RIGIDITY FOR CONVEX-COCOMPACT ACTIONS ON
RANK-ONE SYMMETRIC SPACES

GUY C. DAVID AND KYLE KINNEBERG

ABsTrRACT. When I' ~ X is a convex-cocompact action of a discrete group on
a non-compact rank-one symmetric space X, there is a natural lower bound
for the Hausdorff dimension of the limit set A(T') C X, given by the Ahlfors
regular conformal dimension of 9I'. We show that equality is achieved precisely
when T stabilizes an isometric copy of some non-compact rank-one symmetric
space in X on which it acts with compact quotient. This generalizes a theorem
of Bonk—Kleiner, who proved it in the case that X is real hyperbolic.

To prove our main theorem, we study tangents of Lipschitz differentiability
spaces that are embedded in a Carnot group G. We show that almost all
tangents are isometric to a Carnot subgroup of G, at least when they are
rectifiably connected. This extends a theorem of Cheeger, who proved it for
PI spaces that are embedded in Euclidean space.

1. INTRODUCTION

A classic theorem of Bowen [12] states that the limit set of a convex-cocompact
action of a Fuchsian group on HZ has Hausdorff dimension at least 1, and equality
holds precisely when the limit set is a round circle in S = OH2. In this case, the
convex-cocompact action stabilizes an isometrically embedded copy of Hf in HE.
Expressed another way, this result means that among all quasi-Fuchsian represen-
tations of a Fuchsian group, the Hausdorff dimension of the limit set attains its
minimum precisely on the Fuchsian locus.

Bowen’s theorem was later generalized to convex-cocompact actions of Fuchsian
groups on any CAT(—1) metric space by Bonk and Kleiner [7, Theorem 1.1]. This
answered a question of Bourdon, who had proven that the analogous result holds
for any uniform lattice in a non-compact rank-one symmetric space S # H2 [10,
Theorem 0.3]. To state their results precisely, we need some notation. If X is a
CAT(—1) space, then its visual boundary 0X admits a natural class of Md&bius
equivalent metrics

dy(z,y) = e~ @V

where p € X and (z,y), denotes the Gromov product based at p. In particular,
these metrics are bi-Lipschitz equivalent. The Hausdorff dimension of 0.X, and also
of any subset, is therefore well-defined. If I' ~ X is a convex-cocompact action by
a discrete group T, then the limit set A(T') of the action is a subset of 9X that is
invariant under the induced boundary action on 0.X.

The following statement puts together the results of Bourdon (all cases S # H2)
and Bonk—Kleiner (the S = H2 case).
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Theorem 1.1 ([I0], [7]). Let T’ be a uniform lattice in a non-compact rank-one
symmetric space S, and suppose that I' ~ X is a convex-cocompact action on a
CAT(—1) space X. Then

Hdim(A(T")) > Hdim(dS),

and equality holds if and only if the action stabilizes an isometrically embedded copy
of S in X on which T’ acts with compact quotient.

We should note that the case of equality is also characterized by M&bius equiv-
alence of the limit set A(T") and 95 [10, Theorem 0.1].

Remark 1.2. The notation A(T") is slightly misleading, as the limit set depends on
the action of I on X, not just on the group I'. More accurately, one should think
of the action as a representation of I' into the isometry group Isom(X), so the
limit set is really the limit set of this representation. In many important cases, the
space of convex-compact representations forms a moduli space with a rich geometric
structure, and one can ask interesting questions about how the limit sets change
as the representations vary (e.g. [I3} Corollary 1.8]). However, as we focus only on
a single action/representation at a time, we do not make this distinction explicit,
and we retain the notation A(T").

More recently, there has been interest in knowing whether similar types of rigid-
ity phenomena occur when I is not assumed, a priori, to be a lattice. (For example,
see work of Bonk—Kleiner [6] and the second author [35].) The first difficulty en-
countered is to determine a natural lower bound for Hdim(A(T")). For example, free
groups admit convex-cocompact actions on any non-compact rank-one symmetric
space with A(T") equal to a Cantor set of arbitrarily small Hausdorff dimension.
More explicitly, choosing loxodromic elements ¢i,...,gx € Isom(S) with pairwise
disjoint fixed points, for large enough n the subgroup generated by g7, ..., gp will
be a free group of rank k, and the Hausdorff dimension of the limit set will tend to
0 as n goes to infinity.

In the case of Theorem the inequality comes from a result of Pansu [42]
Theorem 5.5]. In standard formulation, Pansu’s result says that the Hausdorff
dimension of any metric space that is quasisymmetrically equivalent to 0S5 must
be at least as large as Hdim(0S). Stated another way, this means that whenever
I' is (virtually) a uniform lattice in S, the Ahlfors regular conformal dimension
conf.dimag (9T) of its Gromov boundary is equal to Hdim(9.5). On the other hand,
we note that conf.dimag (0T') = 0 whenever T is a free group.

It makes sense, then, that the appropriate generalization of Theorem [I.1]to Gro-
mov hyperbolic groups would make use of the conformal dimension. In a different
paper [8], Bonk and Kleiner established the following result, which concerns actions
of hyperbolic groups on real hyperbolic space.

Theorem 1.3 ([8], Theorem 1.4). Let I" be a non-elementary Gromov hyperbolic
group, and let @@ = conf.dimag (0T). If T' ~ Hﬁ“ is a convex-cocompact action,
with n > 1, then

Hdim(A(T) > Q

and equality holds if and only if Q = k > 1 is an integer and I' stabilizes an
isometric copy of ]HIH]“J'1 n Hﬁ“ on which it acts with compact quotient.
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Our statement of this theorem is slightly different from that given in [8], but
they are easily seen to be equivalent. We make this clear in Remark [3.4]

The main goal of the present paper is to extend Theorem [I.3] to actions on any
non-compact rank-one symmetric space.

Theorem 1.4. Let I' be a non-elementary Gromov hyperbolic group, and let QQ =
conf.dimag (OT"). If ' ~ X is a convez-cocompact action on a non-compact rank-
one symmetric space X, then

Hdim(A(T)) > Q,

and equality holds if and only if T stabilizes an isometric copy of a non-compact
rank-one symmetric space S in X on which it acts with compact quotient.

In the equality case, S and A(T") are Mobius equivalent, ¢ = Hdim(95S) is
necessarily an integer, and the symmetric space S is determined uniquely by @
and the topological dimension of OI'. Indeed, the non-compact rank-one symmetric
spaces are uniquely determined by the Hausdorff and topological dimensions of
their visual boundaries (cf. Mackay—Tyson [40, p. 34]). Moreover, I" is a finite
extension of a uniform lattice in Isom(S).

Our proof of Theorem follows the basic outline that Bonk—Kleiner use to
prove Theorem First, the inequality comes straight from the general theory of
boundaries of hyperbolic groups. Appealing to the prior work of Bonk—Kleiner in [7]
also dispenses with the equality case when @ < 1. When @ > 1 and equality holds,
Bonk and Kleiner show that the limit set A(I") C S™ supports a Poincaré inequality
(in the sense of Heinonen—Koskela [27]). As A(T) is isometrically embedded in R"*1,
a theorem of Cheeger [16] guarantees that A(T') has a tangent that is isometric to
some Euclidean space R*. This implies that A(T') is bi-Lipschitz equivalent to S¥,
and they can use [6l Theorem 1.1] to conclude.

In the setting of Theorem [T.4] when @ > 1 and equality holds, the work of
Bonk—Kleiner still implies that the limit set A(T") supports a Poincaré inequality.
However, it may not be embedded in any Euclidean space, so we cannot directly
apply Cheeger’s theorem. Instead, A(T") is locally embedded in some Carnot group,
namely, the Carnot group that models the local geometry of 9X. The main work we
do is to generalize Cheeger’s result to spaces embedded in Carnot groups, showing
that their tangents are isometric to Carnot subgroups. This is the content of the
following theorem, which may be of independent interest. This result is stated and
proven in a more general context as Theorem below.

Theorem 1.5. Let G be a Carnot group with homogeneous distance d. Let X C G
be a closed subset such that there is a Radon measure p on X for which (X, d, )
is a doubling metric measure space supporting a Poincaré inequality. Let (U, ¢) be
a k-dimensional differentiability chart for X.

Then for p-almost every x € U, the set Tan(X,x) consists of one element,
which is canonically isometric to a Carnot subgroup of G generated by a fized k-
dimensional subspace of the horizontal layer of G.

