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C1 ESTIMATES FOR THE WEIL-PETERSSON METRIC

GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

Abstract. We prove that the Weil-Petersson metric near the boundary of the
Teichmüller space is C1-asymptotically a product of the Weil-Petersson metric
on a lower dimensional Teichmüller space and a metric on a model space. In
particular, we show that the Weil-Petersson metric on the genus g, p-punctured
Teichmüller space with 3g − 3 + p > 0 satisfies all the important properties
required to apply the results in a previous work by the authors (2011). These
estimates extend the well known C0 estimates for the Weil-Petersson metric.

1. Introduction

The Teichmüller space T of a genus g, p-punctured surface S with 3g−3+p > 0
endowed with the Weil-Petersson metric GWP is an incomplete Kähler manifold
(cf. [Wo5] and [Chu]). Its metric completion T , although no longer a Riemannian
manifold, is a CAT(0) space; i.e. a simply connected, complete metric space with
nonpositive curvature in the sense of Alexandrov (cf. [Ya]). Set theoretically, T
is the augmented Teichmuller space of Abikoff (cf. [Abi]). The boundary ∂T of
Teichmüller space is stratified by lower dimensional Teichmüller spaces with each
stratum being totally geodesic. In [Mas], Masur initiated the study of the Weil-
Petersson metric near the boundary of T . In recent years, many authors have
extended Masur’s work to establish significant properties of the Weil-Petersson
geometry ([Schu], [DaWe], [Ya], [Wo1], [Wo2], [Wo3], [Wo6], [Schu], [LSY1], and
[LSY2], among many others).

The C0 estimates of [Ya], [DaWe], [Wo1] quantify the way in which T is asymp-
totically a product space of a lower dimensional Teichmüller space and its normal
space near a point of the boundary. In this paper, we extend this result by proving
the C1 estimates. Our motivation comes from the desire to use differential geomet-
ric methods in the study of Teichmüller space and its mapping class group. The
estimates proven here are more delicate than the derivative estimates of [LSY1] and
[LSY2] in the sense that we estimate the asymptotic difference of the Weil-Petersson
metric and the product space. Significantly, the asymptotic C1 estimates of this pa-
per are needed to establish the Holomorphic Rigidity Theorem of Teichmüller space
of [DaMa3]. The holomorphic rigidity is a surprisingly strong statement about the
uniqueness of the complex structure of Teichmüller space; indeed, it asserts that a
Kähler manifold which allows an action of the mapping class group such that the
quotient is of finite volume must be biholomorphic to the Teichmüller space (under
some mild assumptions). This application will be summarized later in this section.
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We now turn to a brief description of our results. A point in T is realized as a
nodal surface R with nodes {n1, . . . , nN}. These nodes result from pinching N dis-
joint, nonhomotopic, noncontractible simple closed curves on the surface S. Let R0

be the punctured surface R\{n1, . . . , nN}. The boundary stratum of ∂T containing
R0 is (possibly a product of) a Teichmuller space T ′ of dimension n = 3g−3+p−N .
Let s = (s1, . . . , sn) ∈ Cn #→ Rs be a parameterization of the neighborhood of R0 in
T ′. We can regularize each node ni by the plumbing construction of Earle-Marden
and Fay to obtain a family of smooth surfaces. Let t = (t1, . . . , tN ) ∈ CN be the
plumbing coordinates; thus ti ∈ C parameterizes the regularization of the node ni,
and the family of surfaces forms a node as |ti| → 0 (with a nontrivial loop degener-
ating to the node ni). Together s and t define the coordinates of the deformation
space near the original surface R. (For more details, see the beginning of Section 2
for the case of one node and for its generalization to many nodes at the beginning
Section 5.) We first state in the next theorem the well known C0 estimates of the
Weil-Petersson metric and co-metric (cf. [Ya], [DaWe], [Wo1]). For clarity, we will
use the upper case I, J, K and the lower case i, j, k, l to index the s-coordinates and
the t-coordinates respectively.

Theorem 1. The Weil-Petersson metric GWP = (G∗∗) and

hii = π3|ti|−2(− log |ti|)−3

satisfy the following estimates:

(i) Gii = hii

(
1 + O

(
N∑

l=1

(− log |tl|)−2

))
,

(ii) Gjk = O
(
(− log |tj |)−3(− log |tk|)−3|tj |−1|tk|−1

)
(j ̸= k),

(iii) GIj = O
(
|tj |−1(− log |tj |)−3

)
,

(iv) GIJ = GIJ̄(0) + O

(
q∑

l=1

(− log |tl|)−2

)
.

The Weil-Petersson co-metric G−1
WP = (G∗∗) and

hii =
|ti|2(− log |ti|)3

π3

satisfy the following estimates:

(i′) Gii = hii

(
1 + O

(
N∑

l=1

(− log |tl|)2
))

,

(ii′) Gjk = O(|tj ||tk|) (j ̸= k),

(iii′) GIj = O(|tj |),

(iv′) GIJ = GIJ̄(0) + O

(
N∑

l=1

(− log |tl|)2
)

.

The main result of this paper asserts that the C1 estimates of the Weil-Petersson
co-metric is the “derivative” of the error term of the C0 estimates. More precisely,
we have the following.
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C1 ESTIMATES FOR THE WEIL-PETERSSON METRIC 2919

Theorem 2. The Weil-Petersson co-metric G−1
WP = (G∗∗) satisfies the following

estimates (with i, j, k, I, J, K all distinct):

(i)
∂

∂ti
Gii =

∂

∂ti
hii + O (|ti|(− log |ti|)) ,

(ii)
∂

∂ti
Gjj = O

(
|ti|−1(− log |ti|)−3|tj |2(− log |tj |)3

)
,

(iii)
∂

∂ti
Gij = O (|tj |) ,

(iv)
∂

∂ti
Gjk = O

(
|ti|−1(− log |ti|)−3|tj ||tk|

)
,

(v)
∂

∂ti
GIJ = O

(
|ti|−1(− log |ti|)−3

)
,

(vi)
∂

∂ti
GIj = O

(
|ti|−1(− log |ti|)−3|tj |

)
,

(vii)
∂

∂ti
GIi = O(1).

By inverting the matrix Gij and combining the above two theorems, we obtain
the following.

Theorem 3. The Weil-Petersson metric satisfies the following estimates:

(i)
∂

∂ti
Gii =

∂

∂ti
hii + O

(
|ti|−3(− log |ti|)−5

)
,

(ii)
∂

∂ti
Gjj = O

(
|ti|−1(− log |ti|)−3|tj |−2(− log |tj |)−3

)
,

(iii)
∂

∂ti
Gij = O

(
|ti|−2(− log |ti|)−3|tj |−1(− log |tj |)−3

)
,

(iv)
∂

∂ti
Gjk = O

(
|ti|−1(− log |ti|)−3|tj |−1(− log |tj |)−3|tk|−1(− log |tk|)−3

)
,

(v)
∂

∂ti
GIJ = O

(
|ti|−1(− log |ti|)−3

)

(vi)
∂

∂ti
GIj = O

(
|ti|−1(− log |ti|)−3|tj |−1(− log |tj |)−3

)
,

(vii)
∂

∂ti
GIi = O

(
|ti|−2(− log |ti|)−3

)
.

We would like to point out that there is a different approach in expressing C1

estimates for the Weil-Petersson metric due to Scott Wolpert (cf. [Wo3]). In this
work, Wolpert writes the Weil-Petersson connection in terms of a certain frame
given by gradients of geodesic length functions, but unfortunately this frame does
not come from a set of local coordinates on Teichmüller space. Even though such an
approach is effective in terms of obtaining curvature estimates near the boundary
of Teichmüller space, it is not clear to the authors how to use it in conjunction with
harmonic maps. In other words, in order to obtain good estimates for harmonic
maps we need to be able to write local coordinate expressions. This is one of the
reasons for carrying out this work.

We will now give an explicit description of the way the Weil-Petersson metric is
a product metric and discuss the aforementioned application to the Holomorphic
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Rigidity Theorem of Teichmüller space proven in [DaMa3]. The key ingredient in
the proof is the theory of harmonic maps which has played a central role in various
geometric rigidity problems (e.g. [Siu], [MSY], [JoYa2], [Cor], [GrSc], etc.). Given
that the Weil-Petersson curvature is strongly negative in the sense of Siu (cf. [Schu]),
a natural way to prove rigidity properties in Teichmüller space is by applying Siu’s
Bochner method (cf. [Siu]). Jost and Yau conjectured that an equivariant harmonic
map into T must lie in the interior T (unless it maps completely to the boundary)
and stated the holomorphic rigidity property of Teichmüller space (cf. [JoYa1]).
In another direction, Farb and Masur and Yeung (cf. [FaMa] and [Ye]) established
superrigidity properties of the mapping class group providing further evidence of
the Jost-Yau conjecture. We have so far been unable a priori (from only local
properties) to verify that harmonic maps indeed map into T ⊂ T . On the other
hand, using the C1 estimates of this paper, we show in a series of papers [DaMe1],
[DaMe2] and [DaMa3] that the singular set of a harmonic map (i.e. the set of points
that are not mapped into a single stratum of T ) is small enough so that we can
apply the Bochner method.

The starting point of this work is [DaMe1], where we studied harmonic maps
into a space that is asymptotically a product space. Theorem 1, Theorem 2 and
Theorem 3 imply that the Weil-Petersson metric gWP of T near the boundary ∂T is
asymptotically a product of the Weil-Petersson metric gwp on a lower dimensional
Teichmüller space T ′ and its normal space. To make this statement more explicit,
we recall the model space (H, hH) where

H = {(r, θ) ∈ R2 : r > 0}, hH(r, θ) = 4dr2 + r6dθ2

were first introduced by Yamada (cf. [Ya]) (Note that in [DaMe2] and [DaMa3], we
consider the slightly different metric gH = dρ2 + ρ6dφ2 which is clearly isometric
to hH via the change of coordinates ρ = 2r,φ = θ

8 .) The Riemann surface (H, hH)
models the singular behavior of the Weil-Peterson metric. For example, the Gauss
curvature of (H, hH) approaches −∞ as r → 0. This corresponds to the sectional
curvature blow up of the Weil-Petersson metric near ∂T . Moreover, (H, hH) is not
complete; the curve r #→ (r, θ0) for a fixed φ0 leaves every compact subset of H as
r → 0. Recall that in [Wo5] and [Chu] it was shown that certain curves in T leave
every compact subset having finite length. These correspond to deformations of
compact Riemann surfaces via neck pinching. The metric completion of (H, hH) is
constructed by identifying the axis r = 0 to a single point P0 and setting

H = H ∪ {P0}.

The distance function dH induced by hH is extended to H by setting dH(Q, P0) =
r for Q = (r, θ) ∈ H. Consider the metric

h = hH ⊕ · · · ⊕ hH defined on H× · · · × H

and the product space

(T ′ × H × · · · × H, gwp ⊕ h)

where each copy of H corresponds to a neck pinching. Denote by (ri, θi) the coordi-
nates (r, θ) of H on the ith copy in H× · · ·×H. The relation between the complex
coordinate ti and (ri, θi) is given by

ri = 2π2(− log |ti|)−
1
2 , θi = arg ti.
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C1 ESTIMATES FOR THE WEIL-PETERSSON METRIC 2921

The asymptotic C0 product structure of the Weil-Petersson geometry can be de-
scribed by

(1) GWP − Gwp ⊕ h = O(|r|3)h

(cf. [Ya], [DaWe] and [Wo1]). In particular, there exists a constant c such that
given a point p close to the boundary in T ′ ×H× · · ·×H with coordinates (ri, θi)
on the ith copy of H, the quantity

|r| :=

√√√√
N∑

i=1

r2
i

is bounded by c times the Weil-Petersson distance of p to the boundary of Teich-
müller space. Combining this with Theorem 1, Theorem 2, Theorem 3, the s-
derivative estimates already derived in [Schu], [LSY1], [LSY1] and a change of
coordinates, we obtain the following.

