoint Set
Cover Problem.

Hop-By-Hop Routing. Similarly to (7), under hop-by-hop routing,
the cost of serving (i, s) can be written as:

CISES)(r’X) = Z(u,v)eG(Ls) Woy r1(1iz);(1 = Xui)

Lpepy l_[,‘fflz_ll r1(7i1<)'Pk'+1(l — Xppsi)- oy
We wish to solve:
MiNCosT-HH
Minimize: Cyn(r, X) (12a)
subj. to: (r,X) € Dyy (12b)

where Cin(r, X) = X(i, s)eR)L(,-’S)Cf_lf_’l S)(r, X) is the expected routing

cost, and Dy is the set of (r, X) € RZ:ec IED] rIVIXICI satisfying
the constraints:

2ieC Xvi = Co, forallv eV, (13a)
S ouoyerd ruy =1 forallveViiec, (13b)
xvi € {0, 1}, forallv e V,i e C, and (13¢)
ryz), € {0,1}, for all (u,v) € ED jeC. (13d)

Randomization. The above routing cost minimization problems
can also be stated in the context of randomized caching and routing
strategies. For example, in the case of source routing, assuming (a)
independent caching strategies across nodes selected at time t = 0,
with marginal probabilities given by =, and (b) independent routing
strategies at each source, with marginals given by p (also indepen-
dent from caching strategies), all terms in Csg contain products of
independent random variables; this implies that:

E[Csr(r, X)] = Csr[E[r]. E[X]] = Csr(p, E),

where the expectation is taken over the randomness of both caching
and routing strategies. The expected routing cost thus depends on
the routing and caching strategies only through the expectations p

(14)

ICN ’17, September 26-28, 2017, Berlin, Germany

and E. As a result, under randomized routing and caching strategies,
MiNCosT-SR becomes (see [27] for the derivation):

CSR(P, E)
(p, E) € conv(Dsg)

(15a)
(15b)

Minimize:
subj. to:

where conv(Dsg) is the convex hull of Dsg; this is precisely the
set defined by (10) with integrality constraints (10c), (10d) relaxed.
The objective function Csg is not convex and the relaxed problem
(15) is therefore not a convex optimization problem. This is in stark
contrast to single-hop settings, that often can naturally be expressed
as linear programs [1, 18, 37].

A similar derivation can be done for hop-by-hop routing. Assum-
ing again independent caches and independent routing strategies, it
can be shown that optimizing over randomized hop-by-hop strate-

gies is equivalent to
Minimize: Cyy(p, E)
(p,E) € conv(Dp),

(16a)

subj. to: (16b)

where conv(Dyy) the convex hull of Dyy. This, again, is a non-
convex optimization problem.

3.7 Fixed Routing

When the global routing strategy r is fixed, (9) reduces to
Csr(r, X)

X satisfies (10a) and (10c)

(17a)
(17b)

Minimize:
subj. to:
MiNnCosT-HH can be similarly restricted to caching only. We studied
this restricted optimization in earlier work [26]. In particular, under
given global routing strategy r, we cast (17) as a maximization
problem as follows. Let
Ipl-1

Wk s1Pk
k=1

C(’; = CSR(r’ 0) = Z /1(1',3) Z r(i’s)vp (18)

(i,s)eR pEP(Ls)

be the cost when all caches are empty (i.e., X is the zero matrix 0).
Note that this is a constant that does not depend on X. Consider
the following maximization problem:

Maximize: F{(X) = Cj — Csr(r, X)
X satisfies (10a) and (10c)

(19a)

subj. to: (19b)

This problem is equivalent to (17), in that a feasible solution to (19)
is optimal if and only if it also optimal for (17). The objective F{ (X)),
referred to as the caching gain in [26], is monotone, non-negative,
and submodular, while the set of constraints on X is a set of matroid
constraints. As a result, for any r, there exist standard approaches
for constructing a polynomial time approximation algorithm solv-
ing the corresponding maximization problem (19) withina 1 —1/e
factor from its optimal solution [26, 45]. In addition, we show [26]
that an approximation algorithm based on a technique known as
pipage rounding [3] can be converted into a distributed, adaptive
version with the same approximation ratio.

3.8 Greedy Routing Strategies

In the case of source routing, we identify two “greedy” deter-
ministic routing strategies, that are often used in practice, and

82

Stratis loannidis and Edmund Yeh

play a role in our analysis. We say that a global routing strat-
egy r is a route-to-nearest-server (RNS) strategy if all paths it se-
lects are least-cost paths to designated servers, irrespectively of
cache contents. Formally, for all (i,s) € R, is).p = 1 for some

* : lpl-1
p* € argmlnpep(i’s) Zk:l

other p € P(; 5) s.t. p # p*. Similarly, given a caching strategy
X, we say that a global routing strategy r is route-to-nearest-replica
(RNR) strategy if, for all (i,s) € R, r(;)+ = 1 for some p* €

. lpl-1 k . _
argmin ,ep Zk:l ka+1’Pka’:1(l_ka’i)’ while i,s).p = 0

for all other p € #(;) s.t. p # p”. In contrast to RNS strategies, RNR
strategies depend on the caching strategy X. Note that RNS and
RNR strategies can be defined similarly in the context of hop-by-hop
routing.

