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Abstract—This paper focuses on the mutual information and
minimum mean-squared error (MMSE) as a function a matrix-
valued signal-to-noise ratio (SNR) for a linear Gaussian channel
with arbitrary input distribution. As shown by Lamarca, the
mutual-information is a concave function of a positive semi-
definite matrix, which we call the matrix SNR. This implies
that the mapping from the matrix SNR to the MMSE matrix is
decreasing monotone. Building upon these functional properties,
we start to construct a unifying framework that provides a bridge
between classical information-theoretic inequalities, such as the
entropy power inequality, and interpolation techniques used in
statistical physics and random matrix theory. This framework
provides new insight into the structure of phase transitions in
coding theory and compressed sensing. In particular, it is shown
that the parallel combination of linear channels with freely-
independent matrices can be characterized succinctly via free
convolution.

Index Terms—I-MMSE, entropy power inequality, conditional
central limit theorem, random matrix theory, compressed sensing.
Gaussian logarithmic Sobolev inequality.

I. INTRODUCTION

The functional properties of mutual information play an

important role in applications across the mathematical sciences.

In some cases, these functional properties lead to simple and

elegant proofs of deep mathematical results. In other cases,

they provide a crucial step in the proof of new results.

The focus of this paper is on the mutual information and

minimum mean-squared error (MMSE) associated with the

linear Gaussian channel, which is described by

Y = AX +N , (1)

where A is a k × n channel matrix, X is an n-dimensional

random vector (or signal), and N ∼ N (0, In) is standard

Gaussian noise. Our motivation comes largely from the fact that

I(X;AX+N) is closely related to interesting open questions

in compressed sensing, coding theory, and statistical physics.

In particular, the inference problems associated with these

applications can all have phase transitions as the dimension

increases.

For example, if X is uniformly distributed on points in a

codebook and A =
√
sI , then we have coded communication
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over a Gaussian channel and the error probability can have

a phase transition (as the problem size grows) when s

increases [1]. If instead, one chooses A to be a random diagonal

matrix where each entry is 0 with probability ǫ and
√
s with

probability 1−ǫ, then this approximates (for large s) an erasure

channel and the error probability can have a phase transition as

ǫ increases [2]. When X is a sparse random vector (e.g.,

i.i.d. with a probability mass at 0), there can be a phase

transition in the MMSE as the sparsity level increases [3].

The locations of these phase transitions can sometimes be

predicted by the non-rigorous replica method from statistical

physics [4]. An interesting open question for all of these

problems is determining if and when these replica formulas

are correct.

Recently, the first two authors used information-theoretic

tools to prove that the replica-symmetric prediction for the

MMSE function in compressed sensing is exact when the

channel matrix is drawn i.i.d. from the Gaussian ensemble [5].

Subsequent work established a similar result using a different

proof technique [6], which was later extended to the generalized

linear model [7]. Based on this, the first author described how

these ideas might be extended to right-orthogonally invariant

channel matrices and multilayer linear models [8]. This paper

provides some rigorous progress on this problem.

A. Matrix SNR

The key insight underlying the results in this paper is that

the linear Gaussian channel can be parameterized by a positive

semi-definite matrix that generalizes the scalar signal-to-ratio

(SNR). This insight follows from the fact that a linear Gaussian

channel with k×n channel matrix A is statistically equivalent to

a linear Gaussian channel with n×n channel matrix (ATA)
1

2 ,

regardless of the signal distribution. Although this fact follows

naturally from the independence and orthogonal invariance

of the Gaussian noise, our literature review did not reveal

any references before the 2009 paper of Lamarca [9], and we

believe this result has not been fully exploited. This approach

also brings the multivariate derivative formula for the mutual

information closer to the well-developed theory associated with

the scalar I-MMSE relationship [10].

An important consequence of the parametrization described

above is that one obtains an explicit additivity rule for linear

Gaussian channels. Specifically, two parallel channels with

matrices A and B, respectively, are equivalent to a channel
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with n × n matrix (ATA + BTB)
1

2 . Combining this fact

with the chain rule and the low-noise expansion of mutual

information [11], one finds that: 1) the mutual information

I(X;AX + N) is concave in ATA; and 2) the minimum

mean-square error matrix E[Cov(X | AX +N)] is decreasing

monotone map of ATA. Mathematically, this means that for

any n-dimensional random vector X and matrices A,B with

n columns, one has

λI(X;AX +N) + (1− λ)I(X;BX +N
′)

≤ I(X; (λATA+ (1− λ)BTB)
1

2X +N
′′), (2)

for all 0 ≤ λ ≤ 1 where N ,N ′ and N
′′ are independent stan-

dard Gaussian vectors. Furthermore, the MMSE matrix satisfies
〈

ATA−BTB,∆
〉

≤ 0 where ∆ = E[Cov(X|AX +N)] −
E[Cov(X|BX +N

′)] and 〈·, ·〉 denotes the trace inner-

product on matrices.

