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Abstract

The weak interactive compression conjecture asserts that any two-party
communication protocol with communication complexity C and information
complexity I can be compressed to a protocol with communication complexity
poly(I)polylog(C).

We describe a communication problem that is a candidate for refuting that
conjecture.  Specifically, while we show that the problem can be solved by
a protocol with communication complexity C' and information complexity I =
polylog(C'), the problem seems to be hard for protocols with communication complexity

poly(I)polylog(C) = polylog(C).

1 Introduction

The classical data compression theorem shows that every message can be compressed to its
information content, measured using the entropy function. Can one prove a similar result in
the interactive setting, where two parties engage in an interactive communication protocol?
That is, can the transcript of every communication protocol be compressed to (roughly) its
“information content” [BBCR10]?

The information content of an interactive protocol is typically measured using the
information complexity measure [Kas85, OR95, CSWY01, BYJKS04, BBCR10]. In this
paper we will mainly be interested in internal information complexity (a.k.a, information
complexity and information cost). A related notion of ezternal information complexity is
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also used in the literature. Roughly speaking, let m be a two-party communication protocol,
and let p be a distribution over the private inputs for the communicating parties. The
(internal) information complexity of 7 over p, denoted 1C, (), is the number of information
bits that the players learn about each other’s input, when running the protocol m with inputs
distributed according to p (see Definition 2).

Using the notion of information complexity, the above interactive compression problem
can be formulated as asking whether for every protocol 7 and distribution g with information
complexity I = IC,, (), there exists a “compressed” protocol 7’ that produces (almost) the
same output as m and has CC;* (') close to I. Here, CC;*9 (') stands for the distributional
commumnication complexity of 7’ over u, which is the expected number of bits communicated
by 7’ when the inputs to the players are sampled according to p (see Definition 1).

Several recent results show how to compress communication protocols in several cases,
starting from [BBCRI10] (see Section 2.3). However, none of these results gives a way of
compressing a general protocol to a protocol that only communicates I bits, or even poly(I)
bits. We note that in some special cases, compression to poly(I)polylog(C') or even poly(I)
are known to be possible (see Section 2.3).

The difficulty in compressing general protocols was recently explained by the authors,
by proving exponential gaps between the distributional communication complexity and
information complexity of some carefully designed communication tasks. In [GKRI14,
GKRI16b], Ganor, Kol and Raz showed an explicit example of a boolean function with
(internal) information complexity < I and distributional communication complexity > 2%(/)
(see [RS15] for a simplified proof). In [GKRI16a], Ganor, Kol and Raz analyzed a
communication task proposed by Braverman [Bral3|, with (external) information complexity
< I and distributional communication complexity > 28I

One drawback of these results is that the protocols that achieve information complexity
have communication complexity double or even triple exponential in I. Therefore, while these
results rule out “strong” compression to poly(I), they leave open the possibility of “weak”
compression to poly(I)polylog(C).

Open Problem 1. Is it true that for every computational task f, distribution p over the
inputs and every communication protocol T that solves f with error o(1), there exists a
protocol 7' that solves f with error o(1), such that

CC™(r") < poly(IC, (7)) - polylog(CC™I (7)) ?
p p n

A general compression to poly(I)polylog(C) as suggested by Problem 1, if exists, still
yields very efficient compressed protocols that potentially constitute huge savings. Due
to the equivalence between interactive compression and direct sum [BBCR10, BR11],
such a compression would also imply a near optimal direct sum result for distributional
communication complexity, thus resolve this long standing open problem in the affirmative.
Specifically, it will show that the distributional communication complexity of solving m
independent copies of a communication task is almost as high as m times the distributional



communication complexity of solving a single copy. Moreover, such an interactive
compression result gives rise to a new paradigm for protocol design, where one is only
mindful to the information revealed by the protocol, and then uses a compression scheme as
a “black-box” to lower the required communication complexity.