Wppo1.p» While r(; 5y , = 0 for all

4 MAIN RESULTS

We present our main results in this section, extending the analysis in
[26] to the joint optimization of both caching and routing decisions.
We provide an analysis of both source and hop-by-hop routing;
proofs of theorems are omitted, and are provided in our technical
report [27].

4.1 Routing to Nearest Server Is Suboptimal

A simple approach, followed by most works that optimize caching
separately from routing, is to always route requests to the nearest
designated server storing an item (i.e., use an RNS strategy). It is
therefore interesting to ask how this simple heuristic performs com-
pared to a solution that attempts to solve (9) by jointly optimizing
caching and routing. It is easy to see that RNS and, more gener-
ally, routing that ignores caching strategies, can lead to arbitrarily
suboptimal solutions:

THEOREM 4.1. For any M > 0, there exists a caching network for
which the route-to-nearest-server strategy r’ satisfies

Csp:g(V’,X)/(min Csr(r, X) = O(M). (20)

r,X)eDs

min
X:(r',X)eDsr

In other words, routing to the nearest server can be arbitrarily
suboptimal, incurring a cost arbitrarily larger than the cost of the
optimal jointly optimized routing and caching policy. The network
that exhibits this behavior is shown in Fig. 2, and a proof of the
theorem can be found in [27]. In short, a source node s generates
requests for items 1 and 2 that are permanently stored on designated
server t. There are two alternative paths towards ¢, each passing
through an intermediate node with cache capacity 1 (i.e., able to
store only one item). Under shortest path routing, requests for both
items are forwarded over the path of length M + 1 towards ¢; fixing
routes this way leads to a cost of M + 1 for at least one of the items,
irrespectively of which item is cached in the intermediate node.
On the other hand, if routing and caching decisions are jointly
optimized, requests for the two items can be forwarded to different
paths, allowing both items to be cached, and reducing the cost for
both requests to at most 2.

This example illustrates that joint optimization of caching and
routing decisions benefits the system by increasing path diversity. In
turn, increasing path diversity can increase caching opportunities,
thereby leading to reductions in caching costs. This is consistent
with our experimental results in Section 5.

Jointly Optimal Routing and Caching

ok

M e
AN
c=1/ i c=1
\
\ /
2\ 1

Figure 2: A simple example illustrating the benefits of path
diversity. A source node s generates requests for items 1 and
2, permanently stored on designated server t. Intermediate
nodes on the are two alternative paths towards ¢t have capac-
ity 1. Numbers above edges indicate costs.

4.2 Offline Source Routing,.

Expected Caching Gain. Before presenting a distributed, adaptive
joint routing and caching algorithm, we first turn our attention to
the offline problem MINCoST. As in the solution by [26] described
in Section 3.7, we cast this first as a maximization problem. Let Cy
be the constant:

lpl-1
=1

Coh = Z(i,5)eR Aiss) LpePis sy Spn (21)

Then, given a pair of strategies (r, X), we define the expected caching
gain Fsr(r, X) as follows:

Fep(r, X) = Cos — Csr(r, X),

Wpri1pr -

(22)

where Csp is the aggregate routing cost given by (8). Note that C(S)R
upper bounds the expected routing cost, so that Fsg(r, X) > 0. We
seek to solve the following problem, equivalent to MINCoST:

MaxCG-S
Maximize: Fsp(r, X) (23a)
subj. to: (r,X) € Dsgr (23b)

The selection of the constant CgR is not arbitrary: this is precisely the
value that allows us to approximate Fsg via the concave relaxation
Lsg below-c.f. Eq. (26).

Approximation Algorithm. Its equivalence to MINCosT implies
that MAXCG-S is also NP-hard. Nevertheless, we show that there
exists a polynomial time approximation algorithm for MaxCG-S:

THEOREM 4.2. There exists an algorithm that terminates within a
number of steps that is polynomial in |V|, |C|, and Psr, and produces
a strategy (r’', X") € Dsg such that

FSR(F/,X/) >(1-1/e) max(y, x)e Dy Fsr(r, X).

In Sec. 5 we show that, in spite of attaining approximation guar-
antees w.r.t. Fsg rather than Csg, the resulting approximation algo-
rithm has excellent performance in practice in terms of minimizing
routing costs. In particular, we can reduce routing costs by a factor
as high as 10% compared to fixed routing policies, including [26].

