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Abstract

Accurate predictions of energy consumption are essential to optimizing building energy
use performance. To date, substantial efforts have been undertaken to improve prediction accuracy,
specifically while focusing on occupants’ presence in buildings. Unfortunately, two significant

obstacles remain when predicting building energy consumption using occupancy data. First,
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occupancy diversity among end-user groups is rarely considered during model development.
Second, occupancy’s correlation with energy consumption may be weak due to variances in
occupant behavior. Therefore, this research aims to investigate how occupancy-related
characteristics of end-user groups affect prediction performance. In order to achieve this objective,
a data mining-based prediction model is constructed to mimic building thermal behaviors. The
experimental results using the proposed prediction model make it evident that prediction accuracy
1s improved when considering diverse occupancy and its correlation with energy use. In addition,
significant prediction accuracy is achieved using only a minimal amount of historical data. With
the proposed prediction model, it is possible to obtain more detailed information about energy use
patterns (e.g., load shape, the amount of energy use) for end-user groups. Thus, facility managers
will be able to personalize the operation of energy-consuming equipment depending on end-user

group for reducing energy consumption without compromising occupants’ thermal comfort.
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1. Introduction

As buildings consume 40% of all energy globally, improving their performance remains a
critical task in order to meet energy saving goals [1]. Accordingly, much effort has been made to
reduce the energy use in buildings. Being able to accurately predict energy use in buildings is
essential to optimize the operation of energy-using equipment during a buildings operation [2-4].
Once it is understood where energy is consumed within a building, it is possible to develop
appropriate energy saving strategies. This enables facility managers to achieve energy saving in
the following three ways: 1) efficiently set starting/finishing time of heating, ventilating, and air
conditioning (HVAC) systems, 2) avoid reaching peak energy demand by pre-heating/cooling of
buildings, and 3) adjust heating and cooling setpoints during the peak energy periods.

In the extensive literature on building energy use prediction, various influential factors
have been considered due to their significant correlation with energy consumption. These factors
include: weather, building characteristics, equipment, and occupant-related characteristics [5-8].
Among these factors, recent studies have emphasized the importance of occupancy since occupants
interact with energy-consuming equipment and devices in the built environment [8-12]. When
attempting to predict building energy use, many previous efforts have employed fixed occupancy
schedules as an alternative to using actual building occupancy data for simplicity and due to lack
of readily available data [8,9]. However, smart monitoring systems now allow us to automatically
obtain high-resolution occupancy data (e.g., 1h time interval) and has begun to be used when
constructing building energy use prediction models [10-13]. It has been found that considering
occupancy as an input variable during model development improves prediction performance.

Unfortunately, despite the recent advancements in prediction accuracy, two significant

obstacles remain when predicting energy consumption using occupancy data. First, diverse
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occupancy, which refers to differences in occupancy status among end-user groups (EUGs), has
rarely been considered during model development. This is important because many buildings have
different EUGs which have different occupancy patterns. For instance, university buildings have
complex occupancy patterns due to the varying functions of rooms: administration, research,
lecture, and seminar [14]. Most studies [7-13] to date have eliminated occupancy diversity by
averaging the values of occupancy status at the building level, which may contribute to
discrepancies between actual and predicted energy use. Other studies have employed spatially
granular data (e.g., floor and unit level) and individual equipment level data for building energy
use prediction, but did not consider occupancy diversity during model development [2,15]. Second,
occupancy’s correlation with consumption may be weak at time due to variances in occupant
behavior. If occupants fail to switch off their equipment and devices before leaving, energy will
be consumed while unoccupied and uncorrelated with occupancy [16-19]. As a consequence, it
can be difficult to ensure an improvement in prediction accuracy, 1.e., the correlation effect. Most
studies to date have used occupancy as an input variable without considering its correlation with
energy use [11,12]. In rare studies that have investigated the correlation between energy use and
occupancy status, the correlation effect remains unclear because there was no attempt to compare
the performance of prediction models with different correlation levels [10,13].

Therefore, this research aims to investigate how occupancy-related characteristics of
EUGs affect energy use prediction performance. In order to achieve this objective, a data mining-
based prediction model is constructed since it facilitates to mimic building thermal behaviors [20]
and identifies representative EUGs within buildings [21,22]. The developed model will provide
more accurate information about daily peak demand and daily energy use in buildings.

Furthermore, it 1s expected that the model makes it possible to recognize energy use patterns for
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EUGs. In turn, facility managers will be able to personalize the operation of energy-consuming
equipment depending on EUG.

This paper 1s organized as follows. First, a literature review is presented on the application
of occupancy data to building energy use prediction and prediction methodologies. Second, data
mining techniques relevant to this work are introduced and discussed. Third, a data mining-based
prediction model is developed by using real-world data collected from buildings in Seoul, South
Korea. Next, the experimental results using the proposed prediction model are presented and the

paper concludes with a discussion of the results followed by the conclusion.

2. Literature Review
2.1 Application of occupancy data to building energy use prediction
In the extensive literature on building energy use prediction, occupancy data is typically

substituted with building or equipment schedules which indirectly reflects the behavior of
occupants. Kwok et al. [6] proposed a multi-layer perceptron model for building energy use
prediction using the power consumption of primary air-handling units (PAU) as an alternative to
occupancy data to mimic occupants’ presence in a building. Yezioro et al. [8] constructed an
artificial neural network (ANN) prediction model which uses the occupancy schedule as an input
variable. In the optimized ANN model for building energy forecasting suggested by Li et al. [9],
the opening schedules of a library were used to represent the hourly occupancy of each reading
room.