In this work we suggest a candidate communication problem, called the excited tree game,
for ruling out the poly(I)polylog(C') compression scheme suggested by Problem 1. The game
is defined in Section 3, and is parameterized by a parameter ¢ € N. In Section 5, we
construct a protocol for solving the game with information complexity I = polylog(c) and
communication complexity C' = O(c). In Section 4, we try to justify the conjecture that
there is no protocol for solving the game with distributional communication complexity at
most poly(I)polylog(C') = polylog(c). Observe that this conjecture, if true, shows that the
low information protocol we construct for the excited tree game cannot be compressed to
poly(I)polylog(C'), thus answers Problem 1 in the negative. Proving this conjecture in full,
however, seems very challenging.

2 Preliminaries

2.1 Communication Complexity

In the two player distributional model of communication complexity, each player gets an
input, where the inputs are sampled from a joint distribution that is known to both players.
The players’ goal is to solve a computational task that depends on both inputs. The players
can use both common and private random strings and are allowed to err with some small
probability. The players communicate in rounds, where in each round one of the players
sends a message to the other player. The communication complexity of a protocol is the
total number of bits communicated by the two players. The communication complexity of a
computational task is the minimum number of bits that the players need to communicate in
order to solve the task with high probability, where the minimum is taken over all protocols.
For excellent surveys on communication complexity see [KN97, LS09]. In this work it would
be more convenient to work with average communication complexity.

Definition 1 (Average Communication Complexity). The average communication
complexity of a protocol m over random inputs (X,Y) that are drawn according to a joint
distribution p, denoted CCR (7), is the expected number of communication bits transmitted
during the protocol, where the expectation is over (X,Y) and over the randomness. The €
average communication complexity of a computational task f with respect to a distribution
W 1s defined as

CC(f,e) = ir;f cCp(m),

where the infimum ranges over all protocols 7 that solve f with error at most € on inputs
that are sampled according to pu.



2.2 Information Complexity

Roughly speaking, the (internal) information complexity of a protocol is the number of
information bits that the players learn about each other’s input, when running the protocol.
The information complexity of a communication task is the minimum number of information
bits that the players learn about each other’s input when solving the task, where the
minimum is taken over all protocols. Formally,

Definition 2 (Information Cost). The information cost of a protocol © over random
inputs (X,Y) that are drawn according to a joint distribution p, is defined as

IC,(m) =I(IL X|Y) + I(IL; Y] .X),

where 11 is a random variable which is the transcript of the protocol m with respect to p. That
1s, 11 is the concatenation of all the messages exchanged during the execution of m. The €
information cost of a computational task f with respect to a distribution i is defined as

IC,(f,e) =inf IC,(n),

where the infimum ranges over all protocols m that solve f with error at most € on inputs
that are sampled according to .

2.3 Known Compression Protocols

Several beautiful recent results show how to compress communication protocols in several
cases.  Barak, Braverman, Chen and Rao showed how to compress any protocol
with information complexity I and communication complexity C, to a protocol with
communication complexity VI -C' - polylog(C) [BBCR10]. They also suggest a protocol
that communicates 1" - polylog(C') bits, where I°"* is the external information complexity
of the original protocol. Braverman and Rao showed how to compress any one round
(or constant number of rounds) protocol with information complexity I to a protocol
with communication complexity O(/) [BR11]. Braverman showed how to compress any
protocol with information complexity I to a protocol with communication complexity
20) [Bral2] (see also [BW12, KLL*12]). Building over [BBCR10], Kol and Sherstov
showed how to compress any protocol with information complexity I to a protocol with
communication complexity I - polylog(I) in the case where the underlying distribution is a
product distribution [Kol16, Shel6].

3 The Excited Tree Game

The excited tree game is a communication game for two players A and B. The game is
played on a rooted, complete, binary tree T, of depth ¢, where ¢ is larger than a sufficiently
large constant. Player A “owns” every non-leaf vertex in even layers and player B “owns”



every non-leaf vertex in odd layers. For every non-leaf vertex v, the owner of v gets as an
input a distribution P, = (p,,1 — p,) and the other player gets as an input a distribution
Qv = (¢, 1 — q,), both distributions are over the children of v. We think of every P, as the

“correct” distribution over the two children of v. The distributions {P,, @, }, are chosen in
a very specific way that is described below.