All the terminology in Theorem is introduced in Section

The remainder of the proof of Theorem [T.4]follows similar ideas as in the endgame
of [6, Theorem 1.2], though we will need an additional input that identifies, among
all Carnot groups, those that locally model boundaries of rank-one symmetric
spaces. This is provided by recent work of Cowling and Ottazzi [22].
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The structure of the paper is as follows. Section [2| contains basic definitions
and notation. Section [3] contains background material on boundaries of symmetric
spaces and Gromov hyperbolic groups, as well as an analog of a result of Connell
[20] that we prove as a short application of our methods (Proposition [3.6). Section
[] contains the proof of Theorem about tangents of spaces embedded in Carnot
groups, and describes some applications to bi-Lipschitz non-embedding. Finally,
Section [5] contains the proof of Theorem [T.4]

Acknowledgments. The first author was partially supported by the National Sci-
ence Foundation under Grants No. DMS-1664369 and DMS-1758709.

2. PRELIMINARIES

If (X, d) is a metric space, we write B(z, ) for the open ball of radius r centered
at € X and B(xz,r) for the closed ball. A metric space (X,d) is said to be
metrically doubling if there is a constant C such that every ball of radius » > 0 in
X can be covered by at most C balls of radius r/2.

A metric measure space (X,d,p) is a complete, separable metric space (X, d)
equipped with a Radon measure . We say that the measure p is doubling if there
is a constant C' such that

u(B(2,2r)) < Cu(B(x,1))
for every ball B(x,r) in X. This readily implies that (X, d) is metrically doubling
[26].

For Q > 0, we will often consider Q-dimensional Hausdorff measure #% on a
metric space (X, d). We write Hdim(X) for the Hausdorff dimension of X. A metric
space is Ahlfors Q-regular, for @ > 0, if there is a constant C' > 0 such that

C~ 49 <HO(B(z,r)) < Cr?

for all z € X and 0 < r < diam(X). In this case, (X,d, H?) is easily seen to be a
doubling metric measure space. It is also uniformly perfect [40, pp. 13-14].

The cross-ratio of a four-tuple of distinct points (x1,x9, x3,x4) in X is the value
d(z1,23)d(z2, 24)
d($1, $4)d($2, 3?3)
A homeomorphism f: X — Y between two metric spaces is Mdbius if it preserves
the cross-ratio, ie, if

[f(@1), f(22), f(3), f(24)] = [21, 22, 23, 4]

for every four-tuple (x1,x2,x3,x4) of distinct points in X.
More generally, given a homeomorphism 7: [0,00) — [0, 00), we say that a home-
omorphism f: X — Y is n-quasi-Mébius (or simply quasi-Mébius) if

[f(x1), f(2), f(z3), f(za)] < nl[21, 22, 23, 24])
for every four-tuple (z1, 22, x3,24) of distinct points in X. Similarly, f is said to
be n-quasisymmetric (or simply quasisymmetric) if
d(f(21), f(z2)) < (d($17$2)>
=1
d(f(z1), f(x3)) d(z1,73)

for every triple (z1,z2,x3) of distinct points in X.

[$1,$27x3,1174] =
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These definitions also make sense if f: X — Y is assumed only to be injective,
in which case it is necessarily a homeomorphism onto its image. Such a map f is
called a M6bius embedding, quasi-Mdbius embedding, etc. It is not difficult to show
that every n-quasisymmetric mapping is n-quasi-Mobius, where 77 depends only on
n. If X and Y are bounded, then, conversely, every quasi-Mobius homeomorphism
is quasisymmetric [48].

In the case that X and Y are bounded and 7 is linear, each n-quasi-Md&bius map
f+ X — Y is actually bi-Lipschitz [35, Remark 3.2]. In particular, every Md&bius
map is bi-Lipschitz.

The Ahlfors reqular conformal dimension of a doubling and uniformly perfect
metric space X, denoted

conf.dimag (X),

is the infimal Hausdorff dimension among all Ahlfors regular metric spaces qua-
sisymmetrically homeomorphic to X. The doubling and uniformly perfect proper-
ties guarantee that conf.dimag (X) is finite [26], Corollary 14.15], and it is obviously
quasisymmetrically invariant. However, the infimum is not always achieved, and
it is a difficult problem to find general conditions under which it is. For more
background on this quantity, we refer the reader to [8], where it plays a crucial role.

2.1. Tangents. We now briefly describe the notion of a “tangent” of a metric space,
which relies on the framework of pointed Gromov—Hausdorff convergence of spaces
and mappings. For the necessary background on this framework, we refer the reader
to any of the following: [32], Section 5], [36, Section 3.2], [23, Section 2].

A pointed metric space (X,d,x) is simply a metric space (X, d) together with a
fixed point x € X. If the metric d is clear, we sometimes suppress it and simply
write (X, z).

Suppose that (X,d) is a doubling metric space. Fix z € X and let A\; — oo
be a sequence of positive scaling factors. The sequence of pointed metric spaces
(X, Ajd, x) then has a subsequence that converges in the pointed Gromov-Hausdorff
sense to a complete pointed metric space (X,a?) We say that (X,i“) is a tangent
of X at z. The set of pointed isometry classes of tangents at x is denoted by
Tan(X, z).

If f: X — Y is a Lipschitz map taking values in a complete, doubling metric
space (Y, p) with y = f(z), then the sequence of Lipschitz maps

has a subsequence that converges to a Lipschitz map

f: (X.2) = (Y.9),
where (Y,4) € Tan(Y,y). We will repeatedly use the “hat" notation for tangents
and tangent maps. Note that if we first fix (X, %) € Tan(X, ), then by passing to
further subsequences, we may find a corresponding (Y, 4) € Tan(Y,y) and tangent

map f: X — Y. The set of tangents and mappings obtained in this way, up to
isometric equivalence, is denoted by Tan(X, z, f).

Remark 2.1. When Y = R" is a finite-dimensional Euclidean space, we always
identify (Y, ) with (R™,0) in the canonical way, so that f(z) = 0. In this way,
tangent maps behave like derivatives in the classical sense.
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2.2. Lipschitz differentiability spaces. In the seminal paper [16], Cheeger in-
troduced a type of differentiable structure for real-valued Lipschitz functions on
metric measure spaces. He showed that a large class of metric measure spaces, the
so-called “PI spaces” (those which are doubling and have a Poincaré inequality in
the sense of [27]), support such a structure.

The following definition is due to Cheeger [16].

Definition 2.2. A metric measure space (X, d, ) is called a Lipschitz differentia-
bility space if it satisfies the following condition. There are countably many Borel
sets (“charts”) U; covering X, positive integers n; (the “dimensions of the charts”),
and Lipschitz maps ¢;: X — R™ with respect to which any Lipschitz function
f: X — R is differentiable almost everywhere, in the sense that for each ¢ and for
p-almost every x € U;, there exists a unique V f(z) € R™ such that

)~ T @) = V(@) (6ily) — i(a))
T A, y)
Here Vf(z) - (¢i(y) — ¢:(x)) denotes the standard scalar product in R™:.

(2.1) =0.

Note that the Borel measurability of the function x — Vf(z) and the set of
differentiability points of f are consequences of this definition; see [4, Remark 1.2].
In recent years, the study of Lipschitz differentiability spaces in their own right has
become an active area of research, and we refer the reader to [16] [32, 17, 36, [, 23]
2], 3, 18] for more background.

If (X, d) is doubling, it is natural to rephrase in terms of tangents. Letting
df (x) € Hom(R™,R) be the dual functional to V f(z), the asymptotic in is
equivalent to the following condition. If (X Z) € Tan(X, z) and we have assomated
tangent mappings f X — R and (i) X — R" to f and ¢, respectively, then f
factors through R™ via f=df (z)o .

A similar factorization works for any Lipschitz map f: X — R¥ into a Euclidean
space, simply by considering the coordinate functions for f. Namely, if (U, ¢) is an
n-dimensional chart in X, then for almost every x € U, there is a unique linear
map Df( ) € Hom(R",RN) such that for every (X,#) € Tan(X,z), any tangent
map f X — RV factors through R" via

f=Df()00.

Not surprisingly, the rows of the matrix for D f(z) are simply the gradients V f;(x)
of the coordinate functions f = (f1,..., fn)-

Recently, there has been much interest in understanding the geometric structure
of tangents of Lipschitz differentiability spaces. One result in this vein is due to
Cheeger—Kleiner—Schioppa [18], and it will be important for us below. First, another
piece of terminology.