Corollary 4. Given a point P in the boundary of Teichmüller space, there is
a neighborhood N ≃ U × V ⊂ T ′ × H × · · · × H of P that metrically satisfies
Assumption 2 of [DaMe1].

To complete the proof of the Holomorphic Rigidity Theorem, note that the
existence of equivariant harmonic maps from Riemannian domains to the Weil-
Petersson completion T of Teichmüller space T was established in [DaWe] provided
that the action is sufficiently large. The idea is to show that u maps into a single
stratum of T outside a small set. Indeed, Corollary 4 allows us to use the tech-
niques of [DaMe1] to prove that the singular set is of Hausdorff codimension 2.
In [DaMa3], we show that this regularity result is sufficient to apply the Bochner
method implying the holomorphic rigidity of Teichmüller space.

We end this section with a brief summary of the ideas in this paper. Central to
this paper is Wolpert’s grafted metric (cf. [Wo1]) defined on each of the surfaces
obtained by the plumbing construction. In Section 2, we recall the grafted metric
and obtain estimates for the grafting functions. In Section 3, we derive estimates
for the ti-derivatives for the grafted metrics and its curvature. In Section 4, we
compare the grafted metric and the hyperbolic metric. The key is the elliptic
equation (41) derived from the curvature identity (also used in [Wo1]). In order to
take advantage of this elliptic equation, we introduce a global vector field defined
on the deformation space of the original Riemann surface that projects down to
the vector field ∂

∂ti
(where ti comes from the plumbing coordinates). With this

global formulation, we can use the maximum principle to derive estimates for the
comparison function of the grafted and hyperbolic metrics. Combined with results
from Section 3, we thereby obtain ti-derivative estimates for the hyperbolic metric.
Section 5 contains the proof of the main results. The Weil-Petersson co-metric
can be written as an integral involving the Masur differentials (cf. [Mas]) and the
hyperbolic metric. Using estimates from the previous sections, we finally derive the
co-metric estimates of Theorem 2.

2. Wolpert’s grafted metric

In this section, we derive some estimates associated with Wolpert’s grafted metric
(cf. [Wo1]). Let R be a nodal surface possibly with punctures and a single node n
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and let R0 = R\{n} be the Riemann surface with additional punctures {a, b}. Let
ghyp
0 be the complete hyperbolic metric on R0 and

u0, v0 : U , V → D∗ = {0 < |z| < 1}
be cusp coordinates on open sets U , V near a, b respectively (we assume that U ,
V contain exactly one puncture). In other words, ghyp

0 in U , V is given in the
coordinates ζ = u, v respectively as

ghyp
0 (ζ) = h0(ζ)|dζ|2 =

(
|dζ|

|ζ| log |ζ|

)2

.

We can parameterize a neighborhood of R0 in the deformation space Def(R0) by
Beltrami differentials. More specifically, fix a basis consisting of Beltrami differen-
tials ν1, . . . , νn (where n = dim Def(R0)) and let Rs be the surface whose complex
structure is defined by

(2) ν = ν(s) =
n∑

k=1

skνk, s = (s1, . . . , sn) ∈ Cn,

with |s| small via the Beltrami equation. Then s → Rs defines a parametrization
of a neighborhood of R0 in Def(R0). For later purposes, we choose νi (i = 1, . . . , n)
with support disjoint from U ∪ V .

Let ghyp
s be the complete hyperbolic metric on Rs and us, vs be cusp coordinates

in U , V near a, b respectively. Define

fs := u0 ◦ u−1
s and gs := v0 ◦ v−1

s .

By the removable singularity theorem and by multiplying fs and gs by (f ′
s(0))−1

and (g′s(0))−1 respectively, we can assume that

(3) fs(0) = 0, f ′
s(0) = 1, gs(0) = 0, g′s(0) = 1.

Furthermore, since we have chosen ν(s) to have support in a set disjoint from U∪V ,
we have that

(4) fs, gs are biholomorphic onto their image (cf. [Wo1], 2.4.M).

For |t| small, we denote by Rs,t the Riemann surface obtained by the plumbing
construction. In other words, we remove punctured discs from Rs and glue back
an annulus via the plumbing equation u0v0 = t. We can rewrite this equation as

(5) (fs ◦ us) · (gs ◦ vs) = t.

Note that since ν(s) is supported away from U ∪V , the discs that we remove can be
chosen to be the same for all s. The parameter t is called the plumbing coordinate.

The following subsets of the Riemann surface Rs,t are defined as in [Wo1]. Let
A ∈ (0, 1

2 ) such that A < |fs| < 2A and A < |gs| < 2A are relatively compact
annuli in U and V respectively. For δ > 0 small, let

Is,t
δ := {Ae−2δ < |fs| < 2Ae2δ} = { |t|

2Ae2δ < |gs| < |t|
Ae−2δ },

IIs,t
δ := { |t|

Ae2δ < |fs| < Ae2δ} = { |t|
Ae2δ < |gs| < Ae2δ},

IIIs,t
δ := { |t|

2Ae2δ < |fs| < |t|
Ae−2δ } = {Ae−2δ < |gs| < 2Ae2δ},

IIs,t
1,δ := {|t| 1

2+2δ < |fs| < Ae2δ} = { |t|
Ae2δ < |gs| < |t| 1

2−2δ},

IIs,t
2,δ := { |t|

Ae2δ < |fs| < |t| 1
2−2δ} = {|t| 1

2+2δ < |gs| < Ae2δ}.
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Definition 5. By considering a lift of the deformation space Def(R0) of the original
Riemann surface R0 to Teichmüller space, one obtains a family of Riemann surfaces

F : R → S
whose fiber over (s, t) is Rs,t.

The local coordinates us, vs of Rs,t glue together to define local coordinates u, v
along the fibers of R. We set

(6) N 1 =
⋃

(s,t)∈S

IIs,t
1,δ, N 2 =

⋃

(s,t)∈S

IIs,t
2,δ and N = N 1 ∪ N 2.

Thus, we obtain local coordinates (u, s, t) and (v, s, t) for N . We will use the
coordinates (u, s, t) in N 1 and the coordinates (v, s, t) in N 2. The coordinates
(u, s, t) are used in N 1 ∩ N 2.

Definition 6. Let ghyp
s,t be the hyperbolic metric on Rs,t. We write with respect

to local coordinates
ghyp

s,t = ρ|dζ|2.

We now follow Wolpert [Wo1] to construct a metric on Rs,t conformal to ghyp
s,t .

Step 1: Region near |ζ| = A. In (Is,t
δ ∩ IIs,t

1,δ) ∪ (IIIs,t
δ ∩ IIs,t

2,δ), we graft ghyp
s =

h0(ζ)|dζ|2 =
(

|dζ|
|ζ| log |ζ|

)2
with

ht(ζ)|dζ|2 =

(
π

log |t| csc(
π log |ζ|
log |t| )

|dζ|
|ζ|

)2

(7)

= θ2 csc2 θ h0(ζ)|dζ|2 where θ =
π log |ζ|
log |t| .

More precisely, the grafted metric is given by

hη(ζ)
0 (ζ) h1−η(ζ)

t (ζ)|dζ|2

in N 1 with ζ = u (resp. in N 2 with ζ = v) where η is a smooth function of
α = log |ζ| with η ≡ 0 for |ζ| ≤ Ae−δ and η ≡ 1 for |ζ| ≥ Aeδ. This is [Wo1],
3.4.MG (model grafting).

Step 2: Region near |ζ| = |t| 1
2 . Since the conformal structure on Rs,t is determined

by the identification fs(us)gs(vs) = t, the metrics ht(us)|dus|2 and ht(vs)|dvs|2
do not agree on IIs,t

1,δ ∩ IIs,t
2,δ (unless of course fs(u) = u and gs(v) = v). Thus,

we construct a new metric by grafting ht(us)|dus|2 and ht(vs)|dvs|2 by a smooth
function η = η(α), α = log |us| with η ≡ 0 for |us| ≥ |t| 1

2−δ and η ≡ 1 for
|us| ≤ |t| 1

2+δ. This is [Wo1], 3.4.CG (compound grafting).

Definition 7. The grafted metric constructed above will be denoted ggr
s,t. We write

in local coordinates

(8) ggr
s,t =: ω|dζ|2.

To understand this grafting, Wolpert also considers the auxiliary metrics

ht,aux(us, t)|dus|2 :=

(
π

log |t| csc(
π log |fs(us)|

log |t| )
|f ′

s(us)||dus|
|fs(us)|

)2

,

ht,aux(vs, t)|dvs|2 :=

(
π

log |t| csc(
π log |gs(vs)|

log |t| )
|g′s(vs)||dvs|

|gs(vs)|

)2

(9)
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2924 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

which are compatible with the identification fs(us)gs(vs) = t, and hence they define
a metric on IIs,t

δ .

Remark 8. The grafting region of Step 1 is the set

{ζ ∈ N i : Ae−δ ≤ |ζ| ≤ Aeδ}, i = 1, 2.

The grafting region of Step 2 is (assuming that |s| is sufficiently small)

{ζ ∈ N 1 : |t| 1
2−δ ≤ |u| ≤ |t| 1

2+δ} ⊂ N 1 ∩ N 2.

Since f0(u) = u and g0(v) = v, the normalization (3) implies that

(10) fs(u) = u + O(u2) and gs(v) = v + O(v2)

where the error terms O(u2) and O(v2) can be chosen independently of s for |s|
small. Using fs(u)gs(v) = t (cf. the plumbing equation (5)), we can view u as a
function of v and t (resp. v as a function of u and t). Combined with (10), we
obtain

(11) t = uv + O(u2v) + O(uv2)

and hence

(12) u = O(
|t|
|v| ), v = O(

|t|
|u|),

∂u

∂v
= O(

|t|
|v|2 ),

∂v

∂u
= O(

|t|
|u|2 ),

(13)
∂2u

∂v2
= O(

|t|
|v|3 ),

∂2v

∂u2
= O(

|t|
|u|3 ),

∂u

∂t
= O(

1

|v|),
∂v

∂t
= O(

1

|u|).

Definition 9. In N 1 (resp. N 2) with respect to the coordinates (u, s, t) (resp.
(v, s, t)), define the functions

ρ(ζ, s, t) := ρs,t(ζ), ω(ζ, s, t) := ωs,t(ζ),

h(ζ, t) := ht(ζ), haux(ζ, t) := ht,aux(ζ)

for ζ = u (resp. ζ = v).

In particular,

h(ζ, t) =

(
θ csc θ

|ζ| log |ζ|

)2

, θ =
π log |ζ|
log |t| .

Lemma 10. In N 1 (resp. N 2), we have with respect to the coordinates (u, s, t)
(resp. (v, s, t)),

∂h
∂t

h
=

1

t(− log |t|) (1 − θ cot θ) and
∂h
∂ζ

h
= −1

ζ

(
θ cot θ

log |ζ| + 1

)
,

where θ = π log |ζ|
log |t| and ζ = u (resp. ζ = v). In particular,

∂h
∂t

h
= O(|t|−1(− log |t|)−3)(− log |u|)2 in N 1 (resp. N 2)

and
∂h
∂ζ

h
= O(|u|−1(− log |u|)−1) in N 1 ∩ N 2.