A frontier in the tree is a set of vertices that contains exactly one vertex (leaf or non-leaf)
on every path from the root to a leaf. Given a vertex v and a frontier S in the tree, we say
that v is above the frontier S if on the path from the root to v there is no vertex in .S. We
say that v is on the frontier if v is in S. If v is neither above the frontier nor on it, then it
is below the frontier.

We denote by z,y the inputs to the players A, B respectively. That is, z is the set of all
the distributions P, or (), that are given to player A and y is the set of all the distributions
P, or ), that are given to player B. We define the distribution p on the inputs to the players
by an algorithm for sampling an input pair (z,y) (Algorithm 1 below).

Fix some k = polylog(c) such that log*(c) < k. Let p; be the uniform distribution over
the interval [— \[ \’}] and let po be the uniform distribution over the interval [— \/, \8[] ' In
Algorithm 1 below, we sample for every non-leaf vertex v two values z;(v), x2(v) according
to p1, po respectively. Next, when we say “set v to be non-excited”, we mean “set
po =3 +21(v) + 22(v) and g, = £ + 22(v) — 21 (v)”. By “set v to be excited”, we mean “set
po = 3 +x1(v) +22(v) and g, = 5+ 21(v) — 22(v)”. Note that without communication, none
of the players can distinguish between an excited vertex and a non-excited vertex, since p,
and ¢, have the same distribution in both cases.

Algorithm 1 Sample (x,y) according to u

1. For every non-leaf vertex v we sample two values z1(v),x2(v) according to g, fio
respectively.

2. Let S be a frontier in the tree defined as follows: Pick every vertex to be in S,
independently, with probability a = % Then, for every path from the root to a
leaf, remove from S all vertices on that path, except for the vertex closest to the root,
if such a vertex exists. If there is no vertex in .S on a path from the root to a leaf, add

that leaf to S.
3. Set every non-leaf vertex above the frontier S to be non-excited.

4. Set every non-leaf vertex on the frontier S or below it to be excited.

Given the distributions P, for every non-leaf vertex v and the frontier S in the tree, we

1One can also consider other symmetric distributions in the range [—1, 1] with expectation 0 and variance

O(k—;), O(%ﬁ) respectively, as well as other values for k, and changing the interval [— \f, \8/] o [, =),

for some other 0 < 8 < 1/2.



define a distribution Pg over the vertices in S. For every vertex w € S, let vg, vy, ..., vy be
the vertices on the path in the tree from the root to w, where ¢ is the layer of w. That is,
vp is the root, v, = w and for every 0 < i < ¢, v,y is a child of v;. Then, Ps(w) is obtained
by sampling every child on the path to w according to the correct distribution of its parent.
That is,

-1 . : :
» f v;11 is the left hand child of v;
Ps(w) = H P,.(viy1) where P, (vi11) = P S e v
0 1 —p,, if v;4q is the right hand child of v;

The players’ mutual goal is to output the same vertex w on the frontier S, where S is the
frontier defined in Algorithm 1, such that for almost all possible outputs w, the probability
that they both output w is close to Ps(w). More precisely, let x, y be the inputs to the players
A, B respectively and let p be the distribution over the inputs. Let A(z,y), B(x,y) denote
the output values of A, B respectively. Note that A(z,y), B(x,y) are random variables that
depend on the randomness. For a communication protocol 7, we say that 7 solves the game
with respect to p with error e if

PriA(z,y) = B(z,y)] 21— and E[[[A(z,y) - Ps[l] <,

where the probability is over inputs that are sampled according to ¢ and over the randomness,
the expectation is over inputs that are sampled according to p and || - ||; is the ¢; norm.
Note that A(z,y) is referred to as a distribution as well as a random variable and that the
distribution Ps depends on z and y.

