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C! ESTIMATES FOR THE WEIL-PETERSSON METRIC

GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

ABSTRACT. We prove that the Weil-Petersson metric near the boundary of the
Teichmiiller space is C''-asymptotically a product of the Weil-Petersson metric
on a lower dimensional Teichmiiller space and a metric on a model space. In
particular, we show that the Weil-Petersson metric on the genus g, p-punctured
Teichmiiller space with 3g — 3 + p > 0 satisfies all the important properties
required to apply the results in a previous work by the authors (2011). These
estimates extend the well known C° estimates for the Weil-Petersson metric.

1. INTRODUCTION

The Teichmiiller space T of a genus g, p-punctured surface S with 3¢ —3+p > 0
endowed with the Weil-Petersson metric Gy p is an incomplete Kéhler manifold
(cf. [Wo5] and [Chu]). Its metric completion 7T, although no longer a Riemannian
manifold, is a CAT(0) space; i.e. a simply connected, complete metric space with
nonpositive curvature in the sense of Alexandrov (cf. [Ya]). Set theoretically, T
is the augmented Teichmuller space of Abikoff (cf. [Abi]). The boundary 9T of
Teichmiiller space is stratified by lower dimensional Teichmiiller spaces with each
stratum being totally geodesic. In [Mas], Masur initiated the study of the Weil-
Petersson metric near the boundary of 7. In recent years, many authors have
extended Masur’s work to establish significant properties of the Weil-Petersson
geometry ([Schu], [DaWe], [Ya], [Wol], [Wo2], [Wo3], [Wo6], [Schu], [LSY1], and
[LSY2], among many others).

The C? estimates of [Ya], [DaWe], [Wol] quantify the way in which 7 is asymp-
totically a product space of a lower dimensional Teichmiiller space and its normal
space near a point of the boundary. In this paper, we extend this result by proving
the C! estimates. Our motivation comes from the desire to use differential geomet-
ric methods in the study of Teichmiiller space and its mapping class group. The
estimates proven here are more delicate than the derivative estimates of [LSY1] and
[LSY2] in the sense that we estimate the asymptotic difference of the Weil-Petersson
metric and the product space. Significantly, the asymptotic C! estimates of this pa-
per are needed to establish the Holomorphic Rigidity Theorem of Teichmiiller space
of [DaMag3]. The holomorphic rigidity is a surprisingly strong statement about the
uniqueness of the complex structure of Teichmiiller space; indeed, it asserts that a
Kahler manifold which allows an action of the mapping class group such that the
quotient is of finite volume must be biholomorphic to the Teichmiiller space (under
some mild assumptions). This application will be summarized later in this section.
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We now turn to a brief description of our results. A point in 7 is realized as a
nodal surface R with nodes {ny,...,ny}. These nodes result from pinching N dis-
joint, nonhomotopic, noncontractible simple closed curves on the surface S. Let Ry
be the punctured surface R\{n1,...,ny}. The boundary stratum of 97 containing
Ry is (possibly a product of) a Teichmuller space T’ of dimension n = 3g—3+p— N.
Let s = (s1,...,8,) € C" — R, be a parameterization of the neighborhood of R in
T’. We can regularize each node n; by the plumbing construction of Earle-Marden
and Fay to obtain a family of smooth surfaces. Let t = (t1,...,tn) € CV be the
plumbing coordinates; thus t; € C parameterizes the regularization of the node n;,
and the family of surfaces forms a node as |¢;| — 0 (with a nontrivial loop degener-
ating to the node n;). Together s and ¢ define the coordinates of the deformation
space near the original surface R. (For more details, see the beginning of Section 2
for the case of one node and for its generalization to many nodes at the beginning
Section 5.) We first state in the next theorem the well known C° estimates of the
Weil-Petersson metric and co-metric (cf. [Ya], [DaWe], [Wol]). For clarity, we will
use the upper case I, J, K and the lower case i, j, k, [ to index the s-coordinates and
the t-coordinates respectively.

Theorem 1. The Weil-Petersson metric Gwp = (G.) and
hig = |t 7% (—log [t:])
satisfy the following estimates:

N
(@) Gz = h; <1+0<Z(—10gltzl)2>>,

=1

(i) Gz = O((=loglt;})~>(=log [tx)°It;|  [te| ") (G # k),
(i) G = O(|ty| " (=loglt;)~?),
(v) G = Gr;(0)+0 (Z(—log tz|)2> :

=1

The Weil-Petersson co-metric Gy'p = (G**) and
it = G log )7
7T

satisfy the following estimates:

N
(i) G = (1 +0 (Z —log |t]) )) ,
=1

(@) & = O(tlltl) (5 # k),
@ii')  GY o= O(t)),
B N
(') G = GIJ(0)+O<Z(—10gItzI)2>-
1=1

The main result of this paper asserts that the C'' estimates of the Weil-Petersson
co-metric is the “derivative” of the error term of the C° estimates. More precisely,
we have the following.
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Theorem 2. The Weil-Petersson co-metric G;le = (G**) satisfies the following
estimates (with i,j,k,1,J, K all distinct):

(0) aitc _ %hn+o<|tz—\<—1og|ti|>>,

() 26T = Ol ol It (- og 7).
(i) 567 = O,

(iv) a%aﬂ = Ot (~log ) [t 1tel)

) 3G = Ol (~logl) ).

(vi) 8%@15 = O (It (= log [t:)?It,1) ,

(vii) a%GH = 0(1).

By inverting the matrix Gii and combining the above two theorems, we obtain
the following.

Theorem 3. The Weil-Petersson metric satisfies the following estimates:

0 0

@) 5Ga = 8—tihﬁ+0(|ti|73(—10g|ti\)75),

(i) 3G = O loglt) It (g ) ).

(i) 3Gy = O (ul (= loglul) Iy (—1og ) )

(i) 3G = O (Il (~log )l |~ (~ 1o ) x|~ o 1))
) 3G = O (™ (—loglt)?)

i) 3Gy = O (1 (log ) Pl (~log 1) ).

il) -G = Ol loglt) ).

We would like to point out that there is a different approach in expressing C!
estimates for the Weil-Petersson metric due to Scott Wolpert (cf. [Wo3]). In this
work, Wolpert writes the Weil-Petersson connection in terms of a certain frame
given by gradients of geodesic length functions, but unfortunately this frame does
not come from a set of local coordinates on Teichmiiller space. Even though such an
approach is effective in terms of obtaining curvature estimates near the boundary
of Teichmiiller space, it is not clear to the authors how to use it in conjunction with
harmonic maps. In other words, in order to obtain good estimates for harmonic
maps we need to be able to write local coordinate expressions. This is one of the
reasons for carrying out this work.

We will now give an explicit description of the way the Weil-Petersson metric is
a product metric and discuss the aforementioned application to the Holomorphic
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Rigidity Theorem of Teichmiiller space proven in [DaMa3]. The key ingredient in
the proof is the theory of harmonic maps which has played a central role in various
geometric rigidity problems (e.g. [Siu], [MSY], [JoYa2], [Cor], [GrSc], etc.). Given
that the Weil-Petersson curvature is strongly negative in the sense of Siu (cf. [Schu]),
a natural way to prove rigidity properties in Teichmiiller space is by applying Siu’s
Bochner method (cf. [Siu]). Jost and Yau conjectured that an equivariant harmonic
map into 7 must lie in the interior 7~ (unless it maps completely to the boundary)
and stated the holomorphic rigidity property of Teichmiiller space (cf. [JoYal]).
In another direction, Farb and Masur and Yeung (cf. [FaMa] and [Ye]) established
superrigidity properties of the mapping class group providing further evidence of
the Jost-Yau conjecture. We have so far been unable a priori (from only local
properties) to verify that harmonic maps indeed map into 7 C 7. On the other
hand, using the C'! estimates of this paper, we show in a series of papers [DaMel],
[DaMe2] and [DaMa3] that the singular set of a harmonic map (i.e. the set of points
that are not mapped into a single stratum of 7) is small enough so that we can
apply the Bochner method.

The starting point of this work is [DaMel], where we studied harmonic maps
into a space that is asymptotically a product space. Theorem 1, Theorem 2 and
Theorem 3 imply that the Weil-Petersson metric gy p of 7 near the boundary 97 is
asymptotically a product of the Weil-Petersson metric gy, on a lower dimensional
Teichmiiller space 7’ and its normal space. To make this statement more explicit,
we recall the model space (H, hgy) where

H=/{(r0)cR?*:r >0}, hu(r0)=4dr?* +r%do>

were first introduced by Yamada (cf. [Ya]) (Note that in [DaMe2] and [DaMa3], we
consider the slightly different metric g = dp? + p®d¢? which is clearly isometric
to hp via the change of coordinates p = 2r,¢ = £.) The Riemann surface (H, hy)
models the singular behavior of the Weil-Peterson metric. For example, the Gauss
curvature of (H, hgy) approaches —oo as r — 0. This corresponds to the sectional
curvature blow up of the Weil-Petersson metric near 7. Moreover, (H, hyg) is not
complete; the curve r — (r,6p) for a fixed ¢( leaves every compact subset of H as
r — 0. Recall that in [Wo5] and [Chu] it was shown that certain curves in 7 leave
every compact subset having finite length. These correspond to deformations of
compact Riemann surfaces via neck pinching. The metric completion of (H, hyy) is
constructed by identifying the axis » = 0 to a single point Py and setting

H=HU{P}.

