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Abstract

The weak interactive compression conjecture asserts that any two-party

communication protocol with communication complexity C and information

complexity I can be compressed to a protocol with communication complexity

poly(I)polylog(C).

We describe a communication problem that is a candidate for refuting that

conjecture. Specifically, while we show that the problem can be solved by

a protocol with communication complexity C and information complexity I =

polylog(C), the problem seems to be hard for protocols with communication complexity

poly(I)polylog(C) = polylog(C).

1 Introduction

The classical data compression theorem shows that every message can be compressed to its

information content, measured using the entropy function. Can one prove a similar result in

the interactive setting, where two parties engage in an interactive communication protocol?

That is, can the transcript of every communication protocol be compressed to (roughly) its

“information content” [BBCR10]?

The information content of an interactive protocol is typically measured using the

information complexity measure [Kas85, OR95, CSWY01, BYJKS04, BBCR10]. In this

paper we will mainly be interested in internal information complexity (a.k.a, information

complexity and information cost). A related notion of external information complexity is
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also used in the literature. Roughly speaking, let π be a two-party communication protocol,

and let µ be a distribution over the private inputs for the communicating parties. The

(internal) information complexity of π over µ, denoted ICµ(π), is the number of information

bits that the players learn about each other’s input, when running the protocol π with inputs

distributed according to µ (see Definition 2).

Using the notion of information complexity, the above interactive compression problem

can be formulated as asking whether for every protocol π and distribution µ with information

complexity I = ICµ(π), there exists a “compressed” protocol π′ that produces (almost) the

same output as π and has CCavg
µ (π′) close to I. Here, CCavg

µ (π′) stands for the distributional

communication complexity of π′ over µ, which is the expected number of bits communicated

by π′ when the inputs to the players are sampled according to µ (see Definition 1).

Several recent results show how to compress communication protocols in several cases,

starting from [BBCR10] (see Section 2.3). However, none of these results gives a way of

compressing a general protocol to a protocol that only communicates I bits, or even poly(I)

bits. We note that in some special cases, compression to poly(I)polylog(C) or even poly(I)

are known to be possible (see Section 2.3).

The difficulty in compressing general protocols was recently explained by the authors,

by proving exponential gaps between the distributional communication complexity and

information complexity of some carefully designed communication tasks. In [GKR14,

GKR16b], Ganor, Kol and Raz showed an explicit example of a boolean function with

(internal) information complexity ≤ I and distributional communication complexity ≥ 2Ω(I)

(see [RS15] for a simplified proof). In [GKR16a], Ganor, Kol and Raz analyzed a

communication task proposed by Braverman [Bra13], with (external) information complexity

≤ I and distributional communication complexity ≥ 2Ω(I).

One drawback of these results is that the protocols that achieve information complexity I

have communication complexity double or even triple exponential in I. Therefore, while these

results rule out “strong” compression to poly(I), they leave open the possibility of “weak”

compression to poly(I)polylog(C).

Open Problem 1. Is it true that for every computational task f , distribution µ over the

inputs and every communication protocol π that solves f with error o(1), there exists a

protocol π′ that solves f with error o(1), such that

CCavg
µ (π′) ≤ poly(ICµ(π)) · polylog(CCavg

µ (π))?

A general compression to poly(I)polylog(C) as suggested by Problem 1, if exists, still

yields very efficient compressed protocols that potentially constitute huge savings. Due

to the equivalence between interactive compression and direct sum [BBCR10, BR11],

such a compression would also imply a near optimal direct sum result for distributional

communication complexity, thus resolve this long standing open problem in the affirmative.

Specifically, it will show that the distributional communication complexity of solving m

independent copies of a communication task is almost as high as m times the distributional
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communication complexity of solving a single copy. Moreover, such an interactive

compression result gives rise to a new paradigm for protocol design, where one is only

mindful to the information revealed by the protocol, and then uses a compression scheme as

a “black-box” to lower the required communication complexity.

In this work we suggest a candidate communication problem, called the excited tree game,

for ruling out the poly(I)polylog(C) compression scheme suggested by Problem 1. The game

is defined in Section 3, and is parameterized by a parameter c ∈ N. In Section 5, we

construct a protocol for solving the game with information complexity I = polylog(c) and

communication complexity C = O(c). In Section 4, we try to justify the conjecture that

there is no protocol for solving the game with distributional communication complexity at

most poly(I)polylog(C) = polylog(c). Observe that this conjecture, if true, shows that the

low information protocol we construct for the excited tree game cannot be compressed to

poly(I)polylog(C), thus answers Problem 1 in the negative. Proving this conjecture in full,

however, seems very challenging.