We briefly describe the algorithm below, leaving details to [27].
Consider the concave function Lsg : conv(Dsg) — Ry, defined as:

(29)

— -1
Lsp(p, E) = 2(i,5)eR A, s) LpePi. ZLp:Il Worsipic’ (25)

min {1, 1=pgis).p+ 211:/:1 ng'i}’

83

ICN 17, September 26-28, 2017, Berlin, Germany

Then, Lsg closely approximates Fsg [27]:
(1-1/e)Lsr(p, E) < Fsr(p, E) < Ler(p, E),

for all (p, Z) € conv(DsR). Our constant-approximation algorithm
for MAXCG-S comprises two steps. First, obtain

(26)

(p*,E") € arg max (p,E)econv(Dsr) Lsr(p, E). (27)

As LgR is a concave function and conv(Dsgr) is convex, the above
maximization is a convex optimization problem. In fact, it can
be reduced to a linear program, so it can be solved in polyno-
mial time [38]. Second, round the (possibly fractional) solution
(p*,E*) € conv(Dsr) to an integral solution (r,X) € Dsg such
that Fsp(r,X) = Fsr(p*, 2%). This rounding is deterministic and
also takes place in polynomial time.

The rounding technique used in our proof of Thm. 4.2 has the
following immediate implication:

COROLLARY 4.3. There exists an optimal solution (r*, X*) to MaxCG-
S (and hence, to MINCOST-SR) in which r* is an route-to-nearest-
replica (RNR) strategy w.r.t. X*.

Although, in light of Theorem 4.1, Corollary 4.3 suggests an
advantage of RNR over RNS strategies, we note it does not give any
intuition on how to construct an optimal RNR solution.
Equivalence of Deterministic and Randomized Strategies. We
can also show the following result regarding randomized strategies.
For y1 a probability distribution over Dsg, let E;[Csr(r, X)] be the
expected routing cost under p. Then, the following equivalence
theorem holds:

THEOREM 4.4. The deterministic and randomized versions of MINCOST-
SR attain the same optimal routing cost, i.e.:
Csr(r, X) = min Csr(p, E)
(p,E)econv(Dsr)

Eyu[Csr(r, X)]

min
(r,X)eDsg . (28)
= min
p:supp(p)=Dsr
The first equality of the theorem implies that, surprisingly, there
is no inherent advantage in randomization: although randomized
strategies constitute a superset of deterministic strategies, the opti-
mal attainable routing cost (or, equivalently, caching gain) is the
same for both classes. The second equality implies that assuming in-
dependent caching and routing strategies is as powerful as sampling
routing and caching strategies from an arbitrary joint distribution.
Thm. 4.4 generalizes Thm. 5 of [26], which pertains to optimizing
caching alone.

4.3 Online Source Routing

The algorithm in Thm. 4.2 is offline and centralized: it assumes full
knowledge of the input, including demands and arrival rates, which
are rarely a priori available in practice. To that end, we turn our
attention to solving MAXCG-S in the online setting, in the absence
of any a priori knowledge of the demand, and seek an algorithm
that is both adaptive and distributed.

As described in 3.5, in the online setting, time is partitioned into
slots of equal length T > 0. Caching and routing strategies are
randomized as described in Sec. 3: at the beginning of a timeslot,
nodes place a random set of contents in their cache, independently
of each other; upon arrival, a new request is routed over a random
path, selected independently of (a) all past routes followed, and

ICN ’17, September 26-28, 2017, Berlin, Germany

Algorithm 1 PROJECTED GRADIENT ASCENT

1: Execute the following for each v € V and each (i, s) € R:
2: Pick arbitrary state (p©, 2©) € conv(Dsg).

3: for each timeslot k > 1 do

4: for eachv € V do

5: Compute the sliding average fi,”
6: Sample a feasible x(vk) from a distribution with marginals é,ﬂk).
7: Place items xg,k) in cache.
8: Collect measurements and, at the end of the timeslot, compute estimate o f
g, Lsp(pk, 2R)),
9: Adapt to new state §§)k+1) in the direction of the gradient with step-size
Yk projecting back to conv(Dsg).
10: end for
11: for each (i, s) € R do
12: Compute the sliding average p((f)s>
13: Whenever a new request arrives, sample p € $; g) from distribution ﬁ((lk)g)
14: Collect measurements and, at the end of the timeslot, compute estimate of
6p(iV$)LSR(pk? g0,
15: Adapt to new state p(].(ﬂ) in the direction of the gradient with step-size
(i,s)
Yk projecting back to conv(Dsg).
16: end for
17: end for

(b) of caching decisions. Our next theorem shows that, in steady
state, the expected caching gain of the jointly constructed routing
and caching strategies is within a constant approximation of the
optimal solution to the offline problem MaxCG-S:

THEOREM 4.5. There exists a distributed, adaptive algorithm un-
der which the randomized strategies sampled during the k-th slot
(r®, x0)) e Deg satisfy