The distance function dg induced by hy is extended to H by setting de (Q, Py) =
r for Q = (r,0) € H. Consider the metric

h=hg® ---®hyg definedon Hx ---xH

and the product space
(T'"xH x - x H, gup D h)

where each copy of H corresponds to a neck pinching. Denote by (r;, 6;) the coordi-
nates (r,6) of H on the i** copy in H x --- x H. The relation between the complex
coordinate t; and (r;, 0;) is given by

r; = 2m2(—log |ti|)_%, 0; = argt;.
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C! ESTIMATES FOR THE WEIL-PETERSSON METRIC 2921
The asymptotic C° product structure of the Weil-Petersson geometry can be de-
scribed by
(1) Gwp — Gup ® h = O(|r[*)h

(cf. [Ya], [DaWe] and [Wol]). In particular, there exists a constant ¢ such that
given a point p close to the boundary in 7/ x H x - - - x H with coordinates (r;,6;)
on the i*" copy of H, the quantity

o=

is bounded by ¢ times the Weil-Petersson distance of p to the boundary of Teich-
miiller space. Combining this with Theorem 1, Theorem 2, Theorem 3, the s-
derivative estimates already derived in [Schu], [LSY1], [LSY1] and a change of
coordinates, we obtain the following.

Corollary 4. Given a point P in the boundary of Teichmiiller space, there is
a neighborhood N ~ U xV C T' x H x --- x H of P that metrically satisfies
Assumption 2 of [DaMel].

To complete the proof of the Holomorphic Rigidity Theorem, note that the
existence of equivariant harmonic maps from Riemannian domains to the Weil-
Petersson completion T of Teichmiiller space 7 was established in [DaWe] provided
that the action is sufficiently large. The idea is to show that u maps into a single
stratum of 7 outside a small set. Indeed, Corollary 4 allows us to use the tech-
niques of [DaMel] to prove that the singular set is of Hausdorfl codimension 2.
In [DaMa3|, we show that this regularity result is sufficient to apply the Bochner
method implying the holomorphic rigidity of Teichmiiller space.

We end this section with a brief summary of the ideas in this paper. Central to
this paper is Wolpert’s grafted metric (cf. [Wol]) defined on each of the surfaces
obtained by the plumbing construction. In Section 2, we recall the grafted metric
and obtain estimates for the grafting functions. In Section 3, we derive estimates
for the t;-derivatives for the grafted metrics and its curvature. In Section 4, we
compare the grafted metric and the hyperbolic metric. The key is the elliptic
equation (41) derived from the curvature identity (also used in [Wol]). In order to
take advantage of this elliptic equation, we introduce a global vector field defined
on the deformation space of the original Riemann surface that projects down to
the vector field % (where t; comes from the plumbing coordinates). With this
global formulation, we can use the maximum principle to derive estimates for the
comparison function of the grafted and hyperbolic metrics. Combined with results
from Section 3, we thereby obtain ¢;-derivative estimates for the hyperbolic metric.
Section 5 contains the proof of the main results. The Weil-Petersson co-metric
can be written as an integral involving the Masur differentials (cf. [Mas]) and the
hyperbolic metric. Using estimates from the previous sections, we finally derive the
co-metric estimates of Theorem 2.

2. WOLPERT’S GRAFTED METRIC

In this section, we derive some estimates associated with Wolpert’s grafted metric
(cf. [Wol]). Let R be a nodal surface possibly with punctures and a single node n
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2922 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

and let Ry = R\{n} be the Riemann surface with additional punctures {a,b}. Let
gg Y? be the complete hyperbolic metric on Ry and

ug,vo : U,V - D" ={0< |z| < 1}

be cusp coordinates on open sets U, V near a, b respectively (we assume that U,
V contain exactly one puncture). In other words, g4” in U, V is given in the
coordinates ¢ = u,v respectively as

pup o (_ldc| )

We can parameterize a neighborhood of Ry in the deformation space Def(Rg) by
Beltrami differentials. More specifically, fix a basis consisting of Beltrami differen-
tials v1,...,v, (where n = dimDef(Ry)) and let R, be the surface whose complex
structure is defined by

(2) V:V(S):ZSkUk,5:(51,...,3n)ecn,
k=1

with |s| small via the Beltrami equation. Then s — R, defines a parametrization
of a neighborhood of Ry in Def(Ry). For later purposes, we choose v; (i = 1,...,n)
with support disjoint from & U V.

Let g"¥? be the complete hyperbolic metric on Ry and s, vs be cusp coordinates
in U, V near a,b respectively. Define

fsi=ugo u;l and g5 1= v o v;l.
By the removable singularity theorem and by multiplying fs and g, by (f.(0))~!
and (g4(0))~! respectively, we can assume that
(3) f5(0) =0, f{(0) =1, g5(0) =0, gi(0) =1.
Furthermore, since we have chosen v(s) to have support in a set disjoint from 4 UV,
we have that

(4) fs,gs are biholomorphic onto their image (cf. [Wol], 2.4.M).

For |t| small, we denote by R, the Riemann surface obtained by the plumbing
construction. In other words, we remove punctured discs from R, and glue back
an annulus via the plumbing equation ugvg = t. We can rewrite this equation as

(5) (fsous) ’ (gsovs) =1.

Note that since v(s) is supported away from &/ UV, the discs that we remove can be
chosen to be the same for all s. The parameter ¢ is called the plumbing coordinate.

The following subsets of the Riemann surface R, are defined as in [Wol]. Let
A € (0,3) such that A < |f,| < 24 and A < |g,| < 24 are relatively compact
annuli in &/ and V respectively. For § > 0 small, let

I = {Ae® < |f] < 2462} = { o < [g.] < L,
1t = Aleth < |fs| < Ae?®} = {% < lgs| < A1,
I = (gl <1fi] < alls} = {42 < o] < 2467},
IIE = {3 < |f] < Ae®} = {5 < |g.| < |t[2720),
1% = A < IRl <1372} = (134 < o] < Ae™}.
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Definition 5. By considering a lift of the deformation space Def(Ry) of the original
Riemann surface Ry to Teichmiiller space, one obtains a family of Riemann surfaces

F:R—=S
whose fiber over (s,t) is R ¢.

The local coordinates us,vs of Rs: glue together to define local coordinates u, v
along the fibers of R. We set

(6) N'= | 135, M= | I and N=N"UN?
(s,t)ES (s,t)eS

Thus, we obtain local coordinates (u,s,t) and (v,s,t) for N'. We will use the
coordinates (u,s,t) in N'! and the coordinates (v,s,t) in A2, The coordinates
(u, s,t) are used in N'T N N2,

Definition 6. Let gg’};p be the hyperbolic metric on R ;. We write with respect
to local coordinates

h
944" = pldc]*.
We now follow Wolpert [Wol] to construct a metric on R,; conformal to gQ},{P .

Step 1: Region near || = A. In (IZ* N II)%) U (ITT)Y N IT3%), we graft ghvwe =
2
d .
ho(¢)1d¢]* = (_|C||locg||C|) with

s T mlog (]| @ ’
(7) he(Q)dC)” = (logtI osc( log |¢| ) q >
= 0%csc® O ho(Q)|d¢[* where § = Wli)(;gﬁ'

More precisely, the grafted metric is given by

B () b (Qlac
in N1 with ¢ = u (resp. in AN? with ¢ = v) where n is a smooth function of
a = log|¢| with n = 0 for |¢| < Ae™® and 5 = 1 for |¢| > Ae’. This is [Wol],
3.4.MG (model grafting).
Step 2: Region near |¢| = |t|2. Since the conformal structure on R, is determined
by the identification f,(us)gs(vs) = t, the metrics hy(us)|dus|* and hy(vs)|dvs|?
do not agree on I1{: N II5% (unless of course fy(u) = u and gy(v) = v). Thus,
we construct a new metric by grafting hy(us)|dus|? and hy(vs)|dvs|® by a smooth
function 7 = n(a), a = log|us| with n = 0 for |us| > [¢|2~% and = 1 for
lus| < |t|270. This is [Wol], 3.4.CG (compound grafting).
Definition 7. The grafted metric constructed above will be denoted ggft. We write
in local coordinates

(8) g3 = wldc|*.
To understand this grafting, Wolpert also considers the auxiliary metrics

< T 710g|fs(us)|)|f§(us)||dus|)27

ht,auac (US7 t) |dus |2

sc(

log || log |t| | fs(us)]
log |gs(vs)| |g%(vs)|dvs] 2
9 hi auz(Vs, t dvg|? = < il CSCW =
O raus(on vl togll U loglt ) lgavs)]
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which are compatible with the identification fs(us)gs(vs) = ¢, and hence they define
a metric on IT",

Remark 8. The grafting region of Step 1 is the set
{CeN:Ae™? < ¢ < A€}, i=1,2.
The grafting region of Step 2 is (assuming that |s| is sufficiently small)
{CeEN 270 < Ju| < [t]2T0} c N N2
Since fo(u) = w and go(v) = v, the normalization (3) implies that
(10) folw) = u+0(2) and gy(v) = v+ O(v?)

where the error terms O(u?) and O(v?) can be chosen independently of s for |s]
small. Using fq(u)gs(v) =t (cf. the plumbing equation (5)), we can view u as a
function of v and ¢ (resp. v as a function of v and ¢). Combined with (10), we

obtain
(11) t = uv + O(u?v) 4+ O(uv?)
and hence
_odty ooty 0w _ oty Ov o
e T TR T T Ty

0%u || *v [t] ou 1 v 1

13 Y oty SV o, 2P o P o).
(13) ov? (|v|3)7 Ou? (|u|3)7 ot (|U| ) ot (|u|)
Definition 9. In A'! (resp. N?) with respect to the coordinates (u,s,t) (resp.

