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Abstract. When Γ y X is a convex-cocompact action of a discrete group on
a non-compact rank-one symmetric space X, there is a natural lower bound
for the Hausdor� dimension of the limit set Λ(Γ) ⊂ ∂X, given by the Ahlfors
regular conformal dimension of ∂Γ. We show that equality is achieved precisely
when Γ stabilizes an isometric copy of some non-compact rank-one symmetric
space in X on which it acts with compact quotient. This generalizes a theorem
of Bonk�Kleiner, who proved it in the case that X is real hyperbolic.

To prove our main theorem, we study tangents of Lipschitz di�erentiability
spaces that are embedded in a Carnot group G. We show that almost all
tangents are isometric to a Carnot subgroup of G, at least when they are
recti�ably connected. This extends a theorem of Cheeger, who proved it for
PI spaces that are embedded in Euclidean space.

1. Introduction

A classic theorem of Bowen [12] states that the limit set of a convex-cocompact
action of a Fuchsian group on H3

R has Hausdor� dimension at least 1, and equality
holds precisely when the limit set is a round circle in S2 = ∂H3

R. In this case, the
convex-cocompact action stabilizes an isometrically embedded copy of H2

R in H3
R.

Expressed another way, this result means that among all quasi-Fuchsian represen-
tations of a Fuchsian group, the Hausdor� dimension of the limit set attains its
minimum precisely on the Fuchsian locus.

Bowen's theorem was later generalized to convex-cocompact actions of Fuchsian
groups on any CAT(−1) metric space by Bonk and Kleiner [7, Theorem 1.1]. This
answered a question of Bourdon, who had proven that the analogous result holds
for any uniform lattice in a non-compact rank-one symmetric space S ̸= H2

R [10,
Theorem 0.3]. To state their results precisely, we need some notation. If X is a
CAT(−1) space, then its visual boundary ∂X admits a natural class of Möbius
equivalent metrics

dp(x, y) = e−(x,y)p ,

where p ∈ X and (x, y)p denotes the Gromov product based at p. In particular,
these metrics are bi-Lipschitz equivalent. The Hausdor� dimension of ∂X, and also
of any subset, is therefore well-de�ned. If Γ y X is a convex-cocompact action by
a discrete group Γ, then the limit set Λ(Γ) of the action is a subset of ∂X that is
invariant under the induced boundary action on ∂X.

The following statement puts together the results of Bourdon (all cases S ̸= H2
R)

and Bonk�Kleiner (the S = H2
R case).
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Theorem 1.1 ([10], [7]). Let Γ be a uniform lattice in a non-compact rank-one
symmetric space S, and suppose that Γ y X is a convex-cocompact action on a
CAT(−1) space X. Then

Hdim(Λ(Γ)) ≥ Hdim(∂S),

and equality holds if and only if the action stabilizes an isometrically embedded copy
of S in X on which Γ acts with compact quotient.

We should note that the case of equality is also characterized by Möbius equiv-
alence of the limit set Λ(Γ) and ∂S [10, Theorem 0.1].

Remark 1.2. The notation Λ(Γ) is slightly misleading, as the limit set depends on
the action of Γ on X, not just on the group Γ. More accurately, one should think
of the action as a representation of Γ into the isometry group Isom(X), so the
limit set is really the limit set of this representation. In many important cases, the
space of convex-compact representations forms a moduli space with a rich geometric
structure, and one can ask interesting questions about how the limit sets change
as the representations vary (e.g. [13, Corollary 1.8]). However, as we focus only on
a single action/representation at a time, we do not make this distinction explicit,
and we retain the notation Λ(Γ).

More recently, there has been interest in knowing whether similar types of rigid-
ity phenomena occur when Γ is not assumed, a priori, to be a lattice. (For example,
see work of Bonk�Kleiner [6] and the second author [35].) The �rst di�culty en-
countered is to determine a natural lower bound for Hdim(Λ(Γ)). For example, free
groups admit convex-cocompact actions on any non-compact rank-one symmetric
space with Λ(Γ) equal to a Cantor set of arbitrarily small Hausdor� dimension.
More explicitly, choosing loxodromic elements g1, . . . , gk ∈ Isom(S) with pairwise
disjoint �xed points, for large enough n the subgroup generated by gn1 , . . . , g

n
k will

be a free group of rank k, and the Hausdor� dimension of the limit set will tend to
0 as n goes to in�nity.

In the case of Theorem 1.1, the inequality comes from a result of Pansu [42,
Theorem 5.5]. In standard formulation, Pansu's result says that the Hausdor�
dimension of any metric space that is quasisymmetrically equivalent to ∂S must
be at least as large as Hdim(∂S). Stated another way, this means that whenever
Γ is (virtually) a uniform lattice in S, the Ahlfors regular conformal dimension
conf.dimAR(∂Γ) of its Gromov boundary is equal to Hdim(∂S). On the other hand,
we note that conf.dimAR(∂Γ) = 0 whenever Γ is a free group.

It makes sense, then, that the appropriate generalization of Theorem 1.1 to Gro-
mov hyperbolic groups would make use of the conformal dimension. In a di�erent
paper [8], Bonk and Kleiner established the following result, which concerns actions
of hyperbolic groups on real hyperbolic space.

Theorem 1.3 ([8], Theorem 1.4). Let Γ be a non-elementary Gromov hyperbolic
group, and let Q = conf.dimAR(∂Γ). If Γ y Hn+1

R is a convex-cocompact action,
with n ≥ 1, then

Hdim(Λ(Γ)) ≥ Q

and equality holds if and only if Q = k ≥ 1 is an integer and Γ stabilizes an
isometric copy of Hk+1

R in Hn+1
R on which it acts with compact quotient.
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Our statement of this theorem is slightly di�erent from that given in [8], but
they are easily seen to be equivalent. We make this clear in Remark 3.4.

The main goal of the present paper is to extend Theorem 1.3 to actions on any
non-compact rank-one symmetric space.

Theorem 1.4. Let Γ be a non-elementary Gromov hyperbolic group, and let Q =
conf.dimAR(∂Γ). If Γ y X is a convex-cocompact action on a non-compact rank-
one symmetric space X, then

Hdim(Λ(Γ)) ≥ Q,

and equality holds if and only if Γ stabilizes an isometric copy of a non-compact
rank-one symmetric space S in X on which it acts with compact quotient.

In the equality case, ∂S and Λ(Γ) are Möbius equivalent, Q = Hdim(∂S) is
necessarily an integer, and the symmetric space S is determined uniquely by Q
and the topological dimension of ∂Γ. Indeed, the non-compact rank-one symmetric
spaces are uniquely determined by the Hausdor� and topological dimensions of
their visual boundaries (cf. Mackay�Tyson [40, p. 34]). Moreover, Γ is a �nite
extension of a uniform lattice in Isom(S).

Our proof of Theorem 1.4 follows the basic outline that Bonk�Kleiner use to
prove Theorem 1.3. First, the inequality comes straight from the general theory of
boundaries of hyperbolic groups. Appealing to the prior work of Bonk�Kleiner in [7]
also dispenses with the equality case when Q ≤ 1. When Q > 1 and equality holds,
Bonk and Kleiner show that the limit set Λ(Γ) ⊂ Sn supports a Poincaré inequality
(in the sense of Heinonen�Koskela [27]). As Λ(Γ) is isometrically embedded in Rn+1,
a theorem of Cheeger [16] guarantees that Λ(Γ) has a tangent that is isometric to
some Euclidean space Rk. This implies that Λ(Γ) is bi-Lipschitz equivalent to Sk,
and they can use [6, Theorem 1.1] to conclude.

In the setting of Theorem 1.4, when Q > 1 and equality holds, the work of
Bonk�Kleiner still implies that the limit set Λ(Γ) supports a Poincaré inequality.
However, it may not be embedded in any Euclidean space, so we cannot directly
apply Cheeger's theorem. Instead, Λ(Γ) is locally embedded in some Carnot group,
namely, the Carnot group that models the local geometry of ∂X. The main work we
do is to generalize Cheeger's result to spaces embedded in Carnot groups, showing
that their tangents are isometric to Carnot subgroups. This is the content of the
following theorem, which may be of independent interest. This result is stated and
proven in a more general context as Theorem 4.1 below.

Theorem 1.5. Let G be a Carnot group with homogeneous distance d. Let X ⊂ G
be a closed subset such that there is a Radon measure µ on X for which (X, d, µ)
is a doubling metric measure space supporting a Poincaré inequality. Let (U, φ) be
a k-dimensional di�erentiability chart for X.

Then for µ-almost every x ∈ U , the set Tan(X,x) consists of one element,
which is canonically isometric to a Carnot subgroup of G generated by a �xed k-
dimensional subspace of the horizontal layer of G.

All the terminology in Theorem 1.5 is introduced in Section 2.
The remainder of the proof of Theorem 1.4 follows similar ideas as in the endgame

of [6, Theorem 1.2], though we will need an additional input that identi�es, among
all Carnot groups, those that locally model boundaries of rank-one symmetric
spaces. This is provided by recent work of Cowling and Ottazzi [22].
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The structure of the paper is as follows. Section 2 contains basic de�nitions
and notation. Section 3 contains background material on boundaries of symmetric
spaces and Gromov hyperbolic groups, as well as an analog of a result of Connell
[20] that we prove as a short application of our methods (Proposition 3.6). Section
4 contains the proof of Theorem 4.1 about tangents of spaces embedded in Carnot
groups, and describes some applications to bi-Lipschitz non-embedding. Finally,
Section 5 contains the proof of Theorem 1.4.

