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Abstract—Reed–Muller (RM) codes exhibit good performance
under maximum-likelihood (ML) decoding due to their highly-
symmetric structure. In this paper, we explore the question of
whether the code symmetry of RM codes can also be exploited
to achieve near-ML performance in practice. The main idea
is to apply iterative decoding to a highly-redundant parity-
check (PC) matrix that contains only the minimum-weight dual
codewords as rows. As examples, we consider the peeling decoder
for the binary erasure channel, linear-programming and belief
propagation (BP) decoding for the binary-input additive white
Gaussian noise channel, and bit-flipping and BP decoding for the
binary symmetric channel. For short block lengths, it is shown
that near-ML performance can indeed be achieved in many
cases. We also propose a method to tailor the PC matrix to the
received observation by selecting only a small fraction of useful
minimum-weight PCs before decoding begins. This allows one to
both improve performance and significantly reduce complexity
compared to using the full set of minimum-weight PCs.

I. INTRODUCTION

Recently, the 5G cellular standardization process focused on

error-correcting codes and decoders that are nearly optimal for

short block lengths (e.g., rate-1/2 binary codes with lengths

from 128 to 512). Promising contenders include modified

polar codes, low-density parity-check (LDPC) codes, and tail-

biting convolutional codes [1]–[3]. These results also show that

short algebraic codes such as Reed–Muller (RM) and extended

BCH (eBCH) codes under ML decoding tie or outperform all

the other choices. ML performance can be approached with

methods based on ordered-statistics decoding [4] such as most-

reliable basis (MRB) decoding [5]. Depending on the code and

decoder parameters, the complexity of these methods range

from relatively practical to extremely complex.

Motivated by the good performance of RM codes under ML

decoding and the proof that RM codes achieve capacity on

the binary erasure channel (BEC) [6], we revisit the question

of whether code symmetry can be used to achieve near-ML

performance in practice. This question, in various forms, has

been addressed by several groups over the past years [7]–[9].

In general, one applies a variant of belief-propagation (BP)
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decoding to the Tanner graph defined by a redundant parity-

check (PC) matrix for the code. Often, the redundancy in the

PC matrix is derived from the symmetry (i.e., automorphism

group) of the code. Methods based on redundant PC matrices

are also related to earlier approaches that adapt the PC matrix

during decoding [10]–[12].

Highly-symmetric codes such as RM codes can have a

very large number of minimum-weight (MW) PCs. The main

contribution of this paper is to show that this large set of

MWPCs can be exploited to provide near-ML performance

with several well-known iterative decoding schemes. In par-

ticular, we consider the peeling decoder (PD) for the BEC,

linear-programming (LP) and BP decoding for the binary-

input additive white Gaussian noise (AWGN) channel, and

bit-flipping (BF) and BP decoding for the binary symmetric

channel (BSC). It is worth noting that the idea of using all

MWPCs for decoding appears in [13], [14], even before the

rediscovery of iterative decoding. Their decoding algorithms

are variations of the BF algorithm [15] applied to a redundant

PC matrix. As we will see, the BF algorithms they propose

work remarkably well for the BSC, but result in a performance

loss compared to LP and BP decoding for the AWGN channel.

Using all available MWPCs for decoding can become quite

complex, e.g., the rate-1/2 RM code of length 128 has 94,488

MWPCs. To address this problem, we propose a method to

select only a small fraction of useful MWPC based on the

channel reliabilities. We exploit the fact that, given any small

set of bit positions, there exist efficient methods to find a

MWPC that contains the chosen bits. This process is iterated to

design a redundant PC matrix that is tailored to the received

observation from the channel. The resulting PC matrix can

allow one to both improve performance (by reducing cycles in

the Tanner graph) and reduce complexity. We stress that this

approach works by adapting the PC matrix before decoding

begins. Thus, it is closer in spirit to MRB decoding than to

the adaptive methods employed by [10]–[12].

II. BACKGROUND ON REED–MULLER CODES

RM codes were introduced by Muller in [16]. We use

RM(r,m) to denote the r-th order RM code of length n = 2m,

where 0 ≤ r ≤ m. Each codeword in RM(r,m) is defined

by evaluating a multivariate polynomial f ∈ F2[x1, . . . , xm]
of degree at most r at all points in F

m
2 [17]. The code
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RM(r,m) has minimum distance dmin = 2m−r and dimension

k =
(

m

0

)

+ · · ·+
(

m

r

)

.