(v, s,t)), define the functions

,O(C,S,t) = ps,t(C)v (U(C,S,t) = wS,t(C)’
h((ut) = ht(C)7 haux(<7 t) = ht,aur(C)
for ¢ = u (resp. ¢ =v).

In particular,

_( Bcscl 2 _ mlog|(]
160 = (fer) 0= ot

Lemma 10. In N (resp. N?), we have with respect to the coordinates (u,s,t)
(resp. (’U,S,t)),

oh oh
5= 1 1 0 cot 0
O (1 _fcoth) and 2o = - <C—°t) ,
h  t(—loglt]) h ¢ \log[¢]+1
where § = wl(ljzg‘)\ffl and ¢ = u (resp. ¢ =wv). In particular,
oh
<L = O(|t/~!(~log [t)7*)(~log [ul)* in N (resp. N*?)
and
oh
S_hC = O(Ju|"H(=log|u|)™!) in N1 NNZ.
Proof. The identities follow by a straightforward calculation. Note that 1—6 cotf =
0(6?) in N'! (resp. N'?) and cot 6 is bounded in Nt N N2 O
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In order to study the grafted metric w|d¢|?, we introduce the function

1 h(¢t) _ _ mlog|¢|
(14) P(¢,t) = §1og ( 70(0) ) = log(fcsch), 6= og |

for ¢ = u (resp. ¢ = v) in N (resp. N?). Recall that f (resp. g) is close to
the identity. Thus, in N where [t|2720 < |f,(u)] < Ae®® (resp. in N? where
t]2725 < |g(v)| < Ae®®) for § > 0 small and A < 1, the function # ranges from a
value slightly less than § to a value stricly less than .

Lemma 11. In ! (resp. N?), we have with respect to the coordinates (u,s,t)
(resp. (v,s,1)),

o o 1
¥ - 90t - (]_
2ot 2 o L O eotd),
oY 1
0% T (1-fcoth),
o = Clogld]! )
0% 1
4 = 6 cot  — 02 csc? 6),
9o~ iClloglN(og ) )
where ( = u (resp. ( =v).
Proof. The identities follow from (14) and a straightforward calculation. O

Lemma 12. In N'' (resp. N2), whenever Ae™® < |u| with respect to the coordinates
(u,s,t) (resp. Ae™® < |v| with respect to the coordinates (v,s,t)), we have

Y= O((=log|t) ™),

9 Oh _
8_1& = 2L = O(t] M (~ log t]) ),
0

a_? = O((~logt))~2),

0% _ 1 -3

Sioc = O(Jt] ' (—log [t])~?),

where ( = u (resp. ( =v).

Proof. We can apply Taylor expansions to conclude that 1 — @ cotf = O(6?) and
62csc?0 — Ocot = O(0?). For Ae™® < |u| (vesp. Ae™® < |v]), we have that
log |u| (resp. log|v|) are bounded functions. Thus assertion follows from (14) and

Lemma 11. O
In order to study the grafted metric w|du|? near |u| = |t|2 and w|dv|?> near
lv| = [t|2 (i.e. in the grafting region of Step 2), we introduce the functions

Uy (u,t) == %bg (%) , Ua(v,t) = %IOg (#(”Ut,)t))

in Nt and N? respectively. Writing v = v(u) via the identification f(u)g(v) = t,

define

(15) Uy (u,t) = Ua(v(u),t)
as a function on N''. From [Wol], p. 442,

(16) U, =0(t}>7%%) in N'NNZ
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2926 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

We will also need the derivative estimates of W.

Lemma 13. In N' N N?Z, with respect to the coordinates (u, s,t),
8\1/1' 8\Ili

oYi _ —46 9% _ —5—45
5o = O™, 5 = Ol )
0%V, _1_gs 0*W,; —1-106
5 = O ) Faar = O )
fori=1,2.
Proof. In N N N2,
OcscO |uf!(u) )2 mlog | f(u)]
ha,uz u,t) = s 0= ;
0= (et T logl]
and

B t) Bescd \° P 7 log |ul
u = _— = —_—
’ |ullog |ul / log ||

Thus, we can write

Uy (u,t) = log(sin ©) — log(sin §) — log ’f(u))

where
; uf'(u)
Flu) =
=)
Thus, by a straightforward computation,
0 __ 7 f( 9 __ =
ou  2log|tlu Y Gu T 2log [t|u’
o 0 . 0 . 0 ;
- Pu log(sin ©) — Pu log(sin ) — Pu log ’f(u)‘
= cotO- 99 _ cotﬂ% — fN(u)
ou ou 2f (u)
T ™ = F' (u)
= —— (cot® —cot —— cot —1)—=—
2log |t|u (cot © —cot §) + 2log |t|u cot © (f(u) ) 2f (u)
and
020, 1 T T ~
= ——(———(cot® —coth) + ——— cot ~1
ou? u <210g [t]u (cot © — cot ) + 2log |tu cot© (f(u) ))
2 2
T ra ’ T ’ g 2
+ (210g|tu> (cot’ © — cot’ 6) + (210g|t|u> cot’ © ((f(u)) 1)
~ !
™ ; f'(w)
+——cot Of (u) — | == .
2log |tlu Jw <2f(u)>
By (10), f(u) = u + O(Jul?) is an analytic function which in turn implies that
fu) = “}C(g)‘) =1+ O(Ju|) is an analytic function. We thus obtain

— O(ul), F(uw) —1=0(ul), £ —oq)

an o | 5 F)
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and

u

(18) 001 = Trto | 72| = 0.

In N N A2 where [tz < |f,(u)| < |t|27%%, both © and 0 are close to Z. Thus,

|cot ©] < ¢, |cot © — cot 8] < ¢|© — 0],
|cot’ ©] < ¢, |cot’ © — cot’ §] < ¢|© — 6],

where ¢ denotes a constant independent of u, ¢ and s. Combined with (17) and (18),

we conclude that 25 = O(1) and 8;;1’21 = O(|t|"272%). The estimates 222 = O(1)

ov
and 8;‘}1;2 = O(|t|"2~%) follow from an analogous argument. By (12) and (13),

v — O(|t|~2~4) and 2% = O(|t|"2~%%) in N N N? where [¢[2+20 < |f(u)| <

|t|2=20. Thus,
0u 000
ou  Ov Ou o)
and
Uy 92U,y (0?9 0% C1gs
Tz o <a> T 0 gz~ O
By a straightforward calculation and with ¢(x) = z cot ,
ov; 00 00 B 1
and
0%V, 1 ,, 00, 00
udt  2t(—loglt)) (q (®) gy ¢ “”%)
- i 7 ’ o
= sutllogli? (W(©) = ¢ ®)
T

= gl (7@ —d®) + (fw) -1)d(®)).

Noting that ¢(z) is a smooth function near x = 7, we conclude as before that

8(,;1;1 = O(|t|"27%%) and gi‘g}f = O(|t|™Y). The estimate 2%2 = O(|t|~2~29) follows

at
by an analogous argument. Furthermore, since %% = O(|t| =229, v = O(Jt|=*),
2 2 .

