Reverse Engineering Convolutional Neural Networks Through
Side-channel Information Leaks

Weizhe Hua, Zhiru Zhang, and G. Edward Suh
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{wh399, zhiruz, gs272}@cornell.edu

ABSTRACT

A convolutional neural network (CNN) model represents a crucial
piece of intellectual property in many applications. Revealing its
structure or weights would leak confidential information. In this pa-
per we present novel reverse-engineering attacks on CNNs running
on a hardware accelerator, where an adversary can feed inputs to
the accelerator and observe the resulting off-chip memory accesses.
Our study shows that even with data encryption, the adversary can
infer the underlying network structure by exploiting the memory
and timing side-channels. We further identify the information leak-
age on the values of weights when a CNN accelerator performs
dynamic zero pruning for off-chip memory accesses. Overall, this
work reveals the importance of hiding off-chip memory access
pattern to truly protect confidential CNN models.

1 INTRODUCTION

Convolutional neural networks (CNNs) are quickly becoming an
essential tool in a wide range of machine learning applications.
In many application scenarios, CNN models — both its network
structure and learnable parameters (i.e., weights) — need to be
protected as confidential information: (1) for companies that rely
on a CNN to provide a core or value-added service, the underlying
neural network model represents an important piece of intellectual
property; (2) in personalized applications such as digital assistants,
CNN models are trained using private data, and the weights need to
be kept confidential for privacy [13]; (3) furthermore, recent studies
on the adversarial network show that an attacker can intentionally
affect the outcome of CNN-based classification and object detection
by perturbing input images when the network model is known [5].

This paper investigates reverse-engineering attacks on CNN
models exploiting information leaks through memory and timing
side-channels. Specifically, we study attacks on a hardware acceler-
ator that is protected by secure processor techniques similar to the
scheme used in Intel SGX [2]. In this setting, an adversary can feed
inputs to a protected computation and observe off-chip accesses,
but cannot observe or change the computation and the internal
state. Surprisingly, we show that an adversary can effectively re-
verse engineer both the structure and the weights of an encrypted
CNN model running on a hardware accelerator that performs the in-
ference (i.e., forward propagation). Because the CNN states (feature
maps) and parameters (weights) are often quite large, it is impracti-
cal to hold all feature maps, weights, and intermediate results in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06. .. $15.00
https://doi.org/https://doi.org/10.1145/3195970.3196105

CNN Accelerator

Instructions PE || PE || PE
Host | _| Decoder + Disp er
CPU
14 Intermediate | [L? IL°% | JPE
[] ——==
o Weights results Pe || PE || PE
2] p
g & Onohip |00 Processing
EXS] Buffer r |
DRAM ¢4 S % EMARS Element
2 Array

Figure 1: A typical CNN inference accelerator.

on-chip memory of an accelerator. As a result, CNN accelerators
typically store feature maps and weights in off-chip memory and
access them as needed. Even if data values are encrypted, memory
access patterns reveal which memory locations are accessed and
whether each access is a read or a write. In this study, we show
that the memory access patterns expose key parameters of the net-
work structure such as the number of layers, input/output sizes
of each layer, the size of filters, data dependencies among layers,
etc. Given this information, an attacker can infer a small set of
possible network structures by further considering the execution
time of a CNN accelerator, which indicates the amount of computa-
tion. In our experiments, we demonstrate the proposed attack by
reversing engineering the structures of two popular CNN models
in AlexNet [9] and SqueezeNet [8].

In addition to revealing the network structure, this study shows
that the memory access patterns also leak information on weight
values when dynamic zero pruning is used for off-chip memory
accesses. The optimization is based on the observation that the
feature maps from the intermediate layers of a CNN model contain
a large number of zeros. Recent studies in [1, 11, 12] have shown
that these feature maps can be compressed in DRAM by only storing
non-zero values and the associated indices to significantly reduce
the memory bandwidth usage. Unfortunately, this optimization
leaks the number of zero-valued pixels pruned by the activation
function, which can be leveraged to infer the ratio between each
weight and the bias value. To the best of our knowledge, this paper
represents the first study on reverse engineering of convolutional
neural network models on hardware accelerators, especially in
the context of exploiting the side channel through memory access
patterns.