Remark 1. Although it may be tempting to reinterpret (2) in

terms of differential entropy, such a decomposition becomes

cumbersome due to a mismatch between problem dimensions.

Remark 2. It is important to note that (2) holds for arbitrary

matrices. Increasing the scale of the matrices A &→ √
sA for

some positive number s is equivalent to decreasing the noise

power. If X has finite entropy then the low-noise limit is well

defined and one obtains

λH(X | AX) + (1− λ)H(X | BX)

≥ H(X | (λATA+ (1− λ)BTB)
1

2X). (3)

B. Our Contributions

Building upon the aforementioned functional properties, we

obtain the following results:

• An effective Fisher information matrix is introduced and

shown to have a monotonicity property that provides

a multivariate version of the single-crossing property

(Theorem 2). Using this result, we obtain matrix inequali-

ties that mimic well-known scalar bounds on the mutual

information.

• A new relationship is identified between three different

measures of the distance between the distribution of

an n-dimensional random vector and an i.i.d. Gaussian

distribution. In particular, Theorem 3 shows that the

relative entropy measure can be expressed as the sum

of relative entropy associated with a (random) low-

dimensional projection and a second term that can be

related to the deficit in the entropy power inequality (EPI).

• Using ideas from free probability theory, concentration

results and functional properties are established that

characterize the asymptotic behavior of right-orthogonally

invariant random matrices (Theorem 4). Although these

results are closely linked to the conjectured limits implied

by the replica method, they are proven rigorously here

under mild assumptions.

Due to space constraints many of the proofs are either

sketched or omitted.

C. Notation

We use S
n, S

n
+ and S

n
++ to denote the space n × n

symmetric matrices, positive semi-definite matrices, positive

definite matrices, respectively. Given a positive-definite matrix

S, we use S
1

2 to denote the positive-definite square root.

II. MATRIX-SNR FUNCTIONS

For any n-dimensional random vector X , the mutual

information function IX : Sn+ → [0,∞) and MMSE function

MX : Sn+ → S
n
+ are defined by

IX(S) ! I(X;S
1

2X +N) (4)

MX(S) ! E

[

Cov(X | S
1

2X +N)
]

, (5)

where N is a standard Gaussian vector. The following result

shows that these functions can be related to the mutual

information and MMSE associated with an arbitrary k × n

matrix A. For completeness, we also sketch a partial proof

below.

Lemma 1 ([9]). For every k × n matrix A, we have

IX(ATA) = I(X;AX +W ) (6)

MX(ATA) = E[Cov(X | AX +W )], (7)

where W ∼ N (0, Ik).

Sketch of Proof. First, consider the case k < n. Let B be

the n × n matrix whose first k rows are equal to A and

whose remaining (n − k) rows are equal to zero. Clearly,

I(X;AX+W ) = I(X;BX+N), because the extra rows in

B do not convey any information about X . Next, consider the

singular value decomposition B = UΣV T where all matrices

are n×n. By the orthogonal invariance of the standard Gaussian

distribution, we can write

I(X;BX +N) = I(X;UΣV T
X +N)

= I(X;ΣV T
X +N)

= I(X;V ΣV T
X +N).

Noting that V ΣV T =
(

BTB
)

1

2 =
(

ATA
)

1

2 gives the stated

identity. The case of k ≥ n follows from similar arguments and

proofs of the MMSE result (7) can be found in [9], [12].

Lemma 2. For all S, T ∈ S
n
+, we have

IX(S + T ) = I(X;Y ,Z) (8)

MX(S + T ) = E[Cov(X | Y ,Z)], (9)

where Y = S
1

2X + N , Z = T
1

2X + N
′, and N and N

′

are independent standard Gaussian vectors.