A Lipschitz map f: X — Y between two metric spaces is called a Lipschitz
quotient if it is Lipschitz and there exists ¢ > 0 such that

B(f(x),cr) C f(B(x,7))

for all x € X and r» > 0. The supremum of such constants c is called the co-Lipschitz
constant of f. Note that a Lipschitz quotient map is clearly surjective.

We say that f is a metric submersion if it is both 1-Lipschitz and has co-Lipschitz
constant ¢ = 1.
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Proposition 2.3 ([I8], Theorem 1.12). Let (X,d) be a complete, doubling met-
ric space, and let p be a Radon measure on X such that (X,d,pn) is a Lipschitz
differentiability space. Let (U, $) be an n-dimensional chart in X.

Then for p-almost every x € U, there is a norm || - || on R™ with the following
property. For every (X, z) € Tan(X, x) with tangent map ¢: X — R", the mapping
¢ is a metric submersion onto (R™, | - ||2).

In particular, the mapping qg is a Lipschitz quotient onto R™ with its standard
Euclidean metric.

The statement about Lipschitz quotients in Proposition already appeared in
earlier (independent) work of Schioppa (Theorem 5.56 in [45] 44]) and the first-
named author [23, Corollary 5.1]. This statement alone is enough for the applica-
tion to our main result, Theorem [T.4] We state the stronger version about metric
submersions only for the applications in Section [3.2] below.

As Cheeger observed, a consequence of the surjectivity of ngS provided by Propo-
sition [2.3]is the following result.

Corollary 2.4. Let (U, ¢) be an n-dimensional chart in a complete, metrically
doubling Lipschitz differentiability space (X,d, i), and suppose that F: X — RY is
a bi-Lipschitz embedding. Then for u-almost every x € U, the set Tan(F(X), F(x))
consists of one element, canonically isometric to a fived n-dimensional linear sub-
space of RV,

For a set £ C RY and a point x € E, to say that each element of Tan(E,z) is
canonically isometric to £ C RY means that, whenever \; — oo and

(A (E —x),0)

converges in the pointed Hausdorff sense in RY, the limit is (E‘, 0). This is stronger
than saying that Tan(F,z) consists only of one element, and hence Cheeger |16
Section 14] uses the phrase “unique in the strong sense” for this.

Proof of Corollary[2-]} We give a brief sketch of the proof, whose details can be
found in Theorem 14.1 of [I6] or Corollary 8.1 of [23].

Let Y = F(X) c RY. Consider a point z € X at which Proposition
applies, and at which F is differentiable with derivative DF(x): R® — RN, Let
y = F(z) and consider any tangent (V,§) € Tan(Y,y), which we can view as a
pointed Hausdorff limit of rescalings of Y — y in RV. By passing to subsequences,
we may obtain an associated tangent (X,#) € Tan(X,z) along with associated
tangent mappings ¢: X — R™ and F': X — Y C RY. Note that F' is a bi-Lipschitz
homeomorphism onto Y. In addition, ¢ is surjective by Proposition

Differentiability implies that F factors as DF(z) o ¢. Since F' is bi-Lipschitz,
DF(x) must be injective. It follows from this and the surjectivity of (;AS that

Y = F(X) = DF(x) 0 (X) = DF () (R"),
which is a fixed n-dimensional linear subspace of RV. O

Corollary 2.4]is precisely the statement used in the Bonk—Kleiner proof of The-
orem [I.3] As discussed above, it is this result that we must generalize to Carnot
group targets.
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2.3. Carnot groups. Here we give some brief background on Carnot groups. For
more, we refer the reader to [41] or [15, Section 2].

A Carnot group is a simply connected nilpotent Lie group G whose Lie algebra
g admits a stratification

g:Vl@...@VS,

where the first layer V; generates the rest via V;11 = [V4, V] for all 1 < i < s,
and we set V11 = {0}. The exponential map exp: g — G is a diffeomorphism, so
choosing a basis for g gives exponential coordinates for G. Equipped with any left-
invariant Riemannian metric, G is complete and the Lie exponential map coincides
with the Riemannian exponential map. For each z € G, we will use L,: G — G to
denote the left multiplication map y — xy.

A natural family of automorphisms of G are the dilations §y: G — G, for A > 0.
On the Lie algebra level, these are defined by

(2.2) v Mo, forv eV,

and one can see that this gives a Lie algebra isomorphism. Conjugating this back
to G by the exponential map gives dy.

On any Carnot group G, there are metrics that interact nicely with the transla-
tions and dilations, in the sense that each L, is an isometry and ) scales distances
by the factor A.

Definition 2.5. A metric d: G x G — R is called a homogeneous distance if it
induces the manifold topology of G, it is left-invariant, ie,

d(zy,xz) = d(y, 2) for all z,y,z € G,
and it is 1-homogeneous with respect to the dilations §, defined above:

d(0x(x),0x(y)) = Md(x,y) for all A > 0 and z,y € G.

For example, given an inner product on the horizontal layer V7, the associated
(sub-Riemannian) Carnot—Carathéodory metric d.. is a homogeneous distance.

Remark 2.6. It is a simple fact that, for any two homogeneous distances d;, ds on G,
the identity map (G, d;) — (G, ds) is a bi-Lipschitz homeomorphism. In particular,
a curve is rectifiable in (G, dy) if and only if it is rectifiable in (G, d2).

Let d be a homogeneous distance on G, and let u be the associated Hausdorff
measure, so that (G,d, ) is a metric measure space. The left-invariance and 1-
homogeneity of d easily imply that (G, d, p) is Ahlfors regular. Another consequence
is that every tangent to any point in (G, d) is isometric to (G, d, 0) itself, much like
tangents of finite-dimensional Euclidean spaces. As we did for those, we will identify
any (G,#) € Tan(G,z) with (G,0). Similarly, if E is a closed subset of a Carnot
group G, then any tangent of F can be viewed as a pointed Hausdorff limit of
pointed rescalings of E in G and identified with a pointed closed subset (£, 0) of
G. The terminology, used in R™ in Corollary that tangents can be “canonically
isometric” to subsets of G, therefore also makes sense in Carnot groups. Namely, we
say that each element of Tan(F, x) is canonically isometric to FE C G if, whenever
Aj — oo and

(5>\j (sz (E) )7 0)

converges in the pointed Hausdorff sense, the limit is (E, 0).
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For the remainder of this section, we equip G with a fixed homogeneous distance
d and its corresponding Hausdorff measure. We can then talk about Lipschitz func-
tions on G or Lipschitz mappings between Carnot groups. Note that the collection
of such maps does not depend on the chosen homogeneous distance.

Lipschitz mappings between Carnot groups admit a form of differentiation more
robust than that discussed in the previous subsection, one which takes into account
the group structure.

Theorem 2.7 (Pansu [43]). Let f: Gy — Gy be a Lipschitz map between Carnot
groups. Then for almost every x € G, the sequence of maps

(5)\ [e) (Lf(;c)’l o f o Lw) o (5)\—1

converges uniformly on compact sets, as A — oo, to a Lie group homomorphism
Df(x): Gi — Go that commutes with the dilations.

The following is an immediate consequence of Pansu’s theorem, in the case that
G2 = R. Let n = dim(V1) be the vector space dimension of the horizontal layer of
g. There is a natural “horizontal projection”

. G— Vi ~R"

obtained by composing exp~! with the vector space projection P: g — V;. If

f: G — Ris a Lipschitz function, then for almost every x € G, the mapping D f(x)
factors as Df(x) = Aon, where A: Vi — R is linear.

The following lemma summarizes the additional basic properties of 7 that we
will need below.

Lemma 2.8. Let G be a Carnot group whose horizontal layer Vi has dimension n,
and let m: G — Vi1 ~ R"™ be the associated horizontal projection.

(i) G is a Lipschitz differentiability space with n-dimensional chart (G, ).

(ii) ™ is a group homomorphism.
(i5i) 7 commutes with dilations: w(dx(x)) = Ar(z).

(iv) For all x € G, every element of Tan(G, z, ) is isometric to (G, 0, ).

(v) 7 is a Lipschitz quotient map onto V4 ~ R"™.

(vi) If v: [0,1] = G is a non-constant Lipschitz curve, then m o~ is non-constant.
(vii) If~:[0,1] — Vi is a Lipschitz curve and x € 7=1((0)), then there is a unique

Lipschitz curve 7: [0,1] = G such that w(¥(t)) = v(t) and 5(0) = x.