The rest of the paper is organized as follows: Section 2 defines
the assumed threat model; Sections 3 and 4 present two reverse-
engineering attacks on the structure and the weights of a CNN
model and evaluate the effectiveness of the proposed attacks; Sec-
tion 5 discusses the related work, and Section 6 concludes the paper.

2 THREAT MODEL

Figure 1 shows a typical CNN inference accelerator architecture
that is used in this study. In order to fit the input feature maps (IFMs)
and filters in the on-chip buffers, IFMs and filters are partitioned
into small tiles. Then, the convolution operation is performed over

Direct Access

Weights
| IFM Untrusted
Encryption/Decryption | OFM Memory System

=~ e cp
Input qﬂg‘s
CNN Inference N E——
A

“Protected” CNN Unencrypted
Accelerator Output

Adversary

Figure 2: Threat model.

all the tiles sequentially. For each tile, the accelerator receives in-
structions from the host CPU, reads an IFM tile and corresponding
weights from an off-chip DRAM into on-chip buffers, performs
matrix multiplications and accumulations in the processing ele-
ment (PE) array, and store the intermediate results back to on-chip
buffers. After computing over all tiles, the accelerator combines the
intermediate results and writes an output feature map (OFM) back
to DRAM after activation and pooling. The shared cache between
the accelerator and CPU is not considered as part of the architecture.
The reasons are threefold: (1) the data locality has been exploited
by the on-chip buffers; (2) the shared cache is not able to hold all
feature maps (FMAPs) and weights; (3) using shared cache to store
FMAPs and weights can significantly degrade the performance of
other applications, which are sharing the cache. The FMAPs and
weights are typically stored in DRAM, while the intermediate re-
sults are kept in on-chip buffers. After finishing the computation of
all layers in a forward-propagation fashion, the accelerator returns
the probabilities of each class as the classification result.

Figure 2 illustrates the threat model, which captures the common
protection capabilities provided by today’s secure processor tech-
nologies such as Intel SGX [2]. The internal operations and state
of the CNN accelerator cannot be directly observed or changed
by an adversary. The CNN accelerator encrypts feature maps (in-
put/output of each layer) and weights in DRAM so that their values
are protected. However, the adversary can control inputs to the
accelerator and observe the address and the type (read or write) for
each off-chip memory access. The above threat model represents
what is typically employed for today’s secure processors and the
level of protection that can be implemented with low overhead. For
example, Intel SGX is designed to provide an isolated and protected
execution environment for a security-critical program, even when
an operating system is untrusted or a system is physically exposed.
In such systems, the internal operations and state of a program are
protected, although inputs and outputs are still exposed to an adver-
sary. Memory accesses can be directly observed through physical
probing of a memory bus or inserting hardware Trojan. A compro-
mised OS can also observe memory accesses through side channels
such as page faults and cache conflicts [17] or by repeated reading
memory to detect changes [10].

The objective of the reverse-engineering attacks studied in this
paper is to construct a duplicated CNN model that has comparable
accuracy to the target model by observing the hardware accelerator.
This paper studies two different reverse-engineering attacks on
CNNGs. The first attack aims to reverse engineer a network structure
(Section 3). The second attack aims to find weight values (Section 4).
Table 1 lists the assumptions made by each attack.

3 STRUCTURE REVERSE ENGINEERING

In this section, we discuss how a convolutional neural network
structure can be identified based on the memory access patterns.

Reverse engineering attacks on

Assumptions Stru.cture Weights
(Section 3) (Section 4)
Observe memory access patterns Y y
Observe the input value N Y
Control the input value N Y
Possess training data Y N
Know the network structure / Y

Table 1: Assumptions for each attack - Y: Yes; y: only write
accesses need to be visible; N: No; (/): not applicable.

[Layer parameter [Definition |

l WiEM/OFM | Width of the input/output feature map ‘
| Dirmjorm | Depth of the input/output feature map ‘
Feonv/pool Width of the conv/pooling filter
Sconv/pool Stride of the conv/pooling filter
Peonv/pool Number of pixels padded in the conv/pooling layer
[P [Indicate the existence of the pooling layer |

Table 2: Parameters to define a CNN structure.