20— O(t]=32%), 22 = (i) and £ = Ot~ in N NA? by (13),
we obtain

8\112 6\112 ov _1l_45

— = — =0(J¢

o = ov o U
and

82\:[/2 82\:[/2 v Ov 8\112 82’0 —~1-108
90t ~ 002 ouot T ov aaar ~ CUH )

Definition 14. In N'* N A2, define with respect to the coordinates (u, s, t),

N P
ou’ | oudu’

Nl=

0
1 Kog:=h 2—
(19) 0 ou’
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Lemma 15. In N' N N? with respect to the coordinates (u, s,t),

0 0 1
Kol = O(|t]27%), = (KoWi) = O(t] == 7), == (Ko¥y) = O(Jt] 2 7*),
ot ou
9 (0w = 073, 2 (1yw,) = Ot ~51)
ot T Ou
fori=1,2.
Proof. In N* N N2 where [¢]2720 < |f,(u)| < [t|2729, we have h=z = O(|t|2~%9).
By Lemma 10,
Oh oh )
2 — 0t ) and 2= = O(ff| 7+,
Thus, Lemma 13 implies
L O, \ 9Ky 1% .
KoU; =h™ 22— = O(Jt|z~® U = — o LKW = O([t] 2%
0 2 ou (| |2 )a ot 2 0 (| ‘ 2 )a
Ko 14 v, L PV, )
U = - B K = O(Jt] 1 Ko—*=h"7—=0(t >
ov, 1 02,
Ko—— =h"2 5 = O(t|7**).
" du ’ ou? (t )
The assertion follows immediately from the above estimates. The @ and ¢ derivative
estimates are proven similarly. O

Next, we derive estimates on the grafting function n of Step 2.

Lemma 16. Let 1 be as in [Wol], 3.4.CG. In N'* N N2, with respect to the coor-
dinates (u, s,t),

on On 4 1 P 9P -2 -2
%7 %—|U| O((_IOgM) )7 o2’ 8u8ﬁ_|u| O((_10g|t|) )7
& — 1,13 -2
5oz = lul 2O((~ log |t) ).

Proof. Recall from [Wol], 3.4.CG, that 1 = n(a) where a = 221%l _ The C* norm
of n is t and s independent. Direct computation gives

@— / %_ / 1 677_ ’ @_ / 1
aﬁ—n(a)aﬂ—n(a) —n(a)au—n(a)

2uloglt|”  Ou 2ulog [t|’
?n _ 1 L —— 1 : 1
guon " Dtz a2 " W aztogiz T Y2t og )
8317 " 1 /! 1
2uda (a) Sulul2(log [t])® g (a)4u|u\2(log|t|)2'
The estimates follow immediately from the above identities. O

Lemma 17. Let 1) be as in [Wol], 3.4.CG. In N N N? with respect to the coordi-
nates (u, s, 1),

Lon=0(1),  Dn=0(1),

= O™ g i)™ S = 01 os ),
a%(LO") = o), 8% (D) = O(1).
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Proof. Since h™= = O(log|t|) in N; N Ay by definition, we obtain from Lemma 16

2
Lon=h0=*21 o),  Dpy=n2L" _on,

du oudu
on 1 P _ o o _ 4 P _

Furthermore, by Lemma 10, h='2% = O(|¢|~*(~log|t|)') and h=*2L = O(1).
Thus, we also obtain

0Ly 1. _,0h -1 1
= =g S Lon = O(1t] ™ log 1)),
oD oh
—n=—h"'—Dn=0(|t| *(log |t|) !
- —Di = O(Jt| " (og]t]) ),
0Lg 1. _,0h oD _10h
———pnp=—h'=—Lm=0(1), =—pn=— —Dnp=0(1).
5, 1= "5l gLlon=0Q), g-n=—h"" 5 Dn=0(1)
The assertions follow immediately by combining the above estimates with Lemma 16.

O

3. THE DERIVATIVE ESTIMATES

In this section, we derive derivative estimates for the grafted metric g9" = w|dz|?
and its curvature.

Lemma 18. In N'! (resp. N'?), we have in the coordinates (u, s,t) (resp. (v,s,t)),

g =14+ 0((~log|t|)~?),

5 (1) =0t (- og) )

w

and
ow

5 0] (~ o 1))~ Log ¢])*.

Proof. We prove these estimates in N''. The same argument gives the estimates in
N?2. The proof consists of two steps.
(1) We prove the estimates in N'\N? with respect to the coordinates (u, s,t).
By step (1) in the construction of the grafted metric we prove that in N1\N?Z

h A\" ghgh h o
;—(h—()) —e"w and 7—:—Elog<;>—2’r]g,
where ¢ as in (14). Now the first and second estimates follow immediately from
Lemma 12 and the fact that 7(a(¢)) = 0 whenever || < Ae?. The third follows
immediately from Lemma 10 and the second estimate.
(2) We prove the estimates in N* N N? with respect to the coordinates (u, s,t).
By step (2) in the construction of the grafted metric we prove that in Nt NN?,

w h w ot ot ot

where 7 is a function of o = log |u| (cf. [Wol], 3.4.CG). Thus, the first and second
estimates follow immediately by (16) and Lemma 13. The third estimate follows
immediately from Lemma 10 and the second estimate. (Il
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Lemma 19. In N' N N? with respect to the coordinates (u, s,t),

Oh Ow s
Ou _ Ou _ t]49y
2w Bu |t )

Proof. We have

Oh Ow

3. a7 8 h 8(\111 — \112) 817
Ou _ Ou _ —9, "L T2 _ I
h  w <8u log ;; ) 21 du + 2% \Pz)@u’

where 7 is a function of @ = log|u| (cf. [Wol], 3.4.CG). The estimate follows
immediately (16), Lemma 13 and Lemma 16. O

The Gauss curvature of the grafted metric g7'; will be denoted K. We now
record Wolpert’s estimates of curvature. By the Remarks after Definition 3.8 and
Lemma 3.9 of [Wol], we have

(20) K9 +1=0((-log|t|)"?) in N
and
(21) K9 +1=0(t|>%) in N' NN

Furthermore, we will show
Lemma 20. In Nt (resp. N*?), we have in the coordinates (u, s,t) (resp. (v,s,t)),

OK9I"

o = Ot~ (~ log [t) ).

Proof. We prove these estimates in /', A similar argument gives the estimates in
N?2. The proof consists of two steps.
(1) We prove the estimates in N'\N? with respect to the coordinates (u,s,t).
By [Wol], p. 441, we have

(22) K9 = —e 21 (1 + %0’ Naa + 2010000 +1(e* — 1)),

where n = n(a) as in [Wol], 3.4.MG, ¢ as in (14) and the subscript in o denotes
%. Differentiating with respect to ¢, we obtain

OKI" o oy qp 5 5  Og o 20
(23) T 2n 8tK e 20 Naa + 200 —— ET + 2n— 5 ¢ .

Recalling that logu = a + i [Wol], 3.4.MG) and differentiating with re-

(
spect to u, we obtain g—g = wu. Thus, Lemma 12 implies 8&"‘ = gjgtg—z =
O(|t|=*(=log[t|)~3). Since the function 7 is supported in {|u| > Ae~°} and its
C* estimate is independent of ¢ and s, Lemma 12 and (20) imply that all terms in
(23) are O(|t|~(— log|t]) ).
(2) We prove the estimate in N* N N? with respect to the coordinates (u, s,t).
By [Wol], p. 438, formula (3.1),

(24) K9 = —e 2"V (14 4¥Dn + 8ReLonKo ¥ + n(e* — 1)) .
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Let t = ¢! + it?. Differentiating with respect to t!, we obtain
OK9" ov

. — g

ov
—6_217\11 (4@D77 + 4\:[/

K"

oD 0Lyg
o n+ 8Re—— o1 nKO\I!

B oV L,y

By estimates (16) and (21), Lemma 13, Lemma 15 and Lemma 17 imply that all
terms in (29) are O([t|=?) for some B € (0,1). Since the same estimate holds for

aaLtZT, we obtain the desired estimate. O

Lemma 21. In N'\N? (resp. N?\N?), we have in the coordinates (u,s,t) (resp.
(v,8,t)),
gr
S = Ol(~logle) ),
where ¢ = u (resp. ¢ =v). In NN N?, we have
dK"
d¢

Proof. We prove these estimates in ', A similar argument gives the estimates in
N?2. The proof consists of two steps.
(1) We prove the first estimate in N*\N? with respect to the coordinates (u, s,t).
Let logu = £ = a+if and n be as in [Wo2], 3.4 MG (cf. the proof of Lemma 20).
By differentiating (22) with respect to u,

=O([t|*).

dK9IT dn dip
2 —2¢— K9 — 2p—K9"
(26) du wdu "
o2 (@(1/1@27704& + 204277(11/)&) + £(62¢ -1+ 2n%62w> .

In the region N1\N?, we have by Lemma 12

(27) v o= O((~logl)™),
(28) W~ o((-ogli) ).

and «,n and their derivatives are uniformly bounded. Hence the last term in (26)
is O((—log|t|)~2). By (20), (27) and (28), the remaining two terms combine as

dip

Ay 51— dy _ _
L KIT o 20 (A=m) — _9n Y (Fr9T _ (-1 _ 1) = — 2
27 duK anue 277du (K9"+1—e 1) =0((—1loglt]) 7).