Acknowledgments. The �rst author was partially supported by the National Sci-
ence Foundation under Grants No. DMS-1664369 and DMS-1758709.

2. Preliminaries

If (X, d) is a metric space, we write B(x, r) for the open ball of radius r centered
at x ∈ X and B(x, r) for the closed ball. A metric space (X, d) is said to be
metrically doubling if there is a constant C such that every ball of radius r > 0 in
X can be covered by at most C balls of radius r/2.

A metric measure space (X, d, µ) is a complete, separable metric space (X, d)
equipped with a Radon measure µ. We say that the measure µ is doubling if there
is a constant C such that

µ(B(x, 2r)) ≤ Cµ(B(x, r))

for every ball B(x, r) in X. This readily implies that (X, d) is metrically doubling
[26].

For Q > 0, we will often consider Q-dimensional Hausdor� measure HQ on a
metric space (X, d). We write Hdim(X) for the Hausdor� dimension ofX. A metric
space is Ahlfors Q-regular, for Q > 0, if there is a constant C > 0 such that

C−1rQ ≤ HQ(B(x, r)) ≤ CrQ

for all x ∈ X and 0 < r ≤ diam(X). In this case, (X, d,HQ) is easily seen to be a
doubling metric measure space. It is also uniformly perfect [40, pp. 13�14].

The cross-ratio of a four-tuple of distinct points (x1, x2, x3, x4) in X is the value

[x1, x2, x3, x4] =
d(x1, x3)d(x2, x4)

d(x1, x4)d(x2, x3)
.

A homeomorphism f : X → Y between two metric spaces is Möbius if it preserves
the cross-ratio, ie, if

[f(x1), f(x2), f(x3), f(x4)] = [x1, x2, x3, x4]

for every four-tuple (x1, x2, x3, x4) of distinct points in X.
More generally, given a homeomorphism η : [0,∞) → [0,∞), we say that a home-

omorphism f : X → Y is η-quasi-Möbius (or simply quasi-Möbius) if

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4])

for every four-tuple (x1, x2, x3, x4) of distinct points in X. Similarly, f is said to
be η-quasisymmetric (or simply quasisymmetric) if

d(f(x1), f(x2))

d(f(x1), f(x3))
≤ η

(
d(x1, x2)

d(x1, x3)

)
for every triple (x1, x2, x3) of distinct points in X.
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These de�nitions also make sense if f : X → Y is assumed only to be injective,
in which case it is necessarily a homeomorphism onto its image. Such a map f is
called a Möbius embedding, quasi-Möbius embedding, etc. It is not di�cult to show
that every η-quasisymmetric mapping is η̃-quasi-Möbius, where η̃ depends only on
η. If X and Y are bounded, then, conversely, every quasi-Möbius homeomorphism
is quasisymmetric [48].

In the case that X and Y are bounded and η is linear, each η-quasi-Möbius map
f : X → Y is actually bi-Lipschitz [35, Remark 3.2]. In particular, every Möbius
map is bi-Lipschitz.

The Ahlfors regular conformal dimension of a doubling and uniformly perfect
metric space X, denoted

conf.dimAR(X),

is the in�mal Hausdor� dimension among all Ahlfors regular metric spaces qua-
sisymmetrically homeomorphic to X. The doubling and uniformly perfect proper-
ties guarantee that conf.dimAR(X) is �nite [26, Corollary 14.15], and it is obviously
quasisymmetrically invariant. However, the in�mum is not always achieved, and
it is a di�cult problem to �nd general conditions under which it is. For more
background on this quantity, we refer the reader to [8], where it plays a crucial role.

2.1. Tangents. We now brie�y describe the notion of a �tangent� of a metric space,
which relies on the framework of pointed Gromov�Hausdor� convergence of spaces
and mappings. For the necessary background on this framework, we refer the reader
to any of the following: [32, Section 5], [36, Section 3.2], [23, Section 2].

A pointed metric space (X, d, x) is simply a metric space (X, d) together with a
�xed point x ∈ X. If the metric d is clear, we sometimes suppress it and simply
write (X,x).

Suppose that (X, d) is a doubling metric space. Fix x ∈ X and let λj → ∞
be a sequence of positive scaling factors. The sequence of pointed metric spaces
(X,λjd, x) then has a subsequence that converges in the pointed Gromov�Hausdor�
sense to a complete pointed metric space (X̂, x̂). We say that (X̂, x̂) is a tangent
of X at x. The set of pointed isometry classes of tangents at x is denoted by
Tan(X,x).

If f : X → Y is a Lipschitz map taking values in a complete, doubling metric
space (Y, ρ) with y = f(x), then the sequence of Lipschitz maps

f : (X,λjd, x) → (Y, λjρ, y)

has a subsequence that converges to a Lipschitz map

f̂ : (X̂, x̂) → (Ŷ , ŷ),

where (Ŷ , ŷ) ∈ Tan(Y, y). We will repeatedly use the �hat" notation for tangents
and tangent maps. Note that if we �rst �x (X̂, x̂) ∈ Tan(X,x), then by passing to
further subsequences, we may �nd a corresponding (Ŷ , ŷ) ∈ Tan(Y, y) and tangent
map f̂ : X̂ → Ŷ . The set of tangents and mappings obtained in this way, up to
isometric equivalence, is denoted by Tan(X,x, f).

Remark 2.1. When Y = Rn is a �nite-dimensional Euclidean space, we always
identify (Ŷ , ŷ) with (Rn, 0) in the canonical way, so that f̂(x) = 0. In this way,
tangent maps behave like derivatives in the classical sense.
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2.2. Lipschitz di�erentiability spaces. In the seminal paper [16], Cheeger in-
troduced a type of di�erentiable structure for real-valued Lipschitz functions on
metric measure spaces. He showed that a large class of metric measure spaces, the
so-called �PI spaces� (those which are doubling and have a Poincaré inequality in
the sense of [27]), support such a structure.

The following de�nition is due to Cheeger [16].

De�nition 2.2. A metric measure space (X, d, µ) is called a Lipschitz di�erentia-
bility space if it satis�es the following condition. There are countably many Borel
sets (�charts�) Ui covering X, positive integers ni (the �dimensions of the charts�),
and Lipschitz maps φi : X → Rni with respect to which any Lipschitz function
f : X → R is di�erentiable almost everywhere, in the sense that for each i and for
µ-almost every x ∈ Ui, there exists a unique ∇f(x) ∈ Rni such that

(2.1) lim
y→x

|f(y)− f(x)−∇f(x) · (φi(y)− φi(x))|
d(x, y)

= 0.

Here ∇f(x) · (φi(y)− φi(x)) denotes the standard scalar product in Rni .

Note that the Borel measurability of the function x ↦→ ∇f(x) and the set of
di�erentiability points of f are consequences of this de�nition; see [4, Remark 1.2].
In recent years, the study of Lipschitz di�erentiability spaces in their own right has
become an active area of research, and we refer the reader to [16, 32, 17, 36, 1, 23,
2, 3, 18] for more background.

If (X, d) is doubling, it is natural to rephrase (2.1) in terms of tangents. Letting
df(x) ∈ Hom(Rn,R) be the dual functional to ∇f(x), the asymptotic in (2.1) is
equivalent to the following condition. If (X̂, x̂) ∈ Tan(X,x) and we have associated
tangent mappings f̂ : X̂ → R and φ̂ : X̂ → Rn to f and φ, respectively, then f̂

factors through Rn via f̂ = df(x) ◦ φ̂.
A similar factorization works for any Lipschitz map f : X → RN into a Euclidean

space, simply by considering the coordinate functions for f . Namely, if (U, φ) is an
n-dimensional chart in X, then for almost every x ∈ U , there is a unique linear
map Df(x) ∈ Hom(Rn,RN ) such that for every (X̂, x̂) ∈ Tan(X,x), any tangent
map f̂ : X̂ → RN factors through Rn via

f̂ = Df(x) ◦ φ̂.

Not surprisingly, the rows of the matrix for Df(x) are simply the gradients ∇fi(x)
of the coordinate functions f = (f1, . . . , fN ).

Recently, there has been much interest in understanding the geometric structure
of tangents of Lipschitz di�erentiability spaces. One result in this vein is due to
Cheeger�Kleiner�Schioppa [18], and it will be important for us below. First, another
piece of terminology.

A Lipschitz map f : X → Y between two metric spaces is called a Lipschitz
quotient if it is Lipschitz and there exists c > 0 such that

B(f(x), cr) ⊂ f(B(x, r))

for all x ∈ X and r > 0. The supremum of such constants c is called the co-Lipschitz
constant of f . Note that a Lipschitz quotient map is clearly surjective.