3.1 Attack Methodology

In order to construct a neural network, an adversary needs to know
the number of layers, parameters for each layer, and connections
among layers. A typical CNN uses a simple sequential connection
only between consecutive layers. More recent proposal [7] intro-
duces an additional bypass connection among layers.

We show that memory access patterns relatively easily reveal the
overall layer structure through read-after-write (RAW) dependency.
During the CNN inference, the RAW dependency on FMAPs must
be preserved by the accelerator, regardless of its micro-architecture
details and data reuse strategies. The OFMs are written by a pre-
ceding layer and is read as the IFMs by the following layer. Since
FMAPs are stored off-chip, this RAW dependency is reflected in
the memory trace and visible to the adversary as a write followed
by a read on the same memory address. These RAW dependencies
can be used by the adversary to identify the boundary as well as
the connections between layers. More concretely, the beginning of
a new convolutional/fully connected layer is revealed by the first
read access on a memory address that was previously written.

Once the layer boundaries are identified, the adversary needs
to further reverse engineer the key parameters of each layer. The
first step towards this goal is to distinguish memory accesses to
filters, IFM, and OFM. Since the filters are read-only and not up-
dated during the inference, the adversary can differentiate memory
accesses to filters from those accessing FMAPs. The read/write
operations on IFM and OFM can also be distinguished since they
have different access patterns. During the computation within a
layer, memory locations holding OFM will only be written, typi-
cally once. In contrast, if the adversary observes a read access on
an address written in the previous layer before, this read must be
for IFM. FMAPs and filters are stored as arrays in memory, which
means that each is stored in its own contiguous memory locations.
Therefore, an adversary can infer the sizes of IFM (SIZEF 1), OFM
(SIZEofFm), and filters (SIZEpr TR) of each layer by observing the
memory locations accessed for each data structure within a layer.

So far, we have shown that the memory access pattern of a
CNN accelerator reveals the number of layers, data dependencies
(connections) among layers, the size of the IFM, OFM, and filters
for each layer in the target CNN model. However, not all operations

in the neural network are explicitly revealed by the memory access
pattern. For example, a CNN performs an activation operation
after each convolution followed by an optional pooling operation.
These three operations are often merged and performed together
as a single layer in CNN accelerator for efficiency. As a result,
the internal outputs of these three operations are invisible to the
adversary.

There are 11 structural parameters that the adversary needs
to determine for each layer in order to fully define the network
structure, as listed in Table 2. The problem of identifying each layer
structure can be formulated as solving the 11 integer parameters
with the following equations:

SIZErpm = Wiy X Drem ™
SIZEorm = W pp X Dorm @
SIZEFLTR = Fgon'u X Dipm X Dorm ®)
W +1+ (Ppoot = Fpoot) X P
Worm = p " @
Spool XP+P
Wirm

Sconv £ Feonwv < 9)

W, —F, + P,
Spool < Fpool < S Sconv 1 i ©

conov

Peonv < Feonv (7)
Ppool < Fpool (8)

Equations (1)-(3) are derived from the size of the FMAPs and
weights revealed by the memory access patterns. Equation (4) ex-
presses the relationship between the width of IFM and OFM. The
inequalities are based on the following practical considerations.
First, Feono and Fpo0; should be no less than the stride to cover
all the pixels in IFM. Otherwise, some pixels in IFM are not con-
nected with the weights and become redundant. Second, the filters
should be smaller compared to the width of IFM. Lastly, Pcopne and
P01 should be smaller than Feono and Fp,o; respectively because
the convolutional/pooling filter operating on zero-valued pixels is
equivalent to adding zero-padding for the next layer.