A. Number of Minimum-Weight Parity Checks

For a binary linear code, the codewords of the dual code

define all valid rows of the PC matrix. Since the dual code of

RM(r,m) is RM(m − r − 1,m), the MWPCs of RM(r,m)
thus have weight 2m−(m−r−1) = 2r+1. In order to determine

the number of MWPCs for RM(r,m), one may use the fact

that each MW codeword of RM(m−r−1,m) is the indicator

vector of an (r + 1)-dimensional affine subspace of Fm
2 [17].

Based on this, one can show that the number of MWPCs is

given by [17]

F (r,m) = 2m−r−1
r
∏

i=0

2m−i − 1

2r+1−i − 1
. (1)

For example, the [128, 64, 16] code1 RM(3, 7) has 94,488

weight-16 PCs.

B. Generating Minimum-Weight Parity Checks

The connection between MWPCs and affine subspaces also

provides an efficient method for generating a MWPC that is

connected to any given set of r+2 codeword bits. In particular,

one can simply complete the affine subspace containing the

chosen r+2 points. If the chosen set of points is not affinely

independent, then one can extend the set to define an (r+1)-
dimensional affine subspace. This procedure is described in

Algorithm 1. The algorithm will be used to construct a PC

matrix for RM(r,m) that is tailored to a particular received

sequence. This procedure is described in the next section.

III. PARITY-CHECK MATRIX ADAPTATION

The PC matrix containing all MW dual codewords as rows is

denoted by Hfull. This matrix can be used directly for iterative

decoding, e.g., BP decoding. In general, however, the decoding

complexity for the considered iterative schemes scales linearly

with the number of rows in the PC matrix. Thus, depending

on the RM code, decoding based on the full matrix Hfull may

result in high complexity.

On the other hand, not all the rows of Hfull are equally

useful in the decoding of a particular received observation

vector y = (y1, . . . , yn)
⊤. For instance, if all the bits involved

in a given PC are relatively unaffected by the channel, the

associated PC would be uninformative for the decoding pro-

cess. Therefore, our approach to reduce complexity is to pick

only the rows of Hfull that are expected to be useful for the

decoding. The choice of rows is based on y and the resulting

PC matrix containing the subset of rows is denoted by Hsub.

1A linear code is called an [n, k, d] code if it has length n, dimension k,
and minimum-distance d.

Algorithm 1 For RM(r,m), generate MWPC w ∈ F
n
2 with

ones in bit positions i1, . . . , ir+2 ∈ {1, . . . , n}, where n = 2m

1: Let row-vector vj ∈ F
m
2 be the binary expansion of ij−1

2: Form matrix A ∈ F
(r+1)×m

2 with rows aj = vj ⊕ vr+2

3: B ← reduced row echelon form of A

4: while B contains all-zero rows do

5: In first column that is not equal to a unit vector, add

a one at row position of the first all-zero row

6: end while

7: Initialize w ∈ F
n
2 to the all-zero vector

8: for all l ∈ {0, . . . , 2r+1 − 1} do

9: ul ← m-bit binary expansion of l
10: zl ← ulB ⊕ vr+2

11: sl ← integer represented by binary expansion zl
12: wsl+1 ← 1
13: end for

A. General Idea

In order to illustrate the general idea, suppose the codeword

bits are transmitted through a channel and the received values

are classified either as good or bad. For example, on the

BEC an unerased bit would be labeled good while an erased

bit would be called bad. Then, Algorithm 1 can be used to

generate a MWPC that contains one bad bit of interest, r+ 1
randomly chosen good bits, and some set of 2r+1−r−2 other

bits. From an information-theoretic point of view, this MWPC

is expected to provide more information about the bad bit of

interest than a random MWPC because it involves a guaranteed

number of r+1 good bits. Repeating this process allows one

to generate a PC matrix for RM(r,m) that is biased towards

informative MWPCs.

B. Reliability Criterion

As a first step, the bit positions I = {1, 2, 3, . . . , n} are di-

vided into two disjoint sets G and B based on their reliability.