In Section 5 we prove the following lemma.

Lemma 2. There exists a protocol that solves the excited tree game with respect to
with error o(1), with average communication complexity O(c) and information complexity

polylog(c).

Therefore, to answer Open Problem 1 in the negative, it is enough to answer the following
question affirmatively.

Open Problem 3. Is it true that for ¢ = o(1) the € average communication complexity of
the excited tree game with respect to p is at least (log(c))*™M) ?

4 Why Excited Tree?

At a very high level, the excited tree game can be viewed as follows. The game is played on
a rooted, complete, binary tree T, of depth c¢. A frontier S is chosen in 7. All the vertices
above the frontier are set to be “non-excited” and the vertices below the frontier are set to
be “excited”. The player’s goal is to output a vertex on the frontier S, sampled according
to the “correct” distribution.



Let us start with the rational behind the name ezcited tree game. In physics, an “excited”
state is a state with a higher energy level than the ground (“non-excited”) state. In the
excited tree game, an excited vertex is a vertex with a higher “information level” than
a non-excited vertex. For an excited vertex v the distance between the distributions P,
and @, is large and hence the information that the player who doesn’t own v is missing is
relatively large. For a non-excited vertex v the distance between the distributions P, and @,
is small and hence the information that the player who doesn’t own v is missing is relatively
small.

Since all the vertices above the frontier are non-excited, there is a relatively simple
protocol with low information complexity for the excited tree game: Starting from the root,
until reaching the frontier, at every vertex v, the player owning v samples a child of v
according to P, and sends a bit b, to the other player, to indicate which child was sampled.
Both players continue to the child of v that is indicated by the communicated bit. Since all
the vertices above the frontier are non-excited, the information given by each bit b, is small
and hence the entire information complexity of the protocol is small. The only complication
in this protocol is that the players have to stop when they reach the frontier. We show how
to do that while keeping the information complexity of the protocol low.

To answer Open Problem 3 affirmatively, one needs to prove a lower bound of (log(c))~(
on the communication complexity of the excited tree game. While we don’t have such a
proof, we note that several approaches to solve the game with communication complexity
(log(c))°™, seem to fail.

Two properties of the excited tree game that makes it difficult (or impossible...) to solve
with low communication complexity are as follows:

1. Without communication, none of the players can distinguish between an excited vertex
and a non-excited vertex, since p, and ¢, have the same distribution in both cases.
Hence, without communication (or with relatively small communication) the players
don’t have a lot of information about which vertices are above the frontier and which
vertices are below the frontier.

2. For every vertex v above the frontier, the restriction of the inputs of the two players
to the subtree below v (conditioned on the event that v is above the frontier) has the
same distribution as the distribution of the excited tree game played on a smaller tree.
In fact, we could have defined the problem on an infinite, rooted, complete binary tree,
and then the distribution of the restriction to the subtree below v (conditioned on the
event that v is above the frontier) would have been exactly the same as the original
distribution. (We chose to work with a finite tree for simplicity of the presentation).

In light of these properties, let us consider a few approaches for designing protocols with
low communication complexity for solving the problem, based on known approaches for
compression protocol.

A first approach (inspired by ideas initiated in [BBCR10] and used in many subsequent
works) could be to try to simulate the above mentioned low-information protocol, by starting
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from the root and trying to sample, according to the correct distribution, vertices that are
lower and lower in the tree, until reaching the frontier. A major difficulty with such attempts
is the second property above. By the second property, even if the two players managed to
agree on a vertex v above the frontier, sampled according to the correct distribution, they
still have to solve a copy of pretty much the same problem as the one that they started with,
and hence they made no (or very little) progress. The two players only make progress if the
vertex v that they agreed on happens to be exactly on the frontier.