In our threat model, the adversary also has the knowledge of
input and output of the accelerator which reveals the Wy and
Drr of the first layer and the Doy of the last layer. Although
there is no previous write on the IFM of the first layer, the SIZErr
can be calculated using Equation 1 and thus distinguished from the
weights. Moreover, the W ps of the last layer is one since there is
exactly one score for each class. With these additional constraints,
adversary can enumerate all possible parameters that satisfy Equa-
tion (1)-(8) for the first layer and feed the possible Wy and
Dorm as the constraints for the second layer. Through enumerat-
ing possible parameters layer-by-layer, the network structure is the
combination of possible configurations of each layer.

In order to further reduce the number of possible structures,
the execution time of each layer is measured by recording the
number of clock cycles between the boundaries and introduced
as an additional constraint. The number of MAC operations of a
specific layer can be computed with the layer parameters (# of MACs
= W(%FM X DoFm X F2, X Drpa). Given that the inference of
most CNN models is compute-bound, we assume that the execution
time is roughly proportional to the number of MAC operations.
Thus, the execution time ratio between layers should be consistent
with the ratio of MAC operations for the correct configuration.

Once a small number of candidate structures are identified through
the reverse engineering, an adversary can pick the best structure

Networks LeNet ConvNet AlexNet SqueezeNet
of layers 4 4 8 18
of possible structures 9 6 24 9

Table 3: Possible structures for different networks.

T
1312doo{ = FMAP Reads
FLTR Reads

T
1 1
1 1 !
1 1 !
I 1 !
@ + FMAP Writes ! /
© 1122880 i |
¢ : | o ! ’
3 S S P2 S LT
g fa2q001 2} g r 34 38 U8
g S | S i A
= | - I |
5980 - i — i i i
1 — ! ' i
YN, oorroreoeroee : ' ;
b71b00 1— T — T 3
o 05 1.0 1.5 2.0
Clock cycles 1e9

Figure 3: Memory access pattern of the FPGA accelerator.

by training and comparing the accuracy. Algorithm 1 summarizes
the overall structure reverse-engineering attack procedure.

Algorithm 1 Steps to uncover the possible CNN structures

1: Identify layer boundaries by observing the RAW dependency
on FMAPs

2: Record the execution time of each layer and calculate the
SIZErrpm, SIZEoFM, and SIZEpr TR based on the memory ac-
cess pattern

3: Find possible configurations for each layer with the constraints
stated in Equations (1)-(8)

4: Filter out the configurations where the number of MAC opera-
tions and the execution time do not match

5: List valid combination of layers as possible structure which

satisfies (Worm; = Wirm,,,) A (Dorm; = Dirm,,,)

3.2 Case Studies

To evaluate the proposed structure reverse-engineering attack,
we performed case studies on popular CNN models: an 8-layer
AlexNet [9] and a more recent 18-layer SqueezeNet [8]. We also
studied other smaller networks such as LeNet and ConvNet. The
number of possible structures identified by the proposed attack is
summarized in Table 3.

We implemented an FPGA accelerator for AlexNet using Vivado
HLS and performed the attack by inserting a hardware Trojan to
collect the memory trace of the accelerator. The layer boundaries
are identified by observing the RAW dependency on FMAPs, as de-
picted in Figure 3. Table 4 lists the possible configurations for each
layer in AlexNet. A total of 24 valid combinations are uncovered
by applying the proposed method on the FPGA prototype. A pool-
ing layer, if exists, is considered as part of the convolutional layer.
AlexNet consists of five CONV layers and three FC layers. The FC
layers are not listed in the Table 4 because they use the largest
possible filter size (WIZF m X Dirm X Dorm) and always have a
unique configuration with respect to the Equations (1)-(8). The orig-
inal AlexNet structure consists of CONV1y, CONV2{, CONV3;,
CONV4, and CONV'51. The top-1 validation accuracies of 24 possi-
ble structures are shown in Figure 4. The original AlexNet achieves
the fourth highest accuracy (57.3%). The attack also found three
other network structure, which are slightly different from the orig-
inal AlexNet and have higher accuracy. The best structure achieves
12.3% higher accuracy than the worst one, showing the importance
of a good network structure.