Due to recent advancements in technology, it has become possible to monitor occupancy
in real-time. With this new capability, researchers have begun using actual occupancy data to

simulate occupants’ behavioral characteristics in temporal and spatial contexts. Sandels et al. [10]
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presented a data analysis approach for conducting day-ahead predictions of electricity consumed
by appliances, ventilation systems, and cooling equipment in an office building floor. It 1s found
that the most significant predictor for the appliance load is the occupancy ratio. Virote and Neves-
Silva [11] produced reliable predictions for building energy use by integrating stochastic occupant
behavioral models with energy consumption models. Wang and Ding [ 12] proposed an occupancy-
based energy consumption prediction model. The prediction model used a time-varying indoor
occupancy rate which is obtained by using Monte Carlo simulation and Markov chain model. As
a method to quantify energy savings by measurements and verification, Liang et al. [ 13] developed
an energy baseline model using a short-time interval data on the number of occupants.

As mentioned above, a substantial number of studies investigated the effect of occupancy
on the performance of building energy use prediction. However, the occupancy data used in
previous studies was mostly simplified through aggregating occupancy status at the building level.
Furthermore, when constructing prediction models, there were limited attempts to investigate
occupancy’s correlation with energy use. As a consequence of such significant obstacles, there still
remains a discrepancy between the actual and predicted energy use.

2.2 Prediction approaches

Various building energy use prediction models have been proposed and can be categorized
as: engineering, statistical, or ANN [23]. Engineering models simulate building energy use based
on the physical and environmental factors [7-8]. While this approach has the advantage of being
able to calculate elaborate thermal dynamics at a building level, it is not without limitation. This
method can be a complicated difficult process which involves constructing a simulation model and
obtaining meaningful input data [24]. Statistical models predict building energy use by using

historical energy use data together with the measured input data [10,25,26]. While the structure of
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this approach is well understood due to the simplicity of the model parameters, substantial effort
1s required to overcome autocorrelation and multi-collinearity problems [4]. Lastly, ANN operates
training procedures using historical data and then predicts building energy use [4-9]. This approach
1s highly applicable for solving non-linear and complex problems [27]. Not without limitations as
well, ANN face potential problems with the reliability and accuracy of prediction results since it
relies on the training data and can be computationally intensive [20, 28].

As described thus far, each approach has its own advantages and disadvantages.
Nevertheless, among these approaches, ANN prediction models are becoming increasingly more
common in the field of building energy use prediction because the thermal behaviors of a building

involve a non-linear problem [20].

3. Methodology

For this research, three data mining techniques are employed to predict the total amount
of building energy use. First, ~~-means algorithm is used to investigate representative EUGs within
buildings due to its ability to categorizes a set of objects into meaningful groups [29]. Second,
artificial neural networks are constructed to predict energy use for the identified EUGs because it
facilitates to mimic thermal behaviors of a building [20]. Third, 4-nearest neighbor with simple
classification capability 1s introduced to select an appropriate set of historical data for network
training [30].
3.1 k-means algorithm

In order to predict building energy use, most studies averaged the values of occupancy

status at the building level. However, in practice, there are various occupancy patterns depending
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on EUG. Consequently, this can result in a discrepancy between the actual and predicted energy
use. In order to consider occupancy diversity, this study conducts clustering analysis using k-means
algorithm to investigate representative EUGs within buildings.

The k-means algorithm 1s a clustering method which categorizes a set of objects into
meaningful groups [29]. Within one group, objects have high intra-class similarity and low inter-
class similarity. This clustering algorithm consists of four steps: 1) arbitrarily determine & objects
as the initial centroids of groups; 2) assign each object to clusters with the closest centroid based
on the distance between an object and centroid for each cluster; 3) replace the current centroid with
the object having mean value of each cluster; and 4) iterate step 2 and 3 until there are no more
new assignment.

For the k~~-means algorithms, since the number of clusters cannot be known in given datasets,
it 1s difficult to determine the best number of clusters. To overcome this difficulty, the Davies-
Bouldin Index (DBI) is adopted as clustering evaluation criteria which is the mean value of a ratio
of inter-cluster and intra-cluster distances [31]. Although many clustering evaluation criteria (e.g.,
Silhouette Index, Clustering Dispersion Indicator) have been proposed to investigate an optimal
number of clusters in a given dataset, the DBI has a high capability regardless of data properties
such as monotonicity, noise, density and skewed distributions [32]. In particular, as summarized
by Chicco [33], the DBI shows a wide applicability in the field of end-user group identification.