Jim E[Fsr(r® X")] > 1-1 /e)(max (29)

r, €Dy

Fsr(r, X).
R

Note that, despite the fact that the algorithm has no prior knowl-
edge of the demands, the guarantee provided is w.r.t. an optimal
solution of the offline problem (23). Moreover, in light of Thm. 4.4,
our adaptive algorithm is 1 — %—competitive w.r.t. optimal offline
randomized strategies as well. Our algorithm naturally generalizes
[26]: when the path sets P; ;) are singletons, and routing is fixed,
our algorithm coincides with the cache-only optimization algorithm
in [26]. Interestingly, the algorithm casts routing and caching in the
same control plane: the same quantities are communicated through
control messages to adapt both the caching and routing strategies.
Algorithm Overview. We give a brief overview of the distributed,
adaptive algorithm that attains the guarantees of Theorem 4.5 below.
The algorithm is summarized in Algorithm 1. Recall that time is
partitioned into slots of equal length T > 0. Caching and routing
strategies are randomized as described in Sec. 3: at the beginning
of a timeslot, nodes place a random set of contents in their cache,
independently of each other; upon arrival, a new request is routed
over a random path, selected independently of (a) all past routes
followed, and (b) of caching decisions.

More specifically, nodes in the network maintain the following
state information. Each node v € G maintains locally a vector &, €
[0, 1]l determining its randomized caching strategy. Moreover,
for each request (i, s) € R, source node s maintains a vector p(; 5) €

[0, 1]1 %9l determining its randomized routing strategy. Together,
these variables represent the global state of the network, denoted by

84

Stratis loannidis and Edmund Yeh

(p, E) € conv(Dsr). When the timeslot ends, each node performs
the following four tasks:

(1) Subgradient Estimation. Each node uses measurements
collected during the duration of a timeslot to construct es-
timates of the gradient of Lsg w.r.t. its own local state vari-
ables. As Lsp is not everywhere differentiable, an estimate
of a subgradient of Lsg is computed instead.

State Adaptation. Nodes adapt their local caching and rout-
ing state variables &, v € V, and py;), (i,5) € R, pushing
them towards a direction that increases Lsg, as determined
by the estimated subgradients.

State Smoothening. Nodes compute “smoothened” ver-
sions fv, v €V, and Pi,s)s (i, s) € R, interpolated between
present and past states. This is needed on account of the
non-differentiability of Lsg.

Randomized Caching and Routing. After smoothening,
each node v reshuffles the contents of its cache using the
smoothened caching marginals &,, producing a random
placement (i.e., caching strategy x) to be used through-
out the next slot. Moreover, each node s € V routes requests
(i,s) € R received during next timeslot over random paths
(i-e., routing strategies r(; ;)) sampled in an i.i.d. fashion from
the smoothened marginals j;).

Together, these steps ensure that, in steady state, the expected
caching gain of the jointly constructed routing and caching strate-
gies is within a constant approximation of the optimal solution to
the offline problem MAXCG-S. We formally describe the constituent
subgradient estimation, state adaptation, smoothening, and random
sampling steps in detail in [27]. We also characterize the overhead
of the protocol, specifying control messages, and proposing a mod-
ification that reduces this overhead.

Convergence Guarantees. The proof of the convergence of the
algorithm relies on the following key lemma:

LEMMA 4.6. Let (p(k),é(k)) € 9D, be the smoothened state
variables at the k-th slot of Algorithm 1, and (p*,Z%) €
Z)econv(Dsp) LsR(P, E). Then, for vy the step-size used in
projected gradient ascent,

argmax ,

D? + M2 3K y2

* o = = (=|kj2] ¢

ek = BlLsr(p", E") — Ler(p™), W) < - Lkj2] ¢
22€:Lk/2J Ye

where D = /2|V| max, ey ¢y + 2|R|, and

1
M= WlVlA\/(IVIICIPZ HIRIPY +).

In particular, & = O(1/Vk) fory = 1/Vk.

Lemma 4.6 establishes that Algorithm 1 converges arbitrarily
close to an optimizer of Lsg. As, by (26), this is a close approximation
of Fsg, the limit points of the algorithm are with the 1—1/e from the
optimal. Crucially, Lemma 4.6 can be used to determine the rate of
convergence of the algorithm, by determining the number of steps
required for ¢; to reach a desired threshold §. Moreover, through
quantity M, Lemma 4.6 establishes a tradeoff w.r.t. T: increasing T
decreases the error in the estimated subgradient, thereby reducing
the total number of steps till convergence, but also increases the
time taken by each step.

Jointly Optimal Routing and Caching

Graph VI 1E[_ICI IRl 101 ¢o [Pusgl CF
cycle 30 60 10 100 10 2 2 20.17
grid-2d 100 360 300 1K 20 3 30 0.228
hypercube 128 896 300 1K 20 3 30 0.028
expander 100 716 300 1K 20 3 30 0.112
erdos-renyi 100 1042 300 1K 20 3 30 0.047
regular 100 300 300 1K 20 3 30 0.762
watts-strogatz 100 400 300 1K 20 3 2 35.08
small-world 100 491 300 1K 20 3 30 0.029
barabasi-albert | 100 768 300 1K 20 3 30 0.187
geant 22 66 10 100 10 2 10 1.28
abilene 9 26 10 90 9 2 10 0.911
dtelekom 68 546 300 1K 20 3 30 0.025

Table 2: Graph Topologies and Experiment Parameters.