2 Preliminaries

2.1 Communication Complexity

In the two player distributional model of communication complexity, each player gets an

input, where the inputs are sampled from a joint distribution that is known to both players.

The players’ goal is to solve a computational task that depends on both inputs. The players

can use both common and private random strings and are allowed to err with some small

probability. The players communicate in rounds, where in each round one of the players

sends a message to the other player. The communication complexity of a protocol is the

total number of bits communicated by the two players. The communication complexity of a

computational task is the minimum number of bits that the players need to communicate in

order to solve the task with high probability, where the minimum is taken over all protocols.

For excellent surveys on communication complexity see [KN97, LS09]. In this work it would

be more convenient to work with average communication complexity.

Definition 1 (Average Communication Complexity). The average communication

complexity of a protocol π over random inputs (X, Y ) that are drawn according to a joint

distribution µ, denoted CCavg
µ (π), is the expected number of communication bits transmitted

during the protocol, where the expectation is over (X, Y ) and over the randomness. The ǫ

average communication complexity of a computational task f with respect to a distribution

µ is defined as

CCavg
µ (f, ǫ) = inf

π
CCavg

µ (π),

where the infimum ranges over all protocols π that solve f with error at most ǫ on inputs

that are sampled according to µ.
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2.2 Information Complexity

Roughly speaking, the (internal) information complexity of a protocol is the number of

information bits that the players learn about each other’s input, when running the protocol.

The information complexity of a communication task is the minimum number of information

bits that the players learn about each other’s input when solving the task, where the

minimum is taken over all protocols. Formally,

Definition 2 (Information Cost). The information cost of a protocol π over random

inputs (X, Y ) that are drawn according to a joint distribution µ, is defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

where Π is a random variable which is the transcript of the protocol π with respect to µ. That

is, Π is the concatenation of all the messages exchanged during the execution of π. The ǫ

information cost of a computational task f with respect to a distribution µ is defined as

ICµ(f, ǫ) = inf
π
ICµ(π),

where the infimum ranges over all protocols π that solve f with error at most ǫ on inputs

that are sampled according to µ.

2.3 Known Compression Protocols

Several beautiful recent results show how to compress communication protocols in several

cases. Barak, Braverman, Chen and Rao showed how to compress any protocol

with information complexity I and communication complexity C, to a protocol with

communication complexity
√
I · C · polylog(C) [BBCR10]. They also suggest a protocol

that communicates Iext · polylog(C) bits, where Iext is the external information complexity

of the original protocol. Braverman and Rao showed how to compress any one round

(or constant number of rounds) protocol with information complexity I to a protocol

with communication complexity O(I) [BR11]. Braverman showed how to compress any

protocol with information complexity I to a protocol with communication complexity

2O(I) [Bra12] (see also [BW12, KLL+12]). Building over [BBCR10], Kol and Sherstov

showed how to compress any protocol with information complexity I to a protocol with

communication complexity I · polylog(I) in the case where the underlying distribution is a

product distribution [Kol16, She16].

3 The Excited Tree Game

The excited tree game is a communication game for two players A and B. The game is

played on a rooted, complete, binary tree T , of depth c, where c is larger than a sufficiently

large constant. Player A “owns” every non-leaf vertex in even layers and player B “owns”
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every non-leaf vertex in odd layers. For every non-leaf vertex v, the owner of v gets as an

input a distribution Pv = (pv, 1 − pv) and the other player gets as an input a distribution

Qv = (qv, 1− qv), both distributions are over the children of v. We think of every Pv as the

“correct” distribution over the two children of v. The distributions {Pv, Qv}v are chosen in

a very specific way that is described below.

A frontier in the tree is a set of vertices that contains exactly one vertex (leaf or non-leaf)

on every path from the root to a leaf. Given a vertex v and a frontier S in the tree, we say

that v is above the frontier S if on the path from the root to v there is no vertex in S. We

say that v is on the frontier if v is in S. If v is neither above the frontier nor on it, then it

is below the frontier.

We denote by x, y the inputs to the players A,B respectively. That is, x is the set of all

the distributions Pv or Qv that are given to player A and y is the set of all the distributions

Pv or Qv that are given to player B. We define the distribution µ on the inputs to the players

by an algorithm for sampling an input pair (x, y) (Algorithm 1 below).