Proof. The identities follow by a straightforward calculation. Note that 1−θ cot θ =
O(θ2) in N 1 (resp. N 2) and cot θ is bounded in N 1 ∩ N 2. !
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In order to study the grafted metric ω|dζ|2, we introduce the function

ψ(ζ, t) :=
1

2
log

(
h(ζ, t)

h0(ζ)

)
= log(θ csc θ), θ =

π log |ζ|
log |t| ,(14)

for ζ = u (resp. ζ = v) in N 1 (resp. N 2). Recall that f (resp. g) is close to
the identity. Thus, in N 1 where |t| 1

2−2δ < |fs(u)| < Ae2δ (resp. in N 2 where
|t| 1

2−2δ < |g(v)| < Ae2δ) for δ > 0 small and A < 1, the function θ ranges from a
value slightly less than π

2 to a value stricly less than π.

Lemma 11. In N 1 (resp. N 2), we have with respect to the coordinates (u, s, t)
(resp. (v, s, t)),

2
∂ψ

∂t
= 2

∂h
∂t

h
=

1

t(− log |t|) (1 − θ cot θ),

2
∂ψ

∂ζ
=

1

ζ log |ζ| (1 − θ cot θ) ,

4
∂2ψ

∂ζ∂t
=

1

tζ(log |t|)(log |ζ|) (θ cot θ − θ2 csc2 θ),

where ζ = u (resp. ζ = v).

Proof. The identities follow from (14) and a straightforward calculation. !
Lemma 12. In N 1 (resp. N 2), whenever Ae−δ < |u| with respect to the coordinates
(u, s, t) (resp. Ae−δ < |v| with respect to the coordinates (v, s, t)), we have

ψ = O((− log |t|)−2),

∂ψ

∂t
=

∂h
∂t

h
= O(|t|−1(− log |t|)−3),

∂ψ

∂ζ
= O((− log |t|)−2),

∂2ψ

∂t∂ζ
= O(|t|−1(− log |t|)−3),

where ζ = u (resp. ζ = v).

Proof. We can apply Taylor expansions to conclude that 1 − θ cot θ = O(θ2) and
θ2 csc2 θ − θ cot θ = O(θ2). For Ae−δ < |u| (resp. Ae−δ < |v|), we have that
log |u| (resp. log |v|) are bounded functions. Thus assertion follows from (14) and
Lemma 11. !

In order to study the grafted metric ω|du|2 near |u| = |t| 1
2 and ω|dv|2 near

|v| = |t| 1
2 (i.e. in the grafting region of Step 2), we introduce the functions

Ψ1(u, t) :=
1

2
log

(
h(u, t)

haux(u, t)

)
, Ψ2(v, t) :=

1

2
log

(
h(v, t)

haux(v, t)

)

in N 1 and N 2 respectively. Writing v = v(u) via the identification f(u)g(v) = t,
define

(15) Ψ2(u, t) = Ψ2(v(u), t)

as a function on N 1. From [Wo1], p. 442,

Ψi = O(|t| 1
2−2δ) in N 1 ∩ N 2.(16)
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We will also need the derivative estimates of Ψ.

Lemma 13. In N 1 ∩ N 2, with respect to the coordinates (u, s, t),

∂Ψi

∂u
= O(|t|−4δ),

∂Ψi

∂t
= O(|t|− 1

2−4δ),

∂2Ψi

∂u2
= O(|t|− 1

2−8δ),
∂2Ψi

∂u∂t
= O(|t|−1−10δ)

for i = 1, 2.

Proof. In N 1 ∩ N 2,

haux(u, t) =

(
θ cscΘ

u log |u|

∣∣∣∣
uf ′(u)

f(u)

∣∣∣∣

)2

, Θ =
π log |f(u)|

log |t| ,

and

h(u, t) =

(
θ csc θ

|u| log |u|

)2

, θ =
π log |u|
log |t| .

Thus, we can write

Ψ1(u, t) = log(sinΘ) − log(sin θ) − log
∣∣∣f̃(u)

∣∣∣

where

f̃(u) =
uf ′(u)

f(u)
.

Thus, by a straightforward computation,

∂Θ

∂u
=

π

2 log |t|uf̃(u),
∂θ

∂u
=

π

2 log |t|u,

∂1

∂u
=

∂

∂u
log(sinΘ) − ∂

∂u
log(sin θ) − ∂

∂u
log

∣∣∣f̃(u)
∣∣∣

= cotΘ · ∂Θ
∂u

− cot θ
∂θ

∂u
− f̃ ′(u)

2f̃(u)

=
π

2 log |t|u (cotΘ− cot θ) +
π

2 log |t|u cotΘ
(
f̃(u) − 1

)
− f̃ ′(u)

2f̃(u)

and

∂2Ψ1

∂u2
= − 1

u

(
π

2 log |t|u (cotΘ− cot θ) +
π

2 log |t|u cotΘ
(
f̃(u) − 1

))

+

(
π

2 log |t|u

)2

(cot′ Θ− cot′ θ) +

(
π

2 log |t|u

)2

cot′ Θ
(
(f̃(u))2 − 1

)

+
π

2 log |t|u cotΘf̃ ′(u) −
(

f̃ ′(u)

2f̃(u)

)′

.

By (10), f(u) = u + O(|u|2) is an analytic function which in turn implies that

f̃(u) = uf ′(u)
f(u) = 1 + O(|u|) is an analytic function. We thus obtain

(17) log

∣∣∣∣
f(u)

u

∣∣∣∣ = O(|u|), f̃(u) − 1 = O(|u|), f̃ ′(u)

f̃(u)
= O(1)
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and

|Θ− θ| =

∣∣∣∣
π

log |t| log

∣∣∣∣
f(u)

u

∣∣∣∣

∣∣∣∣ = O(|u|).(18)

In N 1 ∩ N 2 where |t| 1
2+2δ < |fs(u)| < |t| 1

2−2δ, both Θ and θ are close to π
2 . Thus,

| cotΘ| ≤ c, |cotΘ− cot θ| ≤ c|Θ− θ|,
| cot′ Θ| ≤ c, |cot′ Θ− cot′ θ| ≤ c|Θ− θ|,

where c denotes a constant independent of u, t and s. Combined with (17) and (18),

we conclude that ∂Ψ1
∂u = O(1) and ∂2Ψ1

∂u2 = O(|t|− 1
2−2δ). The estimates ∂Ψ2

∂v = O(1)

and ∂2Ψ2
∂v2 = O(|t|− 1

2−2δ) follow from an analogous argument. By (12) and (13),
∂v
∂u = O(|t|− 1

2−4δ) and ∂2v
∂u2 = O(|t|− 1

2−6δ) in N 1 ∩ N 2 where |t| 1
2+2δ < |f(u)| <

|t| 1
2−2δ. Thus,

∂Ψ2

∂u
=

∂Ψ2

∂v

∂v

∂u
= O(|t|−4δ)

and

∂2Ψ2

∂u2
=

∂2Ψ2

∂v2

(
∂v

∂u

)2

+
∂Ψ

∂v

∂2v

∂u2
= O(|t|− 1

2−8δ).

By a straightforward calculation and with q(x) = x cotx,

∂Ψ1

∂t
=

∂Θ

∂t
cotΘ− ∂θ

∂t
cot θ =

1

2t(− log |t|) (q(Θ) − q(θ))

and

∂2Ψ1

∂u∂t
=

1

2t(− log |t|)

(
q′(Θ)

∂Θ

∂u
− q′(θ)

∂θ

∂u

)

=
π

−2ut(log |t|)2
(
f̃(u)q′(Θ) − q′(θ)

)

=
π

−2ut(log |t|)2
(
q′(Θ) − q′(θ) +

(
f̃(u) − 1

)
q′(Θ)

)
.

Noting that q(x) is a smooth function near x = π
2 , we conclude as before that

∂Ψ1
∂t = O(|t|− 1

2−4δ) and ∂2Ψ1
∂u∂t = O(|t|−1). The estimate ∂Ψ2

∂t = O(|t|− 1
2−2δ) follows

by an analogous argument. Furthermore, since ∂v
∂t = O(|t|− 1

2−2δ), ∂v
∂u = O(|t|−4δ),

∂v
∂t = O(|t|− 1

2−2δ), ∂2v
∂u∂t = O(|t|−1−4δ) and ∂2v

∂v∂t = O(|t|−1−4δ) in N 1 ∩N 2 by (13),
we obtain

∂Ψ2

∂t
=

∂Ψ2

∂v

∂v

∂t
= O(|t|− 1

2−4δ)

and
∂2Ψ2

∂u∂t
=

∂2Ψ2

∂v2

∂v

∂u

∂v

∂t
+

∂Ψ2

∂v

∂2v

∂u∂t
= O(|t|−1−10δ).

!

Definition 14. In N 1 ∩ N 2, define with respect to the coordinates (u, s, t),

(19) K0 := h− 1
2
∂

∂u
, L0 := h− 1

2
∂

∂ū
, D :=

1

4
h−1 ∂2

∂u∂ū
.
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Lemma 15. In N 1 ∩ N 2 with respect to the coordinates (u, s, t),

K0Ψi = O(|t| 1
2−8δ),

∂

∂t
(K0Ψi) = O(|t|− 1

2−14δ),
∂

∂u
(K0Ψi) = O(|t|− 1

2−12δ),

∂

∂t̄
(K0Ψi) = O(|t|− 1

2−8δ),
∂

∂ū
(K0Ψi) = O(|t|− 1

2−12δ)

for i = 1, 2.

Proof. In N 1 ∩ N 2 where |t| 1
2+2δ ≤ |fs(u)| ≤ |t| 1

2−2δ, we have h− 1
2 = O(|t| 1

2−4δ).
By Lemma 10,

∂h
∂t

h
= O(|t|−1) and

∂h
∂u

h
= O(|t|− 1

2−2δ).

Thus, Lemma 13 implies

K0Ψi = h− 1
2
∂Ψi

∂u
= O(|t| 1

2−8δ),
∂K0

∂t
Ψi = −1

2

∂h
∂t

h
K0Ψi = O(|t|− 1

2−8δ),

∂K0

∂u
Ψi = −1

2

∂h
∂u

h
K0Ψi = O(|t|−10δ), K0

∂Ψi

∂t
= h− 1

2
∂2Ψi

∂u∂t
= O(|t|− 1

2−14δ),

K0
∂Ψi

∂u
= h− 1

2
∂2Ψi

∂u2
= O(|t|−12δ).

The assertion follows immediately from the above estimates. The ū and t̄ derivative
estimates are proven similarly. !

Next, we derive estimates on the grafting function η of Step 2.

Lemma 16. Let η be as in [Wo1], 3.4.CG. In N 1 ∩ N 2, with respect to the coor-
dinates (u, s, t),

∂η

∂ū
,
∂η

∂u
= |u|−1O((− log |t|)−1),

∂2η

∂u2
,

∂2η

∂u∂ū
= |u|−2O((− log |t|)−2),

∂3η

∂u2∂ū
= |u|−3O((− log |t|)−2).

Proof. Recall from [Wo1], 3.4.CG, that η = η(a) where a = log |u|
log |t| . The Ck norm

of η is t and s independent. Direct computation gives

∂η

∂ū
= η′(a)

∂a

∂ū
= η′(a)

1

2ū log |t| ,
∂η

∂u
= η′(a)

∂a

∂u
= η′(a)

1

2u log |t| ,

∂2η

∂u∂ū
= η′′(a)

1

4|u|2(log |t|)2 ,
∂2η

∂u2
= η′′(a)

1

4u2(log |t|)2 − η′(a)
1

2u2 log |t| ,

∂3η

∂2u∂ū
= η′′′(a)

1

8u|u|2(log |t|)3 − η′′(a)
1

4u|u|2(log |t|)2 .