The DBI can be calculated by the following equation:

k _ _
1 d,+d
DBI = =3 max;s {d_J} 1)
i=1 Y
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where 4: the number of clusters; d;: the average distance between all objects in the i cluster and
the centroid of the 7 cluster; d;: the average distance between all objects in the j# cluster; and dy:
the distance between the centroids of the iz and js clusters. The minimum value of DBI
corresponds to good clusters and is regarded as an optimal clustering solution.
3.2 Artificial neural network

In order to predict energy consumption for EUGs, an ANN is used which has a
computational structure which mimics a biological neural system of human brain [34]. In general,
the ANN consists of innumerous collections of neurons, which are linked with one another. Each
individual neuron obtains multiple input values from other connected neurons to produce a single
output value. According to this physical scheme, ANN learns and generalizes the relationships in
the given datasets, and then extrapolates results for new datasets. Given this capability, ANN has
been successfully applied to solve pattern recognition, classification, and forecasting problem.

Fig. 1 illustrates the structure of a typical three-layer feed forward neural network. The
network consists of three types of layers in which the neurons are placed. The first layer, called
input layer, obtains inputs from outside. The second one is the output layer, which produce the
results evaluated by the network. Lastly, a hidden layer exists between the input and output layer.
It should be noted that each neuron of a given layer is connected to other neurons of a previous

layer by a weighted links. For a three-layer network, the mathematical function is defined as

Y=f|by+ Zk:h((pj+ ipiwij)bj (2)

j=1

where Y: the network outputs; f(-): nonlinear transfer function; p;: the network inputs; by: the
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output bias; b;: the weight values from hidden layer to output layer; ¢;: the hidden layer biases;
w;j: the weights from input layer to hidden layer; h(-): hidden layer activation function. In order

to produce better outputs, the gradient performance function is used through adjusting the weight

and bias parameters.

< Fig. 1. Structure of a three-layer feed forward neural network >

3.3 k-nearest neighbor

In the process of constructing a prediction model, the collected historical data is used to
adjust the weight and bias parameters of the ANN. Once a large amount of historical data is
available, 1t will be convenient to mimic building thermal behaviors by optimizing the values of
these parameters with a global solution [28]. On the other hand, this can lead to inadequate
prediction performance for the following two reasons. First, a trained ANN model using a large
dataset cannot provide acceptable prediction accuracy since it does not always have useful
information to predict future energy consumption [15]. For example, if ANN models are trained
using a large dataset collected during summer months, it is impossible to predict heating energy
use because the historical data does not include records of building thermal behaviors in the other
seasons. Further, when randomly selected training datasets (e.g., weekdays) do not have similar
values for input variables to those of test datasets (e.g., weekends), prediction models perform
poorly. Second, network training using a large dataset can be a time-intensive endeavor since more
attempts should be made to investigate optimal network parameters (i.e., weight, bias) [35]. Further,
considering that there are additional efforts to improve the quality of historical data (e.g., data

preprocessing), ANN models suffer from longer computational time as the size of training datasets
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increases [36].

In order to overcome these problems, an appropriate set of historical data will be selected
and used by the k-nearest neighbor (KNN) in this research. The k-nearest neighbor searches for &
similar historical datasets that are close to a given test dataset [30]. In this context, the closeness
1s calculated using distance measures such a Euclidean distance. If p = (ps, p2, ps...., pn) and g =

(g1, g2, q3...., qn) are two objects, the Euclidean distance is defined as

dist(p,q) = 3)

Before calculating the distance between objects, it should be noted that each variable is
normalized using normalization methods such as Min-Max normalization, Z-score normalization,
and sigmoid normalization since the variables in larger units can dominate other variables. In this

research, Min-Max normalization is used due to its applicability in the field of data mining. The

’

normalized value of v, , for variable A is calculated as follow

’ Vi-A — Vnin-A ’ ’ ’
vi-A - vmax-A - vmin-A + vmin-A (4)

where v;.4: an existing value of variable A; v, - the new maximum value of variable A; v . .

the new minimum value of variable A; v,,4..4: the existing maximum value of variable A; and

Vmin-a. the existing minimum value of variable A. Based on the distance value obtained from Eq.

11
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(3), the & corresponding closest datasets are obtained from the given historical dataset. More
importantly, to find the best number of the k variable, experiments need to be conducted by

adjusting the number of similar datasets, the results of which then need to be evaluated.

4. Model Development

Based on the three types of data mining techniques outlined above, a building energy use
prediction model 1s constructed in MATLAB with the Neural Network Toolbox. The proposed
prediction model considers diverse occupancy scenarios and the correlation of them with energy
consumption during model development. Data was collected by surveying seven university
dormitory buildings in Seoul, South Korea (see Table 1). The buildings have 250 single occupancy
and 1125 double occupancy rooms, which are allocated to students at the beginning of the spring
and fall semesters. In all the rooms smart metering systems measure the hourly electrical energy
consumed by under-floor heating systems, mini-refrigerators, lights, and other plug loads. In
addition, card entry systems provide a record of changes in occupancy status via entry and exit
data for each room.

From October 6, 2014 to March 1, 2015, historical data on energy use and occupancy was
collected hourly. Two hundred and twenty eight rooms are excluded in the construction of the
prediction model due to vacancy, reader malfunction, and erroneous consumption data. In addition,
due to system malfunctions no data was collected on November 28 and 29, 2014. Thus, the

historical dataset includes a total of 3480 time steps.

< Table 1. Overview of case buildings >
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After the data collection and preprocessing are completed, we select the input variables to
construct the prediction model. Then, the data-mining based prediction model is developed which
considers occupancy-related characteristics of EUGs in buildings.