Proof. That G is a Lipschitz differentiability space follows from the fact that all
Carnot groups are PI spaces ([29], [27]) as well as Cheeger’s theorem that all PI
spaces are Lipschitz differentiability spaces [16]. That 7: G — R™ serves as a
global chart can be deduced from Pansu’s theorem and the fact that for every
group homomorphism L: G — R that commutes with dilations, there is a linear
map A: V7, — R such that L = A ox. Here we use that 7 is, in fact, a Lipschitz
map.

The Baker—Campbell-Hausdorff formula shows that 7 is a group homomorphism.
Indeed,

m(xy) = Pexp™ ' (zy)) = Plexp™ " (z) + exp ' (y) + v),
where v € [g,g] = Vo @ --- ® V. Thus,

m(zy) = Plexp™ ' (x)) + Plexp™ ' (y)) = w(x) + 7 (y).
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That 7 commutes with the dilations on G and V; follows directly from the fact
that dilations act on V; by simple scalings, as in (2.2). Part then follows
immediately from parts and .

Part can be seen as follows. First of all, by Remark it suffices to assume
that d = d... By translation and dilation invariance, it further suffices to show
that 7(B(0,1)) contains an open ball around 0 in V; ~ R™. Each element v; €
By, (0,1) C V; gives rise to an element z € B(0, 1) by exponentiating v; $0®...S0.
Since 7(z) = v1, we see that 7(B(0,1)) D By, (0, 1).

Part is immediate from the definition of the Carnot—Carathéodory metric
and Remark 2.6

Finally, Property follows from [46] Proposition 2.3], using that ~ is abso-
lutely continuous. To show that the lift 4 is Lipschitz, and not just absolutely
continuous, one should use the fact that the horizontal derivative of 4(¢) coincides
almost everywhere with the derivative of v(¢), and so is essentially bounded. O

We saw in Corollary [2.4] that tangents of Lipschitz differentiability spaces embed-
ded in Euclidean space are themselves just Euclidean subspaces. For the appropri-
ate generalization to Lipschitz differentiability spaces embedded in Carnot groups,
we need the correct notion of a Carnot subgroup. This is given by the following
definition.

Definition 2.9. Let G be a Carnot group with Lie algebra g and horizontal layer
Vi C g. Let V C V; be a vector subspace, and let h C g be the stratified Lie
sub-algebra generated by V. The homogeneous subgroup H = exp(h) C G is called
the Carnot subgroup generated by V.

Note that H is itself a Carnot group, and any homogeneous metric d on G
restricts to a homogeneous metric on H. Moreover, H is rectifiably connected in
this restricted metric.

3. SYMMETRIC SPACES AND GROMOV HYPERBOLIC GROUPS

Let X be a non-compact rank-one symmetric space, so that X = Hpg, Hg, Hg,
or H% for some n > 2, where Q and O denote the quaternion and octonion division
algebras. As a convention, we normalize the Riemannian metric on X to have
maximal sectional curvature equal to —1. With the induced length metric dy,
the metric space (X, dx) is therefore CAT(—1). We remind the reader that X is
homogeneous and isotropic, so Isom(X) acts transitively on the unit tangent bundle
of X.

For I' a discrete group, an isometric and properly discontinuous action I' ~ X is
said to be convez-cocompact if there is a convex, I'-invariant subset C(I') C X with
C(T")/T compact. This is equivalent to the seemingly weaker property that, for any
point p € X, the orbit map g — ¢(p) gives a quasi-isometric embedding of T into
X (cf. [9, Section 1.8] and [24, Section 3]). As C(T') is Gromov hyperbolic, the
Svarc-Milnor lemma implies that I' is necessarily a finitely-generated hyperbolic
group. From now on, we will always assume that I' is non-elementary, ie, is not
finite and not virtually cyclic.

3.1. Visual boundaries of rank-one symmetric spaces. Let X denote the
visual boundary of X, which is a topological sphere of dimension dimg(X) — 1.
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There are two natural classes of metrics on this boundary on which we focus. First,
the visual metrics on 90X are defined by

dy(z,y) = e~ @Y for z,y € X

for any p € X, where (z,y), is the Gromov product of z and y based at p [9
Section 2.5]. Every element of Isom(X) extends to a homeomorphism of 0X that
is M6bius with respect to any visual metric.

The parabolic visual metrics are similar but are better suited to the parabolic
models for X. Namely, for any w € 0X and g € X, define

dw,q(2,y) = 6_(w’y)°"‘17 for z,y € 0X\{w}
where
(xa y)cd,q = I}E}i} ((xa y)p —dx (p, Q))

is a limit taken along a geodesic ray in X that is asymptotic to w. This is a metric
on 0X\{w}, which is obtained as a limit of rescaled visual metrics d,, as p tends
toward w non-tangentially. We refer the reader to [7, Section 2] for details, noting
that the definition we give for (z,y), 4 is a consequence of |7, Lemma 2.1].

Each visual metric is M6bius equivalent to each parabolic visual metric on their
common domains [7, Lemma 2.3]. An immediate consequence is that any two
parabolic visual metrics are Mobius equivalent on their common domains. More-
over, for fixed w € 0X, the metrics d, 4 and d, 4 differ by a scalar multiple for
any ¢,¢' € X. This follows from the fact that lim,_,,, (dx (p,q) — dx(p,¢')) exists.
These two metrics coincide precisely when ¢ and ¢’ lie on the same horosphere based
at w.

We should note that the above discussion holds equally well for boundaries of
CAT(—1) metric spaces. The important point for us is that, when X is non-compact
rank-one symmetric, the boundary has much additional structure. Namely, given
a point w € 90X, there is a natural identification of 0X\{w} with a Carnot group
G. Here, the horizontal distribution on G arises from vectors that are tangent to
the lines and circles in X \{w} formed by isometric copies of HZ in X. More-
over, the subgroup of Isom(X) that fixes w corresponds to the collection of affine
transformations of G. In particular, this includes all left translations and dilations.

Lemma 3.1. Each parabolic visual metric d,, 4 is a homogeneous distance on G =

X\ {w}.

Proof. That d, 4 induces the Euclidean topology is a direct consequence of the
standard fact that any visual metric d, induces the spherical topology on 0X. The
other two properties are consequences of the identity

dw,g(q)(g(x)ag(y)) = dqu(may) for z,y € 8X\{°J}

whenever g € Isom(X) fixes w.

Indeed, every left translation of X \{w} is the boundary map of some element
g € Isom(X) that fixes w and preserves the horospheres in X that are based at w.
As g(q) and q lie on the same horosphere, we have d,, 4(q) = dw,q, Which shows that
dy, q is left-invariant.

Similarly, every dilation ¢y of X \{w} is the boundary map of some element
g € Isom(X) that acts as a translation by distance log A along a geodesic in X that
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is asymptotic to w. This means that
lim (dx (p,q) — dx(p, 9(¢))) = log X,
so we obtain d,, 4(q) = Adw 4. This shows that d, 4 is 1-homogeneous. O

Remark 3.2. Identifying 0X\{w} with a horosphere in X based at w, one can
obtain a sub-Riemannian Carnot—Carathéodory metric on 0X\{w} as a limit of
Riemannian metrics (cf. [14]). In general, the parabolic visual metrics d,, , are not
geodesic, and so will not coincide with the sub-Riemannian metric. However, the
parabolic visual metrics are better suited for our work in Section

We should note that the more general identity

dg(w),g(q) (g(x),g(y)) = dw,q(x7y) for T,y € 8X\{w}

holds for any ¢ € Isom(X). Using that Isom(X) acts transitively on the unit tangent
bundle of X, for any two pairs w,w’ € 0X and ¢,¢' € X, there is g € Isom(X)
with g(w) = w’ and ¢(¢q) = ¢’. Thus, the parabolic boundaries (0X\{w},d,, 4) and
(0X\{w'},d, o) are isometrically equivalent.

We therefore consider the Carnot group G, equipped with any parabolic metric
d = dy,q, to be a model for the local geometry of (0X,d,). By our discussion
above, it is clear that (G, d) is Mobius equivalent to (0X\{w}, d,), regardless of the
choice of w € 9X. In particular, this means that (0X,d)) is locally bi-Lipschitz
equivalent to (G, d), so it is also locally bi-Lipschitz equivalent to G equipped with
any homogeneous distance.