The estimates follow immediately from the above identities. !
Lemma 17. Let η be as in [Wo1], 3.4.CG. In N 1 ∩ N 2 with respect to the coordi-
nates (u, s, t),

L0η = O(1), Dη = O(1),

∂L0

∂t
η = O(|t|−1(log |t|)−1),

∂D

∂t
η = O(|t|−1(log |t|)−1),

∂

∂u
(L0η) = O(1),

∂

∂u
(Dη) = O(1).
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Proof. Since h− 1
2 = O(log |t|) in N1 ∩ N2 by definition, we obtain from Lemma 16

L0η = h− 1
2
∂η

∂ū
= O(1), Dη = h−1 ∂2η

∂u∂ū
= O(1),

L0
∂η

∂u
= h− 1

2
∂2η

∂u∂ū
= O((− log |t|)−1), D

∂η

∂u
= h−1 ∂3η

∂u2∂ū
= O(1).

Furthermore, by Lemma 10, h−1 ∂h
∂t = O(|t|−1(− log |t|)−1) and h−1 ∂h

∂u = O(1).
Thus, we also obtain

∂L0

∂t
η = −1

2
h−1 ∂h

∂t
L0η = O(|t|−1(log |t|)−1),

∂D

∂t
η = −h−1 ∂h

∂t
Dη = O(|t|−1(log |t|)−1),

∂L0

∂u
η = −1

2
h−1 ∂h

∂u
L0η = O(1),

∂D

∂u
η = −h−1 ∂h

∂u
Dη = O(1).

The assertions follow immediately by combining the above estimates with Lemma 16.
!

3. The derivative estimates

In this section, we derive derivative estimates for the grafted metric ggr = ω|dz|2
and its curvature.

Lemma 18. In N 1 (resp. N 2), we have in the coordinates (u, s, t) (resp. (v, s, t)),

h

ω
= 1 + O((− log |t|)−2),

∂

∂t

(
h

ω

)
= O(|t|−1(− log |t|)−3)

and
∂ω
∂t

ω
= O(|t|−1(− log |t|)−3)(− log |ζ|)2.

Proof. We prove these estimates in N 1. The same argument gives the estimates in
N 2. The proof consists of two steps.

(1) We prove the estimates in N 1\N 2 with respect to the coordinates (u, s, t).
By step (1) in the construction of the grafted metric we prove that in N 1\N 2,

h

ω
=

(
h

h0

)η

= e2ηψ and
∂h
∂t

h
−

∂h
∂t

ω
=

∂

∂t
log

(
h

ω

)
= 2η

∂ψ

∂t
,

where ψ as in (14). Now the first and second estimates follow immediately from
Lemma 12 and the fact that η(α(ζ)) = 0 whenever |ζ| < Ae−δ. The third follows
immediately from Lemma 10 and the second estimate.

(2) We prove the estimates in N 1 ∩ N 2 with respect to the coordinates (u, s, t).
By step (2) in the construction of the grafted metric we prove that in N 1 ∩N 2,

h

ω
= e2η(Ψ1−Ψ2) and

∂h
∂t

h
−

∂ω
∂t

ω
=

∂

∂t
log

h

ω
= 2η

(
∂Ψ1

∂t
− ∂Ψ2

∂t

)
,

where η is a function of α = log |u| (cf. [Wo1], 3.4.CG). Thus, the first and second
estimates follow immediately by (16) and Lemma 13. The third estimate follows
immediately from Lemma 10 and the second estimate. !
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Lemma 19. In N 1 ∩ N 2 with respect to the coordinates (u, s, t),

∂h
∂u

h
−

∂ω
∂u

ω
= O(|t|−4δ).

Proof. We have

∂h
∂u

h
−

∂ω
∂u

ω
=

(
∂

∂u
log

h

ω

)
= 2η

∂(Ψ1 −Ψ2)

∂u
+ 2(Ψ1 −Ψ2)

∂η

∂u
,

where η is a function of α = log |u| (cf. [Wo1], 3.4.CG). The estimate follows
immediately (16), Lemma 13 and Lemma 16. !

The Gauss curvature of the grafted metric ggr
s,t will be denoted Kgr

s,t. We now
record Wolpert’s estimates of curvature. By the Remarks after Definition 3.8 and
Lemma 3.9 of [Wo1], we have

(20) Kgr + 1 = O((− log |t|)−2) in N

and

(21) Kgr + 1 = O(|t| 1
2−2δ) in N 1 ∩ N 2.

Furthermore, we will show

Lemma 20. In N 1 (resp. N 2), we have in the coordinates (u, s, t) (resp. (v, s, t)),

∂Kgr

∂t
= O(|t|−1(− log |t|)−3).

Proof. We prove these estimates in N 1. A similar argument gives the estimates in
N 2. The proof consists of two steps.

(1) We prove the estimates in N 1\N 2 with respect to the coordinates (u, s, t).
By [Wo1], p. 441, we have

(22) Kgr = −e−2ηψ
(
1 + ψα2ηαα + 2α2ηαψα + η(e2ψ − 1)

)
,

where η = η(α) as in [Wo1], 3.4.MG, ψ as in (14) and the subscript in α denotes
d

dα . Differentiating with respect to t, we obtain

(23)
∂Kgr

∂t
= −2η

∂ψ

∂t
Kgr − e−2ηψ

(
∂ψ

∂t
α2ηαα + 2α2ηα

∂ψα

∂t
+ 2η

∂ψ

∂t
e2ψ

)
.

Recalling that log u = α + iβ (cf. [Wo1], 3.4.MG) and differentiating with re-

spect to u, we obtain ∂u
∂α = u. Thus, Lemma 12 implies ∂ψα

∂t = ∂2ψ
∂u∂t

∂u
∂α =

O(|t|−1(− log |t|)−3). Since the function η is supported in {|u| ≥ Ae−δ} and its
Ck estimate is independent of t and s, Lemma 12 and (20) imply that all terms in
(23) are O(|t|−1(− log |t|)−3).

(2) We prove the estimate in N 1 ∩ N 2 with respect to the coordinates (u, s, t).
By [Wo1], p. 438, formula (3.1),

(24) Kgr = −e−2ηΨ
(
1 + 4ΨDη + 8ReL0ηK0Ψ + η(e2Ψ − 1)

)
.
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Let t = t1 + it2. Differentiating with respect to t1, we obtain

∂Kgr

∂t1
= −2η

∂Ψ

∂t1
Kgr

−e−2ηΨ

(
4
∂Ψ

∂t1
Dη + 4Ψ

∂D

∂t1
η + 8Re

∂L0

∂t1
ηK0Ψ

+8ReL0η
∂

∂t1
(K0Ψ) + 2

∂Ψ

∂t1
ηe2Ψ

)
.(25)

By estimates (16) and (21), Lemma 13, Lemma 15 and Lemma 17 imply that all
terms in (29) are O(|t|−β) for some β ∈ (0, 1). Since the same estimate holds for
∂Kgr

∂t2 , we obtain the desired estimate. !
Lemma 21. In N 1\N 2 (resp. N 2\N 1), we have in the coordinates (u, s, t) (resp.
(v, s, t)),

dKgr

dζ
= O((− log |t|)−2),

where ζ = u (resp. ζ = v). In N 1 ∩ N 2, we have

dKgr

dζ
= O(|t|−20δ).

Proof. We prove these estimates in N 1. A similar argument gives the estimates in
N 2. The proof consists of two steps.

(1) We prove the first estimate in N 1\N 2 with respect to the coordinates (u, s, t).
Let log u = ξ = α+iβ and η be as in [Wo2], 3.4 MG (cf. the proof of Lemma 20).

By differentiating (22) with respect to u,

dKgr

du
= −2ψ

dη

du
Kgr − 2η

dψ

du
Kgr(26)

− e−2ηψ

(
d

du
(ψα2ηαα + 2α2ηαψα) +

dη

du
(e2ψ − 1) + 2η

dψ

du
e2ψ

)
.

In the region N 1\N 2, we have by Lemma 12

ψ = O((− log |t|)−2),(27)

dψ

du
= O((− log |t|)−2),(28)

and α, η and their derivatives are uniformly bounded. Hence the last term in (26)
is O((− log |t|)−2). By (20), (27) and (28), the remaining two terms combine as

−2η
dψ

du
Kgr − 2η

dψ

du
e2ψ(1−η) = −2η

dψ

du
(Kgr + 1 − e2ψ(1−η) − 1) = O((− log |t|)−2).

This proves the first estimate of the lemma.
(2) We prove the estimate in N 1 ∩ N 2 with respect to the coordinates (u, s, t).
Let u = u1 + iu2. Differentiating (24) with respect to u1, we obtain

∂Kgr

∂u1
= −2

∂η

∂u1
ΨKgr − 2η

∂Ψ

∂u1
Kgr

−e−2ηΨ

(
4
∂Ψ

∂u1
Dη + 4Ψ

∂

∂u1
(Dη) + 8Re

∂

∂u1
(L0η)K0Ψ

+8ReL0η
∂

∂u1
(K0Ψ) +

∂η

∂u1
(e2Ψ − 1) + 2

∂Ψ

∂u1
ηe2Ψ

)
.(29)

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2932 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

The estimates (16) and (21), Lemma 13, Lemma 15, Lemma 16 and Lemma 17 and
the fact that |t| 1

2−2δ ≤ |fs(u)| ≤ |t| 1
2+2δ imply that all terms in (29) are O(|t|−20δ).

Since the same estimate holds for ∂Kgr

∂u2 , we obtain the desired estimate.
Combining (1) and (2) proves the second estimate of the lemma. !

4. Comparison of hyperbolic and grafted metrics

In this section, we compare the hyperbolic metric ghyp
s,t and the grafted metric

ggr
s,t defined on Rs,t. We will need to analyze the comparison function

(30) φs,t :=
1

2
log

ghyp
s,t

ggr
s,t

.

Expansion 4.2 of [Wo1] is

e2φs,t = 1 − π2

3
(− log |t|)−2(△hyp

s,t − 2)−1Λ + O((− log |t|)−4),

where △hyp
s,t is the Laplacian with respect to the metric ghyp

s,t on Rs,t and Λ is
independent of t, and its derivatives are bounded independently of s and supported
in (Is,t

δ ∩ IIs,t
δ ) ∪ (IIs,t

δ ∩ IIIs,t
δ ). In particular, we have

(31) e2φs,t = 1 + O((− log |t|)−2).

Let △gr
s,t be the Laplacian on Rs,t with respect to the grafted metric ggr

s,t. Define
φ0

s,t and φ1
s,t on Rs,t by

(32) φ0
s,t =

π2

6
(− log |t|)−2(△gr

s,t − 2)−1Λ and φ1
s,t = φs,t − φ0

s,t.

Notice that in the above definition of φ0
s,t, we use the Laplacian with respect to ggr

(locally written as 1
ω

∂2

∂u∂ū ) instead of the Laplacian with respect to ghyp (locally

written as 1
ρ

∂2

∂u∂ū ). This difference is controlled by (31). For simplicity, we will

write φ, △ instead of φs,t, △gr
s,t for the rest of the paper. In particular,

φ =
1

2
log

(
ω

ρ

)
, e2φ − 1 = O((− log |t|)−2).(33)

Rewriting this another way,

(34)
ω

ρ
− 1 = O((− log |t|)−2) in R.