We say that f is ametric submersion if it is both 1-Lipschitz and has co-Lipschitz
constant c = 1.
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Proposition 2.3 ([18], Theorem 1.12). Let (X, d) be a complete, doubling met-
ric space, and let µ be a Radon measure on X such that (X, d, µ) is a Lipschitz
di�erentiability space. Let (U, φ) be an n-dimensional chart in X.

Then for µ-almost every x ∈ U , there is a norm ∥ · ∥x on Rn with the following

property. For every (X̂, x̂) ∈ Tan(X,x) with tangent map φ̂ : X̂ → Rn, the mapping

φ̂ is a metric submersion onto (Rn, ∥ · ∥x).
In particular, the mapping φ̂ is a Lipschitz quotient onto Rn with its standard

Euclidean metric.

The statement about Lipschitz quotients in Proposition 2.3 already appeared in
earlier (independent) work of Schioppa (Theorem 5.56 in [45, 44]) and the �rst-
named author [23, Corollary 5.1]. This statement alone is enough for the applica-
tion to our main result, Theorem 1.4. We state the stronger version about metric
submersions only for the applications in Section 3.2 below.

As Cheeger observed, a consequence of the surjectivity of φ̂ provided by Propo-
sition 2.3 is the following result.

Corollary 2.4. Let (U, φ) be an n-dimensional chart in a complete, metrically
doubling Lipschitz di�erentiability space (X, d, µ), and suppose that F : X → RN is
a bi-Lipschitz embedding. Then for µ-almost every x ∈ U , the set Tan(F (X), F (x))
consists of one element, canonically isometric to a �xed n-dimensional linear sub-
space of RN .

For a set E ⊂ RN and a point x ∈ E, to say that each element of Tan(E, x) is
canonically isometric to Ê ⊂ RN means that, whenever λj → ∞ and

(λj(E − x), 0)

converges in the pointed Hausdor� sense in RN , the limit is (Ê, 0). This is stronger
than saying that Tan(E, x) consists only of one element, and hence Cheeger [16,
Section 14] uses the phrase �unique in the strong sense� for this.

Proof of Corollary 2.4. We give a brief sketch of the proof, whose details can be
found in Theorem 14.1 of [16] or Corollary 8.1 of [23].

Let Y = F (X) ⊂ RN . Consider a point x ∈ X at which Proposition 2.3
applies, and at which F is di�erentiable with derivative DF (x) : Rn → RN . Let
y = F (x) and consider any tangent (Ŷ , ŷ) ∈ Tan(Y, y), which we can view as a
pointed Hausdor� limit of rescalings of Y − y in RN . By passing to subsequences,
we may obtain an associated tangent (X̂, x̂) ∈ Tan(X,x) along with associated
tangent mappings φ̂ : X̂ → Rn and F̂ : X̂ → Ŷ ⊂ RN . Note that F̂ is a bi-Lipschitz
homeomorphism onto Ŷ . In addition, φ̂ is surjective by Proposition 2.3.

Di�erentiability implies that F̂ factors as DF (x) ◦ φ̂. Since F̂ is bi-Lipschitz,
DF (x) must be injective. It follows from this and the surjectivity of φ̂ that

Ŷ = F (X̂) = DF (x) ◦ φ̂(X̂) = DF (x)(Rn),

which is a �xed n-dimensional linear subspace of RN . �

Corollary 2.4 is precisely the statement used in the Bonk�Kleiner proof of The-
orem 1.3. As discussed above, it is this result that we must generalize to Carnot
group targets.
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2.3. Carnot groups. Here we give some brief background on Carnot groups. For
more, we refer the reader to [41] or [15, Section 2].

A Carnot group is a simply connected nilpotent Lie group G whose Lie algebra
g admits a strati�cation

g = V1 ⊕ · · · ⊕ Vs,

where the �rst layer V1 generates the rest via Vi+1 = [V1, Vi] for all 1 ≤ i ≤ s,
and we set Vs+1 = {0}. The exponential map exp: g → G is a di�eomorphism, so
choosing a basis for g gives exponential coordinates for G. Equipped with any left-
invariant Riemannian metric, G is complete and the Lie exponential map coincides
with the Riemannian exponential map. For each x ∈ G, we will use Lx : G → G to
denote the left multiplication map y ↦→ xy.

A natural family of automorphisms of G are the dilations δλ : G → G, for λ > 0.
On the Lie algebra level, these are de�ned by

(2.2) v ↦→ λiv, for v ∈ Vi,

and one can see that this gives a Lie algebra isomorphism. Conjugating this back
to G by the exponential map gives δλ.

On any Carnot group G, there are metrics that interact nicely with the transla-
tions and dilations, in the sense that each Lx is an isometry and δλ scales distances
by the factor λ.

De�nition 2.5. A metric d : G × G → R≥0 is called a homogeneous distance if it
induces the manifold topology of G, it is left-invariant, ie,

d(xy, xz) = d(y, z) for all x, y, z ∈ G,

and it is 1-homogeneous with respect to the dilations δλ de�ned above:

d(δλ(x), δλ(y)) = λd(x, y) for all λ > 0 and x, y ∈ G.

For example, given an inner product on the horizontal layer V1, the associated
(sub-Riemannian) Carnot�Carathéodory metric dcc is a homogeneous distance.

Remark 2.6. It is a simple fact that, for any two homogeneous distances d1, d2 on G,
the identity map (G, d1) → (G, d2) is a bi-Lipschitz homeomorphism. In particular,
a curve is recti�able in (G, d1) if and only if it is recti�able in (G, d2).

Let d be a homogeneous distance on G, and let µ be the associated Hausdor�
measure, so that (G, d, µ) is a metric measure space. The left-invariance and 1-
homogeneity of d easily imply that (G, d, µ) is Ahlfors regular. Another consequence
is that every tangent to any point in (G, d) is isometric to (G, d, 0) itself, much like
tangents of �nite-dimensional Euclidean spaces. As we did for those, we will identify
any (Ĝ, x̂) ∈ Tan(G, x) with (G, 0). Similarly, if E is a closed subset of a Carnot
group G, then any tangent of E can be viewed as a pointed Hausdor� limit of
pointed rescalings of E in G and identi�ed with a pointed closed subset (Ê, 0) of
G. The terminology, used in Rn in Corollary 2.4, that tangents can be �canonically
isometric� to subsets of G, therefore also makes sense in Carnot groups. Namely, we
say that each element of Tan(E, x) is canonically isometric to Ê ⊂ G if, whenever
λj → ∞ and

(δλj
(L−x(E)), 0)

converges in the pointed Hausdor� sense, the limit is (Ê, 0).
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For the remainder of this section, we equip G with a �xed homogeneous distance
d and its corresponding Hausdor� measure. We can then talk about Lipschitz func-
tions on G or Lipschitz mappings between Carnot groups. Note that the collection
of such maps does not depend on the chosen homogeneous distance.

Lipschitz mappings between Carnot groups admit a form of di�erentiation more
robust than that discussed in the previous subsection, one which takes into account
the group structure.

Theorem 2.7 (Pansu [43]). Let f : G1 → G2 be a Lipschitz map between Carnot
groups. Then for almost every x ∈ G1, the sequence of maps

δλ ◦ (Lf(x)−1 ◦ f ◦ Lx) ◦ δλ−1

converges uniformly on compact sets, as λ → ∞, to a Lie group homomorphism
Df(x) : G1 → G2 that commutes with the dilations.

The following is an immediate consequence of Pansu's theorem, in the case that
G2 = R. Let n = dim(V1) be the vector space dimension of the horizontal layer of
g. There is a natural �horizontal projection�

π : G → V1 ≃ Rn

obtained by composing exp−1 with the vector space projection P : g → V1. If
f : G → R is a Lipschitz function, then for almost every x ∈ G, the mapping Df(x)
factors as Df(x) = A ◦ π, where A : V1 → R is linear.

The following lemma summarizes the additional basic properties of π that we
will need below.

Lemma 2.8. Let G be a Carnot group whose horizontal layer V1 has dimension n,
and let π : G → V1 ≃ Rn be the associated horizontal projection.

(i) G is a Lipschitz di�erentiability space with n-dimensional chart (G, π).
(ii) π is a group homomorphism.
(iii) π commutes with dilations: π(δλ(x)) = λπ(x).
(iv) For all x ∈ G, every element of Tan(G, x, π) is isometric to (G, 0, π).
(v) π is a Lipschitz quotient map onto V1 ≃ Rn.
(vi) If γ : [0, 1] → G is a non-constant Lipschitz curve, then π ◦ γ is non-constant.
(vii) If γ : [0, 1] → V1 is a Lipschitz curve and x ∈ π−1(γ(0)), then there is a unique

Lipschitz curve γ̃ : [0, 1] → G such that π(γ̃(t)) = γ(t) and γ̃(0) = x.

Proof. That G is a Lipschitz di�erentiability space follows from the fact that all
Carnot groups are PI spaces ([29], [27]) as well as Cheeger's theorem that all PI
spaces are Lipschitz di�erentiability spaces [16]. That π : G → Rn serves as a
global chart can be deduced from Pansu's theorem and the fact that for every
group homomorphism L : G → R that commutes with dilations, there is a linear
map A : V1 → R such that L = A ◦ π. Here we use that π is, in fact, a Lipschitz
map.