This proves the first estimate of the lemma.
(2) We prove the estimate in N* N N? with respect to the coordinates (u, s,t).
Let u = u! + iu?. Differentiating (24) with respect to u!, we obtain

8Kgr _ 877 gr 8\11 gr
oul 3 1\IJK B H%K
- v o) 9
oY (48 -Dn +4\I/ﬁ(Dn)+8Rea (Lon) Ko¥
0 o |, oy A
(29) +8ReLong 7 (KoW) + 25 (e™ —1) + 25 5ne™ ) .
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The estimates (16) and (21), Lemma 13, Lemma 15, Lemma 16 and Lemma 17 and

the fact that [¢]220 < |f,(u)| < |£|272° imply that all terms in (29) are O(]¢|~2%9).

Since the same estimate holds for %Lg, we obtain the desired estimate.
Combining (1) and (2) proves the second estimate of the lemma. O

4. COMPARISON OF HYPERBOLIC AND GRAFTED METRICS

In this section, we compare the hyperbolic metric gg‘};p and the grafted metric

gé’; defined on R, ;. We will need to analyze the comparison function

hyp
1 9st
(30) ¢s7t =z IOg 77" .
2 gsg,t
Expansion 4.2 of [Wol] is
2
e = 1= T (Clog ) (AP — ) A+ O((~ log i) ),

where A?fép is the Laplacian with respect to the metric g?f{p on Ry; and A is

independent of ¢, and its derivatives are bounded independently of s and supported
in (ID"NIIPYY U (IT3 N ITIPY). Tn particular, we have

(31) e2Pst =1 4 O((—log[t])™?).

Let AY", be the Laplacian on R ; with respect to the grafted metric ¢¥’,. Define
¢87t and d)it on R, by 7

2
T _ " _
(32) g,t = F(_ log |t‘) Q(Ag,t - 2) 'A and (b;,t = Qs — ¢(s),t~

Notice that in the above definition of ¢>21t, we use the Laplacian with respect to g9"
(locally vvritten2 as 1 832@
1.9

written as ;m). This difference is controlled by (31). For simplicity, we will

) instead of the Laplacian with respect to ¢g"¥? (locally

write ¢, A instead of ¢+, A‘ZQ for the rest of the paper. In particular,

1
(33) 6= 110 (%) 1= 0((—loglt) ).
Rewriting this another way,
(34) % —1=0((~logt))"2) in R.

The function ¢ satisfies the standard curvature identity
Ap=e*? + K9 = (e*® — 1) + (K9 + 1)

and we can use this to obtain a gradient estimate. Indeed, estimates (33) and (20)
imply

Ad=O((=log|t))?), ¢ =O((~log|t])?).
We now apply elliptic regularity and the Sobolev embedding theorem (cf. [Wol],
Estimate A3 in the Appendix). Here, an important point is that by lifting to
the universal cover, we can obtain estimates that do not depend on the injectivity
radius. The key is that we have pointwise bounds on ¢ and its Laplacian. In other
words, fix p > 2 and radius equal to 1 to apply elliptic regularity in By (0) for
x € Rst. We have (for C independent of s, t)

pllwrr(Bi @) < C (I10llLr By @) + 126 Lr(B1(0))) -
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We then apply Sobolev embedding W'? c C°, p > 2, to obtain
(35) V| = O((log|t])~2),

where V = V7', is the gradient with respect to g7’.
Rewriting (32), we have the functions ¢°, ¢! : R — (0, 00) satisfying

2

(36) ¢ =~ (“loglt) (A -2, ¢ =9,
Thus,
(37) ¢’ = O((~loglt)?),
9¢" -1 -3
(59) O = Ol (~oglt) ).
(39) ¢! = O((~loglth™).
Lemma 22. In N, we have in coordinates (u, s,t) or (v,s,T)
1 | dg? 1 | dg?
w7 | %] W | = Ol(=togl) )

where ( = u (resp. ¢ =v). Furthermore,

|20 || || .

Proof. By (36) and (37),

(40) 86" = —T(~loglt) *A = Ollog t) %, ¢ = O((~log]t]) ™).

By elliptic regularity and the Sobolev embedding theorem W? c C°, p > 2 (cf.
the proof of (35)), we have

V%] co = O((~log [t])~2).

Here, again, elliptic regularity is applied above with a ball of fixed radius for all ¢.
This proves the first derivative estimates.
Additionally, the Kéahler identities give

N@6%) = —0((~logli) ?A).
and hence
A"(0¢%) = O((=1log t))7%), 0" = O((—log t])?).
Applying elliptic regularity and the Sobolev embedding theorem as before,
V(96°)]co = O((log [£])~2).

Hence in N/
d?¢
-1 _ -2
~C| = ottog 1))
This implies the second derivative estimates. O
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Lemma 23. In N with respect to coordinates (u, s,t) or (v,s,T),

_1|de! _1]det| 4
w a | w i =O((=loglt])™%),
where ( = u (resp. ( =v). Furthermore,
d2¢1 d2¢1 d2¢1
-1 = -1 _| = O((—log|t])~?).
dc2 |’ dce |’ dcde ((—logt))™)

Proof. By the standard identity,
Np = e2? + K97,

we can write

Agt = AP+ (P — 1) + (K9 + 1)
= (A =29+ (2" —1-2¢") + (K7 +1)
- —%2(log|t|)’2A + (€2 — 1 —2¢°) + (K" +1).

By [Wol], p. 445, the curvature formula in proof of Expansion 4.2,

2
~ T (log |t PA + K7 4+ 1= O((=logt) ™), 6" = O((~log t) ™).

Thus,
(41) A¢t = O(=logt])™, ¢! =O((—loglt]) ™).
By elliptic regularity as before,

IVé!lco < C (|9t |co +[A¢ eo) = O((log [t]) ™),
and hence also

99" = O((log [t)) ™).

The proof of the second estimate is the same as that of ¢°. O

Remark 24. The second derivatives of ¢! have better estimates, but we will not
need them in this paper.

Lemma 25. In N with respect to coordinates (u, s,t) or (v,s,T),

_1|do _1|do| _ —2
where = u (resp. ( =v). Furthermore,
d*¢ d*¢ d*¢
43 il L, Wt _| = O((—log|t])~?).
@) WG] e G @ | = o res i)
Proof. Combine proof of Lemma 22 and Lemma 23. O

We now define a vector field W on the total space R. For the coordinates (v, s, t)
in N/, we will set 7 = ¢ in order to distinguish them from the coordinates (u, s,t)
in N. Consider the coordinate vector fields
0
(44) 5 defined in N with respect to the coordinates (u, s,t)

and

0
— defined in N with respect to the coordinates (v, s, 7).

or
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Remark 26. The reason we use the variable 7 in expressing the coordinates (v, s, 7)
is to distinguish the above two vector fields. Note that if a point pg € N is given
by (ug, S0, t0) in the coordinates (u, s,t) and (v, g, 7o) in the coordinates (v, s, 7),
then tg = 79. On the other hand, as it will be explained below (cf. (45)), p — %(p)
and p — 8T( ) for p € N are two distinct vector fields.

Using the identification f,(u)gs(v) =t = 7, we write

1, T 5_uv
wo) = 1T e = o (7T,

We apply the change of the coordinates u(v,7) to obtain the expression of 8% in
terms of the coordinates (u,t,s) as

0 o9 Ouo 0 0
(45) E—EE‘F@—T%—E—FH(U,I‘,)%
where H(u,t) is a function (holomorphic in ) defined by
ou
46 H(u,t
() (u) 87'1)05( )),Tt

Fa(u

Thus, H(u, t)% is the expression with respect to coordinates (u, s,t) of the vector
field 2 — 2 defined in N.
We now use the function H to define a C* vector field W in A by setting

0 0
5 +1n H8_ in N1 with respect to (u, s, ),
() w={ % o
5 in N2\N! with respect to (v,s,7 =1t),
-

where 7 is a rotationally symmetric bump function such that 7 = 0 for |u| > |t|2 9
and n = 1 for |u| < |29 as in [Wol], 3.4 CG. In other words, the vector field W
in ' N2 is the interpolation of the vector field 8 defined in ! with respect to
the local coordinates (u, s,t) and the vector field a deﬁned in A2 with respect to
the local coordinates (v, s, =t). The vector field W is C*° in A/. We can extend
W as a C* vector field on the total space R. Indeed, R is trivial away from the
pinching region A'* N N2, and the product structure defines a canonical lift of the
the vector field % defined S.

Definition 27. We denote by W the C'> vector field on R defined by (47) in N/
and the canonical lift to R\N of the vector field 6 defined S.

We will now derive some estimates involving the function H. First observe that
if fs(u) and g(v) are the identity maps, then H(u,t) = %. Since fs(u) and g4(v)
are holomorphic functions close to the identity,

(48) H = O(|t| ") (u + O(|ul?)).