A second approach (inspired by ideas initiated in [BBCR10, BR11, Bral2] and used in
many subsequent works) could be to sample a leaf in the tree (or a vertex which is with
high probability below the frontier) and climb up from that vertex to the frontier. A major
difficulty with such attempts is that all the vertices below the frontier are excited, and hence
the distributions that the two players have on the leaves are very far from each other, so
it’s hard for them to agree on a leaf. They could agree on a leaf sampled according to a
pre-agreed distribution, known to both players, such as the uniform distribution, and climb
up from that leaf to the frontier. However, that would not sample a frontier vertex according
to the correct distribution. In general, the first property above (that the players don’t know
where the frontier is) makes such attempts very difficult.

A third approach that one may consider for attacking this and related problems (and
that, to the best of our knowledge, has not been used before), is to try to sample a vertex
v above the frontier (as in the first approach) and from that vertex to move down to the
closest frontier vertex u in the subtree below v. This approach is based on the fact that
there should be a frontier vertex at a distance of roughly log(a™!) = O(log(c)) below v. A
difficulty with such attempts is that it is not clear how to find the closest frontier vertex u
by a protocol with small communication complexity.

We note that turning these intuitions and ideas into a full proof for a lower bound on
the communication complexity of the excited tree game seems very challenging.

5 Information Upper Bound

In this section, we prove Lemma 2. Let (z,y) € supp(u) be an input pair for the excited
tree game and let S be the frontier defined in Algorithm 1. Let 7 be the following protocol
for the excited tree game, played on the input pair (z,y): Starting from the root, at every
vertex v, the player owning v samples a child of v according to P, and sends a bit b, to the
other player, to indicate which child was sampled. Both players continue to the child of v
that is indicated by the communicated bit.

After receiving a bit b,, the receiving party, without loss of generality the second player,
sends a bit a,, that supposedly indicates whether the players are above the frontier S or
not, where a, = 1 stands for “below or on the frontier” and a, = 0 stands for “above the
frontier”. If v is a leaf, the second player sends a, = 1. Otherwise, to determine the value of
a,, the second player considers the last ¢ = 4k+/c vertices vy, ..., v, reached by the protocol



and owned by the first player and the corresponding bits b,,,...,b,, that were sent by the
first player (if less than ¢ bits were sent by the first player so far, the second player sends

= 0). For every j € [{], the second player compares b,; and ¢,;, where ¢, is 1 if q,; > %
and 0 otherwise. The second player sends a, = 1 if less than g of these pairs are equal, and
otherwise, he sends a, = 0.

Once the bit a, = 1 was sent, the players run a binary search over the last 3¢ vertices
reached by the protocol, with the goal of finding the vertex on the frontier (if less than 3¢
vertices were reached by the protocol so far, the binary search is over all the vertices
reached by the protocol). In each iteration of the binary search, the players send their
input distributions corresponding to the current vertex considered by the binary search.
The probabilities are truncated so that each player sends k bits per vertex. For each such
vertex v, the players calculate |p! — ¢/ |, where p!, ¢, are the truncated p,,q, respectively.
The binary search assumes that |p), —¢/,| < % for all the vertices v among these 3¢ vertices
that are above the frontier, and that [p — qu] > =2 for all the vertices u among these 3¢
vertices that are below the frontier. Under this assumptlon the players output the vertex v
which is the first vertex among these 3¢ vertices for which |p), — ¢,| > ﬁ’ if such a vertex
exists. (Otherwise, the players output an error message).

5.1 Bounding the Error Probability

In Claims 4 and 5 we prove that with high probability, the bit a, = 1 is sent below or on the
frontier, but not too far below it. In Claim 6 we prove that if this is the case, then with high
probability, the players output the vertex on the frontier reached by the protocol. Note that
each vertex reached by the protocol is chosen according to the correct distribution. That is,
if a vertex w was reached by the protocol, then when the players reached its parent v, they
sampled w according to the distribution P,. Therefore, Claims 4, 5 and 6 imply that the
distribution of the vertex output by the players is close to the goal distribution Ps.