Of course, the Carnot groups that locally model boundaries of non-compact rank-
one symmetric spaces are a special sort. They are either Euclidean, Heisenberg, or
of “Heisenberg type":

(i) if X = HZ, then G = R"~! is Euclidean space;
(i) if X =Hg, then G = ng is the n-th Heisenberg group;

(i) if X = Hg, then G = ’H&*l is the n-th quaternionic Heisenberg group;

(iv) if X = H2, then G = H}, is the first octonionic Heisenberg group.
Together, these Carnot groups form the class of Iwasawa groups. In each case,
isometries of X act on 0X by conformal maps, ie smooth maps for which the
restriction of the derivative to the horizontal layer is a similarity. For Hy this is
classical, and the boundary action is by (classical) M6bius transformations; for H,
this is shown in [37, p. 328]; the other cases follow from [43 Corollary 11.2] and
[15, Corollary 7.2].

If ' ~ X is a convex-cocompact action with I' non-elementary, the limit set
A(T) C 90X is defined to be the visual boundary of any convex, I'-invariant subset
C(T) € X for which C(T")/T is compact. Equivalently, if p € X is any point, A(T")
is the image of the boundary map OI' — 90X induced by the quasi-isometric orbit
embedding I' — X. In particular, A(T') is a closed subset, and the Mdbius action
I' ~ 0X leaves A(T') invariant. Thus, we obtain a natural Mébius action I' ~ A(T),
when we equip A(T") with the restriction of any visual metric on 0X. It is known
that the corresponding Hausdorff measure is Ahlfors regular [9], Section 2.7].

3.2. Boundaries of Gromov hyperbolic groups. Much of the content of this
subsection is background and will not be needed in the remainder of the paper.
However, we believe it should be recorded in the literature, and some of it is needed
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in the proof of our main result. For further background and terminology about
Gromov hyperbolic groups, we refer the reader to [§].

Let ' be a non-elementary Gromov hyperbolic group, by which we mean in par-
ticular that I is finitely-generated. The visual boundary 0T is perfect and compact,
and it admits a collection of visual Gromov metrics, each of which is Ahlfors reg-
ular [2I]. Any two such metrics are quasisymmetrically equivalent. Moreover, the
action of I" on itself by left multiplication extends naturally to a boundary action
I' ~ 9T that is uniformly quasi-M&bius (with linear distortion function 7(t)) with
respect to any visual Gromov metric [35] Section 6].

We will use Jag(0T) to denote the Ahlfors regular conformal gauge of OT" that
contains these metrics, ie, the collection of all Ahlfors regular metric spaces qua-
sisymmetric to OI'. By definition,

conf.dimag (9T) = inf{Hdim(Z) : Z € Jar(0T')}.

Many quasi-isometric uniformization statements about I'" boil down to finding a
highly regular metric in Jag(0T'). The following gives a list of equivalent notions
for “highly regular." In what follows, all of the metric spaces that appear will be
Ahlfors regular, and we endow them with the corresponding Hausdorff measure.

The following result is surely known to experts, but we include it as a useful
summation. The definitions of Poincaré inequalities and Loewner spaces can be
found in [27] or [26].

Theorem 3.3. For Z € Jar(0I') of Hausdorff dimension QQ > 1, the following are
equivalent.
(i) Z admits a (1, p)-Poincaré inequality for some p > 1.
(i) Z is a Lipschitz differentiability space.
(i4i) Z has Ahlfors regular conformal dimension equal to Q.
(iv) Z is a Q-Loewner space.
(v) Z admits a path family of positive p-modulus for some p > 1.

Proof. As Z isin Jar(0T') and has Hausdorff dimension @, it is Ahlfors Q-regular.
We first show that properties (fif) through are equivalent.

The implication (fif) implies is a consequence of the main theorem of Cheeger
in [16], using the fact that Z is Ahlfors regular and hence a doubling metric measure
space.

To see that ({i) implies (iii), we first note that [I8, Theorem 1.15] shows that Z
has a tangent Z that admits an Alberti representation supported on geodesic lines.
(Here, Z is also Ahlfors Q-regular, so we use the corresponding Hausdorff measure.)
We refer the reader to [I8] for the definition of an Alberti representation; all we
will need is the fact that the geodesic lines in the support of this Alberti represen-
tation constitute a path family in Z that has positive 1-modulus. Restricting these
geodesics to their intersections with a large fixed ball in A gives a path family of
positive 1-modulus inside of a compact set. By Holder’s inequality, this path family
has positive @-modulus as well. It now follows from [40, Proposition 4.1.8], and
the fact that Z itself is Ahlfors Q-regular, that Z has Ahlfors regular conformal
dimension equal to Q.

That implies is a consequence of [8, Theorem 1.3] (and the remark
following the statement of that theorem).

Since Z is Ahlfors Q-regular, property , that Z is Q-Loewner, implies that
Z has a (1, Q)-Poincaré inequality and hence property (i) [27, Theorem 5.12].
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It remains to show that is equivalent to the other properties. Of course,
property (fiv) implies the existence of a path of positive @-modulus and hence
property On the other hand, if Z admits a path family with positive p-modulus
for some p > 1, then 33 Theorem 4.0.5] shows that Z has a tangent with a path
family of positive 1-modulus, hence of positive Q-modulus as above. It then follows
from [40, Corollary 6.1.8] that Z has Ahlfors regular conformal dimension equal to

Q, ie, that holds. (I

Remark 3.4. When I' ~ X is a convex-cocompact action on a non-compact rank-
one symmetric space X, as in the previous subsection, the boundary homeomor-
phism between OT" and A(T") is quasisymmetric. As A(T") is Ahlfors regular, we have
A(T) € Jar(0T). Consequently,

Hdim(A(T')) > conf.dimagr (A(T")) = conf.dimag (0T"),

which is the inequality that appears in Theorems [I.3] and [T.4]

The case of equality Hdim(A(T")) = conf.dimag (O') means precisely that con-
dition in Theorem holds for Z = A(T") and @ = conf.dimagr(OI'). Thus, if
Q@ > 1, then the other conditions hold for A(T") as well.

On the other hand, if @ < 1, there is only one possibility for the action I' ~ X.
Indeed, since @ < 1, the topological dimension of A(T') is either 0 or 1. If the
former, then OI" also has topological dimension 0, and T' is virtually a free group
by [31, Theorem 8.1]. This means that OI" is a uniformly perfect Cantor set, which
is known to have Ahlfors regular conformal dimension equal to 0. Hence, @ = 0,
which implies that A(T) is finite, and so T" is elementary, a contradiction. Thus, the
topological dimension of A(T') must be equal to 1, which then means that @ =1 as
well. Applying [7, Theorem 1.1] shows that I" is virtually Fuchsian and the action
I' ~ X stabilizes an isometric copy of HZ in X.

These arguments justify our subsequent restriction to the case @ > 1 and our
phrasing of Theorem above (which, in [§], is stated only for @ > 1).

In the remainder of the section, we make some general remarks about the types
of Lipschitz differentiability structures that can appear on boundaries of hyperbolic
groups.

Let T' be a Gromov hyperbolic group with conf.dimag(0T') = @ > 1. If there
is Z € Jar(0T) that is a Lipschitz differentiability space, then Theorem guar-
antees that dimy(Z) = Q. In other words, the Hausdorff dimension of any highly
regular metric on OI' depends only on the quasi-isometry class of I'. Being slightly
imprecise, one could simply refer to @ as the Hausdorff dimension of OT'.

We claim that a similar statement holds for the dimension of the differentiability
structure. In fact, we can establish something stronger.

Lemma 3.5. (i) If Z € Jar(0T') is a Lipschitz differentiability space, then the
action I' ~ Z, obtained by conjugating the boundary action I' ~ O by a
quasisymmetric homeomorphism between OU and Z, is ergodic with respect to
Q-dimensional Hausdorff measure.

(i1) If Z1,Zo € Jawr(OT) are Lipschitz differentiability spaces, then for any Borel
sets Uy C Z1, Uy C Zsy of positive measure, there are positive measure subsets
Ay C Uy, Ay C Us that are bi-Lipschitz equivalent.
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Proof. To verify (i), first note that Z is Ahlfors Q-regular and Q-Loewner by The-
orem [3.3] Let p denote the Q-dimensional Hausdorff measure, which we may nor-
malize to have u(Z) = 1.