We will record some other estimates involving the function H (u,t) below.
Lemma 28. In N'NN?, we have with respect to the coordinates (u, s,t),
(49) H =2 +0(t ™)

and
Hhz = O([t| ' (—logt)) ™).
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Proof. The first assertion follows immediately from equality (48). Since h =
O(Ju|=2(—=log[t])~2) in N* N A2, the second assertion follows from the first. O

Lemma 29. In N,
WK = O(f]~ (~log 1)),

where W is given in Definition 27.

Proof. ITn N'\N2, the estimate follows from Lemma 20 since W = 2. In N1 N N2
with respect to coordinates (u, s, t),

OK9I" OKI"
K" = H .
W ot n ou

The first term on the right-hand side is O(|t|~!(—log|t|)™3) by Lemma 20. The
second term is O(|t| =2 ~24%) by Lemma 21 and Lemma 28. This proves the estimate
in N''. A similar argument proves the estimate in N2, O

Lemma 30. In N with respect to the coordinates (u,s,t),

% = O(|t| ™ (—log t])*)(~ log |ul)?,
W(g) — O(t (~ log 1)),
% = O(lt|~(~log [t])~*)(— log [u])2,

where W is given in Definition 27.

Proof. In NY\N?2, the first estimate follows from Lemma 10. In N1 N N2, we have
by Lemma 10 and Lemma 28 that
oh oh
m = E + UHE
h h h

= (?Uﬂ‘l(—iogIﬂ)fg)(—loghd)Q+—%(?OUT’IC—logIUDfl)
= O(t] " (= log|t) ™) (~log [u])® + O(J¢| (= log ul) 7).

Thus, the first estimate in N* N N? follows from the fact that (—log|u|) <
(3 + 26)(—logt|). The second estimate follows from Lemma 18, Lemma 19 and
Lemma 28. The third estimate follows by combining the first and the second esti-
mates. ]

Lemma 31. In R,
w

W () =01 (- tog ) ).
where W is given in Definition 27.
Proof. We differentiate the standard identity
(50) Ng = e*® + K97
with respect to W to obtain
(A =22 W¢ = WK + comm,
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where the term comm comes from commuting W and A. Using the fact that H is
holomorphic in u (cf. (46)), we obtain

comm = AW ¢—-—W A¢

0 o 1% 99 | 5
= aC(UH)A¢+—C( nH)— 8§2+A( )8_(+H A¢
B 6 87] on1o% Bgzb

1 9n OH 96 2—2’

toac ac ac T B

(i) Since H = O(|t|™1)(u + O(|u|?)) (cf. (48)) and H is holomorphic (cf. (46)),
%Ig = O(Jt|7Y)(1+ O(|ul). Moreover by (40), A¢ = O((—log [t])~2). Tt follows that
the first term is O(|t|~*(—log [t])72).

(i) By Lemma 16, gz g—g = Olu|7*((—1log|t])™"), hence combining with the
estimates used before we obtain that the second term is O(|t|~!(—log |t])~3).

(iii) By Lemma 25, %g%f = O((—log|t|)~2), hence combining with the estimates
used before we obtain that the third term is O(|t|~!(—log [t])~3).

(iv) By Lemma 17 and Lemma 18, An = O(1). By Lemma 25, w_%

O(=log 1)) and i = O(Jul"(~log [u) ), hence 2 = O(ful( log i) ?)
Hence, combining with the estimate for H used before we obtain that the fourth
term is O([t|~1(—log|t])~2).

(v) By Lemma 17 and Lemma 18, w™ = 22 %= O(1) and by Lemma 25, w2
O((—log|t|)~2). Combined with aH = O(|t|~1), we obtain that the fifth term
O([t|=*(—log [t]) ).

(vi) By Lemma 10 and Lemma 20, 8‘ = O(Ju|~!(—log|u|)~1). Combined with
the estimate used before, we obtain that the sixth term is O([t|~1(—log [t|)~3).

In summary, we have shown

(D¢ — 262 )W = O(|t]*(~ log [t])2)

in either N' with ¢ = u or in A2 with ¢ = v. Since the C* estimates of ¢ are
uniformly bounded independent of ¢ and s outside of the pinching region A, (51)
implies

/\ﬂ

%l%’

(A =2e2)W¢ = O(|t| ! (= logt]) ) in R,
and hence by the maximum principle (cf. [Wol], Appendix A.2)
(51) Weo = O(t| ! (~log|t])?).
O

Lemma 32. In N'' (resp. N?) with respect to the coordinates (u,s,t) (resp.

(0.5.8)). )
5 (2) = ot (- og )

Proof. From (36), we have

A Clogli) ).

0__7T2
(6-2)¢° = -
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We differentiate this with respect to W to obtain
(52) W(A = 2)6" = O(t~ (~ log [t)) 2.
From (50), we obtain
W(A = 2)¢pt = —W(A —2)¢° + WKI",

or by commuting W with A,

(A =2)We' = —W(A —2)¢° + WKI™ 4 comm.
We now estimate the terms in the right-hand side above. By (52), the first term
is O(|t|=*(—log [t|)~3), and by Lemma 29, the second term is O(|t|~1(—log [t]|)~3).

Arguing analogously as in the proof of Lemma 31 and noting that we have a better
estimates for ¢! than for ¢ (compare Lemma 23 with Lemma 25), we obtain

comm = O([t| (= 1log |t|)™?).

Indeed, in (i) of the proof of Lemma 31, by (41), A¢* = (—log|t|)~*, hence the
first term is O(|t|~1(—1log|t|)~*). In (ii) and (iii) we have the desired estimate.

Furthermore, in (iv) and (v), we have by Lemma 23 that w™2 8;’51 =O((=logt])™%)

instead of O((—log|t|)~2) for w™2 d{fc , and this accounts for the extra (—log |t|)~!
Thus, the maximum principle as before implies

Wl = O(t| ™! (= log [t]) 7).
Lemma 18, Lemma 23 and Lemma 28 imply that

99! _1 ¢1 1 N
nH - = nHh2h™> 2= = O(|t| "} (~ log t]) ™®) in A3,
which in turn implies that
8(;5 1 8¢1 _ —1 -3y -
wre =W¢ - 8u = O([t|”"(=logt]) ") in M.
Combined with (38), we conclude
0 _ 3y -
20 = (1 (~ logli) ) in A,
and similarly in N5. |

5. THE PROOF OF THE MAIN RESULTS

Let R be a nodal surface with nodes {n;}, and Ry = R\{n;}}¥, be the Rie-
mann surface with punctures {a;, b; } assomated with each node n;. For s € B.(0) C
C", let R be the family of Riemann surfaces defined by the Beltrami differentials
as in (2). The resolution of the singularities (described in Section 2 for a single
node) can be simultaneously carried out for all Ry and nodes, and we obtain a
family of Riemann surfaces

F:R>ScC'xcN

whose fiber over (s,t) = (s,t1,...,tx) € C" x C¥ is the Riemann surface R ;. As
in the case of one node, the coordinates (s,t) are called the plumbing coordinates
and the Riemann surface R, ; is the surface corresponding to the coordinates (s,t)
via the plumbing construction.

For each i = 1,...,N, we denote by N, N'»! and N%? the neighborhoods
defined by the plumbing construction for the node n; as defined by (5) with ¢;
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replacing t. Let (u;, s,t) and (v, 8,7 = t) be the local coordinates of V. Fix s and
t=(t,...,t") and define

_ A A
Noi o= {u; € NP ' N Ry o | folus)| > [ti]2}

and
Niy o= {v; € N92 N Ry« g5 (0)| > [t:]2 )
By (5)7 . .
L =N'NRs, =N UNy,
and

NGFANGT = {w € NP0 Roy s |fu(us)| = [8:]7)

= {v; e N*2N Ryy: |gs(vi)| = [t:i]2}.
Fix i and let W; be the vector field given as W in Definition 27 with A/* playing
the role of M. In other words, W; is % in Ry \(N>!' N N%2) and defined by

interpolation in N%1 N N2, In N;;r with respect to the coordinate u;, we have

) 0 o,

Wi(u;) = 5 + nHi% where H;(u;) := %,

Ui:gs_l(fst(iii))
In stt_ with respect to the coordinate v; (with 7; = t;),

4 —i—ﬁl:[i 9 where ffl(vz) = gj_z

Wivi) = or; ov;

wi=f (5oy)

Here, =0, 77 = 1 for |u;| > |t;]27% and 7 =0, n = 1 for |v;| > |7:|27%. Applying
a change of variables, we obtain

87’1‘ +nHi8_vi o 8—tz 8ti +?7(9T1' 81;1- 8u1-'
Thus,
Bui ~(9’Ui Bui . 8u2
ot; na_ﬂa_vz - natz‘ .
With this, we can derive a relationship between the two functions n and 7. Differ-
entiating fs(u;)gs(vi) = t; = 7;, we have

ou; ,, 1 ov; , 1 ge(v) 0wy,  tigl(vi)
ot; Folws) = gs(v;)’ aTigS(U) A Y foluw) = 92(v;) '
and hence
S B
gs(i) fo(ui)  "gs(vi) " gs(vi) fi(ui)
which in turn implies
1 1

n+ 1 :
Jilw) ™ filua)
For convenience, we choose 1 such that

1 1
(53) n(u;) = 3 for | fs(ui)| = [t:]>.
Noting that f/(u;) =1+ O(Ju;|) (cf. (3) and (4)), we then obtain