Claim 4. Let (z,y) € supp(u) be an input pair for the excited tree game and let S be the
frontier defined in Algorithm 1. Then, with probability at least 1 — c - 27> over the input
pair (z,y) and over the randomness, the bit a, = 1 is sent when the players are below or on
the frontier S.

Proof. Let v be a non-excited vertex. First, consider the case that p, > % In this case,

Pr(g, < 3| po> 3] = Prlza(v) —21(v) < 0] 21(v) +22(v) > 0]
(v) < @1(v) | 22(v) = —21(0)]
= Pr[(z2(v) < 21(v)) A (22(v) > —21(0))] - (Pr [22(v) > =21 (v)]) ™"



Therefore, with high probability, ¢, > % and ¢, = 1. It holds that

Prib,=d| (po>) A (0 >Y)]=Pr[b,=1](p.>2)A(q,>1)]
=E[p| (po>3) A (00 >13)],

where the last equality holds since the probability is over the inputs and over the randomness.
Bounding the expectation we get that

E (o] (02 1) A (002 )] = Elpu | (5300) = —1(0)) A (w3(0) 2 1 (o)
= Elp. | 22(0) > | ()]
_ % +E[21(0) | 22(0) > |21(0)[] + Blaa(v) | 22(0) > |21(0)]]
> 5= 2=+ Elaalo) | (o) > (1))
1 k 1 1 k
25—%+E[x2(v) | 22(v) ZO]:§+W—%.

Similarly, when p, < %, the probability that ¢, > % is at most Ci% Therefore, with high

probability ¢, < % and

Prib,=q| (o <3) A (0<3)] =E[l-p, | (po<3)A (2 <3)]
1 k
25T E [23(v) | 22(v) < —[z1(v)]]
1 1 k
2

201/8 B %

Put together, we get that for a non-excited vertex v, the probability that b, = ¢, is at least

1 2k 1 1 k >1 1
“an) 2T an T E) T dan

When the players are above the frontier, all the vertices reached by the protocol are non-
excited. If a player considers ¢ non-excited vertices vy,...,v, and their corresponding bits
by, ..., by, then by Chernoff, the probability that less than g of the pairs b, , q,, are equal
is at most e 216" < 27%2 That is, for every vertex v above the frontier, the probability
that the bit a, = 1 is sent is at most 272, Thus, by the union bound, the total probability
that a bit a, = 1 is sent above the frontier is at most ¢ - 2772 O

Claim 5. Let (z,y) € supp(p) be an input pair for the excited tree game and let S be the
frontier defined in Algorithm 1. Assume that the players are below or on the frontier. Then,
with probability at least 1 — 2~ over the input pair (x,y) and over the randomness, a player
will send the bit a, = 1 after at most 2 steps.

10



Proof. Let v be an excited vertex. First, consider the case that p, > % In this case,

k 2k

Therefore, with high probability, ¢, < % and ¢, = 0. It holds that
Priby # o | (po 2 3) Ao < 3)] =Prlbo =11 (p 2 3) A (00 < 3)]
=Ep | (oo >3) N (0 <3)]

where the last equality holds since the probability is over the inputs and over the randomness.
Bounding the expectation we get that

Efp, | (po = 3) AN < 3)] =Elpy | (22(0) 2 =21(v)) A (22(v) > 21 (v))]

> % _ \ﬁ[ +E[22(0) | 22(0) > a1 (0)]]
> 5 - S+ Bl | aa(e) 2 0= 5+ o — o

Similarly, when p, < %, the probability that ¢, < % is at most Cg% Therefore, with high
probability ¢, > % and

Prfbe # o | (po <3) AN (@2 3)] =E[1=po | (o < 3) A (20 > 3)]
1 k
> 5—76—13[962(?1)Ixz(v)ﬁ—lxl(v)l]
1 1 k
_5—*—%—%.