Proof. The right-hand side of (8) can be expressed as

I(X;AX + N
′′) where A is the 2n × n matrix obtained

by stacking S
1

2 and T
1

2 and N
′′ is the 2n× 1 vector obtained

by stacking N and N
′. Noting that ATA = S+T and invoking

Lemma 1 gives the stated result.
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Lemma 3 (Scaling property). For any k × n matrix A and

S ∈ S
n
+, we have

IAX(S) = IX(ASAT ) (10)

MAX(S) = AMX(ASAT )AT . (11)

Lemma 4. The mutual information function IX(S) is twice

differentiable on S
n
++ with gradient and Hessian given by

∇SIX(S) =
1

2
MX(S) (12)

∇
2
SIX(S) = −

1

2
EY [ΦX(Y )⊗ ΦX(Y )] (13)

where Y = S
1

2X +N and ΦX(y) = Cov(X | Y = y).

Remark 3. The Hessian is negative semi-definite since the

covariance ΦX(Y ) is positive semi-definite. This implies

that (6) is a concave function on S
n
++. This concavity and

the results in Lemma 4 can be found in Lamarca [9] and

Payaró et al. [12].

The concavity is summarized by the following theorem.

Theorem 1. For any n-dimensional random vector X , The

mutual information is concave on S
n
+. In other words,

(1− λ)IX(S) + λIX(T ) ≥ IX((1− λ)S + λT ) (14)

for all S, T ∈ S
n
+ and λ ∈ [0, 1]. Furthermore, the MMSE

function (7) is a decreasing monotone mapping on S
n
+. Thus,

tr((S − T )(MX(S)−MX(T ))) ≤ 0 (15)

for all S, T ∈ S
n
+.

III. APPLICATIONS

This section describes some new results that can be obtained

using properties of the mutual information and MMSE matrix

as a function of the matrix SNR.

A. Bounds on the mutual information and MMSE

The Fisher information matrix of a random vector Y with

density p(y) is defined to be J(Y ) ! Cov(ρ(Y )) where

ρ(y) ! ∇ log p(y) is the score function. Given any random

vector X with Cov(X) ∈ S
n
++, we define the effective Fisher

information matrix KX : Sn+ → S
n
+ by

KX(S) ! M−1
X

(S)− S. (16)

This is the Fisher information matrix of the multivariate

Gaussian distribution whose MMSE matrix equals MX(S).
Using the matrix version of Brown’s identity [13, Proposition 6]

J(X + S−
1

2N)S−1 + SMX(S) = I, (17)

it can be verified that

K−1
X

(S) = J−1(X + S−
1

2N)− S−1 (18)

for all S ∈ S
n
++. This characterization shows that K−1

X
(S) is

well-defined even if Cov(X) is degenerate.

Lemma 5. The effective Fisher information matrix KX(S) is

decreasing monotone on S
n
+ with

KX(0) = Cov
−1(X), (19)

lim
λmin(S)→∞

KX(S) = J(X). (20)

Sketch of Proof. As the gradient is negative semi-definite,

monotonicity follows. The limits come from (16) and (18).

Theorem 2. Let X be an n-dimensional random vector with

positive-definite covariance matrix. For any matrices R,S, T ∈

S+ with R ) S ) T , the MMSE matrix satisfies

(KX(T ) + S)
−1

) MX(S) ) (KX(R) + S)
−1

. (21)

Sketch of Proof. This result follows from the monotonicity of

KX(S), established in Lemma 5, and the fact that inversion

reverses the partial-order on positive semi-definite matrices.

Theorem 2 can be thought of as a matrix generalization

of the single-crossing property (see [14]). Taking the limits

λmax(T ) → 0 and λmin(R) → ∞, one obtains the bounds

(J(X) + S)
−1

) MX(S) )
(

Cov
−1(X) + S

)−1
. (22)

Note that the left-hand side of (22) is a matrix version of the

Bayesian Cramer-Rao lower bound [15]. Here the lower bound

is meaningful only if X has finite Fisher information. The

right hand side of (22) is often called the linear MMSE.

By the multivariate I-MMSE relationship (10), we see that

the mutual information can be expressed as

IX(S) =
1

2

∫ 1

0

tr

(

MX(St)
d

dt
St

)

dt (23)

where the integral is over any differentiable path t +→ St with

S0 = 0 and S1 = S. In particular, letting St = tS, swapping

the integral and the trace, and using Lemma 3, leads to

IX(S) =
1

2
tr

(

S

∫ 1

0

MX(tS) dt

)

(24)

=
1

2
tr

(
∫ 1

0

M
S

1

2 X
(tI) dt

)

. (25)

Interestingly, this decomposition shows that the mutual infor-

mation can be viewed as the trace of an integrated MMSE

matrix. A similar observation was made by Dembo [16, pg. 14],

who showed that an entropy can be expressed as the trace of

an integral involving the Fisher information matrix.