The function φ satisfies the standard curvature identity

△φ = e2φ + Kgr = (e2φ − 1) + (Kgr + 1)

and we can use this to obtain a gradient estimate. Indeed, estimates (33) and (20)
imply

△φ = O((− log |t|)−2), φ = O((− log |t|)−2).

We now apply elliptic regularity and the Sobolev embedding theorem (cf. [Wo1],
Estimate A3 in the Appendix). Here, an important point is that by lifting to
the universal cover, we can obtain estimates that do not depend on the injectivity
radius. The key is that we have pointwise bounds on φ and its Laplacian. In other
words, fix p > 2 and radius equal to 1 to apply elliptic regularity in B1(0) for
x ∈ Rs,t. We have (for C independent of s, t)

||φ||W 1,p(B1(x)) ≤ C
(
||φ||Lp(B1(x)) + ||△φ||Lp(B1(0))

)
.
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We then apply Sobolev embedding W 1,p ⊂ C0, p > 2, to obtain

(35) |∇φ| = O((log |t|)−2),

where ∇ = ∇gr
s,t is the gradient with respect to ggr

s,t.
Rewriting (32), we have the functions φ0,φ1 : R → (0,∞) satisfying

(36) φ0 = −π2

6
(− log |t|)−2(△− 2)−1Λ, φ1 = φ− φ0.

Thus,

φ0 = O((− log |t|)−2),(37)

∂φ0

∂t
= O(|t|−1(− log |t|)−3),(38)

φ1 = O((− log |t|)−4).(39)

Lemma 22. In N , we have in coordinates (u, s, t) or (v, s, τ)

ω− 1
2

∣∣∣∣
dφ0

dζ

∣∣∣∣ , ω− 1
2

∣∣∣∣
dφ0

dζ̄

∣∣∣∣ = O((− log |t|)−2)

where ζ = u (resp. ζ = v). Furthermore,

ω−1

∣∣∣∣
d2φ0

dζ2

∣∣∣∣ , ω−1

∣∣∣∣
d2φ0

dζ̄2

∣∣∣∣ , ω−1

∣∣∣∣
d2φ0

dζdζ̄

∣∣∣∣ = O((− log |t|)−2).

Proof. By (36) and (37),

(40) △φ0 = −π2

6
(− log |t|)−2Λ = O(log |t|)−2, φ0 = O((− log |t|)−2).

By elliptic regularity and the Sobolev embedding theorem W 1,p ⊂ C0, p > 2 (cf.
the proof of (35)), we have

|∇φ0|C0 = O((− log |t|)−2).

Here, again, elliptic regularity is applied above with a ball of fixed radius for all t.
This proves the first derivative estimates.

Additionally, the Kähler identities give

△′′(∂φ0) = −1

2
∂
(
(− log |t|)−2Λ

)
,

and hence

△′′(∂φ0) = O((− log |t|)−2), |∂φ0| = O((− log |t|)−2).

Applying elliptic regularity and the Sobolev embedding theorem as before,

|∇(∂φ0)|C0 = O((log |t|)−2).

Hence in N

ω−1

∣∣∣∣
d2φ0

du2

∣∣∣∣ = O((log |t|)−2).

This implies the second derivative estimates. !
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Lemma 23. In N with respect to coordinates (u, s, t) or (v, s, τ),

ω− 1
2

∣∣∣∣
dφ1

dζ

∣∣∣∣ , ω− 1
2

∣∣∣∣
dφ1

dζ̄

∣∣∣∣ = O((− log |t|)−4),

where ζ = u (resp. ζ = v). Furthermore,

ω−1

∣∣∣∣
d2φ1

dζ2

∣∣∣∣ , ω−1

∣∣∣∣
d2φ1

dζ̄2

∣∣∣∣ , ω−1

∣∣∣∣
d2φ1

dζdζ̄

∣∣∣∣ = O((− log |t|)−2).

Proof. By the standard identity,

△φ = e2φ + Kgr,

we can write

△φ1 = −△φ0 + (e2φ − 1) + (Kgr + 1)

= −(△− 2)φ0 + (e2φ − 1 − 2φ0) + (Kgr + 1)

= −π2

6
(log |t|)−2Λ + (e2φ − 1 − 2φ0) + (Kgr + 1).

By [Wo1], p. 445, the curvature formula in proof of Expansion 4.2,

−π2

6
(log |t|)−2Λ + Kgr + 1 = O((− log |t|)−4), φ1 = O((− log |t|)−4).

Thus,

(41) △φ1 = O(− log |t|)−4, φ1 = O((− log |t|)−4).

By elliptic regularity as before,

|∇φ1|C0 ≤ C
(
|φ1|C0 + |△φ1|C0

)
= O((log |t|)−4),

and hence also
|∂φ1| = O((log |t|)−4).

The proof of the second estimate is the same as that of φ0. !
Remark 24. The second derivatives of φ1 have better estimates, but we will not
need them in this paper.

Lemma 25. In N with respect to coordinates (u, s, t) or (v, s, τ),

ω− 1
2

∣∣∣∣
dφ

dζ

∣∣∣∣ , ω− 1
2

∣∣∣∣
dφ

dζ̄

∣∣∣∣ = O((− log |t|)−2),(42)

where ζ = u (resp. ζ = v). Furthermore,

ω−1

∣∣∣∣
d2φ

dζ2

∣∣∣∣ , ω−1

∣∣∣∣
d2φ

dζ̄2

∣∣∣∣ , ω−1

∣∣∣∣
d2φ

dζdζ̄

∣∣∣∣ = O((− log |t|)−2).(43)

Proof. Combine proof of Lemma 22 and Lemma 23. !
We now define a vector field W on the total space R. For the coordinates (v, s, t)

in N , we will set τ = t in order to distinguish them from the coordinates (u, s, t)
in N . Consider the coordinate vector fields

(44)
∂

∂t
defined in N with respect to the coordinates (u, s, t)

and
∂

∂τ
defined in N with respect to the coordinates (v, s, τ).
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Remark 26. The reason we use the variable τ in expressing the coordinates (v, s, τ)
is to distinguish the above two vector fields. Note that if a point p0 ∈ N is given
by (u0, s0, t0) in the coordinates (u, s, t) and (v0, s0, τ0) in the coordinates (v, s, τ),
then t0 = τ0. On the other hand, as it will be explained below (cf. (45)), p #→ ∂

∂t (p)
and p #→ ∂

∂τ (p) for p ∈ N are two distinct vector fields.

Using the identification fs(u)gs(v) = t = τ , we write

u(v, τ ) = f−1
s (

τ

gs(v)
),

∂u

∂τ
(v, τ ) =

∂

∂τ

(
f−1

s (
τ

gs(v)
)

)
.

We apply the change of the coordinates u(v, τ ) to obtain the expression of ∂
∂τ in

terms of the coordinates (u, t, s) as

(45)
∂

∂τ
=

∂t

∂τ

∂

∂t
+

∂u

∂τ

∂

∂u
=

∂

∂t
+ H(u, t)

∂

∂u

where H(u, t) is a function (holomorphic in u) defined by

(46) H(u, t) :=
∂u

∂τ

∣∣∣
v=g−1

s ( t
fs(u) ), τ=t

.

Thus, H(u, t) ∂
∂u is the expression with respect to coordinates (u, s, t) of the vector

field ∂
∂t −

∂
∂τ defined in N .

We now use the function H to define a C∞ vector field W in N by setting

(47) W =

⎧
⎪⎨

⎪⎩

∂

∂t
+ ηH

∂

∂u
in N 1 with respect to (u, s, t),

∂

∂τ
in N 2\N 1 with respect to (v, s, τ = t),

where η is a rotationally symmetric bump function such that η ≡ 0 for |u| ≥ |t| 1
2−δ

and η ≡ 1 for |u| ≤ |t| 1
2+δ as in [Wo1], 3.4 CG. In other words, the vector field W

in N 1 ∩N 2 is the interpolation of the vector field ∂
∂t defined in N 1 with respect to

the local coordinates (u, s, t) and the vector field ∂
∂τ defined in N 2 with respect to

the local coordinates (v, s, τ = t). The vector field W is C∞ in N . We can extend
W as a C∞ vector field on the total space R. Indeed, R is trivial away from the
pinching region N 1 ∩ N 2, and the product structure defines a canonical lift of the
the vector field ∂

∂t defined S.

Definition 27. We denote by W the C∞ vector field on R defined by (47) in N
and the canonical lift to R\N of the vector field ∂

∂t defined S.

We will now derive some estimates involving the function H. First observe that
if fs(u) and gs(v) are the identity maps, then H(u, t) = u

t . Since fs(u) and gs(v)
are holomorphic functions close to the identity,

(48) H = O(|t|−1)(u + O(|u|2)).
We will record some other estimates involving the function H(u, t) below.

Lemma 28. In N 1 ∩ N 2, we have with respect to the coordinates (u, s, t),

(49) H =
u

t
+ O(|t|−2δ)

and
Hh

1
2 = O(|t|−1(− log |t|)−1).
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Proof. The first assertion follows immediately from equality (48). Since h =
O(|u|−2(− log |t|)−2) in N 1 ∩ N 2, the second assertion follows from the first. !

Lemma 29. In N ,

WKgr = O(|t|−1(− log |t|)−3),

where W is given in Definition 27.

Proof. In N 1\N 2, the estimate follows from Lemma 20 since W = ∂
∂t . In N 1 ∩N 2

with respect to coordinates (u, s, t),

WKgr =
∂Kgr

∂t
+ ηH

∂Kgr

∂u
.

The first term on the right-hand side is O(|t|−1(− log |t|)−3) by Lemma 20. The
second term is O(|t|− 1

2−24δ) by Lemma 21 and Lemma 28. This proves the estimate
in N 1. A similar argument proves the estimate in N 2. !

Lemma 30. In N with respect to the coordinates (u, s, t),

Wh

h
= O(|t|−1(− log |t|)−3)(− log |u|)2,

W

(
h

ω

)
= O(|t|−1(− log |t|)−3),

Wω

ω
= O(|t|−1(− log |t|)−3)(− log |u|)2,

where W is given in Definition 27.

Proof. In N 1\N 2, the first estimate follows from Lemma 10. In N 1 ∩N 2, we have
by Lemma 10 and Lemma 28 that

Wh

h
=

∂h
∂t

h
+ ηH

∂h
∂u

h

= O(|t|−1(− log |t|)−3)(− log |u|)2 +
u

t
O(|u|−1(− log |u|)−1)

= O(|t|−1(− log |t|)−3)(− log |u|)2 + O(|t|−1(− log |u|)−1).

Thus, the first estimate in N 1 ∩ N 2 follows from the fact that (− log |u|) ≤
( 1
2 + 2δ)(− log |t|). The second estimate follows from Lemma 18, Lemma 19 and

Lemma 28. The third estimate follows by combining the first and the second esti-
mates. !

Lemma 31. In R,

W

(
ω

ρ

)
= O(|t|−1(− log |t|)−2),

where W is given in Definition 27.

Proof. We differentiate the standard identity

(50) △φ = e2φ + Kgr

with respect to W to obtain

(△− 2e2φ)Wφ = WKgr + comm,
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where the term comm comes from commuting W and △. Using the fact that H is
holomorphic in u (cf. (46)), we obtain

comm = △W φ− W △φ

=
∂

∂ζ
(ηH)△φ +

∂

∂ζ̄
(ηH)

1

ω

∂2φ

∂ζ2
+ △(ηH)

∂φ

∂ζ
+ ηH

∂ω
∂ζ

ω
△φ

= η
∂H

∂ζ
△φ + H

∂η

∂ζ
△φ + H

∂η

∂ζ̄

1

ω

∂2φ

∂ζ2
+ H△η

∂φ

∂ζ

+
1

ω

∂η

∂ζ̄

∂H

∂ζ

∂φ

∂ζ
+ ηH

∂ω
∂ζ

ω
△φ.