4.4 Hop-by-Hop Routing

A similar analysis to the one we outlined above applies to hop-by-
hop routing, both in the offline and online setting. We state again
the main theorems here; proofs can again be found in [27].
Offline Setting. As in the case of source routing, we define the
constant: CSH = 2, 5)eR A, s) Z(u’v)ec(i,s) wvulP(‘;,s)L Using this
constant, we define the caching gain maximization problem to be:

MaxCG-HH
Maximize: Fyy(r, X) (30a)
subj. to: (r,X) € Dy (30b)

where Fuy(r,X) = CSH = X(i,s)eR A(i,S)Cﬁ_’ls)(r, X) is the expected
caching gain. This is again an NP-hard problem, equivalent to (12).
We can again construct a constant approximation algorithm for
MaxCG-HH:

THEOREM 4.7. There exists an algorithm that terminates within a
number of steps that is polynomial in |V|, |C|, and Py, and produces
a strategy (r', X’) € Dy such that

Fu(r’, X"y > (1-1/e) max Fyu(r,X).

r,X)€Dhy

(31)

Online Setting. Finally, as in the case of source routing, we can
provide a distributed, adaptive algorithm for hop-by-hop routing
as well.

THEOREM 4.8. There exists a distributed, adaptive algorithm un-
der which the randomized strategies sampled during the k-th slot
(r%), X)) € Dy satisfy

klim E[FHH(r(k),X(k))] >(1-1/e) max (32)

Fun(r, X).
(I‘,X €PDsg

We note again that the distributed, adaptive algorithm attains
an expected caching gain within a constant approximation from
the offline optimal.

5 EVALUATION

We simulate our distributed, adaptive algorithm for MAXCG-S over
a broad variety of both synthetic and real networks. We compare
its performance to traditional caching policies, combined with both
static and dynamic multi-path routing.

Experiment Setup. We consider the topologies in Table 2. For
each graph G(V, E) in Table 2, we generate a catalog of size |C|, and
assign to each node v € V a cache of capacity c,,. For every item
i € C, we designate a node selected u.a.r. from V as a designated
server for this item; the item is stored outside the designate server’s
cache. We assign a weight to each edge in E selected u.a.r. from

85

ICN 17, September 26-28, 2017, Berlin, Germany

the interval [1, 100]. We also select a random set of Q nodes as
the possible request sources, and generate a set of requests R C
C x V by sampling exactly |R| from the set C X Q, uniformly at
random. For each such request (i, s) € R, we select the request rate
A(i,s) according to a Zipf distribution with parameter 1.2; these
are normalized so that average request rate over all |Q| sources is
1 request per time unit. For each request (i,s) € R, we generate
|P(i,s)| paths from the source s € V to the designated server of item
i € C.In all cases, this path set includes the shortest path to the
designated server. We consider only paths with stretch at most 4.0;
that is, the maximum cost of a path in P(; ;) is at most 4 times the
cost of the shortest path to the designated source. The values of
ICI. IR |Ql, cv, and P; ;) for each experiment are given in Table 2.
Online Caching and Routing Algorithms. We compare the per-
formance of our joint caching and routing projected gradient ascent
algorithm (PGA) to several competitors. In terms of caching, we
consider four traditional eviction policies for comparison: Least-
Recently-Used (LRU), Least-Frequently-Used (LFU), First-In-First-
Out (FIFO), and Random Replacement (RR). We combine these
policies with path-replication [14, 28]: once a request for an item
reaches a cache that stores the item, every cache in the reverse path
on the way to the query source stores the item, evicting stale items
using one of the above eviction policies. We combine the above
caching policies with three different routing policies. In route-to-
nearest-server (-S), only the shortest path to the nearest designated
server is used to route the message. In uniform routing (-U), the
source s routes each request (i, s) on a path selected uniformly at
random among all paths in #; ;). We combine each of these (static)
routing strategies with each of the above caching strategies use.
For instance, LRU-U indicates LRU evictions combined with uniform
routing. Note that PGA-S, i.e., our algorithm restricted to RNS rout-
ing, is exactly the single-path routing algorithm proposed in [26].
To move beyond static routing policies for LRU, LFU, FIFO, and RR,
we also combine the above traditional caching strategies with an
adaptive routing strategy, akin to our algorithm, with estimates
of the expected routing cost at each path used to adapt routing
strategies. During a slot, each source node s maintains an average
of the routing cost incurred when routing a request over each path.
At the end of the slot, the source decreases the probability p(; s) ,
that it will follow the path p by an amount proportional to the
average, and projects the new strategy to the simplex. For fixed
caching strategies, this dynamic routing scheme converges to a
route-to-nearest-replica (RNS) routing, which we expect by Cor. 4.3
to have good performance. We denote this routing scheme with the
extension -D. Note that all algorithms we simulate are online.