- 1 1 1
(54) i(vi) = 5 + O(|ti[?) for |gs(vi)| = [t:]*.
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We now recall the Masur differentials {®,} (cf. [Mas]) corresponding to cotan-
gent vectors in a neighborhood at a point at the boundary of Teichmiiller space.
For clarity, we will use the lowercase ¢ for the Masur differential corresponding dual
of the tangent vector z- of the boundary of Teichmiiller space and the uppercase

GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

I for the Masur dlﬁerentlal corresponding to the tangent vector

I
the boundary. We can express these differentials in the I*” neighborhood N with

respect to the coordinates (uy, s,t) as

D, = ¢ydz?

where

(55)  ulus,s,t) = 1

l

0 and

(56)  or(ug,s,t) = ¢r(u,0,0) + %
1

0. Since “ |‘2 <1lin Ns’t , we have
o il
6= 0(,15)
|tz'|>
57 i — 0] )
(57) s=o(l
¢i = O([t:]),
Moreover,
1
d)I (‘uz‘ )7
(58) ¢r =0(1),
or=0(1)

il
2 +a_1(u,

>

Jj=1

99i
ot;
9¢i
ot;
9¢i
ot;

91

ot;
O¢1

ot;
o1

ot;

and ®j

= ¢1d227

s,t)—l-%z

1 j=1

=0 ) on N;:j,

|u;|?

1 I+
|u1‘)onNst,

=0

= O(1) everywhere else.

:O(|U,|3) on stzra

:O(1

) on NbF
|

s,t

= O(1) everywhere else.

We start with the following simple results.

Lemma 33. With h(z) = <log\t|

/{t%gzsl} [=[*

1
/{|t2< |<1} [z ( )

and
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esc(

7 log | 2| ) |dz| 2
loglt| / [2] ) 7
1
h(z

——dzxdy =

_ = )°

O(1) forn<A4.

t\* o)
2t ) (st
(ul> l CL](57 )

with m(j) > 0, a_; with at most a simple pole at 0, a;, j > 1 are holomorphic at

t—l j-m(j) b;(s,t)
w

with m(l) > 0, (b](ul,O 0) has at most a simple pole and b;, ¢; are holomorphic at

Zul ci(s,t)

j=—1



C! ESTIMATES FOR THE WEIL-PETERSSON METRIC

2941
Furthermore,
[ AL B, et
(11} <pz1<1y 1211 R(2) h(2) Art
Proof. A straightforward computation using the substitution 6 = ’folglgtT do =
rlog|t\dr r= eel"’f‘t‘ = |t|% yields
1 1
— ——dzdy
/{t%sZsu [2|™ h(z)
(—log [t])?

1 . 5 wloglz|
sin dxdy
us /{|t%< 2|<1} |Z|"_2 ( log [¢] )
log |¢])? 1
= 4og|| / ) 51112(7T Ogr)27rrdr
ez <r<1y T log ||

(—loglt))® [ log |t
i“ / e4=mb5in2 949 (where a = %)
0

™
= M/E (4= n)fl@ — cos 20)df.
0

Letting n = 4, we have

1 1 -1 312
/ . oo drdy = M/ 1 — cos 20d6
(1 <iz<1y 121* R(2) 0

T2

(—log |¢)®
2r
which is the first estimate. Applying the integral formula
(4—n)ab _ :
/6(47")‘19 cos20d0 — ((4 = n) cos26 + 2sin 20) VK, a= log |t
(4 —mn)2a? +4
(4 - 260 + 2sin 2
T ((4 = n) cos20 + 2sin 9)+K7
(4—n)2a?+4
the second estimate follows for n < 4. By Lemma 10, we write

11 F(z)
/{mm <1y 127 B(z) h(z)

1 / 11 L
. — ) — ——(1 —6fcoth)du du’.
t(—log t]) Jye3 <|z1<1y 121" R(2)

Using the same substitution as above, we obtain

T2

1 2(—logt))® [2
/ ——0fcotfdzdy = (OigH) / =99 sin 6 cos O db.
(E<pz1<ay 12" ( ) 0
Letting n = 4 in the above equality, we obtain

_ 3 1%
/ i—acotedxdy _ (Closlt)’ / 0sin 20 do
(#12 <|z|<1} |2|* h(z) m 0

(—log|t])?
4 '
Combining this with the first estimate proves the third estimate.
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Lemma 34. If {®, = qﬁﬂdzz} is the set of Masur differentials, gs+ a metric along
the fibers of R and G = gr , then

0 0 0
o /R ° /N;’r oY /N o /Rs,tw;t o

+ /B+nH (i) 52 g+/ Uiy (v) 52 9

Tt

In the above formula ¢ denotes interior multiplication and B;:ti denotes the inner

boundary circle of N;f with the induced orientation.

Proof. By the definition of W;, the projection F,W; to S is equal to a_t Thus,

il o), e

Since W; = 3%4'7711182 in N;j, W, = at —|—17H mN '+ and 8t in Ry /\N? st 1t
suffices to prove

L s G = ) 5
/N;:r WHi(ui)Buig ot TIHi(ui)mg’

and similarly for IV, zt_ . Indeed, this follows by Stokes’ theorem

L g / g.
i nH;(u;) i “1)6
Ns;j— Ns,+

Lemma 35. If ®; is the Masur differential dual to (%, then

0 o;0; D,
— - = O(lt;|(=1log [t;])).
8ti/ (gg%p gfft ) (| |( Ogl |))

If ®; and ®; are the Masur differentials dual to % and dt , then

9 (bICT)J D,P; . s
. - = O(|t; —log |¢; .

Proof. We can write

/ 0 (didi 9o duldu? — / 0 (¢ (w 1)) duldu
Nit Ol p w Nk Ot \ w \p
8¢L T ow
= / il ( 1) dugdu§+/ bidi (—%> (‘—" - 1) du du?
i@ \p v @ @)\

T2 (1) dutdu?.
o [ (5 ) wia

By (34), (57), Lemma 18, Lemma 32 and Lemma 33,

201 5
/ ¢z— (——1) du} du?
N o

(60)

_ 1
O(Jt:](~ log |t:) 2)/ +Wﬁd uldu?

O(Jt:|(— log [t:])),
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T ow
[ 5 (E) () s
vy how\ w )\

11
= (= log [t;) 3 2 duldu?
= O([ti|(—log|t;]) )/N:_,j gy
(61) = O(lt:])
and
(biéihaw 17,2 , A—3/ L1, 9
Lo e () dudant = oUutogle)™ [ i, dudaes
(62) = O([ti]).

Combining (59), (60), (61) and (62) along with the corresponding estimates for

N_,, we obtain

o [®:®; ;P
63 / e Pt ZTZ =0 t; —log til)).
(63) wJM<£% g&> (Jt:](— log]t:1))

Next, we estimate the integral over N, [ # i. By (34), (57), Lemma 18, Lemma 31,
Lemma 33 and the fact that outside of N ,, g—t‘” =0 and aiti (£> =W; (%), we

P

have

Seii h

ot i W 172 _ e —9 I S
/Ni’? A w(p 1) dupdui = O(ti|(—log [t:]) )/Ni’_f“ —|ul|2hduldul
(64) = O(|t:l(=1og |)) ),

N dw
(65) / 0i0i (-—t> (E - 1) duj duj =0,
Ngf oW w p

$idih 0 (w 1,2 _ 9 11 .,
/N.i’f h wdt; \ p 1) dupduj = O(|ts|(—log [t:]) )Ni’fwﬁ duj duj
(66) = O(|t (= log|tul)72).

Combining (64), (65) and (66) along with the analogous estimates for Nézt_, we
obtain that

(67) L& 3(®@—¢@ﬂ—OWM4%mD%

qr
ot gg,?ip st

1
s,t

The integral over R, :\ |J, ./\/Sl,t can be computed using the estimates of ¢; outside
of |, ./\/"f’t contained in (57) and a similar argument. We obtain

(68) / 9 (22 22) < o)
Rs,t\Ul Nsl,t tl gs,t gs,t
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We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, with u; = u} + iu? and by using Lemma 18 and (34), we have

/ inH,v(u,v)i <¢z¢z o ¢z¢z) dugdulz
gy TR p W

= ) ¢i6i h 17,2
- /i,jZnHi(ui)aiui h w 5_1 du; du;

(69) = 0 oglt) ) [ iy (Sl

s,t

) Gidi _
/Bjj ZTIHKW)@%( N du;du;

= O((—log\til)”)é/Bi’+ n(us) H (u;) hdal

°§.\

.