Fix some k = polylog(c) such that log4(c) ≤ k. Let µ1 be the uniform distribution over

the interval [− k√
c
, k√

c
] and let µ2 be the uniform distribution over the interval [− 1

8
√
c
, 1

8
√
c
].1 In

Algorithm 1 below, we sample for every non-leaf vertex v two values x1(v), x2(v) according

to µ1, µ2 respectively. Next, when we say “set v to be non-excited”, we mean “set

pv =
1
2
+ x1(v) + x2(v) and qv =

1
2
+ x2(v)− x1(v)”. By “set v to be excited”, we mean “set

pv =
1
2
+x1(v)+x2(v) and qv =

1
2
+x1(v)−x2(v)”. Note that without communication, none

of the players can distinguish between an excited vertex and a non-excited vertex, since pv
and qv have the same distribution in both cases.

Algorithm 1 Sample (x, y) according to µ

1. For every non-leaf vertex v we sample two values x1(v), x2(v) according to µ1, µ2

respectively.

2. Let S be a frontier in the tree defined as follows: Pick every vertex to be in S,
independently, with probability α = k

c
. Then, for every path from the root to a

leaf, remove from S all vertices on that path, except for the vertex closest to the root,
if such a vertex exists. If there is no vertex in S on a path from the root to a leaf, add
that leaf to S.

3. Set every non-leaf vertex above the frontier S to be non-excited.

4. Set every non-leaf vertex on the frontier S or below it to be excited.

Given the distributions Pv for every non-leaf vertex v and the frontier S in the tree, we

1One can also consider other symmetric distributions in the range [−1, 1] with expectation 0 and variance

O(k
2

c
), O( 1

4
√
c
) respectively, as well as other values for k, and changing the interval [− 1

8
√
c
, 1

8
√
c
] to [− 1

cβ
, 1

cβ
],

for some other 0 < β < 1/2.
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define a distribution PS over the vertices in S. For every vertex w ∈ S, let v0, v1, ..., vℓ be

the vertices on the path in the tree from the root to w, where ℓ is the layer of w. That is,

v0 is the root, vℓ = w and for every 0 ≤ i < ℓ, vi+1 is a child of vi. Then, PS(w) is obtained

by sampling every child on the path to w according to the correct distribution of its parent.

That is,

PS(w) =
ℓ−1
∏

i=0

Pvi(vi+1) where Pvi(vi+1) =

{

pvi if vi+1 is the left hand child of vi

1− pvi if vi+1 is the right hand child of vi
.

The players’ mutual goal is to output the same vertex w on the frontier S, where S is the

frontier defined in Algorithm 1, such that for almost all possible outputs w, the probability

that they both output w is close to PS(w). More precisely, let x, y be the inputs to the players

A,B respectively and let µ be the distribution over the inputs. Let A(x, y), B(x, y) denote

the output values of A,B respectively. Note that A(x, y), B(x, y) are random variables that

depend on the randomness. For a communication protocol π, we say that π solves the game

with respect to µ with error ǫ if

Pr[A(x, y) = B(x, y)] ≥ 1− ǫ and E [||A(x, y)− PS||1] ≤ ǫ,

where the probability is over inputs that are sampled according to µ and over the randomness,

the expectation is over inputs that are sampled according to µ and || · ||1 is the ℓ1 norm.

Note that A(x, y) is referred to as a distribution as well as a random variable and that the

distribution PS depends on x and y.

In Section 5 we prove the following lemma.

Lemma 2. There exists a protocol that solves the excited tree game with respect to µ

with error o(1), with average communication complexity O(c) and information complexity

polylog(c).

Therefore, to answer Open Problem 1 in the negative, it is enough to answer the following

question affirmatively.

Open Problem 3. Is it true that for ǫ = o(1) the ǫ average communication complexity of

the excited tree game with respect to µ is at least (log(c))ω(1)?

4 Why Excited Tree?

At a very high level, the excited tree game can be viewed as follows. The game is played on

a rooted, complete, binary tree T , of depth c. A frontier S is chosen in T . All the vertices

above the frontier are set to be “non-excited” and the vertices below the frontier are set to

be “excited”. The player’s goal is to output a vertex on the frontier S, sampled according

to the “correct” distribution.
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Let us start with the rational behind the name excited tree game. In physics, an “excited”

state is a state with a higher energy level than the ground (“non-excited”) state. In the

excited tree game, an excited vertex is a vertex with a higher “information level” than

a non-excited vertex. For an excited vertex v the distance between the distributions Pv

and Qv is large and hence the information that the player who doesn’t own v is missing is

relatively large. For a non-excited vertex v the distance between the distributions Pv and Qv

is small and hence the information that the player who doesn’t own v is missing is relatively

small.