To that end, one first computes the vector of log-likelihood

ratios (LLRs) γ = (γ1, . . . , γn)
⊤ ∈ R

n based on the received

vector y. The vector γ is then sorted, i.e., (t1, . . . , tn) is a

permutation of bit indexes such that i > j ⇒ |γti | ≥ |γtj |.
We then set G = {tk ∈ I : k ≤ fn} and B = I − G, where

0 ≤ f ≤ 1 is a tunable parameter and fn is assumed to be an

integer.

Remark 1. The LLR sorting can be applied for an arbitrary

binary-input memoryless channel with the exception of the

BSC. The BSC is discussed separately in Sec. V-C below.

Remark 2. The use of sorting may be avoided by in-

stead thresholding the LLRs. However, our numerical studies

showed that this results in some loss for the short block-lengths

we considered.

C. Tailoring Hsub to the Received Vector

The sets of reliable and unreliable bit positions G and B
are then used to generate an overcomplete PC matrix that is

tailored to the received vector y. The proposed method is
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Algorithm 2 For index sets G/B of good/bad bits, generate

a tailored PC matrix Hsub with s rows

1: Initialize Hsub to an empty matrix

2: while Hsub has less than s rows do

3: for all b ∈ B do

4: Draw {g1, . . . , gr+1} random positions from G
5: Generate MWPC w based on {b, g1, . . . , gr+1}
6: if w is not already a row in Hsub then

7: Append row w to Hsub

8: end if

9: end for

10: end while

illustrated in Algorithm 2 below, where s ∈ N is the targeted

number of rows of Hsub. Essentially, one iterates through the

set of unreliable bit positions B, pairing at each step one

unreliable bit with r+1 reliable ones. Based on the resulting

set of r+2 bit positions, Algorithm 1 is then used to generate

a MWPC (line 5). The generated MWPC is accepted if it does

not already exist in Hsub. We remark that the if-condition in

line 6 of Algorithm 2 can be implemented very efficiently by

applying a hashing function to the vector w and storing the

result in a hashtable.

IV. DECODING ALGORITHMS

In this section, we briefly review the decoding algorithms

that are used in this paper.

A. Peeling Decoder

The PD is an iterative decoder for binary linear codes

transmitted over the BEC [15]. It operates on the PC matrix of

the code and tracks whether the value of each bit is currently

known or unknown. If there is a PC equation with exactly one

unknown bit, then the value of that bit can be computed from

the equation and the process is repeated. Once there is no such

PC, the algorithm terminates.

B. Belief Propagation

BP decoding is an iterative method for decoding binary

linear codes transmitted over memoryless channels [15]. It

works by passing messages along the edges of the Tanner

graph. If the graph is a tree, then BP decoding produces

optimal decisions. In general, it is suboptimal and its loss in

performance is often attributed to cycles in the graph.

For a code whose Tanner graph has many cycles, it is

known that introducing a scaling parameter can improve per-

formance [7]. When using a redundant PC matrix, this can also

be motivated by the existence of correlations between input

messages to a bit node. Since BP is based on an independence

assumption, these correlations typically cause it to generate

bit estimates that are overconfident. If these messages are

represented by LLRs, then this overconfidence can be reduced

by scaling messages by a constant less than one. This approach

was also proposed to mitigate the overconfidence associated

with min-sum decoding [18]. In this work, the input messages

to the bit nodes are scaled by the factor w.

C. Linear-Programming Decoding

LP decoding was introduced in [19]. It is based on relaxing

the ML decoding problem into the linear program

min
n
∑

i=1

xiγi subject to x ∈
⋂

j∈J

Pj ,

where Pj denotes the convex hull of all {0, 1}n vectors that

satisfy the j-th PC equation. If the solution vector lies in

{0, 1}n, then it is the ML codeword. In theory, a nice property

of LP decoding is that the answer is static and does not depend

on the presence of cycles in the Tanner graph. But, in practice,

solving the LP with conventional solvers can be slow and

cycles may affect the convergence speed.

We employ LP decoding using the alternating direction

method of multipliers (ADMM), as proposed in [20]. The

method is based on an augmented Lagrangian which is param-

eterized by a tunable scaling parameter µ > 0 [20, Eq. (3.2)].

Then, LP decoding can be implemented as a message-passing

algorithm with an update schedule similar to BP, where the

update rules can be found in [20, Sec. 3.1]. The algorithm

stops after Tmax iterations or when a valid codeword is found.