[Layer][Wirm [Dirm [Worm [Dorm][Feono || Sconv || Peonv || Fpoot || Spoot 1| Ppoot |
2 3 3 2

CONV1; 227 3 27 96 11 4 1

CONV1, 227 3 27 96 11 4 2 4 2 0
CONV2; 27 96 13 256 5 1 2 3 2 0
CONV2, 27 96 26 64 10 1 4 N/A N/A N/A
CONV3; 13 256 13 384 3 1 1 N/A N/A N/A
CONV3, 26 64 13 384 6 2 2 N/A N/A N/A
CONV4 13 384 13 384 3 1 1 N/A N/A N/A
CONV5; 13 384 6 256 3 1 1 3 2 0
CONV5; 13 384 12 64 6 1 2 N/A N/A N/A
CONV53 13 384 3 1024 3 2 0 2 2 0
CONV54 13 384 3 1024 3 2 0 4 1 0
CONV55 13 384 3 1024 3 2 1 3 2 0
CONV56 13 384 4 576 2 1 0 3 3 0

Table 4: Possible AlexNet layer configurations — N/A indi-
cates that there is no pooling operation.

60

0Other possible network structures
58 | |0 BOriginal AlexNet structure 2

50 A

mﬂﬂﬂﬂﬂ

Figure 4: Top-1 validation accuracy among 24 possible struc-
tures for AlexNet.

Top-1 validation accuracy (%)

Possible AlexNet structures

In addition to AlexNet, we also studied reverse engineering of
a more recent state-of-art CNN structure. Compared to AlexNet,
two new trends emerged in network structure designs in the past
few years. GoogLeNet [16] proposed concatenating multiple con-
volution filters with different F¢ono as a module and using this
module repeatedly to form the network. ResNet [7] introduced a
bypass connection between two non-adjacent layers. SqueezeNet
adopted both of these structural changes and achieves an accuracy
comparable to that of AlexNet while using 50x less weights.

We use SqueezeNe as an example to demonstrate the effective-
ness of the proposed attack on a more recent network. SqueezeNet
consists of two CONV layers and eight fire modules and each fire
module is made of concatenating one 1x1 and two 3x3 convolutional
filters. The 1x1 CONV layer uses small Do to squeeze the size of
FMAPs. The OFM of the 1x1 CONV layer feeds into two 3x3 CONV
layers in parallel and the OFMs of the two following layers are con-
catenated along the depth dimension as the final OFM of the fire
module. Compared to normal feed-through structure, SqueezeNet
also introduces three bypass paths connecting non-adjacent fire
modules. The bypass path is combined with the feed-through path
by applying element-wise additions on the OFMs.

To our best knowledge, there is no accelerator design that uses
dedicated hardware for the fire module because it can be imple-
mented using existing CONV layer accelerators. The three CONV
layers will be executed sequentially. The IFM is convolved with 1x1
CONV filter! first and the OFM of this 1x1 convolution is then con-
voluted with 1x1 and 3x3 CONV filters in series. Assuming that the
three convolution operations are executed sequentially on a CNN
accelerator, the adversary can observe the RAW dependency be-
tween layers which reveals the structure of the fire module. Instead
of having RAW dependency between the neighboring layers, the

IN X N filter is an abbreviation of N X N X Do filter. And N X N convolution
stands for performing convolution with N X N X Do filter.

0.3 \ \

|— Original SqueezeNet architecture

Validation accuracy (%)

Training epochs

Figure 5: The top-5 validation accuracy of nine possible
structures for SqueezeNet.

bypass path introduces extra RAW dependency across non-adjacent
layers. The easiest way of implementing this bypass function is
to wait until two OFMs from two paths are both ready, then load
them from memory and perform the element-wise additions. This
method is adopted by Caffe and TensorFlow. In both frameworks, a
separate element-wise layer is introduced to realize the bypass func-
tion. Assuming that the CNN accelerator follows the same strategy,
the bypass path can also be detected from the RAW dependency in
memory accesses.