Since all the vertices above the frontier are non-excited, there is a relatively simple

protocol with low information complexity for the excited tree game: Starting from the root,

until reaching the frontier, at every vertex v, the player owning v samples a child of v

according to Pv and sends a bit bv to the other player, to indicate which child was sampled.

Both players continue to the child of v that is indicated by the communicated bit. Since all

the vertices above the frontier are non-excited, the information given by each bit bv is small

and hence the entire information complexity of the protocol is small. The only complication

in this protocol is that the players have to stop when they reach the frontier. We show how

to do that while keeping the information complexity of the protocol low.

To answer Open Problem 3 affirmatively, one needs to prove a lower bound of (log(c))ω(1)

on the communication complexity of the excited tree game. While we don’t have such a

proof, we note that several approaches to solve the game with communication complexity

(log(c))O(1), seem to fail.

Two properties of the excited tree game that makes it difficult (or impossible...) to solve

with low communication complexity are as follows:

1. Without communication, none of the players can distinguish between an excited vertex

and a non-excited vertex, since pv and qv have the same distribution in both cases.

Hence, without communication (or with relatively small communication) the players

don’t have a lot of information about which vertices are above the frontier and which

vertices are below the frontier.

2. For every vertex v above the frontier, the restriction of the inputs of the two players

to the subtree below v (conditioned on the event that v is above the frontier) has the

same distribution as the distribution of the excited tree game played on a smaller tree.

In fact, we could have defined the problem on an infinite, rooted, complete binary tree,

and then the distribution of the restriction to the subtree below v (conditioned on the

event that v is above the frontier) would have been exactly the same as the original

distribution. (We chose to work with a finite tree for simplicity of the presentation).

In light of these properties, let us consider a few approaches for designing protocols with

low communication complexity for solving the problem, based on known approaches for

compression protocol.

A first approach (inspired by ideas initiated in [BBCR10] and used in many subsequent

works) could be to try to simulate the above mentioned low-information protocol, by starting
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from the root and trying to sample, according to the correct distribution, vertices that are

lower and lower in the tree, until reaching the frontier. A major difficulty with such attempts

is the second property above. By the second property, even if the two players managed to

agree on a vertex v above the frontier, sampled according to the correct distribution, they

still have to solve a copy of pretty much the same problem as the one that they started with,

and hence they made no (or very little) progress. The two players only make progress if the

vertex v that they agreed on happens to be exactly on the frontier.

A second approach (inspired by ideas initiated in [BBCR10, BR11, Bra12] and used in

many subsequent works) could be to sample a leaf in the tree (or a vertex which is with

high probability below the frontier) and climb up from that vertex to the frontier. A major

difficulty with such attempts is that all the vertices below the frontier are excited, and hence

the distributions that the two players have on the leaves are very far from each other, so

it’s hard for them to agree on a leaf. They could agree on a leaf sampled according to a

pre-agreed distribution, known to both players, such as the uniform distribution, and climb

up from that leaf to the frontier. However, that would not sample a frontier vertex according

to the correct distribution. In general, the first property above (that the players don’t know

where the frontier is) makes such attempts very difficult.

A third approach that one may consider for attacking this and related problems (and

that, to the best of our knowledge, has not been used before), is to try to sample a vertex

v above the frontier (as in the first approach) and from that vertex to move down to the

closest frontier vertex u in the subtree below v. This approach is based on the fact that

there should be a frontier vertex at a distance of roughly log(α−1) = O(log(c)) below v. A

difficulty with such attempts is that it is not clear how to find the closest frontier vertex u

by a protocol with small communication complexity.

We note that turning these intuitions and ideas into a full proof for a lower bound on

the communication complexity of the excited tree game seems very challenging.

5 Information Upper Bound

In this section, we prove Lemma 2. Let (x, y) ∈ supp(µ) be an input pair for the excited

tree game and let S be the frontier defined in Algorithm 1. Let π be the following protocol

for the excited tree game, played on the input pair (x, y): Starting from the root, at every

vertex v, the player owning v samples a child of v according to Pv and sends a bit bv to the

other player, to indicate which child was sampled. Both players continue to the child of v

that is indicated by the communicated bit.