4.1 Input variable selection

Identifying significant determinants of building energy use is an important task because
the prediction accuracy can be compromised using input variables that have a weak relation to
energy use [37]. Previous studies have investigated the impact of various input variables on
building energy use [38-40]. From their empirical analysis, it was recognized that the weather, the
building’s physical characteristics, equipment, and occupant-related characteristics have a
significant impact on building energy use.

In this research, the proposed prediction model employs seven input variables (see Table
2). The first four weather variables (i.e., outside dry-bulb temperature, wind speed, relative
humidity, and solar radiation) are selected due to their high correlation to energy use. As an
occupant-related characteristic, occupancy rate refers to the ratio of occupied rooms compared to
the total number of rooms at a certain time. An occupancy rate value close to 1 indicates a higher
possibility for occupants to be present in their rooms. Additionally, since students consume
different amounts of electrical energy over time, we account for the following two date-related
input variables. The first input variable is the day of the week, which consists of weekdays and the
weekend. Across all the given periods, more energy is consumed during weekdays than weekends
(see Fig. 2). This difference can be expected since students living in dormitories tend to leave
campus on weekends for their private life (e.g., visit to family). As a consequence of their weekend
leave, dormitory buildings may consume less energy during weekends. Second, the course period

1s an indicator variable which denotes fall and winter semester. Fig. 3 shows that there is a
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significant difference in average hourly energy use between fall and winter semester. These results

stems from the fact that most students move out of their rooms over winter semester.

< Table 2. Input variables for building energy use prediction >

< Fig. 2. Average hourly energy use by day of the week >

< Fig. 3. Average hourly energy use by course period >

4.2 Structure of data mining-based prediction model

In order to examine the effect of occupancy-related characteristics on the prediction
performance, a data mining-based prediction model is developed which consists of four modules
named according to their role (see Fig. 4). As a beginning of predicting building energy use, the
entry module collects historical data concerning input and output variable. Based on the historical
datasets, the datasets selection module determines similar daily datasets to improve the prediction
performance. Next, in an effort to investigate diverse occupancy in buildings, the cluster
identification module investigates representative EUGs using the similar daily datasets. For the
identified EUGs, the prediction module then examines the correlation coefficient between energy

use and occupancy status, and constructs prediction sub-models.

< Fig. 4. Main structure of data mining-based energy use prediction model >

4.2.1 Data entry module

14
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The data entry module imports historical data on outside dry-bulb temperature, wind speed,
relative humidity, solar radiation, occupancy rate, day of the week, college year, and energy use.
For the weather and occupant-related variables, the historical data is collected every hour. The
daily data for date-related variables is also obtained. Following the data collection, data
preprocessing is carried out to improve the performance of building energy use prediction as
follows. First, if there are missing and abnormal values, this module excludes the data from
analysis. Second, the collected data from multiple sources is combined to form a dataset which
includes the values of seven input variables and an output variable. Third, the preprocessed dataset
1s sent to the next module to investigate similar daily datasets for model development.

4.2.2 Dataset selection module

In the dataset selection module, a test dataset is determined to evaluate the prediction
accuracy. Then, in order to address the problems caused by a large amount of historical data, this
module determines k& similar daily datasets to be used for model development. In this context, the
similar daily datasets are obtained by averaging the values of seven input variables imported from
the data entry module. After constructing the daily datasets, the A-nearest neighbor algorithm
searches for & daily datasets that have similar values for input variables to those in the
predetermined test dataset. In this process, similarity is determined by Euclidean distance
introduced in Eq. (3). Also, min-max normalization is used to minimize the scale difference among
the mput variables. After investigating & similar daily datasets, these outputs are sent to the next
modules to find representative EUGs in buildings.

4.2.3 Cluster identification module
The cluster identification module has two functional roles as follows. First, daily energy

use patterns for EUGs are identified by clustering analysis. In order to perform this role, the A-
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means algorithm is applied to the similar daily datasets obtained in the dataset selection module.
Clustering performance is then assessed using the DBI value to determine the best number of
EUGs. The second role is to investigate daily occupancy patterns in buildings. For the identified

EUGs, the average hourly occupancy rate is calculated from the following equation.

DT :

R*(t) =

Q] =

where R¥(t): average occupancy rate for the £ cluster at time 7; d- the number of similar daily
datasets; »: the number of rooms for the & cluster; and Of‘j(t): occupancy state (0: vacancy or 1:

presence) of the i room for the £ cluster at time 7 of the / similar dataset. After conducting these
identification processes, representative daily profiles for the EUGs are exported to the next module.
4.2.4 Prediction module

The prediction module provides information about the amount of energy that will be
consumed in buildings for the next few days. In an effort to improve the accuracy of building
energy use prediction, multiple prediction sub-models using ANN are constructed depending on
the EUG identified in the cluster identification modules. Also, for the identified EUGs, the
correlation analysis between energy use and occupancy rate is performed to investigate occupants’
behaviors during unoccupied periods. This i1s important because occupancy’s correlation with
consumption may be weak at time due to variances in occupant behavior [16-19]. As observed in
previous studies [13], occupancy status is not significantly correlated with energy use when
occupants leave on energy-consuming equipment in vacant rooms. In order to conduct this analysis,

this module investigates the Pearson’s correlation coefficient () between average hourly energy
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use and average occupancy rate. If the correlation coefficient is higher than 0.5 (a threshold for
determining a significant correlation [41]), the average occupancy rate is used as one of the input
variables.