Experiments and Measurements. Each experiment consists of a
simulation of the caching and routing policy, over a specific topol-
ogy, for a total of 5000 time units. To leverage PASTA, we collect
measurements during the duration of the execution at exponentially
distributed intervals with mean 1.0 time unit. At each measurement
epoch, we extract the current cache contents in the network and
construct X € {0, 1}VIXICI, Similarly, we extract the current rout-
ing strategies p(; 5) for all requests (i,s) € R, and construct the
global routing strategy p € [0, 1]7®. Then, we evaluate the expected
routing cost Csg(p, X). We report the average Csg of these values
across measurements collected after a warmup phase, during 1000

ICN ’17, September 26-28, 2017, Berlin, Germany

Stratis loannidis and Edmund Yeh

EZ3 LRU-S [LFU-S S FIFO-S NN RR-S = PGA-S B3 LRU-U E=l LFU-U 3 FIFO-U B2 RR-U =1 PGA-U = LRU-D ZZ2 LFU-D &= FIFO-D RR-D ¥ PGA
10° e A
=~ H H
x - : H
‘d’ E- 3 =-"H
10! = - I o e
= = =4 =0fgs "
s E =i = K e
= = = = d
grid hypercube expander erdos-renyi regular
10°F
<<
25 -
o 10? 2 : : o
P~ : -
& Hi A
S b e | A M BN =5
" % 4
o 2
10° & ! i;
Bl A N A
watts-strogatz small-world barabasi-albert abilene dtelekom

Figure 3: Ratio of expected routing cost Csg to routing cost

Graph LRU-S PGA-S LRU-U PGA-U LRU PGA
cycle 0.47 865.29 0.47 436.14 6.62 148.20
grid-2d 0.08 657.84 0.08 0.08 0.08 0.08
hypercube 0.21 924.75 0.21 0.21 0.21 0.21
expander 0.38 794.27 0.38 0.38 0.38 0.38
erdos-renyi 3.08 870.84 0.25 0.25 0.25 0.25
regular 1.50 1183.97 0.05 8.52 0.05 11.49
watts-strogatz 11.88 158.39 7.80 54.90 19.22 37.05
small-world 0.30 955.48 0.30 0.30 0.30 0.30
barabasi-albert 1.28 1126.24 1.28 6.86 1.28 7.58
geant 0.09 1312.96 1.85 12.71 0.09 14.41
abilene 3.44 802.66 3.44 23.08 5.75 14.36
dtelekom 0.30 927.24 0.30 0.30 0.30 0.30

Table 3: Convergence times, in simulation time units, for
LRU and PGA caching strategies with different routing vari-
ants. Total simulation time is 5K time units. In almost all
cases, convergence to steady state occurs much faster than
our warm-up period (1K time units).

and 5000 time units of the simulation; that is, if ¢; are the measure-
ment times, then Csg = ttot+tw 2ti:€[b tror] CsR(P(E0), X (21)).
Performance w.r.t Routing Costs. The relative performance of
the different strategies to our algorithm is shown in Figure 3. With
the exception of cycle and watts-strogatz, where paths are
scarce, we see several common trends across topologies. First, sim-
ply moving from RNS routing to uniform, multi-path routing, re-
duces the routing cost by a factor of 10. Even without optimizing
routing or caching, simply increasing path options increases the
available caching capacity. For all caching policies, optimizing rout-
ing through the dynamic routing policy (denoted by -D), reduces
routing costs by another factor of 10. Finally, jointly optimizing
routing and caching leads to a reduction by an additional factor
between 2 and 10 times. In several cases, PGA outperforms RNS
routing (including [26]) by 3 orders of magnitude.

Convergence. In Table 3, we show the convergence time for the
different variants of LRU and PGA-convergence times for other
algorithms can be found in our techreport [27]. We define the con-
vergence time to be the time at which the time-average caching

CPGA
SR
For each topology, each of the three groups of bars corresponds to a routing strategy, namely, RNS/shortest path routing (-S),
uniform routing (-U), and dynamic routing (-D). The algorithm presented in [26] is PGA-S, while our algorithm (PGA), with ratio

1.0, is shown last for reference purposes; values of of C_‘SP(R;A are given in Table 2.

86

under our PGA policy, for different topologies and strategies.

gain reaches 95% of the expected caching gain attained at steady
state. LRU converges faster than PGA, though it converges to a
sub-optimal stationary distribution. Interestingly, both -U and adap-
tive routing reduce convergence times for PGA, in some cases (like
grid-2d and dtelekom) to the order of magnitude of LRU: this
is because path diversification reduces contention: it assigns con-
tents to non-overlapping caches, which are populated quickly with
distinct contents.

6 CONCLUSIONS

We have constructed joint caching and routing schemes with op-
timality guarantees for arbitrary network topologies. Identifying
schemes that lead to improved approximation guarantees, espe-
cially on the routing cost directly rather than on the caching gain,
is an important open question. Equally important is to incorporate
queuing and congestion. In particular, accounting for queueing
delays and identifying delay-minimizing strategies is open even
under fixed routing. Such an analysis can also potentially be used
to understand how different caching and routing schemes affect
both delay optimality and throughput optimality.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from National Sci-
ence Foundation grants CNS-1423250, NeTS-1718355, and a Cisco
Systems research grant.