After receiving a bit bv, the receiving party, without loss of generality the second player,

sends a bit av, that supposedly indicates whether the players are above the frontier S or

not, where av = 1 stands for “below or on the frontier” and av = 0 stands for “above the

frontier”. If v is a leaf, the second player sends av = 1. Otherwise, to determine the value of

av, the second player considers the last ℓ = 4k 4
√
c vertices v1, . . . , vℓ reached by the protocol
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and owned by the first player and the corresponding bits bv1 , . . . , bvℓ that were sent by the

first player (if less than ℓ bits were sent by the first player so far, the second player sends

av = 0). For every j ∈ [ℓ], the second player compares bvj and q̃vj , where q̃vj is 1 if qvj ≥ 1
2

and 0 otherwise. The second player sends av = 1 if less than ℓ
2
of these pairs are equal, and

otherwise, he sends av = 0.

Once the bit av = 1 was sent, the players run a binary search over the last 3ℓ vertices

reached by the protocol, with the goal of finding the vertex on the frontier (if less than 3ℓ

vertices were reached by the protocol so far, the binary search is over all the vertices

reached by the protocol). In each iteration of the binary search, the players send their

input distributions corresponding to the current vertex considered by the binary search.

The probabilities are truncated so that each player sends k bits per vertex. For each such

vertex v, the players calculate |p′v − q′v|, where p′v, q
′
v are the truncated pv, qv respectively.

The binary search assumes that |p′u − q′u| ≤ 3k√
c
for all the vertices u among these 3ℓ vertices

that are above the frontier, and that |p′u − q′u| > 3k√
c
for all the vertices u among these 3ℓ

vertices that are below the frontier. Under this assumption, the players output the vertex v

which is the first vertex among these 3ℓ vertices for which |p′v − q′v| > 3k√
c
, if such a vertex

exists. (Otherwise, the players output an error message).

5.1 Bounding the Error Probability

In Claims 4 and 5 we prove that with high probability, the bit av = 1 is sent below or on the

frontier, but not too far below it. In Claim 6 we prove that if this is the case, then with high

probability, the players output the vertex on the frontier reached by the protocol. Note that

each vertex reached by the protocol is chosen according to the correct distribution. That is,

if a vertex w was reached by the protocol, then when the players reached its parent v, they

sampled w according to the distribution Pv. Therefore, Claims 4, 5 and 6 imply that the

distribution of the vertex output by the players is close to the goal distribution PS.

Claim 4. Let (x, y) ∈ supp(µ) be an input pair for the excited tree game and let S be the

frontier defined in Algorithm 1. Then, with probability at least 1 − c · 2−k/2 over the input

pair (x, y) and over the randomness, the bit av = 1 is sent when the players are below or on

the frontier S.

Proof. Let v be a non-excited vertex. First, consider the case that pv ≥ 1
2
. In this case,

Pr
[

qv <
1
2
| pv ≥ 1

2

]

= Pr [x2(v)− x1(v) < 0 | x1(v) + x2(v) ≥ 0]

= Pr [x2(v) < x1(v) | x2(v) ≥ −x1(v)]

= Pr [(x2(v) < x1(v)) ∧ (x2(v) ≥ −x1(v))] · (Pr [x2(v) ≥ −x1(v)])
−1

= 2Pr [−x1(v) ≤ x2(v) < x1(v)]

≤ 2Pr

[

− k√
c
≤ x2(v) ≤

k√
c

]

=
2k

c3/8
.

9



Therefore, with high probability, qv ≥ 1
2
and q̃v = 1. It holds that

Pr
[

bv = q̃v |
(

pv ≥ 1
2

)

∧
(

qv ≥ 1
2

)]

= Pr
[

bv = 1 |
(

pv ≥ 1
2

)

∧
(

qv ≥ 1
2

)]

= E
[

pv |
(

pv ≥ 1
2

)

∧
(

qv ≥ 1
2

)]

,

where the last equality holds since the probability is over the inputs and over the randomness.

Bounding the expectation we get that

E
[

pv |
(

pv ≥ 1
2

)

∧
(

qv ≥ 1
2

)]

= E [pv | (x2(v) ≥ −x1(v)) ∧ (x2(v) ≥ x1(v))]

= E [pv | x2(v) ≥ |x1(v)|]

=
1

2
+ E [x1(v) | x2(v) ≥ |x1(v)|] + E [x2(v) | x2(v) ≥ |x1(v)|]

≥ 1

2
− k√

c
+ E [x2(v) | x2(v) ≥ |x1(v)|]

≥ 1

2
− k√

c
+ E [x2(v) | x2(v) ≥ 0] =

1

2
+

1

2c1/8
− k√

c
.