The Baker�Campbell�Hausdor� formula shows that π is a group homomorphism.
Indeed,

π(xy) = P (exp−1(xy)) = P (exp−1(x) + exp−1(y) + v),

where v ∈ [g, g] = V2 ⊕ · · · ⊕ Vs. Thus,

π(xy) = P (exp−1(x)) + P (exp−1(y)) = π(x) + π(y).
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That π commutes with the dilations on G and V1 follows directly from the fact
that dilations act on V1 by simple scalings, as in (2.2). Part (iv) then follows
immediately from parts (ii) and (iii).

Part (v) can be seen as follows. First of all, by Remark 2.6, it su�ces to assume
that d = dcc. By translation and dilation invariance, it further su�ces to show
that π(B(0, 1)) contains an open ball around 0 in V1 ≃ Rn. Each element v1 ∈
BV1

(0, 1) ⊆ V1 gives rise to an element x ∈ B(0, 1) by exponentiating v1⊕0⊕ ...⊕0.
Since π(x) = v1, we see that π(B(0, 1)) ⊇ BV1(0, 1).

Part (vi) is immediate from the de�nition of the Carnot�Carathéodory metric
and Remark 2.6.

Finally, Property (vii) follows from [46, Proposition 2.3], using that γ is abso-
lutely continuous. To show that the lift γ̃ is Lipschitz, and not just absolutely
continuous, one should use the fact that the horizontal derivative of γ̃(t) coincides
almost everywhere with the derivative of γ(t), and so is essentially bounded. �

We saw in Corollary 2.4 that tangents of Lipschitz di�erentiability spaces embed-
ded in Euclidean space are themselves just Euclidean subspaces. For the appropri-
ate generalization to Lipschitz di�erentiability spaces embedded in Carnot groups,
we need the correct notion of a Carnot subgroup. This is given by the following
de�nition.

De�nition 2.9. Let G be a Carnot group with Lie algebra g and horizontal layer
V1 ⊆ g. Let V ⊂ V1 be a vector subspace, and let h ⊂ g be the strati�ed Lie
sub-algebra generated by V . The homogeneous subgroup H = exp(h) ⊂ G is called
the Carnot subgroup generated by V .

Note that H is itself a Carnot group, and any homogeneous metric d on G
restricts to a homogeneous metric on H. Moreover, H is recti�ably connected in
this restricted metric.

3. Symmetric spaces and Gromov hyperbolic groups

Let X be a non-compact rank-one symmetric space, so that X = Hn
R, Hn

C, Hn
Q,

or H2
O for some n ≥ 2, where Q and O denote the quaternion and octonion division

algebras. As a convention, we normalize the Riemannian metric on X to have
maximal sectional curvature equal to −1. With the induced length metric dX ,
the metric space (X, dX) is therefore CAT(−1). We remind the reader that X is
homogeneous and isotropic, so Isom(X) acts transitively on the unit tangent bundle
of X.

For Γ a discrete group, an isometric and properly discontinuous action Γ y X is
said to be convex-cocompact if there is a convex, Γ-invariant subset C(Γ) ⊂ X with
C(Γ)/Γ compact. This is equivalent to the seemingly weaker property that, for any
point p ∈ X, the orbit map g ↦→ g(p) gives a quasi-isometric embedding of Γ into
X (cf. [9, Section 1.8] and [24, Section 3]). As C(Γ) is Gromov hyperbolic, the
�varc�Milnor lemma implies that Γ is necessarily a �nitely-generated hyperbolic
group. From now on, we will always assume that Γ is non-elementary, ie, is not
�nite and not virtually cyclic.

3.1. Visual boundaries of rank-one symmetric spaces. Let ∂X denote the
visual boundary of X, which is a topological sphere of dimension dimR(X) − 1.
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There are two natural classes of metrics on this boundary on which we focus. First,
the visual metrics on ∂X are de�ned by

dp(x, y) = e−(x,y)p for x, y ∈ ∂X

for any p ∈ X, where (x, y)p is the Gromov product of x and y based at p [9,
Section 2.5]. Every element of Isom(X) extends to a homeomorphism of ∂X that
is Möbius with respect to any visual metric.

The parabolic visual metrics are similar but are better suited to the parabolic
models for X. Namely, for any ω ∈ ∂X and q ∈ X, de�ne

dω,q(x, y) = e−(x,y)ω,q , for x, y ∈ ∂X\{ω}

where
(x, y)ω,q = lim

p→ω
((x, y)p − dX(p, q))

is a limit taken along a geodesic ray in X that is asymptotic to ω. This is a metric
on ∂X\{ω}, which is obtained as a limit of rescaled visual metrics dp, as p tends
toward ω non-tangentially. We refer the reader to [7, Section 2] for details, noting
that the de�nition we give for (x, y)ω,q is a consequence of [7, Lemma 2.1].

Each visual metric is Möbius equivalent to each parabolic visual metric on their
common domains [7, Lemma 2.3]. An immediate consequence is that any two
parabolic visual metrics are Möbius equivalent on their common domains. More-
over, for �xed ω ∈ ∂X, the metrics dω,q and dω,q′ di�er by a scalar multiple for
any q, q′ ∈ X. This follows from the fact that limp→ω (dX(p, q)− dX(p, q′)) exists.
These two metrics coincide precisely when q and q′ lie on the same horosphere based
at ω.

We should note that the above discussion holds equally well for boundaries of
CAT(−1)metric spaces. The important point for us is that, whenX is non-compact
rank-one symmetric, the boundary has much additional structure. Namely, given
a point ω ∈ ∂X, there is a natural identi�cation of ∂X\{ω} with a Carnot group
G. Here, the horizontal distribution on G arises from vectors that are tangent to
the lines and circles in ∂X\{ω} formed by isometric copies of H2

R in X. More-
over, the subgroup of Isom(X) that �xes ω corresponds to the collection of a�ne
transformations of G. In particular, this includes all left translations and dilations.

Lemma 3.1. Each parabolic visual metric dω,q is a homogeneous distance on G =
∂X\{ω}.

Proof. That dω,q induces the Euclidean topology is a direct consequence of the
standard fact that any visual metric dp induces the spherical topology on ∂X. The
other two properties are consequences of the identity

dω,g(q)(g(x), g(y)) = dω,q(x, y) for x, y ∈ ∂X\{ω}

whenever g ∈ Isom(X) �xes ω.
Indeed, every left translation of ∂X\{ω} is the boundary map of some element

g ∈ Isom(X) that �xes ω and preserves the horospheres in X that are based at ω.
As g(q) and q lie on the same horosphere, we have dω,g(q) = dω,q, which shows that
dω,q is left-invariant.

Similarly, every dilation δλ of ∂X\{ω} is the boundary map of some element
g ∈ Isom(X) that acts as a translation by distance log λ along a geodesic in X that
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is asymptotic to ω. This means that

lim
p→ω

(dX(p, q)− dX(p, g(q))) = log λ,

so we obtain dω,g(q) = λdω,q. This shows that dω,q is 1-homogeneous. �

Remark 3.2. Identifying ∂X\{ω} with a horosphere in X based at ω, one can
obtain a sub-Riemannian Carnot�Carathéodory metric on ∂X\{ω} as a limit of
Riemannian metrics (cf. [14]). In general, the parabolic visual metrics dω,q are not
geodesic, and so will not coincide with the sub-Riemannian metric. However, the
parabolic visual metrics are better suited for our work in Section 5.

We should note that the more general identity

dg(ω),g(q)(g(x), g(y)) = dω,q(x, y) for x, y ∈ ∂X\{ω}

holds for any g ∈ Isom(X). Using that Isom(X) acts transitively on the unit tangent
bundle of X, for any two pairs ω, ω′ ∈ ∂X and q, q′ ∈ X, there is g ∈ Isom(X)
with g(ω) = ω′ and g(q) = q′. Thus, the parabolic boundaries (∂X\{ω}, dω,q) and
(∂X\{ω′}, dω′,q′) are isometrically equivalent.

We therefore consider the Carnot group G, equipped with any parabolic metric
d = dω,q, to be a model for the local geometry of (∂X, dp). By our discussion
above, it is clear that (G, d) is Möbius equivalent to (∂X\{ω}, dp), regardless of the
choice of ω ∈ ∂X. In particular, this means that (∂X, dp) is locally bi-Lipschitz
equivalent to (G, d), so it is also locally bi-Lipschitz equivalent to G equipped with
any homogeneous distance.

Of course, the Carnot groups that locally model boundaries of non-compact rank-
one symmetric spaces are a special sort. They are either Euclidean, Heisenberg, or
of �Heisenberg type":

(i) if X = Hn
R, then G = Rn−1 is Euclidean space;

(ii) if X = Hn
C, then G = Hn−1

C is the n-th Heisenberg group;
(iii) if X = Hn

Q, then G = Hn−1
Q is the n-th quaternionic Heisenberg group;

(iv) if X = H2
O, then G = H1

O is the �rst octonionic Heisenberg group.
Together, these Carnot groups form the class of Iwasawa groups. In each case,
isometries of X act on ∂X by conformal maps, ie smooth maps for which the
restriction of the derivative to the horizontal layer is a similarity. For Hn

R this is
classical, and the boundary action is by (classical) Möbius transformations; for Hn

C,
this is shown in [37, p. 328]; the other cases follow from [43, Corollary 11.2] and
[15, Corollary 7.2].