D. Bit-Flipping Decoding

BF is an iterative decoding method for binary linear codes

transmitted over the BSC [15]. In its simplest form, it is based

on flipping a codeword bit that maximally reduces the number

of PC equations that are currently violated. In one case, we

also compare with the weighted BF (WBF) decoder proposed

in [13]. This extends the idea to general channels by including

weights and thresholds to decide which bits to flip.

E. Most-Reliable Basis Decoding

MRB decoding, which was introduced by Dorsch in

1974 [5], is based on sorting the received vector according

to reliability (similar to Algorithm 2). After sorting, it uses

linear algebra to find an information set (i.e., a set of positions

whose values determine the entire codeword) containing the

most reliable bits. Then, it assumes there are at most ν errors in

the k reliable positions. Then, one can encode the information

set implied by each of these error patterns and generate a list

of
(

k

ν

)

candidate codewords. Finally, the ML decoding rule is

used to choose the most-likely candidate codeword.

V. NUMERICAL RESULTS

For the numerical results, we consider various RM codes

with length n = 32 and n = 128. The code parameters

are summarized in Table I. For all data points, at least 100

codeword errors were recorded.

A. The Binary Erasure Channel

For a linear code on the BEC, the complexity of ML

decoding is at most cubic in the block-length [15]. Still, the

BEC provides a useful proving ground for general iterative-

decoding schemes. In this section, we evaluate the PD for RM

codes with redundant PC matrices derived from the complete

set of MWPCs.
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RM(2,5) ML

RM(2,5) PD (100%)

RM(2,5) PD (40%)

RM(3,7) ML

RM(3,7) PD (100%)

RM(3,7) PD (6%)

(a) Block-failure rate versus channel-erasure rate
on the BEC for RM(2, 5) and RM(3, 7)

2 2.5 3 3.5 4
10−4

10−3

10−2

10−1

MRB ν = 3
BP (100%)

BP (3%) f=1/2

BP (3%) f=1/4

BP (3%) f=1/8
BP (3%) random

(b) Block-error rate versus Eb/N0 in AWGN for
RM(3, 7) with w = 0.05

2.6 2.8 3 3.2 3.4 3.6 3.8 4
10−3

10−2

MRB ν = 3 [13, Fig. 3, Alg. II]

LP (100%) BP (100%)

LP (20%) BP (20%)

LP (10%) BP (10%)

(c) Block-error rate versus Eb/N0 in AWGN for
RM(2, 5) with w = 0.2 and f = 1/4

Fig. 1. Results of three numerical performance comparisons

For brevity, we focus only on the rate-1/2 codes RM(2, 5)
and RM(3, 7). Fig. 1a shows simulation results for ML decod-

ing, the PD with all MWPCs (100%), and the PD when the

PC matrix is tailored to the received sequence using a fixed

fraction of available MWPCs. Note that for the BEC, the sets

G and B used in Algorithm 2 are simply the unerased and

erased bits, i.e., the LLR sorting is not employed.

For the shorter code, all three curves are quite close together.

For the longer code, the PD matches the ML decoder when

the full set of MWPCs is used. The performance loss of the

low-complexity decoder is relatively small for the range tested.

B. The Binary-Input Additive White Gaussian Noise Channel

For the binary-input AWGN channel, we consider both LP

and BP decoding. For the LP decoding, the ADMM solver is

employed with parameters µ = 0.03 and Tmax = 1000. For

BP, we perform ℓ = 30 iterations and the weighting factor w
is optimized for each scenario. As a comparison, we use MRB

with ν = 3 to approximate ML performance.

First, we fix the number of rows in Hsub and illustrate how

different strategies for picking MWPCs affect the performance

under BP decoding. To that end, the code RM(3,7) is consid-

ered with s = 2835, i.e., Hsub contains s/F (3, 7) ≈ 3% of the

complete set of MWPCs. Simulation results are presented in

Fig. 1b. The performance is shown for three different values

for the parameter f . The proposed tailoring strategy leads

to better performance compared to picking a random set of

MWPCs, with a performance gain up to around 0.5 dB at

a block-error rate of 10−3. It can also be seen that for an

optimized choice of f = 1/4, the tailoring strategy leads to a

better performance compared to using the full set of MWPCs.