The action I' ~ Z is uniformly quasi-M6bius and, hence, uniformly quasiconfor-
mal: there is K < oo for which each g € I' acts as a K-quasiconformal homeomor-
phism of Z. Using that Z is Ahlfors Q-regular and @Q-Loewner, this means that
each g € T is absolutely continuous in measure [28, Corollary 8.15]. Hence, I' ~ Z
is a measure-class preserving action. Ergodicity of such an action means, as usual,
that any I'-invariant Borel set has measure 0 or 1.

To show this, we note that each g € T" has a uniform density property (in the sense
of [38] Section 6]) with uniform distortion control. Actually, we will use a slightly
different property, but which is of the same spirit: there is a homeomorphism
¢: [0,00) — [0,00) such that

1(g(ENB)) < ¢ (M(E”B)>

1(B)
for every g € T, every Borel set £ C Z, and every ball B C Z. A minor modification
of the proof of [38, Theorem 6.3] shows this easily, once we remark that Z satisfies
a (1, p)-Poincaré inequality for some 1 < p < @ by the main result of [34].

Now, suppose that F C Z is a I'-invariant Borel set with u(E) < 1. Let € > 0
be arbitrary, and let B C Z be a ball, centered at a point of density for Z\ F, with

radius small enough that
ENnB
s <ﬂ(>> -
(B) 2
By [6, Lemma 5.1], there are elements g € I" for which diam(Z\g(B)) is arbitrarily
small. In particular, we can find g € ' for which

WZ\g(B)) < e/2.
Using that E is I-invariant, we have E = g(E) C g(E N B) U (Z\g(B)), and thus

MENB)N e,
1(B) ) 2= ¢

As € > 0 was arbitrary, we see that u(F) = 0. Hence, I' ~ Z is ergodic.

Let us now verify part (ii). Again, we know that Z; and Z5 are both Ahlfors
Q@-regular and @Q-Loewner. Moreover, there is a quasisymmetric homeomorphism
f: Z1 — Zs, which is absolutely continuous in measure by [28, Corollary 8.15]. In
particular, the image f(U;) has positive measure in Zs. By part (i), the action
' ~ Z, is ergodic, so there is g € I for which g(f(U1)) N Uz has positive measure.
Replacing f by the composition g o f, we may suppose without loss of generality
that f(U;) N Uy has positive measure. This also means that U; N f~1(Uz) has
positive measure.

It is shown in [28, Section 10| that if f: Z; — Zs is a quasisymmetric homeo-
morphism between Ahlfors Q-regular, @Q-Loewner spaces, then Z; can be covered,
up to a set of measure zero, by Borel sets on which f is Lipschitz. In particular,
given any positive measure subset B C Zp, there is a positive measure set A C B
on which f is Lipschitz. Using the same argument for f~!, along with the fact that
f and f~! preserve sets of measure zero, it is easy to see that we can actually find
a positive measure subset A C B on which f is bi-Lipschitz. Applying this fact to

W(E) < ulg(EN B) + u(Z\g(B)) < 6 (
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the set Uy N f~Y(Uy) C Z1, we find a positive measure subset A; C Uy N f~1(Uy)
on which f is bi-Lipschitz. Then set A = f(41) C Us. O

An immediate consequence of Lemma (ii) is that there is a unique integer
k for which each chart in any Lipschitz differentiability space Z € Jar(0T') has
dimension k. It makes sense to call this integer the analytic dimension of OI', and
once again it depends only on the quasi-isometry class of I'.  Thus, in the case
that Jar(0T) contains a Lipschitz differentiability space, there are three natural
well-defined dimensions to consider: the topological dimension of OT", the Hausdorff
dimension of OT', and the analytic dimension of JI'.

At the same time, it should be quite rare for Jar(0') to contain a Lipschitz
differentiability space. Currently, the only known examples come from uniform
lattices in non-compact rank-one symmetric spaces and uniform lattices in certain
types of hyperbolic buildings [I1I]. It makes more sense to look for rigidity phenom-
ena for such groups I'. One might expect the topological, Hausdorff, and analytic
dimensions of JI" to function as characteristic quantities for rigidity.

There are some intimations toward this type of rigidity when I' is a manifold
group. If T' = 7 (M) with M a closed, negatively curved Riemannian manifold,
of dimension at least 3, then the action by deck transformations I' ~ M on the
universal Riemannian cover has compact quotient. Rescaling the metric, we may
assume that the maximal sectional curvature of M equals —1. The visual boundary
OM, equipped with any visual metric, is then in Jar(0D).

If M has a path family of positive p-modulus for some p > 1, then a theorem of
Connell shows that M is isometric to a non-compact rank-one symmetric space (20
Theorem 4.3] for Patterson—Sullivan measures). This symmetric space is uniquely
determined by the topological and Hausdorff dimensions of M, as it is locally
modeled by an Iwasawa group. It is not clear, however, whether the same conclusion
holds if one assumes only that Jag (OT) contains a Lipschitz differentiability space.

Finally, let us record an analog of the Patterson—Sullivan case in Connell’s result
that uses some of the ideas we will see below.

Proposition 3.6. Let ' ~ X be a convex-cocompact action on a CAT(—1) space
X with Hdim(A(T")) > 1. Suppose that A(T') admits a path family of positive p-
modulus for some p > 1. Then every geodesic in X whose endpoints lie in A(T)
is contained in an isometrically embedded copy of HZ in X for which the boundary
circle lies entirely in A(T).

In the setting of Connell’s theorem, the action of I' on X = M is cocompact, so
the conclusion of Proposition holds for all geodesics in M. This means that M
has hyperbolic rank at least 1, and a powerful theorem of Hamenstéadt then implies
that M is symmetric [25].

Proof. By a theorem of Bourdon [I0, Theorem 0.1], it suffices to show that any
two points in A(T") can be joined by a Mobius circle that lies in A(T"). As Mobius
circles in 0X are closed under non-trivial limits, it actually suffices to show that
for a dense set of points w € A(T"), for every n € A(T')\{w}, there is a Mobius circle
in A(T') containing w and 7. Recall, though, that the boundary action ' ~ A(T) is
Mobius, and the orbit of every point is dense. Thus, it suffices to prove the previous
statement for a single point w € A(T'). A natural rephrasing of this statement is
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that every n € A(T')\{w} is contained in an isometric copy of R in the parabolic
limit set (A(I')\{w}, dw,q) for some ¢ € X. Let us prove this formulation.

By Theorem we know that A(T") is a Lipschitz differentiability space. A
result of Cheeger—Kleiner—Schioppa, Theorem above, guarantees that A(T") has
a tangent Y for which there is a metric submersion Y — (R¥, || - ||) onto a normed
space. A theorem of Bonk—Kleiner |7, Proposition 3.1] shows that there are points
w € A(T') and ¢ € X for which Y is isometrically equivalent to (A(I')\{w},dw q)-
Thus, there is a metric submersion

Fo (AW} dug) = R[] ).

For n € A(T')\{w}, let ¢ be a geodesic line in R* through f(n), e.g., the line in the
first coordinate direction. By Lemma below, there is a lift of ¢ to a geodesic
line in A(T")\{w} that contains 7, as desired. O

It is desirable to understand better the global geometry of X that can arise in
this setting, even in the case that I' ~ X is cocompact. One can consider Theorem
to be a description of what happens when the ambient space X is not only
CAT(—1) but is in fact symmetric.

4. TANGENTS OF LIPSCHITZ DIFFERENTIABILITY SPACES IN CARNOT GROUPS

The main result of this section is Theorem [£.I] which essentially shows that
if a Lipschitz differentiability space lies inside a Carnot group, then its tangents
are Carnot subgroups. Theorem is an important piece in the proof of Theo-
rem but also has other interesting non-embedding consequences for Lipschitz
differentiability spaces, as explained in subsection

Let G be a Carnot group, and let d be a homogeneous distance on G. Let
X C G be a subset for which there is a Radon measure p on X for which (X, d, u)
is a Lipschitz differentiability space. Recall the definition of Carnot subgroups given
in Definition Note that X is automatically metrically doubling, as a subset of
the metrically doubling space G.

Theorem 4.1. Let (U, ¢) be a k-dimensional chart for X, and assume that for
almost every = € U, each (X,2) € Tan(X,z) is rectifiably connected. Then for
almost every x € U, the set Tan(X, ) consists of one element, which is canonically
isometric to a Carnot subgroup of G generated by a fized k-dimensional subspace of
the horizontal layer of G.