If Γ y X is a convex-cocompact action with Γ non-elementary, the limit set
Λ(Γ) ⊂ ∂X is de�ned to be the visual boundary of any convex, Γ-invariant subset
C(Γ) ⊂ X for which C(Γ)/Γ is compact. Equivalently, if p ∈ X is any point, Λ(Γ)
is the image of the boundary map ∂Γ → ∂X induced by the quasi-isometric orbit
embedding Γ → X. In particular, Λ(Γ) is a closed subset, and the Möbius action
Γ y ∂X leaves Λ(Γ) invariant. Thus, we obtain a natural Möbius action Γ y Λ(Γ),
when we equip Λ(Γ) with the restriction of any visual metric on ∂X. It is known
that the corresponding Hausdor� measure is Ahlfors regular [9, Section 2.7].

3.2. Boundaries of Gromov hyperbolic groups. Much of the content of this
subsection is background and will not be needed in the remainder of the paper.
However, we believe it should be recorded in the literature, and some of it is needed
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in the proof of our main result. For further background and terminology about
Gromov hyperbolic groups, we refer the reader to [8].

Let Γ be a non-elementary Gromov hyperbolic group, by which we mean in par-
ticular that Γ is �nitely-generated. The visual boundary ∂Γ is perfect and compact,
and it admits a collection of visual Gromov metrics, each of which is Ahlfors reg-
ular [21]. Any two such metrics are quasisymmetrically equivalent. Moreover, the
action of Γ on itself by left multiplication extends naturally to a boundary action
Γ y ∂Γ that is uniformly quasi-Möbius (with linear distortion function η(t)) with
respect to any visual Gromov metric [35, Section 6].

We will use JAR(∂Γ) to denote the Ahlfors regular conformal gauge of ∂Γ that
contains these metrics, ie, the collection of all Ahlfors regular metric spaces qua-
sisymmetric to ∂Γ. By de�nition,

conf.dimAR(∂Γ) = inf{Hdim(Z) : Z ∈ JAR(∂Γ)}.
Many quasi-isometric uniformization statements about Γ boil down to �nding a
highly regular metric in JAR(∂Γ). The following gives a list of equivalent notions
for �highly regular." In what follows, all of the metric spaces that appear will be
Ahlfors regular, and we endow them with the corresponding Hausdor� measure.

The following result is surely known to experts, but we include it as a useful
summation. The de�nitions of Poincaré inequalities and Loewner spaces can be
found in [27] or [26].

Theorem 3.3. For Z ∈ JAR(∂Γ) of Hausdor� dimension Q > 1, the following are
equivalent.

(i) Z admits a (1, p)-Poincaré inequality for some p ≥ 1.
(ii) Z is a Lipschitz di�erentiability space.
(iii) Z has Ahlfors regular conformal dimension equal to Q.
(iv) Z is a Q-Loewner space.
(v) Z admits a path family of positive p-modulus for some p ≥ 1.

Proof. As Z is in JAR(∂Γ) and has Hausdor� dimension Q, it is Ahlfors Q-regular.
We �rst show that properties (i) through (iv) are equivalent.

The implication (i) implies (ii) is a consequence of the main theorem of Cheeger
in [16], using the fact that Z is Ahlfors regular and hence a doubling metric measure
space.

To see that (ii) implies (iii), we �rst note that [18, Theorem 1.15] shows that Z
has a tangent Ẑ that admits an Alberti representation supported on geodesic lines.
(Here, Ẑ is also Ahlfors Q-regular, so we use the corresponding Hausdor� measure.)
We refer the reader to [18] for the de�nition of an Alberti representation; all we
will need is the fact that the geodesic lines in the support of this Alberti represen-
tation constitute a path family in Ẑ that has positive 1-modulus. Restricting these
geodesics to their intersections with a large �xed ball in Ẑ gives a path family of
positive 1-modulus inside of a compact set. By Hölder's inequality, this path family
has positive Q-modulus as well. It now follows from [40, Proposition 4.1.8], and
the fact that Z itself is Ahlfors Q-regular, that Z has Ahlfors regular conformal
dimension equal to Q.

That (iii) implies (iv) is a consequence of [8, Theorem 1.3] (and the remark
following the statement of that theorem).

Since Z is Ahlfors Q-regular, property (iv), that Z is Q-Loewner, implies that
Z has a (1, Q)-Poincaré inequality and hence property (i) [27, Theorem 5.12].
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It remains to show that (v) is equivalent to the other properties. Of course,
property (iv) implies the existence of a path of positive Q-modulus and hence
property (v). On the other hand, if Z admits a path family with positive p-modulus
for some p ≥ 1, then [33, Theorem 4.0.5] shows that Z has a tangent with a path
family of positive 1-modulus, hence of positive Q-modulus as above. It then follows
from [40, Corollary 6.1.8] that Z has Ahlfors regular conformal dimension equal to
Q, ie, that (iii) holds. �

Remark 3.4. When Γ y X is a convex-cocompact action on a non-compact rank-
one symmetric space X, as in the previous subsection, the boundary homeomor-
phism between ∂Γ and Λ(Γ) is quasisymmetric. As Λ(Γ) is Ahlfors regular, we have
Λ(Γ) ∈ JAR(∂Γ). Consequently,

Hdim(Λ(Γ)) ≥ conf.dimAR(Λ(Γ)) = conf.dimAR(∂Γ),

which is the inequality that appears in Theorems 1.3 and 1.4.
The case of equality Hdim(Λ(Γ)) = conf.dimAR(∂Γ) means precisely that con-

dition (iii) in Theorem 3.3 holds for Z = Λ(Γ) and Q = conf.dimAR(∂Γ). Thus, if
Q > 1, then the other conditions hold for Λ(Γ) as well.

On the other hand, if Q ≤ 1, there is only one possibility for the action Γ y X.
Indeed, since Q ≤ 1, the topological dimension of Λ(Γ) is either 0 or 1. If the
former, then ∂Γ also has topological dimension 0, and Γ is virtually a free group
by [31, Theorem 8.1]. This means that ∂Γ is a uniformly perfect Cantor set, which
is known to have Ahlfors regular conformal dimension equal to 0. Hence, Q = 0,
which implies that Λ(Γ) is �nite, and so Γ is elementary, a contradiction. Thus, the
topological dimension of Λ(Γ) must be equal to 1, which then means that Q = 1 as
well. Applying [7, Theorem 1.1] shows that Γ is virtually Fuchsian and the action
Γ y X stabilizes an isometric copy of H2

R in X.
These arguments justify our subsequent restriction to the case Q > 1 and our

phrasing of Theorem 1.3 above (which, in [8], is stated only for Q > 1).

In the remainder of the section, we make some general remarks about the types
of Lipschitz di�erentiability structures that can appear on boundaries of hyperbolic
groups.

Let Γ be a Gromov hyperbolic group with conf.dimAR(∂Γ) = Q > 1. If there
is Z ∈ JAR(∂Γ) that is a Lipschitz di�erentiability space, then Theorem 3.3 guar-
antees that dimH(Z) = Q. In other words, the Hausdor� dimension of any highly
regular metric on ∂Γ depends only on the quasi-isometry class of Γ. Being slightly
imprecise, one could simply refer to Q as the Hausdor� dimension of ∂Γ.

We claim that a similar statement holds for the dimension of the di�erentiability
structure. In fact, we can establish something stronger.

Lemma 3.5. (i) If Z ∈ JAR(∂Γ) is a Lipschitz di�erentiability space, then the
action Γ y Z, obtained by conjugating the boundary action Γ y ∂Γ by a
quasisymmetric homeomorphism between ∂Γ and Z, is ergodic with respect to
Q-dimensional Hausdor� measure.

(ii) If Z1, Z2 ∈ JAR(∂Γ) are Lipschitz di�erentiability spaces, then for any Borel
sets U1 ⊂ Z1, U2 ⊂ Z2 of positive measure, there are positive measure subsets
A1 ⊂ U1, A2 ⊂ U2 that are bi-Lipschitz equivalent.
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Proof. To verify (i), �rst note that Z is Ahlfors Q-regular and Q-Loewner by The-
orem 3.3. Let µ denote the Q-dimensional Hausdor� measure, which we may nor-
malize to have µ(Z) = 1.

The action Γ y Z is uniformly quasi-Möbius and, hence, uniformly quasiconfor-
mal: there is K < ∞ for which each g ∈ Γ acts as a K-quasiconformal homeomor-
phism of Z. Using that Z is Ahlfors Q-regular and Q-Loewner, this means that
each g ∈ Γ is absolutely continuous in measure [28, Corollary 8.15]. Hence, Γ y Z
is a measure-class preserving action. Ergodicity of such an action means, as usual,
that any Γ-invariant Borel set has measure 0 or 1.