We performed the proposed attack on SqueezeNet, and found
that there are nine possible configurations for CONV1 layer, 12
possible configurations for the fire modules, and two possible con-
figurations for the CONV10 layer. Theoretically, there exists 329
valid combinations, which makes it expensive to test all valid com-
binations to identify the network structure. However, large CNNs
are typically constructed in a modular fashion, where the same
building block is reused in order to reduce the complexity. If we
assume that the structures of all fire module are identical, there
exists only one valid configuration for the fire module and CONV10
layer. The number of possible CNN structure candidates is reduced
to nine. This example shows that the number of possible structures
does not necessarily grow exponentially with the number of layers.

The time to search for the best network structure among the
possible candidates can be reduced by using short training to
quickly filter out unpromising candidates with low classification
accuracy. For example, CNN training is often performed using
many epochs, where one epoch goes through the entire training
dataset once. Figure 5 shows the accuracy of possible candidates for
SqueezeNet when only three epochs were used for training. The
original SqueezeNet proposed using around 70 epochs for training.
There is a significant difference in accuracy among the structure
candidates even with a small number of epochs, suggesting that
unpromising network structures can be quickly filtered out.

4 REVERSE ENGINEERING WEIGHTS
EXPLOITING ZERO PRUNING

In this section, we introduce an attach to obtain information on
weights when an optimization technique is used to prune zeros in
FMAPs. This attack also exploits information leaks through memory
access patterns of the CNN accelerator. However, only the write
accesses need to be observable for the attack.

In recent years, multiple CNN accelerator designs observed that
the ReLU function leads to a large number of zeros in the feature
maps and proposed to dynamically prune those zeros [1, 11, 12].

Input Feature Map
..... nxn filter

.oo P oo
000*:000
0|00 0|0/|0

(a) 1x1 CONV with stride 1. (b) n x n CONV with stride 1.

Figure 6: 1x1 and n X n convolution.

Such zero pruning technique is shown to be quite effective, reduc-
ing convolution operations by 40% on average without affecting the
classification accuracy. The zero pruning also reduces the number
of memory accesses by only writing and reading non-zero values,
for example using a run-length encoding. However, the dynamic
zero pruning reveals the number of zeros in OFM. An adversary
who can observe memory accesses can detect when the number
of zeros changes. We show that this dynamic behavior leaks in-
formation about the weights of the CNN model. The adversary
cannot precisely recover all weights, but can recover substantial
information so that each weight can be expressed as a function of
one bias value.

4.1 Attack Methodology

In a CNN accelerator, different inputs lead to a different number of
non-zero pixels in the OFM of each layer. With the dynamic zero
pruning, the adversary can observe the changes in the number of
non-zero pixels in OFM. If the activation function f maps negative
values to zero as in ReLU, the change in the number of zeros in OFM
actually reveals when a pixel crosses the zero boundary. The value
of each pixel y in OFM can be expressed as a function of the value of
pixels x in IFM, weights w, and a bias b, thatis y = f(X; w; - x; +b).
Therefore, if an adversary can slowly change the pixel values in
IFM and observe the number of zeros in OFM, the adversary can
effectively find out when the value of a pixel in OFM becomes zero
(X; wi - x; +b = 0). If the adversary can find out which pixel is zero,
then one can write a set of linear equations for w; and b given that
the values of input x; are known.

Unfortunately, the dynamic zero pruning only leaks the number
of zero-valued pixels in OFM while the exact locations of those
pixels along W, H, and D dimensions remain unknown. To solve
the problem, an adversary can provide carefully crafted inputs to
the accelerator. Reverse engineering the weights of 1x1 CONV, 2x2
CONYV, and FC layers are more straightforward compared to the
general case with a larger filter (Feone > 2). We first illustrate our
approach using a special case when Fopno, = 1. Then, the approach
is extended to work with any CONV filter size.

Figures 6a shows an example where a 3 X 3 IFM is convolved
with a 1 x 1 filter. In the 1x1 convolution, a single weight is shared
by all Wyrppr X Hrpa pixels on the same 2-D plane. In other words,
the product of any pixel in IFM and the weight only affect one pixel
in the corresponding OFM. This relationship can be expressed by
yi,j = xi,j-w+b. Thus, for a 1x1 CONV layer, an adversary can vary
the value of one specific pixel in IFM (denoted as a variable x) and
set all other pixels to be 0 as depicted in Figure 6a. By monitoring the
number of non-zeros in OFM, the adversary can easily determine if
w - x + b > 0 holds for a given x. Through a binary search on the
value of x, the adversary will be able to find a maximum xg and a
minimum xr, which satisfy:

W-xg+b<0)A(w-xp+b>0) 9)

Then (xg + x1)/2 can be estimated to be the input that produces
zero (y = 0), which we subsequently refer to as a zero crossing
point. It can be used to approximate the value of b/w.