Similarly, when pv < 1
2
, the probability that qv ≥ 1

2
is at most 2k

c3/8
. Therefore, with high

probability qv <
1
2
and

Pr
[

bv = q̃v |
(

pv <
1
2

)

∧
(

qv <
1
2

)]

= E
[

1− pv |
(

pv <
1
2

)

∧
(

qv <
1
2

)]

≥ 1

2
− k√

c
− E [x2(v) | x2(v) < −|x1(v)|]

≥ 1

2
+

1

2c1/8
− k√

c
.

Put together, we get that for a non-excited vertex v, the probability that bv = q̃v is at least
(

1− 2k

c3/8

)

·
(

1

2
+

1

2c1/8
− k√

c

)

≥ 1

2
+

1

4c1/8
.

When the players are above the frontier, all the vertices reached by the protocol are non-

excited. If a player considers ℓ non-excited vertices v1, . . . , vℓ and their corresponding bits

bv1 , . . . , bvℓ , then by Chernoff, the probability that less than ℓ
2
of the pairs bvj , q̃vj are equal

is at most e−2ℓ/16c1/4 ≤ 2−k/2. That is, for every vertex v above the frontier, the probability

that the bit av = 1 is sent is at most 2−k/2. Thus, by the union bound, the total probability

that a bit av = 1 is sent above the frontier is at most c · 2−k/2.

Claim 5. Let (x, y) ∈ supp(µ) be an input pair for the excited tree game and let S be the

frontier defined in Algorithm 1. Assume that the players are below or on the frontier. Then,

with probability at least 1−2−k/2 over the input pair (x, y) and over the randomness, a player

will send the bit av = 1 after at most 2ℓ steps.
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Proof. Let v be an excited vertex. First, consider the case that pv ≥ 1
2
. In this case,

Pr
[

qv ≥ 1
2
| pv ≥ 1

2

]

= Pr [x1(v)− x2(v) ≥ 0 | x1(v) + x2(v) ≥ 0]

= Pr [x1(v) ≥ x2(v) | x2(v) ≥ −x1(v)]

= Pr [(x1(v) ≥ x2(v)) ∧ (x2(v) ≥ −x1(v))] · (Pr [x2(v) ≥ −x1(v)])
−1

= 2Pr [−x1(v) ≤ x2(v) ≤ x1(v)]

≤ 2Pr

[

− k√
c
≤ x2(v) ≤

k√
c

]

=
2k

c3/8
.

Therefore, with high probability, qv <
1
2
and q̃v = 0. It holds that

Pr
[

bv 6= q̃v |
(

pv ≥ 1
2

)

∧
(

qv <
1
2

)]

= Pr
[

bv = 1 |
(

pv ≥ 1
2

)

∧
(

qv <
1
2

)]

= E
[

pv |
(

pv ≥ 1
2

)

∧
(

qv <
1
2

)]

,

where the last equality holds since the probability is over the inputs and over the randomness.

Bounding the expectation we get that

E
[

pv |
(

pv ≥ 1
2

)

∧
(

qv <
1
2

)]

= E [pv | (x2(v) ≥ −x1(v)) ∧ (x2(v) > x1(v))]

≥ 1

2
− k√

c
+ E [x2(v) | x2(v) ≥ |x1(v)|]

≥ 1

2
− k√

c
+ E [x2(v) | x2(v) ≥ 0] =

1

2
+

1

2c1/8
− k√

c
.

Similarly, when pv < 1
2
, the probability that qv < 1

2
is at most 2k

c3/8
. Therefore, with high

probability qv ≥ 1
2
and

Pr
[

bv 6= q̃v |
(

pv <
1
2

)

∧
(

qv ≥ 1
2

)]

= E
[

1− pv |
(

pv <
1
2

)

∧
(

qv ≥ 1
2

)]

≥ 1

2
− k√

c
− E [x2(v) | x2(v) ≤ −|x1(v)|]

≥ 1

2
+

1

2c1/8
− k√

c
.

Put together, we get that for an excited vertex v, the probability that bv 6= q̃v is at least
(

1− 2k

c3/8

)

·
(

1

2
+

1

2c1/8
− k√

c

)

≥ 1

2
+

1

4c1/8
.