In the course of network training, the & similar daily datasets are randomly divided into
two independent datasets for training and validation, respectively. After the network training is
complete, the predetermined test dataset is used to predict building energy use by adding the results
drawn from all the sub-models. Based on the predicted building energy use, the performance of
the fully-trained predictor is assessed using the coefficient of variation of the root mean squared
error (CV-RMSE). For this performance index, the CV-RMSE value is given by combining RMSE

and Y; as follows:

RMSE
CV —RMSE = ——x 100% (6)
Yo
2
RMSE = M @)
n

where RMSE : root mean squared error; Y,,: average value of actual energy use during the

prediction period »; Y;: actual energy use at time 7; and ¥;: predicted energy use at time i.

S. Results
5.1 Experimental Design

In order to investigate how occupancy-related characteristics of EUGs affect prediction
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performance, comparative experiments are conducted using four different prediction models (see
Table 3). The first ANN model (BL-1) investigates the average value of occupancy rate at the
building level. For the second prediction model (BL-2), the average occupancy rate is employed
in case of its significant correlation with building energy use. Alternatively, the remaining models
(GL-1 and GL-2) use average values of occupancy rate for the EUGs. However, in the GL-2, the

average occupancy rate 1s used when its high correlation with energy use exists

< Table 3. Description of different prediction models >

Across all the prediction models, a parameter setting is identically performed as follows
(see Table 4). Given a test dataset (24 time steps), 10 similar daily datasets (240 time steps) are
selected and randomly divided into proportions of 80% (192 time steps) and 20% (48 time steps)
for training and validation, respectively. Using such a randomized division process, the network
training and validation is performed 10 times to find the best CV-RMSE values. In the cluster
identification model, the value of the cluster & variable varies from 2 to 10 in order to identify the
optimal number of clusters. Further, the number of hidden neurons is determined using Eq. (8),

adopted in related works [9,34].

Ny = JN;+N, +C (8)

where Nj,: number of hidden neurons; N;: number of input variables; N,: number of output

variable; C: an integer between 1 and 10. For this study, the proper number of hidden neurons is
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within a range of 4 to 13. However, since prediction performance can vary depending on the
number of hidden neurons, a sensitivity analysis is conducted using the GL-2 with 4 to 13 hidden
neurons. As shown in Fig. 5, the best values of CV-RMSE are similar to one another. However,
the GL-2 with 10 to 13 hidden neurons provides a relatively low distribution of CV-RMSE values.
This indicates that when using more than 10 hidden neurons, the GL-2 performs better at predicting
energy use. In particular, considering the computation time increases with a larger number of

hidden neurons, 10 hidden neurons are optimal to fit the proposed ANN model [42].

< Table 4. Main parameters used for network training >

< Fig. 5. CV-RMSE by number of hidden neurons >

Based on this experimental design, the prediction results for the next day and five days
are comprehensively compared to investigate the effect of occupancy-related characteristics on
building energy use prediction. In the next section, we discuss the prediction results and suggest
an improvement for the proposed model.

5.2 Next Day Prediction Results

In order to compare the prediction performance for the next day, experiments are
conducted using five test datasets (TD1: October 15, 2014; TD2: November 14, 2014; TD3:
December 22, 2014; TD4: January 12, 2015; TDS: February 5, 2015). As described in Table 5,
these test datasets list the different values for seven input variables to provide a basis for validating

the prediction results for the next day.
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< Table 5. Average values of input variables for next day building energy use prediction >

Fig. 6 shows the DBI values by the number of EUGs. During all the given prediction
periods, the lowest values of DBI are found when two EUGs exist in the case buildings (TD1:
0.6733; TD2: 0.6066; TD3: 0.6487; TD4: 0.6709; TD5: 0.6991). As shown in Fig. 7, the identified
EUGs have different energy use patterns. For the EUG 1, it can be seen that a small amount of
electrical energy is consumed in vacant rooms. In contrast, the EUG 2 tends to consume a

significant amount of electricity regardless of occupancy status.

< Fig. 6. Davies-bouldin index by the number of clusters for next day building energy use

prediction >

< Fig. 7. Daily profiles of energy use and occupancy status for next day building energy use

prediction >

Table 6 presents the results of the correlation analysis of the EUGs and building. During
the given prediction periods, there is a significant correlation between energy use and occupancy
status for the EUG number 1. On the other hand, a weak correlation exists for the EUG number 2.
When investigating the correlation coefficient at the building level, building energy use is

generally significantly correlated with occupancy status.

< Table 6. Correlation coefficient between energy use and occupancy status for next day

building energy use prediction>
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Comparing the prediction performance for the next day, the GL-2 provides the best values
of CV-RMSE at 14.4% for the TD1, 4.8% for the TD2, 3.9% for the TD3, 4.5% for the TD4, and
3.7% for the TD5 (see Fig. 8); a smaller CV-RMSE indicates better prediction performance. The
distribution of CV-RMSE values is relatively low in the GL-2. The execution time for training the
GL-1 and GL-2 is longer than the other prediction models. When examining the effect of
occupancy diversity on the CV-RMSE values, the GL-2 offers higher accuracy than both the BL-
1 and BL-2. However, the GL-1 does not always produce better prediction accuracy than both BL-
1 and BL-2. Looking closely at the CV-RMSE values by correlation effect, the BL-2 and GL-2
produce more accurate prediction results for the next day than both the BL-1 and the GL-1. In the
experiment using TD2 (r < 0.5 at the group and building level), the CV-RMSE values for the BL-
2 1s more accurate than the BL-1 at 5.2% versus 5.4%. Also, compared to the CV-RMSE of 5.8%

for the GL-1, the relatively low value of 4.8% for the GL-2 is produced.