Remark 4.2. If (X,d,p) is a PI space (ie, is doubling and satisfies a Poincaré
inequality in the sense of [27]), then the assumption that each (X,Z) € Tan(X,z)
is rectifiably connected can be omitted in Theorem[4.1] This is because each element
of Tan(X,z) will be quasiconvex and hence rectifiably connected. Thus Theorem
from the introduction, which is the only case of Theorem needed for the
proof of Theorem follows immediately.

The assumption that each tangent is rectifiably connected in Theorem can
also be omitted if (X, d, u) is a RNP Lipschitz differentiability space, in the sense
of [2]. This follows from Corollary 9.4 of [2].

The following path lifting lemma for Lipschitz quotients is taken from [5, Lemma
4.4] (equivalently [30, Lemma 2.2]). Although stated there only for Euclidean do-
mains, the proof works equally well in the context below. Recall that a metric space
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is proper if each closed ball in the space is compact. Every complete, doubling met-
ric space is proper.

Lemma 4.3. Let X be a proper metric space and Y a metric space. Let F': X =Y
be a Lipschitz quotient with co-Lipschitz constant ¢ > 0, and let v: [0,T] — Y
be a 1-Lipschitz curve with v(0) = F(z). Then there is a (1/c)-Lipschitz curve
4:[0,T] = X such that ¥(0) =z and F o7 =~.

We now let 7: G — V; >~ R™ be the global differentiability chart for G, and
let 7 = (my,...,m,) denote its coordinates. Recall that (U,¢: X — R¥) is a
differentiability chart for the space (X,d, ut) contained in G.

Lemma 4.4. The set U can be covered by a finite number of charts, with chart
maps of the form

(T ey ) X — RF
for some choice of k distinct indices i1, ..., 0.

Proof. Let t: X — G be the inclusion map, which is an isometry. Post-composing
with m: G — R" gives a Lipschitz map from X to R™, which can be differentiated
with respect to the chart ¢: X — R¥ for U. Thus, for almost every = € U, there is
a unique linear map

Du(z): R¥ — R"

for which
(4.1) m(y) — m(x) = Du(z)(p(y) — ¢(z)) + o(d(z,y)), vy € X.

For almost every =z € U, if (X,ﬁc) € Tan(X,z), then the corresponding tangent
maps ¢: X — RF and i: X — G satisfy

Toi=Du(z)op.

Here, we consider X as a subset of G, so that [ is just the inclusion map again.
Moreover, ¢: X — RF is a Lipschitz quotient mapping.
Consider any non-zero vector v € R¥. By Lemma there is a Lipschitz curve
¢:]0,1] - X C G with
bol(t) =to.
In particular, we have
mol(t) = Du(z)(tv) =t - Di(x)(v).

Since /£ is a non-constant curve in G, it must be that 7 o £ is non-constant (Lemma
2.8(vi). Hence, Di(z)(v) # 0. As v was arbitrary, we conclude that Di(z) is
injective, and in particular that k£ < n.

Given i1 < --- < i, € {1,...,n}, let U;,,.. ;. denote the subset of U on which
the k x k minor of (D¢)(x) defined by the coordinates i1, ..., is invertible. Note
that almost every x € U is in some such set, since (D¢)(z) is injective for almost
every z € U. For x € Uy, . 4., let A(z): R" — R* be the unique linear mapping
with

(4.2) ker(A) = span({e1,...,en} \{€i;,.-- €, })
such that
(4.3) A(z) - (Di)(z) = 1dy.
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Applying to equation (4.1, we see that
(4.4) P(y) — ¢(z) = A(z) - (nr(y) — m(z)) + o(d(z,y)), yeX.

From (4.4) and (4.2)), it follows that a Lipschitz function f: X — R that is differ-
entiable with respect to ¢ at x € U;, .. ;,, with unique derivative, is differentiable
with respect to the restrictions (m;,|x, ..., 7, |x) with unique derivative.

Hence, these form a k-dimensional chart map for U;, .. [l

Vgt
We are now ready to prove Theorem [.1]

Proof of Theorem [/.1 Using the previous lemma, and passing to subsets, we
may assume without loss of generality that U has chart map

(71,...,m): X = R¥ C R",

For almost every z € U, we know that the other coordinates my1, ..., m, are linear
combinations of 7y,..., 7, up to first order on X near x. Fix such a point z, and
assume also that every (X, #) € Tan(X, z) is rectifiably connected and all tangent
maps (71,...,7Tk): X — R¥ are Lipschitz quotients. By assumption, such points
form a set, of full measure in U.

Fix (X,2) € Tan(X,z). We canonically identify X with a closed subset of
G that is a limit of rescalings of L_,(X), with & = 0 and #; = m;. Moreover,
as the coordinates 71, ...,m, were linear combinations of 7y,..., 7, up to first
order on X near z, we see that my41|¢,..., 7| are precisely linear combinations
of mi|¢,...,mk|¢ on X. In particular, there is an injective linear transformation
A: RF — R™ for which

pi=mly =Ao(m,..., ).

Let V = p(X) = A(R¥) be the corresponding linear subspace of R ~ V. Tt is a
k-dimensional subspace because (71, ..., m;): X — R¥ is surjective by the Lipschitz
quotient property and A is injective. Furthermore, the map p: X — V is a Lipschitz
quotient.

We claim that X is the Carnot subgroup of G generated by V' C R". First, we
show that it is a subgroup. Let y,z € X and let v be a rectifiable curve in X
from 0 to z, so that p o~y is a rectifiable curve in V from 0 to p(z). Consider the
rectifiable curve L, oy, which joins y to yz in G. As

moLyoy=Lyy)omoy =Ly opor,

we see that L, o+ is the unique horizontal lift through 7 of the curve Ly, opo~y to
G, starting at y (recall the uniqueness in Lemma ) Note that L,yopoy
is a rectifiable curve in V', as L,y preserves this subspace. Applying Lemma
to the Lipschitz quotient p: X — V, we obtain a lift of L) opoy to a rectifiable
curve in X beginning at y. This lift through p is also a lift through 7, and by
uniqueness of horizontal lifts to G, the two lifts must coincide. Hence, L, o v is
contained in X; in particular, its endpomt yz is in X.

Similar arguments show that X is closed under inversion and dilation. If RS X ,
then let v be a rectifiable curve in X from 0 to y. Note that L,-1 07 is also
rectifiable in G. The reversal of this curve is therefore the unique lift of the reversal
of —m(y) + mo~v to G that begins at 0. As —m(y) + 7o+ is a rectifiable curve in V/,
the Lipschitz quotient property of p ensures that this lift lies in X. In particular,
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yle X. Finally, if §, is a dilation for G, then J) o~ is again a horizontal curve in
G. As

Todyoy=A-moy=A-pory
is a rectifiable curve in V', its unique horizontal lift to G that starts at 0 is J o 7.
By the Lipschitz quotient property for p, this lift must be in X, so 6, (y) € X.

Thus we find that X = H is a homogeneous subgroup of G that is rectifiably
connected. In particular, it is a closed Lie subgroup with Lie algebra h C g for
which H = expg(h). Moreover, the k-dimensional subspace V = p(H) C V; that
we found earlier is precisely h N V;. Let h* C b denote the stratified Lie algebra
generated by V', and let H* = expg(h*) C H be the corresponding Carnot subgroup
of G.

It remains only to show that H* = H. To see this, let y € H be arbitrary, and
let v be a rectifiable curve in H from 0 to y. Then p o~y is a rectifiable curve in V'
from 0 to p(z), and its unique horizontal lift to G, starting at 0, is . At the same
time, p o~y is a rectifiable curve in the horizontal layer of the Carnot subgroup H*,
so it has a horizontal lift to H* through p that starts at 0. Hence y € H*, and we
conclude that H* = H. (]

The following is an immediate result of the theorem above.

Corollary 4.5. Let (U, ¢) be a k-dimensional chart in a complete, metrically dou-
bling Lipschitz differentiability space (X,d, ), and assume that for almost every
x €U, each X € Tan(X, z) is rectifiably connected.

Suppose that F: X — G is a bi-Lipschitz embedding. Then for p-almost every
x € U, Tan(F(X), F(x)) consists of one element, which is canonically isometric
to a Carnot subgroup of G generated by a k-dimensional vector subspace of the
horizontal layer of G.