If the players take 2ℓ steps after they reached an excited vertex, then the player who

should send either av = 0 or av = 1 considers ℓ excited vertices v1, . . . , vℓ and their

corresponding bits bv1 , . . . , bvℓ . By Chernoff, the probability that less than ℓ
2
of the pairs

bvj , q̃vj are not equal is at most e−2ℓ/16c1/4 ≤ 2−k/2. That is, the probability that the player

sends av = 0 is at most 2−k/2.

Claim 6. Let (x, y) ∈ supp(µ) be an input pair for the excited tree game and let S be the

frontier defined in Algorithm 1. Assume that the bit av = 1 is sent when the players are
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below or on the frontier S and not more than 2ℓ steps after the players reached a vertex on

S. Let w be the vertex on S that they reached. Then, with probability at least 1− 48k2

c1/8
over

the input pair (x, y) and over the randomness, the players output the vertex w.

Proof. Let v be a non-excited vertex. Recall that p′v, q
′
v are the truncated probabilities pv, qv

respectively. It holds that |p′v−q′v| ≤ 2|x1(v)|+2−k, which is at most 3k√
c
(with probability 1).

For an excited vertex v, it holds that |p′v − q′v| ≥ 2|x2(v)| − 2−k. The probability that

2|x2(v)| − 2−k is at most 3k√
c
is less than 4k

c3/8
. Taking a union bound over the 3ℓ vertices

considered by the binary search, we get that with probability of at least 1 − 48k2

c1/8
, for all

the excited vertices u among the 3ℓ vertices considered by the binary search, we have that

|p′u − q′u| > 3k√
c
.

Thus, with probability of at least 1− 48k2

c1/8
, we have that |p′u− q′u| ≤ 3k√

c
for all the vertices

u among the 3ℓ vertices considered by the binary search, that are above the frontier, and

|p′u−q′u| > 3k√
c
for all the vertices u among these 3ℓ vertices that are below the frontier. Under

this assumption, the binary search outputs the vertex v which is the first vertex among these

3ℓ vertices for which |p′v − q′v| > 3k√
c
. Therefore, with probability at least 1− 48k2

c1/8
, the players

output the vertex w.

5.2 Bounding the Information Cost

To upper bound the information cost of the protocol π we will use the method described in

[GKR14], that is based on the notion of divergence cost of a tree [BBCR10, BR11].

Definition 3 (Relative Entropy). Let φ1, φ2 : Ω → [0, 1] be two distributions, where Ω is

finite. The relative entropy between φ1 and φ2, denoted D(φ1‖φ2), is defined as

D(φ1‖φ2) =
∑

x∈Ω

φ1(x) log
(

φ1(x)
φ2(x)

)

.

Definition 4 (Divergence Cost [BBCR10, BR11]). Consider a binary tree T whose root

is r and distributions Pv = (pv, 1 − pv), Qv = (qv, 1 − qv) for every non-leaf vertex v in the

tree. We think of Pv and Qv as distributions over the two children of the vertex v. We define

the divergence cost of the tree T recursively, as follows. D(T ) = 0 if the tree has depth 0,

otherwise,

D(T ) = D(Pr‖Qr) + E
v∼Pr

[D(Tv)], (1)

where for every vertex v, Tv is the subtree of T whose root is v.

An equivalent definition of the divergence cost of T is obtained by following the recursion

in Equation (1) and is given by the following equation:

D(T ) =
∑

v∈V

p̃v ·D(Pv‖Qv), (2)

where V is the vertex set of T and for a vertex v ∈ V , p̃v is the probability to reach v by

following the distributions Pv, starting from the root. Formally, if v is the root of the tree T ,

12



then p̃v = 1, otherwise,

p̃v =

{

p̃u · pu if v is the left-hand child of u

p̃u · (1− pu) if v is the right-hand child of u.

We will bound the information cost of the protocol until the bit av = 1 is sent, that is,

until the players decide that they are below or on the frontier. Denote the protocol that

starts as π but ends when the bit av = 1 is sent by π′. Note that after the bit av = 1 is sent

in π, the players exchange at most O(k · log(ℓ)) bits, which adds at most O(k · log(ℓ)) bits
of information.

We denote by Tπ′ the binary tree associated with π′. That is, every vertex v of Tπ′

corresponds to a possible transcript of π′ and the two edges going out of v are labeled by 0

and 1, corresponding to the next bit to be transmitted. The vertices of the tree Tπ′ have the

following structure: Every vertex v of Tπ′ corresponds to a vertex ṽ of T , the binary tree on

which the excited tree game is played. For a vertex v in an odd layer of Tπ′ , the next bit to

be transmitted by π′ on the vertex v is bṽ. For a vertex v in an even layer of Tπ′ , the next

bit to be transmitted by π′ on the vertex v is aṽ.