(i) Since H = O(|t|−1)(u + O(|u|2)) (cf. (48)) and H is holomorphic (cf. (46)),
∂H
∂ζ = O(|t|−1)(1+O(|u|). Moreover by (40), △φ = O((− log |t|)−2). It follows that

the first term is O(|t|−1(− log |t|)−2).
(ii) By Lemma 16, ∂η

∂ζ̄
∂η
∂ζ = O|u|−1((− log |t|)−1), hence combining with the

estimates used before we obtain that the second term is O(|t|−1(− log |t|)−3).

(iii) By Lemma 25, 1
ω

∂2φ
∂ζ2 = O((− log |t|)−2), hence combining with the estimates

used before we obtain that the third term is O(|t|−1(− log |t|)−3).
(iv) By Lemma 17 and Lemma 18, △η = O(1). By Lemma 25, ω− 1

2
∂φ
∂ζ =

O((− log |t|)−2) and ω
1
2 = O(|u|−1(− log |u|)−1), hence ∂φ

∂ζ = O(|u|−1(− log |t|)−2).
Hence, combining with the estimate for H used before we obtain that the fourth
term is O(|t|−1(− log |t|)−2).

(v) By Lemma 17 and Lemma 18, ω− 1
2
∂η
∂ζ̄

= O(1) and by Lemma 25, ω− 1
2
∂φ
∂ζ =

O((− log |t|)−2). Combined with ∂H
∂ζ = O(|t|−1), we obtain that the fifth term is

O(|t|−1(− log |t|)−2).

(vi) By Lemma 10 and Lemma 20,
∂ω
∂ζ

ω = O(|u|−1(− log |u|)−1). Combined with
the estimate used before, we obtain that the sixth term is O(|t|−1(− log |t|)−3).

In summary, we have shown

(△φ− 2e2φ)Wφ = O(|t|−1(− log |t|)−2)

in either N 1 with ζ = u or in N 2 with ζ = v. Since the Ck estimates of φ are
uniformly bounded independent of t and s outside of the pinching region N , (51)
implies

(△− 2e2φ)Wφ = O(|t|−1(− log |t|)−2) in R,

and hence by the maximum principle (cf. [Wo1], Appendix A.2)

(51) Wφ = O(|t|−1(− log |t|)−2).

!

Lemma 32. In N 1 (resp. N 2) with respect to the coordinates (u, s, t) (resp.
(v, s, t)),

∂

∂t

(
ω

ρ

)
= O(|t|−1(− log |t|)−3).

Proof. From (36), we have

(△− 2)φ0 = −π2Λ

6
(− log |t|)−2).
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We differentiate this with respect to W to obtain

W (△− 2)φ0 = O(|t|−1(− log |t|)−3).(52)

From (50), we obtain

W (△− 2)φ1 = −W (△− 2)φ0 + WKgr,

or by commuting W with △,

(△− 2)Wφ1 = −W (△− 2)φ0 + WKgr + comm.

We now estimate the terms in the right-hand side above. By (52), the first term
is O(|t|−1(− log |t|)−3), and by Lemma 29, the second term is O(|t|−1(− log |t|)−3).
Arguing analogously as in the proof of Lemma 31 and noting that we have a better
estimates for φ1 than for φ (compare Lemma 23 with Lemma 25), we obtain

comm = O(|t|−1(− log |t|)−3).

Indeed, in (i) of the proof of Lemma 31, by (41), △φ1 = (− log |t|)−4, hence the
first term is O(|t|−1(− log |t|)−4). In (ii) and (iii) we have the desired estimate.

Furthermore, in (iv) and (v), we have by Lemma 23 that ω− 1
2
∂φ1

∂ζ = O((− log |t|)−4)

instead of O((− log |t|)−2) for ω− 1
2
∂φ0

∂ζ , and this accounts for the extra (− log |t|)−1.
Thus, the maximum principle as before implies

Wφ1 = O(|t|−1(− log |t|)−3).

Lemma 18, Lemma 23 and Lemma 28 imply that

ηH
∂φ1

∂u
= ηHh

1
2 h− 1

2
∂φ1

∂u
= O(|t|−1(− log |t|)−5) in N1,

which in turn implies that

∂φ1

∂t
= Wφ1 − ηH

∂φ1

∂u
= O(|t|−1(− log |t|)−3) in N1.

Combined with (38), we conclude

∂φ

∂t
= O(|t|−1(− log |t|)−3) in N1

and similarly in N2. !

5. The proof of the main results

Let R be a nodal surface with nodes {ni}N
i=1 and R0 = R\{ni}N

i=1 be the Rie-
mann surface with punctures {ai, bi} associated with each node ni. For s ∈ Bϵ(0) ⊂
Cn, let Rs be the family of Riemann surfaces defined by the Beltrami differentials
as in (2). The resolution of the singularities (described in Section 2 for a single
node) can be simultaneously carried out for all Rs and nodes, and we obtain a
family of Riemann surfaces

F : R → S ⊂ Cn × CN

whose fiber over (s, t) = (s, t1, . . . , tN ) ∈ Cn ×CN is the Riemann surface Rs,t. As
in the case of one node, the coordinates (s, t) are called the plumbing coordinates
and the Riemann surface Rs,t is the surface corresponding to the coordinates (s, t)
via the plumbing construction.

For each i = 1, . . . , N , we denote by N i, N i,1 and N i,2 the neighborhoods
defined by the plumbing construction for the node ni as defined by (5) with ti
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replacing t. Let (ui, s, t) and (vi, s, τ = t) be the local coordinates of N i. Fix s and
t = (t1, . . . , tN ) and define

N i,+
s,t := {ui ∈ N i,1 ∩ Rs,t : |fs(ui)| ≥ |ti|

1
2 }

and
N i,−

s,t := {vi ∈ N i,2 ∩ Rs,t : |gs(vi)| ≥ |ti|
1
2 }.

By (5),

N i
s,t = N i ∩ Rs,t = N i,+

s,t ∪ N i,−
s,t

and

N i,+
s,t ∩ N i,−

s,t = {ui ∈ N i,1 ∩ Rs,t : |fs(ui)| = |ti|
1
2 }

= {vi ∈ N i,2 ∩ Rs,t : |gs(vi)| = |ti|
1
2 }.

Fix i and let Wi be the vector field given as W in Definition 27 with N i playing
the role of N . In other words, Wi is ∂

∂ti
in Rs,t\(N i,1 ∩ N i,2) and defined by

interpolation in N i,1 ∩ N 2,i. In N i,+
s,t with respect to the coordinate ui, we have

Wi(ui) =
∂

∂ti
+ ηHi

∂

∂ui
where Hi(ui) :=

∂ui

∂ti

∣∣∣
vi=g−1

s (
ti

fs(ui)
)
.

In N i,−
s,t with respect to the coordinate vi (with τi = ti),

Wi(vi) =
∂

∂τi
+ η̃H̃i

∂

∂vi
where H̃i(vi) :=

∂vi

∂τi

∣∣∣
ui=f−1

s (
τi

gs(ui)
)
.

Here, η ≡ 0, η̃ ≡ 1 for |ui| ≥ |ti|
1
2−δ and η̃ ≡ 0, η ≡ 1 for |vi| ≥ |τi|

1
2−δ. Applying

a change of variables, we obtain

∂

∂τi
+ η̃H̃i

∂

∂vi
=

∂

∂ti
+

(
∂ui

∂ti
+ η̃

∂vi

∂τi

∂ui

∂vi

)
∂

∂ui
.

Thus,
∂ui

∂ti
+ η̃

∂vi

∂τi

∂ui

∂vi
= η

∂ui

∂ti
.

With this, we can derive a relationship between the two functions η and η̃. Differ-
entiating fs(ui)gs(vi) = ti = τi, we have

∂ui

∂ti
f ′

s(ui) =
1

gs(vi)
,

∂vi

∂τi
g′s(u) =

1

fs(ui)
=

gs(vi)

ti
,

∂ui

∂vi
f ′

s(ui) = − tig′s(vi)

g2
s(vi)

,

and hence
1

gs(vi)f ′
s(ui)

− η̃
1

gs(vi)
= η

1

gs(vi)f ′
s(ui)

which in turn implies

η +
1

f ′
s(ui)

η̃ =
1

f ′
s(ui)

.

For convenience, we choose η such that

(53) η(ui) =
1

2
for |fs(ui)| = |ti|

1
2 .

Noting that f ′
s(ui) = 1 + O(|ui|) (cf. (3) and (4)), we then obtain

(54) η̃(vi) =
1

2
+ O(|ti|

1
2 ) for |gs(vi)| = |ti|

1
2 .
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We now recall the Masur differentials {Φµ} (cf. [Mas]) corresponding to cotan-
gent vectors in a neighborhood at a point at the boundary of Teichmüller space.
For clarity, we will use the lowercase i for the Masur differential corresponding dual
of the tangent vector ∂

∂ti
of the boundary of Teichmüller space and the uppercase

I for the Masur differential corresponding to the tangent vector ∂
∂sI

normal to

the boundary. We can express these differentials in the lth neighborhood N l with
respect to the coordinates (ul, s, t) as

Φi = φidz2 and ΦI = φIdz2,

where

(55) φi(ul, s, t) = − ti
π

⎛

⎝δil

u2
l

+ a−1(ul, s, t) +
1

u2
l

∞∑

j=1

(
tl
ul

)2

· tm(j)
l · aj(s, t)

⎞

⎠

with m(j) ≥ 0, a−1 with at most a simple pole at 0, aj , j ≥ 1 are holomorphic at
0 and

(56) φI(ul, s, t) = φI(ul, 0, 0) +
1

u2
l

∞∑

j=1

(
tl
ul

)j

· tm̃(j)
l · bj(s, t) +

∞∑

j=−1

uj
l · cj(s, t)

with m̃(l) ≥ 0, φI(ul, 0, 0) has at most a simple pole and bl, cl are holomorphic at

0. Since |tl|
|ul|2 ≤ 1 in N l,+

s,t , we have

φi = O(
|ti|
|ui|2

),
∂φi

∂ti
= O(

1

|ui|2
) on N i,+

s,t ,

φi = O

(
|ti|
|ul|

)
,

∂φi

∂ti
= O(

1

|ul|
) on N l,+

s,t ,(57)

φi = O(|ti|),
∂φi

∂ti
= O(1) everywhere else.

Moreover,

φI = O(
1

|ui|
),

∂φI

∂ti
= O(

1

|ui|3
) on N i,+

s,t ,

φI = O(1),
∂φI

∂ti
= O(

1

|ul|
) on N l,+

s,t ,(58)

φI = O(1)
∂φI

∂ti
= O(1) everywhere else.

We start with the following simple results.

Lemma 33. With h(z) =
(

π
log |t| csc(π log |z|

log |t| ) |dz|
|z|

)2
, we have

∫

{|t|
1
2 ≤|z|≤1}

1

|z|4
1

h(z)
dxdy =

(− log |t|)3

2π

and
∫

{|t|
1
2 ≤|z|≤1}

1

|z|n
1

h(z)
dxdy = O(1) for n < 4.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



C1 ESTIMATES FOR THE WEIL-PETERSSON METRIC 2941

Furthermore,
∫

{|t|
1
2 ≤|z|≤1}

1

|z|4
1

h(z)

∂h
∂t (z)

h(z)
dxdy =

(− log |t|)2

4πt
.