In particular, for p-almost every x € U, every element in Tan(X,z) is bi-
Lipschitz equivalent to a sub-Riemannian Carnot group whose horizontal layer has
dimension k.

4.1. Non-embedding consequences. One interesting consequence of Cheeger’s
initial study of differentiability in metric spaces was a certain generalized non-
embedding result for Euclidean targets. The following statement was proven for PI
spaces in [16, Theorems 14.1 and 14.2] and was generalized to Lipschitz differentia-
bility spaces in [23], Corollary 8.3] as a corollary of Proposition above.

Theorem 4.6. Let (X,d, 1) be a complete, metrically doubling Lipschitz differen-
tiability space with an k-dimensional chart (U, ¢).

Suppose there exists a set A C U with u(A) > 0 such that for every a € A, there
exists (Y,y) € Tan(X,a) that is not bi-Lipschitz equivalent to R”.

Then X does not admit a bi-Lipschitz embedding into any Euclidean space.

In [I7, Theorem 1.6], Cheeger and Kleiner used differentiability to prove a non-
embedding result for PI spaces into certain infinite-dimensional Banach spaces.

Our work above allows us to obtain a result similar to Theorem for Carnot
group targets. Namely, a direct consequence of Corollary [£.5]is the following general
non-embedding result.

Corollary 4.7. Let (X, d, 1) be a complete, metrically doubling Lipschitz differen-
tiability space with a k-dimensional chart (U, ), and assume that for almost every
zeU, each X € Tan(X, x) is rectifiably connected.
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Suppose there is a set A C U with u(A) > 0 such that, for every a € A, there
exists (Y,y) € Tan(X, a) that is not bi-Lipschitz equivalent to a Carnot group with
a k-dimensional horizontal layer.

Then X does not admit a bi-Lipschitz embedding into any Carnot group.

A non-embedding result in the same spirit (but allowing more general targets)
for a class of one-dimensional Lipschitz differentiability spaces already appears in
[18] Corollary 9.3].

5. RIGIDITY FOR CONVEX-COCOMPACT ACTIONS OF MINIMAL HAUSDORFF
DIMENSION

This section is devoted to the proof of Theorem It will be convenient to
begin with the following lemma, which is essentially due to Bourdon, as part of the
argument for Theorem [T.1]

Lemma 5.1. Let I' ~ X be a convex-cocompact action of a discrete group T on a
CAT(-1) space X. Suppose that the limit set A(T') is bi-Lipschitz equivalent to the
boundary of a mon-compact rank-one symmetric space S # HZ. Then there is an
isometric embedding F: S — X such that F(0S) = A(T"), and T stabilizes F(S),
acting on it with compact quotient.

Proof. Fix visual metrics on X and 9S once and for all. The bi-Lipschitz equiva-
lence implies that dimg (A(T')) = dimg (0S) and that the Mobius action I' ~ A(T)
can be conjugated to a uniformly quasi-Mobius action T' ~ 9S.

If S is of quaternionic or octonionic type, then a theorem of Pansu [43], Corollary
11.2] ensures that the action I' ~ 9S is by l-quasiconformal mappings, hence
mappings that extend to isometries of S by [43, Theorem 11.5], and hence M&bius
mappings by [9].

If S is real or complex hyperbolic, then theorems of Sullivan—Tukia [47, Theorem
G] and Chow [19, Theorem 2] show that there is a quasi-M&bius homeomorphism of
0S5 that conjugates the quasi-Mdbius action I' ~ 95 to a Mdbius action. To be more
precise, here we use that every point in 95 is a “radial limit point" for the the quasi-
Mbobius action I' ~ 3S. This follows from the fact that this action is cocompact
on triples, which in turn follows from the standard fact that the boundary action
' ~ A(T") is cocompact on triples. Also, in the complex hyperbolic case, we again
turn to [43] Theorem 11.5] and [9] to argue that conformal mappings are Mobius.

In any case, we can find a quasisymmetric homeomorphism f: 85 — A(T") that
is equivariant with respect to Mobius actions I' ~ S and T' ~ A(T).

From here, Bourdon’s work applies directly. In Section 2 of [10], he shows that
such a homeomorphism f is in fact a M6bius homeomorphism. In addition, he
shows in [10, Theorem 0.1] that any M&bius embedding f: 95 — 90X extends to an
isometric embedding F': S — X. That I' ~ X stabilizes F'(S) follows immediately
from the fact that F(S) is the union of geodesics in X whose endpoints are both
in A(T'). That F(S)/T is compact follows from the assumption that I' ~ X is
convex-cocompact. ([l

Proof of Theorem [1.]] The inequality was already discussed in Remark as
was the equality case when Q < 1. Thus, we may assume that equality holds
and @Q > 1. It follows from Theorem that A(T"), equipped with @-dimensional
Hausdorff measure, is a Lipschitz differentiability space. In fact, we know that A(T)
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supports a Poincaré inequality, which means that it is a quasiconvex metric space
(cf. Remark [£.2).

Let G be the Iwasawa group that locally models the geometry of (0X,d,). By
Lemma [3.1] for any choice of ¢ € X and w € X, the punctured boundary 9.X\{w}
is identified with G in such a way that the parabolic visual metric d,, 4 is @ homo-
geneous distance on G.

Choose a point z € A(T') C 90X for which every tangent of every element of
Tan(A(T'),dp, 2) is also in Tan(A(T"),d,,z). By [39, Theorem 1.1] almost every
z € A(T"), with respect to Hausdorfl Q-measure, has this property. Take a tangent
of (A(T"),d,) at z. By [7, Proposition 3.1], there are points ¢’ € X and w’ € A(T)
for which this tangent is isometric to the parabolic limit set (A(I')\{w'}, dyr o). As
(A(T),d,) is quasiconvex, its tangents are as well.

This parabolic limit set is a subset of the parabolic boundary (0X\{w'}, dus o),
which is identified with the Iwasawa group G. The metrics d,/  and d,, are locally
bi-Lipschitz equivalent on dX\{w'} and, hence, also on A(T")\{w'}. In particu-
lar, this means that (A(T')\{w'},d. ¢ ) is a Lipschitz differentiability space when
equipped with its Hausdorff @-measure. By Theorem this parabolic limit set
has a tangent that is isometric to a Carnot subgroup N C G.

By the way we chose z € A(T"), we see that (N, d./ o) is actually a tangent of the
full limit set (A(T"),dp). Once again, appealing to [7, Proposition 3.1], this means
that there are points ¢ € X and w € A(T") for which (N, d, 4 ) is isometric to the
parabolic limit set (A(I')\{w},dw ). Fix an identification of 0X\{w} with G so
that the origin of G is contained in A(T')\{w}. In this way, N = A(')\{w} is a
Carnot subgroup of G = 0X\{w}, which is equipped with the metric d,, 4.

We claim that N is also an Iwasawa group. Suppose not, and let g € T be
arbitrary. As remarked in Section the induced boundary homeomorphism

9: G\{g7' (@)} = G\{g(w)}

is conformal, in the sense that it is smooth and its horizontal derivative is every-
where a similarity. In particular, the restriction

9: N\{g™' (W)} = N\{g(w)}

is also smooth with horizontal derivative everywhere a similarity, and so it is a
conformal map on an open, connected subset of N. By [22] Theorem 4.1], this
means that g|y\(g-1(w)} is the restriction of an affine map, and in particular that
g(w) = w. Thus, w is a global fixed point for the action of I" on A(T"), a contradiction.

Let S be the non-compact rank-one symmetric space with 95 locally modeled
by the Iwasawa group N. Note that .S is determined uniquely by the topological
and Hausdorff dimensions of N, or equivalently of A(T") [40, p. 34]. Choosing any
points s € S and ¢ € 95, we know that (0S\{C},dc,s) is bi-Lipschitz equivalent to
N = (AT)\{w}, ).

Using that (05\{¢}, d¢ s) and (0S\{(}, ds) are M&bius equivalent, together with
the fact that (A(T)\{w},d, ) and (A(T)\{w},d,) are Mdbius equivalent, we find
that (0S\{¢},ds) is quasi-Mobius equivalent to (A(T')\{w}, d,) with linear distor-
tion function 7(t). In particular, this implies that (95,ds) and (A(T),d,) are bi-
Lipschitz equivalent. As Hdim(9S) = Hdim(A(T)) = @ > 1, we know that S # HZ.
Finally, applying Lemma [5.1] finishes the proof. O
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