Every input pair (x, y) ∈ supp(µ) for the excited tree game, induces a distribution

Pv = (pv, 1 − pv) for every vertex v of the tree Tπ′ , where pv is the probability that the

next bit transmitted by the protocol π′ on the vertex v and inputs x, y is 0. Namely, if v

is in an odd layer of Tπ′ , the distribution Pv is the input distribution Pṽ of the player that

owns ṽ. If v is in an even layer of Tπ′ then Pv = (1, 0) when the player sending aṽ decides

that the players are above the frontier and Pv = (0, 1) when aṽ = 1 is sent (note that given

x, y and v this decision is deterministic).

For every vertex v of Tπ′ , we define an additional distribution Qv = (qv, 1−qv) (depending

on the input pair (x, y)). For a vertex v in an odd layer of Tπ′ , the distribution Qv is the

input distribution Qṽ of the player that doesn’t own ṽ. If v is in an even layer of Tπ′ then

Qv = (1− 1
c
, 1
c
).

For the rest of the section, we think of Tπ′ as the tree Tπ′ together with the distributions Pv

and Qv, for every vertex v in the tree Tπ′ . In [GKR14], Ganor, Kol and Raz showed that

ICµ(π
′) ≤ E[D(Tπ′)], where D(Tπ′) is the divergence cost of the tree and the expectation is

over the sampling of the inputs according to µ and over the randomness. Together with the

following claim, we get that ICµ(π
′) ≤ O(k2).

Claim 7. Let π′ be the protocol that starts as π but ends when the bit av = 1 is sent. Let

Tπ′ be the binary tree associated with π′, together with the distributions Pv and Qv for every

vertex v in the tree Tπ′, as defined above. Then,

E[D(Tπ′)] = O(k2),

where the expectation is over the inputs and over the randomness.

Proof. We bound the divergence cost separately for vertices in odd layers and for vertices in

13



even layers. First, we sum over vertices in even layers. For every vertex v in an even layer of

Tπ′ , if Pv = (1, 0) then D(Pv‖Qv) = log
(

1
1− 1

c

)

= log
(

1 + 1
c−1

)

< 2
c
. Since there are at most

c such vertices on every path and the probability of reaching each vertex is at most 1, the

sum in Equation (2) taken over vertices in even layers with Pv = (1, 0) is at most c · 2
c
= 2.

If Pv = (0, 1) then D(Pv‖Qv) = log
(

1
1

c

)

= log (c) ≤ O(k). Along each path, there is only

one vertex v for which Pv = (0, 1), the last vertex reached by the protocol π′.

Next, we sum over vertices in odd layers along an average path. Recall that each such

vertex v corresponds to a vertex ṽ in T . Let v be a vertex in an odd layer of Tπ′ . It holds

that |pv − qv| ≤ 1
4
and pv ≥ 5

16
, and therefore,

∣

∣

∣

pv−qv
pv

∣

∣

∣
≤ 4

5
. By Taylor’s expansion,

−pv ln
qv
pv

= −pv ln

(

1− pv − qv
pv

)

≤ (pv − qv) +
∞
∑

i=2

|pv − qv|i
i · pi−1

v

≤ (pv − qv) +
∞
∑

i=2

|pv − qv|i
2pi−1

v

= (pv − qv) +
(pv − qv)

2

2 (pv − |pv − qv|)
≤ (pv − qv) +O

(

(pv − qv)
2
)

.

Similarly, −(1− pv) ln
1−qv
1−pv

≤ (qv − pv) +O ((pv − qv)
2). We get that

D(Pv||Qv) = −pv log
qv
pv

− (1− pv) log
1− qv
1− pv

≤ O
(

(pv − qv)
2
)

.

For each non-excited vertex v it holds that |pv − qv| ≤ 2k√
c
and therefore, the non-excited

vertices add at most O(k2) to the divergence cost along any path. For each excited vertex v

it holds that |pv− qv| ≤ 2
8
√
c
. By Claim 5, the probability that there are more than 3ℓ excited

vertices on a path is at most 2−k/2 ≤ 1/c. Therefore, along an average path, the expected

number of excited vertices is at most O(ℓ) = O(k 4
√
c) and they add at most

O

(

ℓ ·
(

2
8
√
c

)2
)

= O(k)

to the expected divergence cost. Put together, the expected divergence cost of π′ isO(k2).
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