To show this, we note that each g ∈ Γ has a uniform density property (in the sense
of [38, Section 6]) with uniform distortion control. Actually, we will use a slightly
di�erent property, but which is of the same spirit: there is a homeomorphism
φ : [0,∞) → [0,∞) such that

µ(g(E ∩B)) ≤ φ

(
µ(E ∩B)

µ(B)

)
for every g ∈ Γ, every Borel set E ⊂ Z, and every ball B ⊂ Z. A minor modi�cation
of the proof of [38, Theorem 6.3] shows this easily, once we remark that Z satis�es
a (1, p)-Poincaré inequality for some 1 < p < Q by the main result of [34].

Now, suppose that E ⊂ Z is a Γ-invariant Borel set with µ(E) < 1. Let ϵ > 0
be arbitrary, and let B ⊂ Z be a ball, centered at a point of density for Z\E, with
radius small enough that

φ

(
µ(E ∩B)

µ(B)

)
<

ϵ

2
.

By [6, Lemma 5.1], there are elements g ∈ Γ for which diam(Z\g(B)) is arbitrarily
small. In particular, we can �nd g ∈ Γ for which

µ(Z\g(B)) < ϵ/2.

Using that E is Γ-invariant, we have E = g(E) ⊂ g(E ∩B) ∪ (Z\g(B)), and thus

µ(E) ≤ µ(g(E ∩B)) + µ(Z\g(B)) < φ

(
µ(E ∩B)

µ(B)

)
+

ϵ

2
< ϵ.

As ϵ > 0 was arbitrary, we see that µ(E) = 0. Hence, Γ y Z is ergodic.
Let us now verify part (ii). Again, we know that Z1 and Z2 are both Ahlfors

Q-regular and Q-Loewner. Moreover, there is a quasisymmetric homeomorphism
f : Z1 → Z2, which is absolutely continuous in measure by [28, Corollary 8.15]. In
particular, the image f(U1) has positive measure in Z2. By part (i), the action
Γ y Z2 is ergodic, so there is g ∈ Γ for which g(f(U1)) ∩ U2 has positive measure.
Replacing f by the composition g ◦ f , we may suppose without loss of generality
that f(U1) ∩ U2 has positive measure. This also means that U1 ∩ f−1(U2) has
positive measure.

It is shown in [28, Section 10] that if f : Z1 → Z2 is a quasisymmetric homeo-
morphism between Ahlfors Q-regular, Q-Loewner spaces, then Z1 can be covered,
up to a set of measure zero, by Borel sets on which f is Lipschitz. In particular,
given any positive measure subset B ⊂ Z1, there is a positive measure set A ⊂ B
on which f is Lipschitz. Using the same argument for f−1, along with the fact that
f and f−1 preserve sets of measure zero, it is easy to see that we can actually �nd
a positive measure subset A ⊂ B on which f is bi-Lipschitz. Applying this fact to
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the set U1 ∩ f−1(U2) ⊂ Z1, we �nd a positive measure subset A1 ⊂ U1 ∩ f−1(U2)
on which f is bi-Lipschitz. Then set A2 = f(A1) ⊂ U2. �

An immediate consequence of Lemma 3.5(ii) is that there is a unique integer
k for which each chart in any Lipschitz di�erentiability space Z ∈ JAR(∂Γ) has
dimension k. It makes sense to call this integer the analytic dimension of ∂Γ, and
once again it depends only on the quasi-isometry class of Γ. Thus, in the case
that JAR(∂Γ) contains a Lipschitz di�erentiability space, there are three natural
well-de�ned dimensions to consider: the topological dimension of ∂Γ, the Hausdor�
dimension of ∂Γ, and the analytic dimension of ∂Γ.

At the same time, it should be quite rare for JAR(∂Γ) to contain a Lipschitz
di�erentiability space. Currently, the only known examples come from uniform
lattices in non-compact rank-one symmetric spaces and uniform lattices in certain
types of hyperbolic buildings [11]. It makes more sense to look for rigidity phenom-
ena for such groups Γ. One might expect the topological, Hausdor�, and analytic
dimensions of ∂Γ to function as characteristic quantities for rigidity.

There are some intimations toward this type of rigidity when Γ is a manifold
group. If Γ = π1(M) with M a closed, negatively curved Riemannian manifold,
of dimension at least 3, then the action by deck transformations Γ y M̃ on the
universal Riemannian cover has compact quotient. Rescaling the metric, we may
assume that the maximal sectional curvature of M̃ equals −1. The visual boundary
∂M̃ , equipped with any visual metric, is then in JAR(∂Γ).

If ∂M̃ has a path family of positive p-modulus for some p ≥ 1, then a theorem of
Connell shows that M̃ is isometric to a non-compact rank-one symmetric space ([20,
Theorem 4.3] for Patterson�Sullivan measures). This symmetric space is uniquely
determined by the topological and Hausdor� dimensions of ∂M̃ , as it is locally
modeled by an Iwasawa group. It is not clear, however, whether the same conclusion
holds if one assumes only that JAR(∂Γ) contains a Lipschitz di�erentiability space.

Finally, let us record an analog of the Patterson�Sullivan case in Connell's result
that uses some of the ideas we will see below.

Proposition 3.6. Let Γ y X be a convex-cocompact action on a CAT(−1) space
X with Hdim(Λ(Γ)) > 1. Suppose that Λ(Γ) admits a path family of positive p-
modulus for some p ≥ 1. Then every geodesic in X whose endpoints lie in Λ(Γ)
is contained in an isometrically embedded copy of H2

R in X for which the boundary
circle lies entirely in Λ(Γ).

In the setting of Connell's theorem, the action of Γ on X = M̃ is cocompact, so
the conclusion of Proposition 3.6 holds for all geodesics in M̃ . This means that M̃
has hyperbolic rank at least 1, and a powerful theorem of Hamenstädt then implies
that M̃ is symmetric [25].

Proof. By a theorem of Bourdon [10, Theorem 0.1], it su�ces to show that any
two points in Λ(Γ) can be joined by a Möbius circle that lies in Λ(Γ). As Möbius
circles in ∂X are closed under non-trivial limits, it actually su�ces to show that
for a dense set of points ω ∈ Λ(Γ), for every η ∈ Λ(Γ)\{ω}, there is a Möbius circle
in Λ(Γ) containing ω and η. Recall, though, that the boundary action Γ y Λ(Γ) is
Möbius, and the orbit of every point is dense. Thus, it su�ces to prove the previous
statement for a single point ω ∈ Λ(Γ). A natural rephrasing of this statement is
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that every η ∈ Λ(Γ)\{ω} is contained in an isometric copy of R in the parabolic
limit set (Λ(Γ)\{ω}, dω,q) for some q ∈ X. Let us prove this formulation.

By Theorem 3.3, we know that Λ(Γ) is a Lipschitz di�erentiability space. A
result of Cheeger�Kleiner�Schioppa, Theorem 2.3 above, guarantees that Λ(Γ) has
a tangent Y for which there is a metric submersion Y → (Rk, || · ||) onto a normed
space. A theorem of Bonk�Kleiner [7, Proposition 3.1] shows that there are points
ω ∈ Λ(Γ) and q ∈ X for which Y is isometrically equivalent to (Λ(Γ)\{ω}, dω,q).
Thus, there is a metric submersion

f : (Λ(Γ)\{ω}, dω,q) → (Rk, || · ||).

For η ∈ Λ(Γ)\{ω}, let ℓ be a geodesic line in Rk through f(η), e.g., the line in the
�rst coordinate direction. By Lemma 4.3 below, there is a lift of ℓ to a geodesic
line in Λ(Γ)\{ω} that contains η, as desired. �

It is desirable to understand better the global geometry of X that can arise in
this setting, even in the case that Γ y X is cocompact. One can consider Theorem
1.4 to be a description of what happens when the ambient space X is not only
CAT(−1) but is in fact symmetric.

4. Tangents of Lipschitz differentiability spaces in Carnot groups

The main result of this section is Theorem 4.1, which essentially shows that
if a Lipschitz di�erentiability space lies inside a Carnot group, then its tangents
are Carnot subgroups. Theorem 4.1 is an important piece in the proof of Theo-
rem 1.4, but also has other interesting non-embedding consequences for Lipschitz
di�erentiability spaces, as explained in subsection 4.1.

Let G be a Carnot group, and let d be a homogeneous distance on G. Let
X ⊂ G be a subset for which there is a Radon measure µ on X for which (X, d, µ)
is a Lipschitz di�erentiability space. Recall the de�nition of Carnot subgroups given
in De�nition 2.9. Note that X is automatically metrically doubling, as a subset of
the metrically doubling space G.

Theorem 4.1. Let (U, φ) be a k-dimensional chart for X, and assume that for

almost every x ∈ U , each (X̂, x̂) ∈ Tan(X,x) is recti�ably connected. Then for
almost every x ∈ U , the set Tan(X,x) consists of one element, which is canonically
isometric to a Carnot subgroup of G generated by a �xed k-dimensional subspace of
the horizontal layer of G.

Remark 4.2. If (X, d, µ) is a PI space (ie, is doubling and satis�es a Poincaré
inequality in the sense of [27]), then the assumption that each (X̂, x̂) ∈ Tan(X,x)
is recti�ably connected can be omitted in Theorem 4.1. This is because each element
of Tan(X,x) will be quasiconvex and hence recti�ably connected. Thus Theorem
1.5 from the introduction, which is the only case of Theorem 4.1 needed for the
proof of Theorem 1.4, follows immediately.