REFERENCES

[1] Navid Abedini and Srinivas Shakkottai. 2014. Content caching and scheduling
in wireless networks with elastic and inelastic traffic. IEEE/ACM Transactions on
Networking 22, 3 (2014), 864-874.

[2] Dimitris Achlioptas, Marek Chrobak, and John Noga. 2000. Competitive analysis
of randomized paging algorithms. Theoretical Computer Science 234, 1 (2000),
203-218.

[3] Alexander A Ageev and Maxim I Sviridenko. 2004. Pipage rounding: A new
method of constructing algorithms with proven performance guarantee. Journal
of Combinatorial Optimization 8, 3 (2004), 307-328.

Jointly Optimal Routing and Caching

[12]

[13

[14

[15]

[16

(17

(18]

[19]

[20

[21]

[22]
[23]

[24

[25]

[26

[27]
[28]

[29]

[30]

[31]

)
&

[33]

[34

David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and
Kadangode K Ramakrishnan. 2010. Optimal content placement for a large-scale
VoD system. In CoNext.

Ivan Baev, Rajmohan Rajaraman, and Chaitanya Swamy. 2008. Approximation
algorithms for data placement problems. SIAM J. Comput. 38, 4 (2008), 1411-1429.
Yair Bartal, Amos Fiat, and Yuval Rabani. 1995. Competitive algorithms for
distributed data management. . Comput. System Sci. 51, 3 (1995), 341-358.
Daniel M Batista, Nelson LS Da Fonseca, and Flavio K Miyazawa. 2007. A set
of schedulers for grid networks. In Proceedings of the 2007 ACM symposium on
Applied computing. ACM, 209-213.

Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014. Exact
analysis of TTL cache networks. IFIP Performance (2014).

Sem Borst, Varun Gupta, and Anwar Walid. 2010. Distributed caching algorithms
for content distribution networks. In INFOCOM.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. 2007. Max-
imizing a submodular set function subject to a matroid constraint. In Integer
programming and combinatorial optimization. Springer, 182-196.

Giovanna Carofiglio, Léonce Mekinda, and Luca Muscariello. 2016. Joint for-
warding and caching with latency awareness in information-centric networking.
Computer Networks 110 (2016), 133-153.

Hao Che, Ye Tung, and Zhijun Wang. 2002. Hierarchical web caching systems:
Modeling, design and experimental results. Selected Areas in Communications 20,
7 (2002), 1305-1314.

Raffaele Chiocchetti, Dario Rossi, Giuseppe Rossini, Giovanna Carofiglio, and
Diego Perino. 2012. Exploit the known or explore the unknown?: Hamlet-
like doubts in icn. In Proceedings of the second edition of the ICN workshop on
Information-centric networking. ACM, 7-12.

Edith Cohen and Scott Shenker. 2002. Replication strategies in unstructured
peer-to-peer networks. In SSIGCOMM.

T Cormen, C Leiserson, R Rivest, and C Stein. 2009. Introduction to Algorithms.
MIT Press.

Asit Dan and Don Towsley. 1990. An approximate analysis of the LRU and FIFO
buffer replacement schemes. In SIGMETRICS, Vol. 18. ACM.

Mostafa Dehghan, Laurent Massoulie, Don Towsley, Daniel Menasche, and YC
Tay. 2015. A utility optimization approach to network cache design. In INFOCOM.
Mostafa Dehghan, Anand Seetharam, Bo Jiang, Ting He, Theodoros Salonidis,
Jim Kurose, Don Towsley, and Ramesh Sitaraman. 2014. On the complexity of
optimal routing and content caching in heterogeneous networks. In INFOCOM.
Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu
Koponen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. 2013. Less pain,
most of the gain: Incrementally deployable icn. In ACM SIGCOMM Computer
Communication Review, Vol. 43. ACM, 147-158.

Philippe Flajolet, Daniele Gardy, and Loys Thimonier. 1992. Birthday para-
dox, coupon collectors, caching algorithms and self-organizing search. Discrete
Applied Mathematics 39, 3 (1992), 207-229.

Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. 2006.
Tight approximation algorithms for maximum general assignment problems. In
SODA.

N Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2012.
Analysis of TTL-based cache networks. In VALUETOOLS.

Christine Fricker, Philippe Robert, and James Roberts. 2012. A versatile and
accurate approximation for LRU cache performance. In ITC.

Erol Gelenbe. 1973. A unified approach to the evaluation of a class of replacement
algorithms. IEEE Trans. Comput. 100, 6 (1973), 611-618.

Brian Guenter, Navendu Jain, and Charles Williams. 2011. Managing cost, per-
formance, and reliability tradeoffs for energy-aware server provisioning. In
INFOCOM, 2011 Proceedings IEEE. IEEE, 1332-1340.