Put together, we get that for an excited vertex v, the probability that b, # ¢, is at least

1 2k 1 1 k >1 1
“on) 2R T E) T T

If the players take 2¢ steps after they reached an excited vertex, then the player who
should send either a, = 0 or a, = 1 considers ¢ excited vertices vq,...,v, and their
corresponding bits b,,,...,b,,. By Chernoff, the probability that less than %
by, Gu; are not equal is at most e~ 2o/t < 9=k2  That is, the probability that the player

sends a, = 0 is at most 27"/, O

of the pairs

Claim 6. Let (z,y) € supp(u) be an input pair for the excited tree game and let S be the
frontier defined in Algorithm 1. Assume that the bit a, = 1 is sent when the players are

11



below or on the frontier S and not more than 2¢ steps after the players reached a vertex on
S. Let w be the vertex on S that they reached. Then, with probability at least 1 — % over
the input pair (x,y) and over the randomness, the players output the vertex w.

Proof. Let v be a non-excited vertex. Recall that p!, ¢, are the truncated probabilities p,, g,
respectively. It holds that |p, —¢}| < 2|z, (v)|+27*, which is at most 3£ (with probability 1).

N

For an excited vertex v, it holds that [p! — ¢/| > 2|xa(v)] — 27%. The probability that

2|25 (v)] — 27% is at most \3/—’% is less than —%. Taking a union bound over the 3¢ vertices
48Kk?

considered by the binary search, we get that with probability of at least 1 — 37, for all
the excited vertices u among the 3¢ vertices considered by the binary search, we have that
= d. > %

Thus, with probability of at least 1 — ‘f—’fi, we have that |p/, — ¢| < ?/_ka for all the vertices
u among the 3¢ vertices considered by the binary search, that are above the frontier, and
I, —dq,| > f’/—kg for all the vertices u among these 3¢ vertices that are below the frontier. Under
this assumption, the binary search outputs the vertex v which is the first vertex among these
3¢ vertices for which |p] — ¢/ | > . Therefore, with probability at least 1 — 4?% , the players

output the vertex w. O

5.2 Bounding the Information Cost

To upper bound the information cost of the protocol © we will use the method described in
[GKR14], that is based on the notion of divergence cost of a tree [BBCR10, BR11].

Definition 3 (Relative Entropy). Let ¢1, 02 : Q — [0, 1] be two distributions, where € is
finite. The relative entropy between ¢, and ¢o, denoted D(¢1]|p2), is defined as

D(61]l6) = Y éa(w) log (2
€N
Definition 4 (Divergence Cost [BBCRlO BRI11)). Consider a binary tree T whose root
is v and distributions P, = (py, 1 — py), Qv = (¢, 1 — qu) for every non-leaf vertex v in the
tree. We think of P, and QQ, as dzstmbutzons over the two children of the vertex v. We define
the divergence cost of the tree T recursively, as follows. D(T) = 0 if the tree has depth 0,
otherwise,

D(T) =D(R[Q,) + E, [D(T.)], 1)

where for every vertex v, T, is the subtree of T whose root is v.
An equivalent definition of the divergence cost of T is obtained by following the recursion
in Equation (1) and is given by the following equation:

=Y 5 DR, 2)

veV

where V' is the vertex set of T and for a vertex v € V, p, is the probability to reach v by
following the distributions P,, starting from the root. Formally, if v is the root of the tree T,
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then p, = 1, otherwise,

_ ) DPuPu if v is the left-hand child of u
: Pu- (L =p,) if v is the right-hand child of u.

We will bound the information cost of the protocol until the bit a, = 1 is sent, that is,
until the players decide that they are below or on the frontier. Denote the protocol that
starts as m but ends when the bit a, = 1 is sent by 7’. Note that after the bit a, = 1 is sent
in 7, the players exchange at most O(k - log(¢)) bits, which adds at most O(k - log(¢)) bits
of information.