The assumption that each tangent is recti�ably connected in Theorem 4.1 can
also be omitted if (X, d, µ) is a RNP Lipschitz di�erentiability space, in the sense
of [2]. This follows from Corollary 9.4 of [2].

The following path lifting lemma for Lipschitz quotients is taken from [5, Lemma
4.4] (equivalently [30, Lemma 2.2]). Although stated there only for Euclidean do-
mains, the proof works equally well in the context below. Recall that a metric space
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is proper if each closed ball in the space is compact. Every complete, doubling met-
ric space is proper.

Lemma 4.3. Let X be a proper metric space and Y a metric space. Let F : X → Y
be a Lipschitz quotient with co-Lipschitz constant c > 0, and let γ : [0, T ] → Y
be a 1-Lipschitz curve with γ(0) = F (x). Then there is a (1/c)-Lipschitz curve
γ̃ : [0, T ] → X such that γ̃(0) = x and F ◦ γ̃ = γ.

We now let π : G → V1 ≃ Rn be the global di�erentiability chart for G, and
let π = (π1, . . . , πn) denote its coordinates. Recall that (U, φ : X → Rk) is a
di�erentiability chart for the space (X, d, µ) contained in G.

Lemma 4.4. The set U can be covered by a �nite number of charts, with chart
maps of the form

(πi1 , . . . , πik) : X → Rk

for some choice of k distinct indices i1, . . . , ik.

Proof. Let ι : X ↪→ G be the inclusion map, which is an isometry. Post-composing
with π : G → Rn gives a Lipschitz map from X to Rn, which can be di�erentiated
with respect to the chart φ : X → Rk for U . Thus, for almost every x ∈ U , there is
a unique linear map

Dι(x) : Rk → Rn

for which

(4.1) π(y)− π(x) = Dι(x)(φ(y)− φ(x)) + o(d(x, y)), y ∈ X.

For almost every x ∈ U , if (X̂, x̂) ∈ Tan(X,x), then the corresponding tangent
maps φ̂ : X̂ → Rk and ι̂ : X̂ → G satisfy

π ◦ ι̂ = Dι(x) ◦ φ̂.

Here, we consider X̂ as a subset of G, so that ι̂ is just the inclusion map again.
Moreover, φ̂ : X̂ → Rk is a Lipschitz quotient mapping.

Consider any non-zero vector v ∈ Rk. By Lemma 4.3, there is a Lipschitz curve
ℓ : [0, 1] → X̂ ⊂ G with

φ̂ ◦ ℓ(t) = tv.

In particular, we have

π ◦ ℓ(t) = Dι(x)(tv) = t ·Dι(x)(v).

Since ℓ is a non-constant curve in G, it must be that π ◦ ℓ is non-constant (Lemma
2.8(vi)). Hence, Dι(x)(v) ̸= 0. As v was arbitrary, we conclude that Dι(x) is
injective, and in particular that k ≤ n.

Given i1 < · · · < ik ∈ {1, . . . , n}, let Ui1,...,ik denote the subset of U on which
the k × k minor of (Dι)(x) de�ned by the coordinates i1, . . . , ik is invertible. Note
that almost every x ∈ U is in some such set, since (Dι)(x) is injective for almost
every x ∈ U . For x ∈ Ui1,...,ik , let A(x) : Rn → Rk be the unique linear mapping
with

(4.2) ker(A) = span({e1, . . . , en} \ {ei1 , . . . , eik})

such that

(4.3) A(x) · (Dι)(x) = Idk.
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Applying (4.3) to equation (4.1), we see that

(4.4) φ(y)− φ(x) = A(x) · (π(y)− π(x)) + o(d(x, y)), y ∈ X.

From (4.4) and (4.2), it follows that a Lipschitz function f : X → R that is di�er-
entiable with respect to φ at x ∈ Ui1,...,ik , with unique derivative, is di�erentiable
with respect to the restrictions (πi1 |X , . . . , πik |X) with unique derivative.

Hence, these form a k-dimensional chart map for Ui1,...,ik . �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Using the previous lemma, and passing to subsets, we
may assume without loss of generality that U has chart map

(π1, . . . , πk) : X → Rk ⊂ Rn.

For almost every x ∈ U , we know that the other coordinates πk+1, . . . , πn are linear
combinations of π1, . . . , πk, up to �rst order on X near x. Fix such a point x, and
assume also that every (X̂, x̂) ∈ Tan(X,x) is recti�ably connected and all tangent
maps (π̂1, . . . , π̂k) : X̂ → Rk are Lipschitz quotients. By assumption, such points
form a set of full measure in U .

Fix (X̂, x̂) ∈ Tan(X,x). We canonically identify X̂ with a closed subset of
G that is a limit of rescalings of L−x(X), with x̂ = 0 and π̂i = πi. Moreover,
as the coordinates πk+1, . . . , πn were linear combinations of π1, . . . , πk, up to �rst
order on X near x, we see that πk+1|X̂ , . . . , πn|X̂ are precisely linear combinations
of π1|X̂ , . . . , πk|X̂ on X̂. In particular, there is an injective linear transformation
A : Rk → Rn for which

p := π|X̂ = A ◦ (π1, . . . , πk).

Let V = p(X̂) = A(Rk) be the corresponding linear subspace of Rn ≃ V1. It is a
k-dimensional subspace because (π1, . . . , πk) : X̂ → Rk is surjective by the Lipschitz
quotient property and A is injective. Furthermore, the map p : X̂ → V is a Lipschitz
quotient.

We claim that X̂ is the Carnot subgroup of G generated by V ⊂ Rn. First, we
show that it is a subgroup. Let y, z ∈ X̂, and let γ be a recti�able curve in X̂
from 0 to z, so that p ◦ γ is a recti�able curve in V from 0 to p(z). Consider the
recti�able curve Ly ◦ γ, which joins y to yz in G. As

π ◦ Ly ◦ γ = Lπ(y) ◦ π ◦ γ = Lp(y) ◦ p ◦ γ,

we see that Ly ◦γ is the unique horizontal lift through π of the curve Lp(y) ◦p◦γ to
G, starting at y (recall the uniqueness in Lemma 2.8(vii)). Note that Lp(y) ◦ p ◦ γ
is a recti�able curve in V , as Lp(y) preserves this subspace. Applying Lemma 4.3
to the Lipschitz quotient p : X̂ → V , we obtain a lift of Lp(y) ◦ p ◦ γ to a recti�able
curve in X̂ beginning at y. This lift through p is also a lift through π, and by
uniqueness of horizontal lifts to G, the two lifts must coincide. Hence, Ly ◦ γ is
contained in X̂; in particular, its endpoint yz is in X̂.

Similar arguments show that X̂ is closed under inversion and dilation. If y ∈ X̂,
then let γ be a recti�able curve in X̂ from 0 to y. Note that Ly−1 ◦ γ is also
recti�able in G. The reversal of this curve is therefore the unique lift of the reversal
of −π(y)+ π ◦ γ to G that begins at 0. As −π(y)+ π ◦ γ is a recti�able curve in V ,
the Lipschitz quotient property of p ensures that this lift lies in X̂. In particular,
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y−1 ∈ X̂. Finally, if δλ is a dilation for G, then δλ ◦ γ is again a horizontal curve in
G. As

π ◦ δλ ◦ γ = λ · π ◦ γ = λ · p ◦ γ
is a recti�able curve in V , its unique horizontal lift to G that starts at 0 is δλ ◦ γ.
By the Lipschitz quotient property for p, this lift must be in X̂, so δλ(y) ∈ X̂.

Thus we �nd that X̂ = H is a homogeneous subgroup of G that is recti�ably
connected. In particular, it is a closed Lie subgroup with Lie algebra h ⊂ g for
which H = expG(h). Moreover, the k-dimensional subspace V = p(H) ⊂ V1 that
we found earlier is precisely h ∩ V1. Let h∗ ⊂ h denote the strati�ed Lie algebra
generated by V , and let H∗ = expG(h

∗) ⊂ H be the corresponding Carnot subgroup
of G.

It remains only to show that H∗ = H. To see this, let y ∈ H be arbitrary, and
let γ be a recti�able curve in H from 0 to y. Then p ◦ γ is a recti�able curve in V
from 0 to p(z), and its unique horizontal lift to G, starting at 0, is γ. At the same
time, p ◦ γ is a recti�able curve in the horizontal layer of the Carnot subgroup H∗,
so it has a horizontal lift to H∗ through p that starts at 0. Hence y ∈ H∗, and we
conclude that H∗ = H. �

The following is an immediate result of the theorem above.

Corollary 4.5. Let (U, φ) be a k-dimensional chart in a complete, metrically dou-
bling Lipschitz di�erentiability space (X, d, µ), and assume that for almost every

x ∈ U , each X̂ ∈ Tan(X,x) is recti�ably connected.
Suppose that F : X → G is a bi-Lipschitz embedding. Then for µ-almost every

x ∈ U , Tan(F (X), F (x)) consists of one element, which is canonically isometric
to a Carnot subgroup of G generated by a k-dimensional vector subspace of the
horizontal layer of G.

In particular, for µ-almost every x ∈ U , every element in Tan(X,x) is bi-
Lipschitz equivalent to a sub-Riemannian Carnot group whose horizontal layer has
dimension k.