< Fig. 8. CV-RMSE and computation time for next day building energy use prediction >

Additionally, in order to investigate how the number of similar daily datasets affect the
prediction performance, the GL-2 is trained using 1 to 30 similar daily datasets. As shown in Fig.
9, the prediction accuracy of GL-2 decreases with a larger number of similar daily datasets. On the
other hand, training time does not significantly differ according to the number of similar daily

datasets.

< Fig. 9. Prediction performance for the next day by number of similar daily datasets >
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5.3 Next Five Days Prediction Results

In order to compare the prediction performance for the next five days, experiments are
performed using three test datasets (TD1: November 20-24, 2014; TD2: December 5-9, 2014; TD3:
January 24-28, 2015). As shown in Table 7, these test datasets encompass different values for seven

input variables. Therefore, it is possible to validate the prediction performance for the five days.

< Table 7. Average values of input variables for next five days building energy use prediction >

Fig. 10 represents the results of clustering analysis using 10 similar daily datasets. During
the given prediction periods, there are various EUGs in the case buildings (TD1: 11 EUGs; TD2:
12 EUGs; TD3: 16 EUGs). For all the identified EUGs, we conduct the correlation analysis
between energy use and occupancy status. As shown in Table 8, there are differences in correlation
coefficient values among the EUGs. When investigating the correlation coefficient at the building

level, it substantially varies within the prediction periods.

< Fig. 10. Davies-bouldin index by number of clusters for next five days building energy use

prediction >

< Table 8. Correlation coefficient between energy use and occupancy status for next five days

building energy use prediction >

Fig. 11 describes a comparison of prediction performance for the next five days. Based on
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the lowest value of CV-RMSE, the GL-2 is the best model to predict building energy use for the
next five days (TD1: 12.6%:; TD2: 7.5%; TD3: 7.2%). The difference between the maximum and
minimum values of CV-RMSE is relatively low in the GL-2. In addition, the GL-1 and GL-2
generally take a longer time for its network training. Looking closely at the prediction performance
by occupancy diversity, the lowest CV-RMSE values for the GL-2 are observed during all the
given prediction periods. However, the GL-1 does not always result in a higher value of CV-RMSE
than both the BL-1 and BL-2. When investigating the correlation effect on prediction performance,
the BL-2 and GL-2 are more accurate than the BL-1 and GL-1, respectively. In the experiments
using the TD2 (r < 0.5 at the group and building level), the CV-RMSE for the BL-2 is lower than
the BL-1 at 8.3% versus 9.1%. Also, compared to the CV-RMSE of 8.6% for the GL-1, the

relatively low value of 7.5% for the GL-2 is yielded.

< Fig. 11. CV-RMSE and computation time for next five days building energy use prediction >

In order to investigate the effect of the number of similar daily datasets on the prediction
performance, the GL-2 is trained within a range from 1 to 30 similar daily datasets. As shown in
Fig. 12, the CV-RMSE values increase as the number of similar daily datasets increases. However,

it 1s difficult to find a consistent tendency in computational time for training the GL-2.

< Fig. 12. Prediction performance for the next five days by number of similar daily datasets >

6. Discussion

Figs. 8 and 10 compare the prediction performance by CV-RMSE. Considering that a
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smaller CV-RMSE indicates better prediction performance, it is observed that the GL-2 provides
more reliable accuracy within acceptable tolerances (CV-RMSE, 30%) than the other prediction
models do [43]. Although only a small gap in CV-RMSE values are observed among the prediction
models, this is significant because the GL-2 shows relatively low variance in CV-RMSE values
regardless of the random selection of training and validation datasets. Therefore, it can be inferred
that occupancy-related characteristics of EUGs significantly contribute to the prediction
performance.

More specifically, it appears that occupancy diversity affects the prediction performance.
Compared to the BL-1 and BL-2, the GL-2 that has multiple prediction sub-models produces the
lowest CV-RMSE values. These results can be expected since the GL-2 elaborates occupants’
presence at the group level and aggregate the prediction results produced by sub-models.
Considering that prediction performance increases with more granular data (e.g., floor, unit,
equipment), it is apparent that the use of simplified occupancy data undermines the performance
of building energy use prediction [2]. Additionally, the improved prediction accuracy is observed
in the BL-2 and GL-2, which consider the correlation between energy use and occupancy status.
Although they do not account for occupancy rate as an input variable, the CV-RMSE values are
lower than those for the BL-1 and GL-1. These improvements can be expected since occupancy
status 1s not always significantly correlated with energy use during the given prediction periods
and thus could have a detrimental effect on the prediction accuracy. The lack of correlation could
have resulted from poor occupant behavior, 1.e., leaving on equipment while not in the room. As
shown in Fig 7, the EUG without correlations tends to consume a significant amount of electrical
energy while rooms are unoccupied, likely due to occupants not switching off the heating system

before leaving. Further, the training time of GL-1 and GL-2 is longer than that the BL-1 and BL-
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2 (see Figs. 8 and 11). This is because multiple prediction sub-models should be individually
trained according to the number of EUGs. These experimental results indicate that occupancy
diversity should be considered while network training. Furthermore, investigating the correlation
between energy use and occupancy status is an essential prerequisite to improve the prediction
accuracy.