Proof. A straightforward computation using the substitution θ = π log r
log |t| , dθ =

π
r log |t|dr, r = e

θ log |t|
π = |t| θ

π yields
∫

{|t|
1
2 ≤|z|≤1}

1

|z|n
1

h(z)
dxdy

=
(− log |t|)2

π2

∫

{|t|
1
2 ≤|z|≤1}

1

|z|n−2
sin2(

π log |z|
log |t| )dxdy

=
(− log |t|)2

π2

∫

{|t|
1
2 ≤r≤1}

1

rn−2
sin2(

π log r

log |t| )2πrdr

=
2(− log |t|)3

π2

∫ π
2

0
e(4−n)aθ sin2 θdθ (where a =

log |t|
π

)

=
(− log |t|)3

π2

∫ π
2

0
e(4−n)aθ(1 − cos 2θ)dθ.

Letting n = 4, we have
∫

{|t|
1
2 ≤|z|≤1}

1

|z|4
1

h(z)
dxdy =

(− log |t|)3

π2

∫ π
2

0
1 − cos 2θdθ

=
(− log |t|)3

2π
,

which is the first estimate. Applying the integral formula
∫

e(4−n)aθ cos 2θdθ =
e(4−n)aθ((4 − n) cos 2θ + 2 sin 2θ)

(4 − n)2a2 + 4
+ K, a =

log |t|
π

,

=
r4−n((4 − n) cos 2θ + 2 sin 2θ)

(4 − n)2a2 + 4
+ K,

the second estimate follows for n < 4. By Lemma 10, we write
∫

{|t|
1
2 ≤|z|≤1}

1

|z|n
1

h(z)

∂h
∂t (z)

h(z)
dxdy

=
1

t(− log |t|)

∫

{|t|
1
2 ≤|z|≤1}

1

|z|n
1

h(z)
(1 − θ cot θ)du1du2.

Using the same substitution as above, we obtain
∫

{|t|
1
2 ≤|z|≤1}

1

|z|n
1

h(z)
θ cot θdxdy =

2(− log |t|)3

π2

∫ π
2

0
e(4−n)aθθ sin θ cos θ dθ.

Letting n = 4 in the above equality, we obtain
∫

{|t|
1
2 ≤|z|≤1}

1

|z|4
1

h(z)
θ cot θdxdy =

(− log |t|)3

π2

∫ π
2

0
θ sin 2θ dθ

=
(− log |t|)3

4π
.

Combining this with the first estimate proves the third estimate. !
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Lemma 34. If {Φµ = φµdz2} is the set of Masur differentials, gs,t a metric along

the fibers of R and G = ΦµΦ̄µ

ggr
s,t

, then

∂

∂ti

∫

Rs,t

G =

∫

Ni,+
s,t

∂

∂ti
G +

∫

Ni,−
s,t

∂

∂ti
G +

∫

Rs,t\N i
s,t

∂

∂ti
G

+

∫

Bi,+
s,t

iηHi(ui) ∂
∂ui

G +

∫

Bi,−
s,t

iη̃H̃i(vi)
∂

∂vi

G.

In the above formula i denotes interior multiplication and Bi,±
s,t denotes the inner

boundary circle of N i,±
s,t with the induced orientation.

Proof. By the definition of Wi, the projection F∗Wi to S is equal to ∂
∂ti

. Thus,

∂

∂ti

∫

Rs,t

G =

∫

Rs,t

LWiG.

Since Wi = ∂
∂ti

+ ηHi
∂
∂ti

in N i,+
s,t , Wi = ∂

∂ti
+ η̃H̃i in N i,−

s,t and ∂
∂ti

in Rs,t\N i
s,t, it

suffices to prove
∫

Ni,+
s,t

LηHi(ui)
∂

∂ui

G =

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

G,

and similarly for N i,−
s,t . Indeed, this follows by Stokes’ theorem

∫

Ni,+
s,t

LηHi(ui)
∂

∂ui

G =

∫

Ni,+
s,t

diηHi(ui)
∂

∂ui

G =

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

G.

!
Lemma 35. If Φi is the Masur differential dual to ∂

∂ti
, then

∂

∂ti

∫

Rs,t

(
ΦiΦ̄i

ghyp
s,t

− ΦiΦ̄i

ggr
s,t

)
= O(|ti|(− log |ti|)).

If ΦI and ΦJ are the Masur differentials dual to ∂
∂tI

and ∂
∂tJ

, then

∂

∂ti

∫

Rs,t

(
ΦIΦ̄J

ghyp
s,t

− ΦJ Φ̄i

ggr
s,t

)
= O(|ti|−1(− log |ti|)−3).

Proof. We can write
∫

Ni,+
s,t

∂

∂ti

(
φiφ̄i

ρ
− φiφ̄i

ω

)
du1

i du2
i =

∫

Ni,+
s,t

∂

∂ti

(
φiφ̄i

ω

(
ω

ρ
− 1

))
du1

i du2
i

=

∫

Ni,+
s,t

∂φi

∂ti
φ̄i

ω

(
ω

ρ
− 1

)
du1

i du2
i +

∫

Ni,+
s,t

φiφ̄i

ω

(
−

∂ω
∂ti

ω

)(
ω

ρ
− 1

)
du1

i du2
i

+

∫

Ni,+
s,t

φiφ̄i

ω

∂

∂ti

(
ω

ρ
− 1

)
du1

i du2
i .(59)

By (34), (57), Lemma 18, Lemma 32 and Lemma 33,
∫

Ni,+
s,t

∂φi

∂ti
φ̄i

h

h

ω

(
ω

ρ
− 1

)
du1

i du2
i = O(|ti|(− log |ti|)−2)

∫

Ni.+
s,t

1

|ui|4
1

h
du1

i du2
i

= O(|ti|(− log |ti|)),(60)
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∫

Ni,+
s,t

φiφ̄i

h

h

ω

(
−

∂ω
∂ti

ω

)(
ω

ρ
− 1

)
du1

i du2
i

= O(|ti|(− log |ti|)−3)

∫

Ni,+
s,t

1

|ui|4
1

h
du1

i du2
i

= O(|ti|)(61)

and
∫

Ni,+
s,t

φiφ̄i

h

h

ω

∂

∂ti

(
ω

ρ
− 1

)
du1

i du2
i = O(|ti|(− log |ti|)−3)

∫

Ni,+
s,t

1

|u|4
1

h
du1

i du2
i

= O(|ti|).(62)

Combining (59), (60), (61) and (62) along with the corresponding estimates for
N i,−

s,t , we obtain

∫

N i
s,t

∂

∂ti

(
ΦiΦ̄i

ghyp
s,t

− ΦiΦ̄i

ggr
s,t

)
= O(|ti|(− log |ti|)).(63)

Next, we estimate the integral over N l, l ̸= i. By (34), (57), Lemma 18, Lemma 31,

Lemma 33 and the fact that outside of N i
s,t,

∂ω
∂ti

= 0 and ∂
∂ti

(
ω
ρ

)
= Wi

(
ω
ρ

)
, we

have

∫

Nl,+
s,t

∂φi

∂ti
φ̄i

h

h

ω

(
ω

ρ
− 1

)
du1

l du2
l = O(|ti|(− log |tl|)−2)

∫

Nl,+
s,t

1

|ul|2
1

h
du1

l du2
l

= O(|ti|(− log |tl|)−2),(64)

∫

Nl,+
s,t

φiφ̄i

ω

(
−

∂ω
∂ti

ω

)(
ω

ρ
− 1

)
du1

l du2
l = 0,(65)

∫

Nl,+
s,t

φiφ̄i

h

h

ω

∂

∂ti

(
ω

ρ
− 1

)
du1

l du2
l = O(|ti|(− log |tl|)−2)

∫

Nl,+
s,t

1

|ul|2
1

h
du1

l du2
l

= O(|ti|(− log |tl|)−2).(66)

Combining (64), (65) and (66) along with the analogous estimates for N l,−
s,t , we

obtain that

∫

N l
s,t

∂

∂ti

(
ΦiΦ̄i

ghyp
s,t

− ΦiΦ̄i

ggr
s,t

)
= O(|ti|(− log |tl|)−2).(67)

The integral over Rs,t\
⋃

l N l
s,t can be computed using the estimates of φi outside

of
⋃

l N l
s,t contained in (57) and a similar argument. We obtain

∫

Rs,t\
⋃

l N l
s,t

∂

∂ti

(
ΦiΦ̄i

ghyp
s,t

− ΦiΦ̄i

ggr
s,t

)
= O(|ti|).(68)
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We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, with ui = u1

i + iu2
i and by using Lemma 18 and (34), we have

∫

Bi,+
s,t

iηHi(ui) ∂
∂ui

(
φiφ̄i

ρ
− φiφ̄i

ω

)
du1

i du2
i

=

∫

Bi,+
s,t

iηHi(ui) ∂
∂ui

φiφ̄i

h

h

ω

(
ω

ρ
− 1

)
du1

i du2
i

= O((− log |ti|)−2)

∫

Bi,+
s,t

iηHi(ui) ∂
∂ui

(
φiφ̄i

h
du1

i du2
i

)
(69)

= O((− log |ti|)−2)
i

2

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φiφ̄i

h
duidūi

)

= O((− log |ti|)−2)
i

2

∫

Bi,+
s,t

η(ui)H(ui)
φiφ̄i

h
dūi.

Moreover, with θi = Arg ui,

ui = eiθi |ti|
1
2 and dūi = −ie−iθidθi|ti|

1
2 ⇒ uidūi = −i|ti|dθi,

which together with (69), Lemma 28, (7) and (57) implies

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φiφ̄i

ρ
− φiφ̄i

ω

)
du1

i du2
i = O(|ti|),(70)

and similarly for Bi,−
s,t . The first estimate follows by combining (63), (67), (68),

(70) and Lemma 34.
Next, we prove the second estimate. We first compute the integral over N i,+

s,t .
By (34), (58), Lemma 18, Lemma 32 and Lemma 33,

∫

Ni,+
s,t

∂φI

∂ti
φ̄J

h

h

ω

(
ω

ρ
− 1

)
du1

i du2
i = O((− log |ti|)−2)

∫

Ni,+
s,t

1

|ui|4
1

h
du1

i du2
i

= O(− log |ti|),(71)

∫

Ni,+
s,t

φI φ̄J

h

h

ω

(
−

∂ω
∂ti

ω

)(
ω

ρ
− 1

)
du1

i du2
i

= O(|ti|−1(− log |ti|)−3)

∫

Ni,+
s,t

1

|ui|2
1

h
du1

i du2
i

= O(|ti|−1(− log |ti|)−3),(72)

∫

Ni,+
s,t

φI φ̄J

h

h

ω

∂

∂ti

(
ω

ρ
− 1

)
du1

i du2
i

= O(|ti|−1(− log |ti|)−3)

∫

Ni,+
s,t

1

|ui|2
1

h
du1

i du2
i

= O(|ti|−1(− log |ti|)−3).(73)
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Combining (71), (72) and (73) along with the corresponding estimate for N i,−
s,t , we

obtain
∫

N i
s,t

∂

∂ti

(
φI φ̄J

ρ
− φI φ̄J

ω

)
du1

i du2
i = O(|ti|−1(− log |ti|)−3).(74)

Next, we estimate the integral over N l, l ̸= i. By (34), (58), Lemma 18, Lemma 31,