= O((-log|t:)™®)

DO |

Moreover, with 6; = Arg u;,

U; = elel 2 and du; = —ie_ieid0i|ti|% = w;du; = —Z‘tl|d01,

which together with (69), Lemma 28, (7) and (57) implies

. bibi  Diths 1, 2

p

and similarly for B;; The first estimate follows by combining (63), (67), (68),
(70) and Lemma 34.

Next, we prove the second estimate. We first compute the integral over N, S’f .
By (34), (58), Lemma 18, Lemma 32 and Lemma 33,

6d”éilfh 1
1) dulde® = O((—1 ti—2/ L ula?
/NH h w(p ) Ui dt; ((=log )™ |u,|4h

s,t

(71) = O(~log|ti]),
/ Ia]ﬁ —E £ 1) duldu?
LI ANCAY, i
— O(t| ™ (~ log [t:)) ™) / ﬁ—du i
(72) = O(lt " (~log t:]) ),
prosh 9 (w Lo
—— [ Z 1 1 2
/N;}j b wot \p du; du;
1
_ =1 -3 1
= O togle)™) [ antit
(73) = O(Jt:| "M (~log [t:)~?).
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Combining (71), (72) and (73) along with the corresponding estimate for NN, S’t ,
obtain

O (105 D105\ 10 i1 -3
[, g (P ) vt = 0 o))

Next, we estimate the integral over N, | # . By (34), (58), Lemma 18, Lemma 31,
Lemma 33 and the fact that outside of /\ﬂt, o = 0 and Z% (%) =W; (%), we
have

5107 h 11

9t 1.2 9 9
(21 - _

/N"’+ - w(p ) duy du; O((—log |t )/ +|m|hd Ldu

(75) = O((=logt:])™),

a
(76) /l 9187 (—%> (5 —1> dufdu? =0,
A IRNECAY.

¢1¢sh 0 (w 15,2 _ -1 —2 Loy o

(77) = O(lt:| 7" (= log [t:)) 7).

Combining (75), (76) and (77) along with the analogous estimates for N Lo we
obtain that

9 (o195  S1¢y 1,2 _ -1 -3
[, g () = 0(n (o))

The mtegral over R, \U,N. S . can be computed using the estimates of ¢; and ¢
outside of | J, V; S . contained in (58) and a similar argument. We obtain

¢1o;  ¢1ds L2 it —1g -3
(79 /St\ulm_ﬁ_ti< p _T> cuidug = O(Jt] ™ (= log [t[)).

We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, as in (69) we have

/ B, 1) 52 <¢I¢J - M) du; duj
pp AT

= Ol(=logl) ) [ atwoH () P du,

st

Moreover, by combining with Lemma 28, (7) and (58), this implies

. ¢z¢1 ¢z¢z

and similarly for B;; The second assertion follows by combining (74), (78), (79),
(80) and Lemma 34. O

Proof of Theorem 2. Below, we will provide the proof for estimates (i) and (v).
The other estimates are proven by analogous arguments, and hence we omit their
proofs.
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First, we prove (¢). By Lemma 35 it suffices to prove

0 DD, o ..
1 — Ll = —h" + O(t;|(—log |t ])).
(81) - /R = Ol o )

By differentiating the identity (55) with respect to ¢;, we have in N;j

od; 1 1
= O(—).
Since ¢; = wt;? + O(“Zl‘ ),
= |t:]? |t:]?
2 0 = 0]
and
0¢; - t; |t
——¢; = @) .
By (83), Lemma 18 and Corollary 33,
3¢'iq_§i [oloB ;
/ O duidu} = (1+O((—log |t|)_2))/ P ) du?
Nof oW woh
_ _ “oyy [t L1, 9
= (1+0((—loglt)™2)) (WQ oot T - du du;
voltl) [ A lawtaw
7 l‘:_ |u2|3 h 1 ?
t;(—log|t;])?
(51) = BB o~ o i),
By (82) and Corrollary 33,
T oh oh
bidi ot 1,0 Il L 1% 51,9
/N;"j W h du;du; = 72 o Tuat B h du; du;;

118

12 i Y du?
+O(|t;] )/N:jr B R h du; du;

(55) = BEIB I g~ tog ).

By (85), (57) and Lemma 33,

e - Oh T Ow Oh
(biqsizzduldu? _ Pii Ol du? + Gidi Bt Bt dul du?
Nppow w ip bk L ANC
ti(—log|t:|)”
= 2R ol tog i)
1 1
H(—1og |t:)-3 BN
+O(|t;|(—log [ti]) >/N.:;,,+ |ui‘4hduzdm
ti(—log |t;])?
(56) = BRI ot~ tog ).

473

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



C! ESTIMATES FOR THE WEIL-PETERSSON METRIC 2947

Similarly we have the same formulas over NSZ; . Thus, by adding the above we

obtain
0 ¢z’¢;z‘ 17 2 / 0 ¢’i¢;i 17 2
/N;"jr ot; ( w ) du; dui + NiT ot; w du; du;
3t:(—log |t;)®  £i(—log|t:|)?
(57) _ Sulzloltl), GELoBIAD | 1) 1og 1)),

273 273

Since w does not depend on t; outside of A", (57), Lemma 18 and Lemma 33 imply

. 0d; 77;
[ (55) i = [, B
NGy ? Ny

(88) = O(lt),

and similarly for Nit_ . Using the estimates of ¢; outside of |J; V. Sl)t contained in
(57), we similarly obtain

(89) / 9 <%> dutdu? = O(|t;]).
Ro\U, N, ot; w

We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, with u; = u} + iu? and as in (69) we have

] Gidi , 1, 2
/B;j— Z’r]Hi(ui)a%< " duldul

- N < $ii _
= (14 O0((~1loglt|) ))5~/Blj U, ) 52 < h duidui>
—2yy $idi
00 = (e O(-logltl )y [ ) H(w) % dus
Bif h
By (82), Lemma 28 and (7) since on the circle B;ZF lug] = |t;]2, we have the
estimates
_ W —25 S (21 1 1 (—log|t;])?ts]

H(Ui)*t_i"‘O(‘ti‘ )s ¢i¢i—w+0(\ti\z) and i —

Moreover, with 6; = Arg u; and as in (70),

. $ii , 1, o
~/Bi’+ ani(ui)a%i( ” du; du;

ti(—log|t;)? [*7 1 o,
o1) = DR [ gt ydos+ O(1),
m 0
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Similarly,
: i
/i,— Ui (01) 5 < » du} du?
Ei_logtiQ 2ﬂ—~ 1 o,
(92) = (274”)/ (It:]2 e )d; + O([ti]).-
™ 0
On the other hand, since n = £ on BY}  and ) = 3 +O(|t;]2) on B;t_ (cf. (53) and

(54)), we obtain

. ¢z¢z . sz(gz 17 2
/Bjj I H () 5 < du} du? . L ACH R B du; du;

(93) - B gD L oy

Combining (87), (88), (89) and (93) we obtain the desired estimate (81).
Next, we prove (v). By Lemma 35, it suffices to prove

0 q)](i)(] _ _
(94) o [ =0l (—log ) ).
s,t S,t
We write
/ <¢I¢J) 1du?
NiF ot; w
9¢
(95) = / kil " gt au? —/ G191 b dtld Ldu?
N+ h w Nk b ww ¢
Observe that by Lemma 33,
(—loglui|)*1 4 1 1
el 2 < - = .
(96) /N;’+ Bt < /Nl+ e hdu du? = O(1)
By (58), Lemma 18 and Lemma 33,
8¢1
h 1
/ ¢J —duldu? = 0O(1) —du du?
Nt h w N |ug|* B

(97) O((~log [t:])*).
By (58), Lemma 18, Lemma 33, (96) and the fact that O((— log |u;])?) = O(|u;|~1),

" Ow
h a3,

/ P10 h i, dul du?
Nt h ww

log |u
ol (~toglee) ) [ Clogud)® L2

|us]? h
(98) = O(lt:| ™" (= log [t:)) 7).
Combining (95), (97) and (98) with the analogous estimate on NSZ’t ,
0 @I(i),] -1 -3
99 — = O(|t; —log|t; .
(99) L i (Git) =0t osied =)
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Since w does not depend on t; outside of N, (58) and Lemma 33 imply

C 991 7
0 - Q.

/ —(—"”“”) dufduf = / 2 i
N O\ N

11
o1 — —du} du?
( )/Ni:r |Ul|h Uy Ay

(100) — oq),

and similarly for IV, sl:t_ . Similarly,

(101) / 9 (W") duldu? = O(1).
R AUN, Ol \

We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, as in (90)

/ by H, (1) 52— (gb”b‘]du%duf)
B;’:r W\ ) G w

(102) — (14 O((=toglt) ) [ ) () 4
BLY
By (58), Lemma 28 and (7) we have as before
. ¢I€5J 17 .2 2
aws s (P22 autat) = O((~tog ).
and similarly for B;; Combining (99), (100), (101) and (103) we obtain the desired
estimate (94). The other estimates are obtained analogously. ]
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