Stratis Ioannidis and Edmund Yeh. 2016. Adaptive Caching Networks with
Optimality Guarantees. In ACM SIGMETRICS.

Stratis Ioannidis and Edmund Yeh. 2017. Jointly Optimal Routing and Caching
for Arbitrary Network Topologies. (2017). http://arxiv.org/abs/1708.05999.

Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. 2009. Networking named content. In CoNEXT.
Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang. 2012.
Joint VM placement and routing for data center traffic engineering. In INFOCOM,
2012 Proceedings IEEE. IEEE, 2876-2880.

WF King. 1971. Analysis of paging algorithms. Technical Report. Thomas J.
Watson IBM Research Center.

James F Kurose and Keith W Ross. 2007. Computer networking: a top-down
approach. Addison Wesley.

Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis. 2006. The LCD inter-
connection of LRU caches and its analysis. Performance Evaluation 63, 7 (2006),
609-634.

Nikolaos Laoutaris, Sofia Syntila, and Ioannis Stavrakakis. 2004. Meta algorithms
for hierarchical web caches. In ICPCC.

Waubin Li, Johan Tordsson, and Erik Elmroth. 2011. Virtual machine placement
for predictable and time-constrained peak loads. In International Workshop on

87

(35]

[36

(37]

[38

[40

[41

[42

[43]

(44

S
&

[46]

[47

[48

[50

[51]

ICN 17, September 26-28, 2017, Berlin, Germany

Grid Economics and Business Models. Springer, 120~134.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. 2002. Search and
replication in unstructured peer-to-peer networks. In ICS.

Valentina Martina, Michele Garetto, and Emilio Leonardi. 2014. A unified ap-
proach to the performance analysis of caching systems. In INFOCOM.

KP Naveen, Laurent Massoulié, Emmanuel Baccelli, Aline Carneiro Viana, and
Don Towsley. 2015. On the Interaction between Content Caching and Request
Assignment in Cellular Cache Networks. In ATC.

Christos H Papadimitriou and Kenneth Steiglitz. 1982. Combinatorial optimiza-
tion: algorithms and complexity. Courier Corporation.

Konstantinos Poularakis, George losifidis, and Leandros Tassiulas. 2013. Ap-
proximation caching and routing algorithms for massive mobile data delivery.
In GLOBECOM.

Toannis Psaras, Wei Koong Chai, and George Pavlou. 2012. Probabilistic in-
network caching for information-centric networks. In Proceedings of the second
edition of the ICN workshop on Information-centric networking. ACM, 55-60.
Elisha J Rosensweig, Jim Kurose, and Don Towsley. 2010. Approximate models
for general cache networks. In INFOCOM, 2010 Proceedings IEEE. IEEE, 1-9.
Elisha J Rosensweig, Daniel S Menasche, and Jim Kurose. 2013. On the steady-
state of cache networks. In INFOCOM.

Dario Rossi and Giuseppe Rossini. 2011. Caching performance of content cen-
tric networks under multi-path routing (and more). Technical Report. Telecom
ParisTech.

Giuseppe Rossini and Dario Rossi. 2014. Coupling caching and forwarding:
Benefits, analysis, and implementation. In Proceedings of the 1st international
conference on Information-centric networking. ACM, 127-136.

Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F
Molisch, and Giuseppe Caire. 2013. Femtocaching: Wireless content delivery
through distributed caching helpers. Transactions on Information Theory 59, 12
(2013), 8402-8413.

Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. 2010. Cost-
optimal scheduling in hybrid iaas clouds for deadline constrained workloads.
In Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on. IEEE,
228-235.

Jan Vondrak. 2008. Optimal approximation for the submodular welfare problem
in the value oracle model. In STOC.

Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig, and Gaogang Xie. 2013.
Optimal cache allocation for content-centric networking. In 2013 21st IEEE Inter-
national Conference on Network Protocols (ICNP). IEEE, 1-10.

Haiyong Xie, Guangyu Shi, and Pengwei Wang. 2012. TECC: Towards collab-
orative in-network caching guided by traffic engineering. In INFOCOM, 2012
Proceedings IEEE. IEEE, 2546-2550.

Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong.
2014. VIP: A framework for joint dynamic forwarding and caching in named
data networks. In ICN.

Yuanyuan Zhou, Zhifeng Chen, and Kai Li. 2004. Second-level buffer cache
management. Parallel and Distributed Systems 15, 6 (2004), 505-519.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Network Model and Content Requests
	3.2 Caching Strategies
	3.3 Source Routing Strategies
	3.4 Hop-by-Hop Routing Strategies
	3.5 Offline vs. Online Setting
	3.6 Optimal Routing and Caching
	3.7 Fixed Routing
	3.8 Greedy Routing Strategies

	4 Main Results
	4.1 Routing to Nearest Server Is Suboptimal
	4.2 Offline Source Routing.
	4.3 Online Source Routing
	4.4 Hop-by-Hop Routing

	5 Evaluation
	6 Conclusions
	References