Combining Theorem 2 with (25) provides a lower bound on

the matrix inside the trace in (25):
∫ 1

0

M
S

1

2 X
(tI) dt =

∫ 1

0

(

K
S

1

2 X
(tI) + tI

)

−1

dt

,

∫ 1

0

(

K
S

1

2 X
(I) + tI

)

−1

dt

= log
(

I +K−1

S
1

2 X

(I)
)

= log
(

J−1(S
1

2X +N)
)

, log
(

I + S
1

2 J−1(X)S
1

2 )
)

.
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Here, we recall that the matrix logarithm is well-defined on

S
n
++. Taking the trace of both sides recovers some well-known

lower bounds on the mutual information

IX(S) ≥ 1

2
log det(J−1(S

1

2X +N))

≥ 1

2
log det(I + SJ−1(X)).

B. Gaussian approximation via low-dimensional projections

Many of the standard approaches to measuring relative

entropy with respect to the Gaussian measure are based on

the fact that adding an independent Gaussian component to

a random vector decreases the relative entropy to a Gaussian

(see [17, Section 3.2]).

A related but different phenomenon is that most low-

dimensional projections of a high-dimensional distribution are

closer to an i.i.d. Gaussian, in a relative sense, than the original

distribution. Some recent information-theoretic bounds, known

as conditional central limit theorems (CCLTs), are provided

by the first author in [18]. One motivation for the present

paper is to understand how the decrease in approximation

error associated with low-dimensional projections relates to

properties of the original distribution.

For concreteness, we will focus on projections on the Stiefel

manifold Vk(R
n), which is the set of k×n matrices A satisfying

AAT = Ik. Furthermore, we will consider distributions of the

form
√
sX + N where s ∈ (0,∞) and N is a Gaussian

perturbation. Under regularity conditions on X (e.g., finite

differential entropy) the perturbation can made negligible by

taking the large s limit. Finally, let X∗ ∼ N (0, 1

n
In) be an

i.i.d. Gaussian vector with same power as X .

An important property of the i.i.d. Gaussian distribution

is that, for any A ∈ Vk(R
n), the k-dimensional projection

AX∗ is equal in distribution to the first k entries in X
∗.

Consequently, the mutual information function satisfies

IX∗(sATA) =
k

n
IX∗(sI). (26)

In the special case where the entries of X are independent, it

follows from the linear entropy power inequality of Zamir and

Feder [19] that

IX(sATA) ≥
n
∑

i=1

[ATA]i,iIXi
(s). (27)

Furthermore, if A is drawn uniformly at random from Vk(R
n),

then expectation of the right-hand side is given by

E

[

n
∑

i=1

[AT
A]i,iIXi

(s)

]

=
n
∑

i=1

k

n
IXi

(s) =
k

n
IX(sI). (28)

Motivated by (28), we define the average EPI deficit to be

δEPI !
1

k
E
[

IX(sAT
A)

]

− 1

n
IX(sI), (29)

where A is drawn uniformly at random from Vk(R
n). If the

entries of X are not independent, then (27) may not hold.

However, as we will see below, δEPI is non-negative for every

distribution on X .

Next, we consider the relative entropy between the k-

dimensional projections. For each A ∈ Vk(R
n), we have

D
(

P√
sAX+N ‖P√

sAX∗+N

)

=
k

n
IX∗(sI)− IX(sATA).

We define the average CCLT deficit to be

δCCLT !
1

n
IX∗(sI)− 1

k
E
[

IX(sAT
A)

]

, (30)

where A is drawn uniformly at random from Vk(R
n).

The following result show that the average EPI deficit and

the average CCLT deficit can both be viewed a measures

of the distance between the distribution of X and the i.i.d.

approximation X
∗, and that their sum is proportional to the

relative entropy after convolution with a Gaussian.

Theorem 3. Let X be an n-dimensional random vector with

finite covariance. For all s ∈ (0,∞) and k ∈ {1, . . . , n− 1},

1

n
D
(

P√
sX+N ‖P√

sX∗+N

)

= δCCLT + δEPI. (31)

Furthermore, each of the terms on the right-hand side is non-

negative and equal to zero if and only if X is i.i.d. Gaussian.