Interestingly, in respect to training time, a distinct tendency is not observed regardless of
the number of similar daily datasets. These results do not concur with the previous opinions that
the computation process with a large data takes a longer time [20,25,28]. This gap in the literature
can be caused by the fact that as the amount of historical data increases, there are more
opportunities to use an inappropriate set of historical data for network training. As a consequence,
it would be difficult to update the gradient of the network performance in successive iterations, so
the network training will be terminated earlier than suggested in previous studies.

From the aforementioned findings, it can be seen that with the aid of highly granular
occupancy data energy prediction can be further improved. The ability to better recognize daily
peak demand and daily energy consumption during energy use prediction provides building
operators with a better guideline as to how to schedule the operation of HVAC systems at the
building level more efficiently (e.g., buildings’ standard hours of air conditioning supply [6]).
Further, with the proposed prediction model, it is possible to obtain more detailed information
about energy use patterns (e.g., load shape, the amount of energy use) for EUG. Although several
studies attempted to predict energy consumption at the level of aggregation (e.g., floor level [2],
equipment [15]), identifying energy consumption for similar end-users has been limited due to the
previously used aggregation methods of occupancy data. Therefore, these improvements will allow

facility managers to personalize daily operations of HVAC systems depending on EUG to achieve
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energy saving without compromising occupants’ thermal comfort. For example, if various EUGs
exist in a smart metered building with a building energy management systems (BEMS), scheduling
different setback periods can be effective for occupants to maintain their desired levels of thermal
comfort after other occupants arrive. On the other hand, an issue might arise about the usability of
the proposed prediction model because not all buildings yet have smart metering or BEMS.
However, numerous efforts are under way to adopt such technologies in the field of building energy
use prediction and continue to become more widespread [2,10,11,26]. Further, considering that
demand response programs are an essential part in real-time building energy management, weather
forecasting data should be automatically imported into the BEMS because weather conditions
significantly vary occasionally [44]. In most countries, the forecasting data is provided by national
meteorological administrations and are available at the different temporal granularity levels (e.g.,
hourly, daily) using an open application programming interfaces (United States [45], South Korea
[46]). Therefore, the proposed model can extend its practical application for demand response
programs in an automated way.

Lastly, while these findings represent an advancement in the state-of-the-art of building
energy prediction modeling, this work is not without limitation and numerous avenues for future
work remain. For the developed model, additional efforts could include using additional types of
ANN since this affects prediction performance. Further, in this work, no attempt is made to
investigate the optimal network type for building energy use prediction; limitations in the
prediction accuracy thus remain. In order to address these issues, recurrent neural networks that
are trained using the current input variables as well as the previous input and output variables
should be considered since building energy use has sequence-dependent features. Moreover, it 1s

suspected that improved performance of building energy use prediction will be achieved by
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incorporating in an occupancy prediction model. This incorporation has already been emphasized
in several studies, since contextual variables affect occupancy status as well as energy consumption
[47-49]. However, since this research uses the average values of occupancy rate observed in similar
daily datasets, there can be a discrepancy between the actual and predicted energy use. In order to
overcome this limitation, the future prediction models should be trained with the following steps
in mind. First, network training should be performed to predict occupancy status using its
significant determinants. Then, based on the predicted occupancy data, the future models should

be trained to predict building energy use.

7. Conclusions

With the increasing concern about energy saving in buildings, accurate predictions of
energy consumption are essential to optimize the operation of energy-consuming equipment during
a buildings operation. To date, substantial efforts have been undertaken to improve prediction
accuracy, specifically while focusing on occupants’ presence in buildings. Unfortunately, despite
the recent advancements in prediction accuracy, two significant obstacles remain when predicting
energy consumption using occupancy data. First, occupancy diversity among EUGs has rarely
been considered during model development. Second, occupancy’s correlation with energy
consumption may be weak at time due to variances in occupant behavior. Therefore, this research
investigated the effect of occupancy-related characteristics of EUGs on the prediction performance.

In order to achieve this objective, comparative experiments were conducted using a data
mining-based prediction model. The experiments produced two key findings. First, occupancy-
related characteristics of EUGs significantly contribute to the prediction performance. Across all

experiments, the GL-2 had the highest prediction accuracy, but took a longer time for its network
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training. Second, the proposed prediction model provides acceptable prediction accuracy using a
minimal amount of historical data. All the prediction results were within the acceptable tolerance
range (CV-RMSE of 30%). In particular, the GL-2 produced higher accuracy when the network
training is performed using less than 10 similar daily datasets.