We denote by T, the binary tree associated with 7’. That is, every vertex v of T
corresponds to a possible transcript of 7’ and the two edges going out of v are labeled by 0
and 1, corresponding to the next bit to be transmitted. The vertices of the tree T, have the
following structure: Every vertex v of T,/ corresponds to a vertex © of 7, the binary tree on
which the excited tree game is played. For a vertex v in an odd layer of 7./, the next bit to
be transmitted by «’ on the vertex v is b;. For a vertex v in an even layer of 7,/, the next
bit to be transmitted by 7’ on the vertex v is a;.

Every input pair (z,y) € supp(u) for the excited tree game, induces a distribution
P, = (pv,1 — py) for every vertex v of the tree 7., where p, is the probability that the
next bit transmitted by the protocol 7’ on the vertex v and inputs x,y is 0. Namely, if v
is in an odd layer of T,., the distribution P, is the input distribution P; of the player that
owns 0. If v is in an even layer of T,/ then P, = (1,0) when the player sending a; decides
that the players are above the frontier and P, = (0,1) when a; = 1 is sent (note that given
x,y and v this decision is deterministic).

For every vertex v of T/, we define an additional distribution @, = (¢,, 1 —¢,) (depending
on the input pair (z,y)). For a vertex v in an odd layer of 7./, the distribution @, is the
input distribution Q) of the player that doesn’t own v. If v is in an even layer of 7., then
Q, = (1 - %7 %)

For the rest of the section, we think of 7/ as the tree T, together with the distributions P,
and @Q,, for every vertex v in the tree T,,. In [GKR14], Ganor, Kol and Raz showed that
I1C, (") < E[D(T)], where D(7) is the divergence cost of the tree and the expectation is
over the sampling of the inputs according to u and over the randomness. Together with the
following claim, we get that IC,(7') < O(k?).

Claim 7. Let 7’ be the protocol that starts as w but ends when the bit a, = 1 is sent. Let
T+ be the binary tree associated with 7', together with the distributions P, and Q. for every
vertex v in the tree T, as defined above. Then,

E[D(7x)] = O(k*),
where the expectation is over the inputs and over the randomness.

Proof. We bound the divergence cost separately for vertices in odd layers and for vertices in
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even layers. First, we sum over vertices in even layers. For every vertex v in an even layer of
T, if P, = (1,0) then D(P,||Q,) = log (é) =log (1 + -15) < 2. Since there are at most
¢ such vertices on every path and the probability of reaching each vertex is at most 1 the
sum in Equation (2) taken over vertices in even layers with P, = (1,0) is at most ¢- 2 = 2.

If P, = (0,1) then D(P,[|Q.) = (—) log (¢) < O(k). Along each path, there is < only
one vertex v for which P, = (0, 1), theclast vertex reached by the protocol 7.

Next, we sum over vertices in odd layers along an average path. Recall that each such
vertex v Corresponds to a Vertex v in T. Let v be a vertex in an odd layer of 7T./. It holds

Pv—Qquv

that |p, — ¢ < X ; and p, > 16, and therefore,

—pm L = —p,In <1—p”_q”)
Pu p

S _Qv Z |pv_Q1)

=2 i p”
Do
Y Ll
=2
(pv_QU)
:(pv_QU)+
2(pv_ |pv_QU’)

< (o — @) + O ((v — @)*) -

: < (¢ — po) + O ((po — q»)?). We get that

Similarly, —(1 — p,)

— <0 ((po—a)?).

v Dv

Q’U 1 -
D(P,||Qy) = —po 10gp— — (1 —py)log :

For each non-excited vertex v it holds that [p, — ¢,| < \2/—’% and therefore, the non-excited
vertices add at most O(kz) to the divergence cost along any path. For each excited vertex v
it holds that |p, — gu| < \[ By Claim 5, the probability that there are more than 3¢ excited

vertices on a path is at most 272 < 1/c. Therefore, along an average path, the expected
number of excited vertices is at most O(¢) = O(k+/c) and they add at most

to the expected divergence cost. Put together, the expected divergence cost of 7’ is O(k?). [
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