Remark 4. Part of the significance of Theorem 3 is that it

provides a direct link between the deficit in the EPI and the

relative entropy with respect to the i.i.d. Gaussian distribution.

Combining results from [18] with the concavity of the mutual

information in Theorem 1, it can be shown that, under mild

conditions on X , the average CCLT deficit δCCLT is small

whenever k ≪ n.

C. Additivity of information via free probability

Suppose that one obtains outputs from two independent

linear Gaussian channels:

Y = AX +N , Z = BX +N
′, (32)

where A and B both have n columns and N and N
′ are

independent standard Gaussian vectors. A natural question of

interest is whether the parallel combination of these channels

can be characterized in terms of the individual channels. As a

direct consequence of the the additivity formula in Lemma 2,

we see that this question is directly related to additivity of the

corresponding matrix SNRs:

I(X;Y ,Z) = IX(ATA+BTB). (33)

In the special case where the signal X is i.i.d. Gaussian,

the mutual information depends only on the singular values

of the channel matrix, or equivalently the eigenvalues of

matrix SNR. Consequently, the combination of the channels

is completely characterized by the eigenvalues of the sum

ATA+BTB. In general, the eigenvalues of the sum of two

matrices cannot be determined based only on the eigenvalues

of the individual matrices. However, one of the central results

from free probability theory in that eigenvalues of the sum of

freely independent matrices can be characterized in the large

system limit via free additive convolution; see [20], [21].
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Assumption 1. For each n, An and Bn are independent

right-orthogonally invariant random matrices with n columns.

Furthermore, as n increases to infinity, the (random) empirical

spectral distributions of AT

n
An and BT

n
Bn converge almost

surely to compactly supported probability measures µ and ν.

Lemma 6 ([20]). Under Assumption 1, the empirical spectral

distribution of the sum AT

n
An + BT

n
Bn converges almost

surely to the probability measured given by the free additive

convolution of µ and ν, which is denoted by µ⊞ ν.

For the general case of non-Gaussian signal priors, the mutual

information depends on the right-singular vectors of the channel

matrix and thus cannot be determined based only on the singular

values of the channel matrix. Interestingly though, the additivity

principle seen in the case of Gaussian priors is still applicable

when the channel matrices are freely independent.

Given a probability measure µ on [0,∞) we define

In(µ) =
1

n
E
[

IX(UT
ΛU)

]

, (34)

where U distributed uniformly on the group of n×n orthogonal

matrices and Λ is a diagonal matrix whose entries are i.i.d.

according to µ.

Assumption 2. For each n, Xn is an n-dimensional random

vector with bounded second moment: 1

n
E
[

‖X‖2
]

< B

The next result shows that normalized mutual information

associated with a random orthogonally invariant channel

matrix converges to its expectation, and furthermore, that the

combination of channels with freely independent matrices is

characterized by the free additive convolution.

Theorem 4. Under Assumptions 1 and 2, the following

convergence holds almost surely in the limit as n → ∞:
∣

∣

∣

∣

1

n
IXn

(AT

n
An)− In(µ)

∣

∣

∣

∣

→ 0 (35)

∣

∣

∣

∣

1

n
IXn

(BT

n
Bn)− In(ν)

∣

∣

∣

∣

→ 0 (36)

∣

∣

∣

∣

1

n
IXn

(AT

n
An +B

T

n
Bn)− In(µ⊞ ν)

∣

∣

∣

∣

→ 0. (37)

Sketch of Proof. Using the multivariate I-MMSE relationship

(10), we show that In(µ) is Lipschitz with a constant that de-

pends only on the second-moment of the signal. Concentration

with respect to the eigenvectors is established using further

Lipschitz properties and standard concentration of measure

arguments for the Haar measure on the Stiefel manifold.

The question of whether In(µ) converges to a well-defined

limit is still open in general. Recent work has proved the

existence of the limit in the special case of i.i.d. Gaussian

matrices [5], [6]. More generally, analysis based on the replica

method from statistical physics has provided postulated single-

letter formulas for the limit (34) associated with an arbitrary

spectral distribution [22], [23]. Recent work by the first

author [8] provides an alternative to the replica method that

can be applied to the composition of multiple channels.

An important open problem is proving that the conjectured

limit of (34) is correct. The significance of Theorem 4 is that

it imposes a functional constraint on (34) for large-n that is

closely related to the conjectured limit.
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