4.1. Non-embedding consequences. One interesting consequence of Cheeger's
initial study of di�erentiability in metric spaces was a certain generalized non-
embedding result for Euclidean targets. The following statement was proven for PI
spaces in [16, Theorems 14.1 and 14.2] and was generalized to Lipschitz di�erentia-
bility spaces in [23, Corollary 8.3] as a corollary of Proposition 2.3 above.

Theorem 4.6. Let (X, d, µ) be a complete, metrically doubling Lipschitz di�eren-
tiability space with an k-dimensional chart (U, φ).

Suppose there exists a set A ⊆ U with µ(A) > 0 such that for every a ∈ A, there
exists (Y, y) ∈ Tan(X, a) that is not bi-Lipschitz equivalent to Rk.

Then X does not admit a bi-Lipschitz embedding into any Euclidean space.

In [17, Theorem 1.6], Cheeger and Kleiner used di�erentiability to prove a non-
embedding result for PI spaces into certain in�nite-dimensional Banach spaces.

Our work above allows us to obtain a result similar to Theorem 4.6 for Carnot
group targets. Namely, a direct consequence of Corollary 4.5 is the following general
non-embedding result.

Corollary 4.7. Let (X, d, µ) be a complete, metrically doubling Lipschitz di�eren-
tiability space with a k-dimensional chart (U, φ), and assume that for almost every

x ∈ U , each X̂ ∈ Tan(X,x) is recti�ably connected.



RIGIDITY FOR CONVEX-COCOMPACT ACTIONS 21

Suppose there is a set A ⊆ U with µ(A) > 0 such that, for every a ∈ A, there
exists (Y, y) ∈ Tan(X, a) that is not bi-Lipschitz equivalent to a Carnot group with
a k-dimensional horizontal layer.

Then X does not admit a bi-Lipschitz embedding into any Carnot group.

A non-embedding result in the same spirit (but allowing more general targets)
for a class of one-dimensional Lipschitz di�erentiability spaces already appears in
[18, Corollary 9.3].

5. Rigidity for convex-cocompact actions of minimal Hausdorff

dimension

This section is devoted to the proof of Theorem 1.4. It will be convenient to
begin with the following lemma, which is essentially due to Bourdon, as part of the
argument for Theorem 1.1.

Lemma 5.1. Let Γ y X be a convex-cocompact action of a discrete group Γ on a
CAT(−1) space X. Suppose that the limit set Λ(Γ) is bi-Lipschitz equivalent to the
boundary of a non-compact rank-one symmetric space S ̸= H2

R. Then there is an
isometric embedding F : S → X such that F (∂S) = Λ(Γ), and Γ stabilizes F (S),
acting on it with compact quotient.

Proof. Fix visual metrics on ∂X and ∂S once and for all. The bi-Lipschitz equiva-
lence implies that dimH(Λ(Γ)) = dimH(∂S) and that the Möbius action Γ y Λ(Γ)
can be conjugated to a uniformly quasi-Möbius action Γ y ∂S.

If S is of quaternionic or octonionic type, then a theorem of Pansu [43, Corollary
11.2] ensures that the action Γ y ∂S is by 1-quasiconformal mappings, hence
mappings that extend to isometries of S by [43, Theorem 11.5], and hence Möbius
mappings by [9].

If S is real or complex hyperbolic, then theorems of Sullivan�Tukia [47, Theorem
G] and Chow [19, Theorem 2] show that there is a quasi-Möbius homeomorphism of
∂S that conjugates the quasi-Möbius action Γ y ∂S to a Möbius action. To be more
precise, here we use that every point in ∂S is a �radial limit point" for the the quasi-
Möbius action Γ y ∂S. This follows from the fact that this action is cocompact
on triples, which in turn follows from the standard fact that the boundary action
Γ y Λ(Γ) is cocompact on triples. Also, in the complex hyperbolic case, we again
turn to [43, Theorem 11.5] and [9] to argue that conformal mappings are Möbius.

In any case, we can �nd a quasisymmetric homeomorphism f : ∂S → Λ(Γ) that
is equivariant with respect to Möbius actions Γ y ∂S and Γ y Λ(Γ).

From here, Bourdon's work applies directly. In Section 2 of [10], he shows that
such a homeomorphism f is in fact a Möbius homeomorphism. In addition, he
shows in [10, Theorem 0.1] that any Möbius embedding f : ∂S → ∂X extends to an
isometric embedding F : S → X. That Γ y X stabilizes F (S) follows immediately
from the fact that F (S) is the union of geodesics in X whose endpoints are both
in Λ(Γ). That F (S)/Γ is compact follows from the assumption that Γ y X is
convex-cocompact. �

Proof of Theorem 1.4. The inequality was already discussed in Remark 3.4, as
was the equality case when Q ≤ 1. Thus, we may assume that equality holds
and Q > 1. It follows from Theorem 3.3 that Λ(Γ), equipped with Q-dimensional
Hausdor� measure, is a Lipschitz di�erentiability space. In fact, we know that Λ(Γ)
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supports a Poincaré inequality, which means that it is a quasiconvex metric space
(cf. Remark 4.2).

Let G be the Iwasawa group that locally models the geometry of (∂X, dp). By
Lemma 3.1, for any choice of q ∈ X and ω ∈ ∂X, the punctured boundary ∂X\{ω}
is identi�ed with G in such a way that the parabolic visual metric dω,q is a homo-
geneous distance on G.

Choose a point z ∈ Λ(Γ) ⊂ ∂X for which every tangent of every element of
Tan(Λ(Γ), dp, z) is also in Tan(Λ(Γ), dp, z). By [39, Theorem 1.1] almost every
z ∈ Λ(Γ), with respect to Hausdor� Q-measure, has this property. Take a tangent
of (Λ(Γ), dp) at z. By [7, Proposition 3.1], there are points q′ ∈ X and ω′ ∈ Λ(Γ)
for which this tangent is isometric to the parabolic limit set (Λ(Γ)\{ω′}, dω′,q′). As
(Λ(Γ), dp) is quasiconvex, its tangents are as well.

This parabolic limit set is a subset of the parabolic boundary (∂X\{ω′}, dω′,q′),
which is identi�ed with the Iwasawa group G. The metrics dω′,q′ and dp are locally
bi-Lipschitz equivalent on ∂X\{ω′} and, hence, also on Λ(Γ)\{ω′}. In particu-
lar, this means that (Λ(Γ)\{ω′}, dω′,q′) is a Lipschitz di�erentiability space when
equipped with its Hausdor� Q-measure. By Theorem 4.1, this parabolic limit set
has a tangent that is isometric to a Carnot subgroup N ⊂ G.

By the way we chose z ∈ Λ(Γ), we see that (N, dω′,q′) is actually a tangent of the
full limit set (Λ(Γ), dp). Once again, appealing to [7, Proposition 3.1], this means
that there are points q ∈ X and ω ∈ Λ(Γ) for which (N, dω′,q′) is isometric to the
parabolic limit set (Λ(Γ)\{ω}, dω,q). Fix an identi�cation of ∂X\{ω} with G so
that the origin of G is contained in Λ(Γ)\{ω}. In this way, N = Λ(Γ)\{ω} is a
Carnot subgroup of G = ∂X\{ω}, which is equipped with the metric dω,q.

We claim that N is also an Iwasawa group. Suppose not, and let g ∈ Γ be
arbitrary. As remarked in Section 3.1, the induced boundary homeomorphism

g : G\{g−1(ω)} → G\{g(ω)}

is conformal, in the sense that it is smooth and its horizontal derivative is every-
where a similarity. In particular, the restriction

g : N\{g−1(ω)} → N\{g(ω)}

is also smooth with horizontal derivative everywhere a similarity, and so it is a
conformal map on an open, connected subset of N. By [22, Theorem 4.1], this
means that g|N\{g−1(ω)} is the restriction of an a�ne map, and in particular that
g(ω) = ω. Thus, ω is a global �xed point for the action of Γ on Λ(Γ), a contradiction.

Let S be the non-compact rank-one symmetric space with ∂S locally modeled
by the Iwasawa group N. Note that S is determined uniquely by the topological
and Hausdor� dimensions of N, or equivalently of Λ(Γ) [40, p. 34]. Choosing any
points s ∈ S and ζ ∈ ∂S, we know that (∂S\{ζ}, dζ,s) is bi-Lipschitz equivalent to
N = (Λ(Γ)\{ω}, dω,q).

Using that (∂S\{ζ}, dζ,s) and (∂S\{ζ}, ds) are Möbius equivalent, together with
the fact that (Λ(Γ)\{ω}, dω,q) and (Λ(Γ)\{ω}, dq) are Möbius equivalent, we �nd
that (∂S\{ζ}, ds) is quasi-Möbius equivalent to (Λ(Γ)\{ω}, dq) with linear distor-
tion function η(t). In particular, this implies that (∂S, ds) and (Λ(Γ), dq) are bi-
Lipschitz equivalent. As Hdim(∂S) = Hdim(Λ(Γ)) = Q > 1, we know that S ̸= H2

R.
Finally, applying Lemma 5.1 �nishes the proof. �
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