Lemma 33 and the fact that outside of N i
s,t,

∂ω
∂ti

= 0 and ∂
∂ti

(
ω
ρ

)
= Wi

(
ω
ρ

)
, we

have
∫

Nl,+
s,t

∂φI

∂ti
φ̄J

h

h

ω

(
ω

ρ
− 1

)
du1

l du2
l = O((− log |tl|)−2)

∫

Nl,+
s,t

1

|ul|
1

h
du1

l du2
l

= O((− log |tl|)−2),(75)

∫

Nl,+
s,t

φI φ̄J

ω

(
−

∂ω
∂ti

ω

)(
ω

ρ
− 1

)
du1

l du2
l = 0,(76)

∫

Nl,+
s,t

φI φ̄J

h

h

ω

∂

∂ti

(
ω

ρ
− 1

)
du1

l du2
l = O(|ti|−1(− log |ti|)−2)

∫

Nl,+
s,t

1

h
du1

l du2
l

= O(|ti|−1(− log |ti|)−2).(77)

Combining (75), (76) and (77) along with the analogous estimates for N l,−
s,t , we

obtain that
∫

N l
s,t

∂

∂ti

(
φI φ̄J

ρ
− φI φ̄J

ω

)
du1

i du2
i = O(|ti|−1(− log |ti|)−3).(78)

The integral over Rs,t\
⋃

l N l
s,t can be computed using the estimates of φI and φJ

outside of
⋃

l N l
s,t contained in (58) and a similar argument. We obtain

∫

Rs,t\
⋃

l N l
s,t

∂

∂ti

(
φI φ̄J

ρ
− φI φ̄J

ω

)
du1

i du2
i = O(|ti|−1(− log |ti|)−3).(79)

We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, as in (69) we have

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φI φ̄J

ρ
− φI φ̄J

ω

)
du1

i du2
i

= O((− log |ti|)−2)
i

2

∫

Bi,+
s,t

η(ui)H(ui)
φI φ̄J

h
dūi.

Moreover, by combining with Lemma 28, (7) and (58), this implies
∫

Bi,+
s,t

iηHi(ui) ∂
∂ui

(
φiφ̄i

ρ
− φiφ̄i

ω

)
du1

i du2
i = O(1),(80)

and similarly for Bi,−
s,t . The second assertion follows by combining (74), (78), (79),

(80) and Lemma 34. !

Proof of Theorem 2. Below, we will provide the proof for estimates (i) and (v).
The other estimates are proven by analogous arguments, and hence we omit their
proofs.
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First, we prove (i). By Lemma 35 it suffices to prove

(81)
∂

∂ti

∫

Rs,t

ΦiΦ̄i

ggr
s,t

=
∂

∂ti
hii + O(|ti|(− log |ti|)).

By differentiating the identity (55) with respect to ti, we have in N i,+
s,t

∂φi

∂ti
=

1

πu2
i

+ O(
1

|ui|
).

Since φi = ti

πu2
i

+ O( |ti|
|ui| ),

(82) φiφ̄i =
|ti|2

π2|ui|4
+ O(

|ti|2

|ui|3
)

and

(83)
∂φi

∂ti
φ̄i =

t̄i
π2|ui|4

+ O(
|ti|
|ui|3

).

By (83), Lemma 18 and Corollary 33,
∫

Ni,+
s,t

∂φi

∂ti
φ̄i

ω
du1

i du2
i = (1 + O((− log |t|)−2))

∫

Ni,+
s,t

∂φi

∂ti
φ̄i

h
du1

i du2
i

= (1 + O((− log |t|)−2))

(
t̄i
π2

∫

Ni,+
s,t

1

|ui|4
1

h
du1

i du2
i

+ O(|ti|)
∫

Ni,+
s,t

1

|ui|3
1

h
du1

i du2
i

)

=
t̄i(− log |ti|)3

2π3
+ O(|ti|(− log |ti|)).(84)

By (82) and Corrollary 33,
∫

Ni,+
s,t

φiφ̄i

h

∂h
∂ti

h
du1

i du2
i =

|ti|2

π2

∫

Ni,+
s,t

1

|ui|4
1

h

∂h
∂ti

h
du1

i du2
i

+O(|ti|2)
∫

Ni,+
s,t

1

|ui|3
1

h

∂h
∂ti

h
du1

i du2
i

=
t̄i(− log |ti|)2

4π3
+ O(|ti|(− log |ti|)).(85)

By (85), (57) and Lemma 33,
∫

Ni,+
s,t

φiφ̄i

ω

∂ω
∂ti

ω
du1

i du2
i =

∫

Ni,+
s,t

φiφ̄i

h

∂h
∂ti

h
du1

i du2
i +

∫

Ni,+
s,t

φiφ̄i

h

(
∂ω
∂ti

ω
−

∂h
∂ti

h

)
du1

i du2
i

=
t̄i(− log |ti|)2

4π3
+ O(|ti|(− log |ti|))

+O(|ti|(− log |ti|)−3)

∫

Ni,+
s,t

1

|ui|4
1

h
du1

i du2
i

=
t̄i(− log |ti|)2

4π3
+ O(|ti|(− log |ti|)).(86)
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Similarly we have the same formulas over N i,−
s,t . Thus, by adding the above we

obtain
∫

Ni,+
s,t

∂

∂ti

(
φiφ̄i

ω

)
du1

i du2
i +

∫

Ni,−
s,t

∂

∂ti

(
φiφ̄i

ω

)
du1

i du2
i

=
3t̄i(− log |ti|)3

2π3
+

t̄i(− log |ti|)2

2π3
+ O(|ti|(− log |ti|)).(87)

Since ω does not depend on ti outside of N i, (57), Lemma 18 and Lemma 33 imply

∫

Nl,+
s,t

∂

∂ti

(
φiφ̄i

ω

)
du1

l du2
l =

∫

Nl,+
s,t

∂φi

∂ti
φ̄i

ω
du1

l du2
l

=

∫

Nl,+
s,t

∂φi

∂ti
φ̄i

h
du1

l du2
l

= O(|ti|)
∫

Nl,+
s,t

1

|ul|2
1

h
du1

l du2
l

= O(|ti|),(88)

and similarly for N l,−
s,t . Using the estimates of φi outside of

⋃
l N l

s,t contained in
(57), we similarly obtain

∫

Rs,t\
⋃

l N l
s,t

∂

∂ti

(
φiφ̄i

ω

)
du1

i du2
i = O(|ti|).(89)

We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, with ui = u1

i + iu2
i and as in (69) we have

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φiφ̄i

ω
du1

i du2
i

)

= (1 + O((− log |ti|)−2))
i

2

∫

Bi,+
s,t

iηHi(ui) ∂
∂ui

(
φiφ̄i

h
duidūi

)

= (1 + O((− log |ti|)−2))
i

2

∫

Bi,+
s,t

η(ui)H(ui)
φiφ̄i

h
dūi.(90)

By (82), Lemma 28 and (7) since on the circle Bi,+
s,t |ui| = |ti|

1
2 , we have the

estimates

H(ui) =
ui

ti
+ O(|ti|−2δ), φiφ̄i =

|ti|2

π2|ui|4
+ O(|ti|

1
2 ) and

1

h
=

(− log |ti|)2|ti|
π2

.

Moreover, with θi = Arg ui and as in (70),

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φiφ̄i

ω
du1

i du2
i

)

=
t̄i(− log |ti|)2

2π4

∫ 2π

0
η(|ti|

1
2 eiθi)dθi + O(|ti|).(91)
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Similarly,
∫

Bi,−
s,t

iη̃H̃i(vi) ∂
∂vi

(
φiφ̄i

ω
du1

i du2
i

)

=
t̄i(− log |ti|)2

2π4

∫ 2π

0
η̃(|ti|

1
2 eiθi)dθi + O(|ti|).(92)

On the other hand, since η ≡ 1
2 on Bi,+

s,t and η̃ = 1
2 +O(|ti|

1
2 ) on Bi,−

s,t (cf. (53) and
(54)), we obtain

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φiφ̄i

ω
du1

i du2
i

)
+

∫

Bi,−
s,t

iη̃H̃i(vi)
∂

∂vi

(
φiφ̄i

ω
du1

i du2
i

)

=
t̄i(− log |ti|)2

π3
+ O(|ti|).(93)

Combining (87), (88), (89) and (93) we obtain the desired estimate (81).
Next, we prove (v). By Lemma 35, it suffices to prove

(94)
∂

∂ti

∫

Rs,t

ΦIΦ̄J

ggr
s,t

= O(|ti|−1(− log |ti|)−3).

We write
∫

Ni,+
s,t

∂

∂ti

(
φI φ̄J

ω

)
du1

i du2
i

=

∫

Ni,+
s,t

∂φI

∂ti
φ̄J

h

h

ω
du1

i du2
i −

∫

Ni,+
s,t

φI φ̄J

h

h

ω

∂ω
∂ti

ω
du1

i du2
i .(95)

Observe that by Lemma 33,
∫

Ni,+
s,t

(− log |ui|)2

|ui|2
1

h
du1du2 ≤

∫

Ni,+
s,t

1

|ui|3
1

h
du1

i du2
i = O(1).(96)

By (58), Lemma 18 and Lemma 33,

∫

Ni,+
s,t

∂φI

∂ti
φ̄J

h

h

ω
du1

i du2
i = O(1)

∫

Ni,+
s,t

1

|ui|4
1

h
du1

i du2
i

= O((− log |ti|)3).(97)

By (58), Lemma 18, Lemma 33, (96) and the fact that O((− log |ui|)2) = O(|ui|−1),

∫

Ni,+
s,t

φI φ̄J

h

h

ω

∂ω
∂ti

ω
du1

i du2
i

= O(|ti|−1(− log |ti|)−3)

∫

Ni,+
s,t

(− log |ui|)2

|ui|2
1

h
du1

i du2
i

= O(|ti|−1(− log |ti|)−3).(98)

Combining (95), (97) and (98) with the analogous estimate on N i,−
s,t ,

(99)

∫

N i
s,t

∂

∂ti

(
ΦIΦ̄J

ggr
s,t

)
= O(|ti|−1(− log |ti|−3)).

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



C1 ESTIMATES FOR THE WEIL-PETERSSON METRIC 2949

Since ω does not depend on ti outside of N i, (58) and Lemma 33 imply
∫

Nl,+
s,t

∂

∂ti

(
φI φ̄J

ω

)
du1

l du2
l =

∫

Nl,+
s,t

∂φI

∂ti
φ̄J

ω
du1

l du2
l

= O(1)

∫

Nl,+
s,t

1

|ul|
1

h
du1

l du2
l

= O(1),(100)

and similarly for N l,−
s,t . Similarly,
∫

Rs,t\
⋃

N l
s,t

∂

∂ti

(
φI φ̄J

ω

)
du1

l du2
l = O(1).(101)

We finally compute the contribution from the boundary integrals in Lemma 34.
Indeed, as in (90)

∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φI φ̄J

ω
du1

i du2
i

)

= (1 + O((− log |ti|)−2))
i

2

∫

Bi,+
s,t

η(ui)H(ui)
φI φ̄J

h
dūi.(102)

By (58), Lemma 28 and (7) we have as before
∫

Bi,+
s,t

iηHi(ui)
∂

∂ui

(
φI φ̄J

ω
du1

i du2
i

)
= O((− log |ti|)2),(103)

and similarly for Bi,−
s,t . Combining (99), (100), (101) and (103) we obtain the desired

estimate (94). The other estimates are obtained analogously. !
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