This can be attributed to the reduced number of cycles in the

TABLE I
CODE PARAMETERS

code n k dmin d⊥
min

rate F (r,m)

RM(2, 5) 32 16 8 8 0.5 620

RM(2, 7) 128 29 32 8 0.23 188,976

RM(3, 7) 128 64 16 16 0.5 94,488

RM(4, 7) 128 99 8 32 0.77 10,668

Tanner graph for Hsub compared to Hfull. In the following,

we fix f = 1/4 for all other simulations, noting that it may

be possible to increase performance by re-optimizing f for

each considered case. We also remark that for LP decoding,

similar observations regarding the optimal value of f can be

made and the results are omitted.

Simulation results for RM(2, 5) using LP and BP decoding

are shown in Fig. 1c. For this code, LP decoding outperforms

BP decoding and gives virtually identical block-error rates

as MRB decoding using both Hfull and Hsub with 20% of

available MWPCs. For this case, it can be seen again that BP

decoding benefits from using a sub-sampled PC matrix Hsub

compared to using Hfull. Also, a simulation point based on

WBF is included from [13] to show the superiority of LP and

BP decoding. Comparing with [8, Fig. 5], these curves nearly

match the ML results for the [31,16,7] BCH code and our “BP

(10%)” result is quite close to their “MBBP l = 6” curve.

Lastly, we study the performance of three RM codes with

length n = 128 and a range of rates. The performance is

shown in Fig. 2 for a varying number of rows in Hsub. From

these graphs, we see that the best performance is achieved

at a different fraction of rows for each code. In particular,

one requires around 1890 rows for RM(2, 7) (1% of Hfull),

4724 rows for RM(3, 7) (5% of Hfull), and 1067 rows for

RM(4, 7) (10% of Hfull). These values were chosen so that

the performance of the best scheme was roughly 0.25 dB from

MRB at a block-error rate of 10−2.

C. The Binary Symmetric Channel

While the BEC reveals the locations where bits are lost

and the binary-input AWGN channel gives soft information

for each bit, the BSC provides no indication of reliability for

received bits. As we saw in the last section, the performance

in AWGN actually improves when a subset of more reliable

MWPCs are used for BP decoding. On the BSC, however, it

is not possible to advantageously select PCs for BP decoding.

Similarly, decoders based on ordered statistics provide no

gains on the BSC. Therefore, MRB cannot be used to provide

a reference curve for the approximate ML performance.

We consider both BP and BF decoding for the BSC using

Hfull, i.e., the full set of MWPCs. Fig. 3 shows our simulation
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(a) RM(2, 7)
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BP (3%)
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(b) RM(3, 7)
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MRB ν = 3
LP (5%)

BP (5%)

LP (10%)

BP (10%)

(c) RM(4, 7)

Fig. 2. Block-error rate versus Eb/N0 in AWGN with w = 0.05 and f = 1/4.
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10−1

RM(2,5) ML

RM(2,5) BF

RM(2,5) BP

BCH(31,16) BF

RM(3,7) BF

RM(3,7) BP

Fig. 3. Block-error rate versus channel-error rate on the BSC for w = 0.08

results for RM(2, 5) and RM(3, 7). The BF decoder is identi-

cal to Algorithm II in [13]. For RM(2, 5), both the BP and BF

decoder perform very close to the ML decoder. The figure also

includes results from [13] for the [31, 16, 7] BCH code under

BF decoding. One can see that the results for the [31, 16, 7]
BCH and the [32, 16, 8] RM code are very similar. This is

not surprising because the two codes are nearly identical, i.e.,

the [32, 16, 8] eBCH code is equivalent to the code RM(2, 5).
Interestingly, for the longer code RM(3, 7), the BF decoder

outperforms the BP decoder with an optimized weight factor.

VI. CONCLUSIONS

We have investigated the iterative decoding of RM codes

based on redundant PC matrices whose rows contain MW-

PCs. Various iterative schemes were considered for the BEC,

binary-input AWGN channel, and the BSC. For the [32, 16, 8]
code RM(2, 5), near-ML performance can be achieved using

the PD on the BEC, LP decoding on the AWGN channel,

and BF or BP decoding on the BSC. For RM codes with

n = 128 on the BEC, the PD remained very close to optimal.

For the AWGN channel, the performance gap of LP and BP

decoding with respect to ML decoding increases. It was also

shown that, for all channels with the exception of the BSC,

the complexity can be reduced by using only a fraction of the

available MWPCs. For BP, this strategy also translates into

better performance by reducing cycles.
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