This research contributes to the literature by enhancing our knowledge of how occupancy-
related characteristics of EUGs affect energy use prediction performance. In addition, this research
develops a data mining-based prediction model that facilitates the recognition of the amount of
energy being consumed by EUGs. With this information, facility managers can personalize the
operation of energy-consuming equipment based on EUG. Further, this research is significant
because the developed model provides practical solutions to achieve acceptable prediction
accuracy using minimal historical data. Future research efforts should explore the following
avenues. First, exploring whether or not prediction performance can be improved using alternate
types of ANN (e.g., recurrent neural networks). Second, the proposed prediction model should be
incorporated with occupancy prediction models to provide more accurate information about

building energy consumption.
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727 Table 1. Overview of case buildings

Building characteristics Case buildings

Construction year 2010

Building function Residential

Number of floors 7or8

Room size 250 single rooms, 1125 double rooms

Occupants Graduate and undergraduate student

Heating system Radiant floor heating with individual control, electric
Available periods for heating January to March, October to December

728
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729 Table 2. Input variables for building energy use prediction

Variables Unit Value

Outside dry-bulb temperature (OT) °C Continual

Wind speed (WS) m/s Continual

Relative humidity (RH) % Continual

Solar radiation (SR) MI/m* Continual

Occupancy rate (OR) - Continual

Day of the week (DW) day Categorical: Weekday(0), Weekend(1)
Course period (CP) - Categorical: Fall(0), Winter(1)

730
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731

732

Table 3. Description of different prediction models
Model Occupancy-related Characteristics
Occupancy Diversity ~ Correlation Effect
BL-1
BL-2 v
GL-1 v
GL-2 v v
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733

734

Table 4. Main parameters used for network training

Parameter

Value

Number of similar daily datasets
Clustering algorithm

Network type

Number of hidden layers

Number of nodes in hidden layer
Number of epochs

Minimum gradient of performance

Maximum number of validation checks

10

k-means algorithm

Feed forward neural network
1

10

500

1e-07

50
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735 Table 5. Average values of input variables for next day building energy user prediction

Test Dataset Input Variable

oT WS RH SR OR DW CY
D1 13.72 2.36 61.38 0.55 0.6 1 1
D2 4.06 2 41.04 0.43 0.6 2 1
D3 -5.03 223 64.38 0.29 0.43 1 2
TD4 -2.61 1.84 37.5 0.42 0.44 1 2
D5 -0.07 2.93 58.08 0.43 0.43 1 2

736
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737 Table 6. Correlation coefficient between energy use and occupancy status for next day building

738 energy user prediction
Test Dataset Group Level Building Level
EUG1 EUG 2
TD1 0.7271 0.4124 0.6047
TD2 0.6592 0.3039 0.4198
TD3 0.8171 0.4718 0.7299
TD4 0.8230 0.4377 0.7482
TD5 0.8151 0.4037 0.7543
739
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740 Table 7. Average values of input variables for next five days building energy user prediction

Test Dataset Input Variable
oT WS RH SR OR DW CY
TDI TDI1-1 6.27 2.5 77.08 0.26 0.56 1 1
TDI1-2 5.02 2.17 55.08 0.46 0.56 1 1
TDI1-3 5.5 1.8 55 0.42 0.55 1 1
TD1-4 7.74 1.79 61.67 0.38 0.57 1 1
TDI1-5 10.82 2.84 62.58 0.31 0.55 1 1
D2 TD2-1 -6.55 3.54 44.42 0.42 0.56 1 1
TD2-2 -5.58 2.83 49.08 0.4 0.59 2 1
TD2-3 -3.84 1.6 43.88 0.23 0.59 2 1
TD2-4 -1.34 24 48.38 0.39 0.57 1 1
TD2-5 -2.6 1.61 45.54 0.39 0.55 1 1
TD3 TD3-1 3.54 1.69 62.21 0.35 0.5 2 2
TD3-2 2.8 3.51 75.92 0.09 0.45 2 2
TD3-3 3.88 2.7 89.5 0.13 042 1 2
TD3-4 -2.9 3.85 57.04 0.49 04 1 2
TD3-5 -4.3 2.18 48.88 0.46 043 1 2
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742 Table 8. Correlation coefficient between energy use and occupancy status for next five days

743 building energy user prediction
Test Dataset Group Level Building Level
EUG 1 EUG2 EUG3 EUG4
TD1 TD1-1 0.7131 0.6579 0.1794 - 0.5215
TD1-2 0.7765 0.2863 - - 0.6153
TD1-3 0.7569 0.4563 - - 0.6017
TD1-4 0.7863 0.3333 - - 0.7048
TD1-5 0.7737 0.5286 - - 0.7141
TD2 TD2-1 0.8153 0.3582 - - 0.7637
TD2-2 0.6774 0.5294 0.1776 - 0.2549
TD2-3 0.7831 0.4367 0.0966 - 0.2493
TD2-4 0.8019 0.2826 - - 0.6264
TD2-5 0.7780 0.4874 - - 0.6195
TD3 TD3-1 0.8459 0.3578 - - 0.7033
TD3-2 0.8913 0.7772 0.3970 0.3541 0.8403
TD3-3 0.8149 0.8046 0.7792 0.4615 0.6911
TD3-4 0.8324 0.8224 0.3558 - 0.7835
TD3-5 0.8338 0.8227 0.3227 - 0.7094
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747 Fig. 1. Structure of a three-layer feed forward neural network
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Fig. 11. CV-RMSE and computation time for next five days building energy use prediction
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