Figure 6b illustrates the general case of applying a n X n CONV
filter on an IFM (Wjppr > 2n). The number of connections be-
tween each pixel and the weights is shown in the IFM. Having a
connection with the weight w;,; means that pixel contributes to
the corresponding output pixel y;,;. For instance, pixel xq ¢ at the
top-left corner is only connected with wy, and contributes to yo,o
whereas pixel x1,¢ is connected with wy,o and wy,9, contributing
to both yo,0 and y1,0. xn, n, Which is a pixel on the nt" column and
row, is connected with all n? weights in the 2-D filter.

As the weights closer to the corner contributes to a less numbers
of output pixels, we can iteratively find the ratio between each
filter weight and the bias?. For example, performing a binary search
on xg,o reveals the approximate value of b/wy,o. Then, a search
on x1,0 while setting all other pixels to zero gives two regions
where the number of zero-valued outputs changes between 0 and 2.
Each one of these zero-crossing points is the approximate value of
b/wo,0 or b/wi,0. Given that b/wy,o is already known, an attacker
can determine which value corresponds to b/wi,o. Algorithm 2
describes the proposed method for discovering all b/w; j on the
same 2-D plane. Note that, if w;,j = 0, no xo and x; will satisfy
Equation (9) which means no zero-crossing point can be found
during the search. Therefore, zero-valued weights can be identified
from missing zero-crossing points.

Algorithm 2 Reverse engineering CNN weights

1: fori=0to Feony —1do

2 for j=0to Feony — 1 do

3: Set all inputs except x; ; to zero.

4 Find (xg + x)/2 values where the number of non-zero
output pixels change (zero crossing points).

5: Set the new zero-crossing point as b/w;,;.
6: end for
7: end for

A convolutional layer may be followed by a maximum or average
pooling layer. These two layers are usually merged in a CNN ac-
celerator to avoid unnecessary off-chip memory accesses. Without
the pooling layer, varying x1,0 while keeping other inputs to be
zero leads to two zero-crossing points. However, when there is a
max pooling layer where a 2x2 pooling window is concatenated
with a n X n CONV layer, the search on x1,9 only gives one zero-
crossing point because both non-zero outputs are replaced by the
same maximum value of wg, o - x1,0 and wy,o - x1,0. If w10 < wo,0,
this zero-crossing point corresponds to b/wy,o. In order to also find
b/w1,0, we need to keep both xg ¢ and x1,¢ as non-zero variables as
in the following equation:

(10)

Yo,0 = max {wo,o - X0,0 + W1,0 - X1,0, W0,0 X1,0}
Y1,0 = Wo,0 - X1,0 + b

Given that the b/wy,o has already been inferred, the attacker can
find the value for x1, o which satisfies y;,0 < 0. Then performing
binary search on xg,o to find the zero crossing point for wq g -

2The same bias is shared by all the weights in one filter.

. A Rechannel
B 3 © B channel
s H G channel

ones g/m

40, 6o 40 20
_ Weights Filters
in the same filter

Figure 7: Weight/Bias ratio of the CONV1 layer in AlexNet.

) b —X1,0 . .
X0,0 + W1,0 - X1,0 + b gives — = . This modified

Wio 14 x0,0 Wo0 /b
algorithm can be generalized to be compatible with any k X k
max pooling window. With a 2x2 average pooling layer, the same
approach can be applied with the modified equation in Equation (11)

—bx1,
and b/wi,o can be expressed with 0
2b + x0,0 *W0,0

W1,0°X1,0+b+Wo,0°X0,0+b

4
w0 xoth (11)
4

Yo,0 =
Y1,0

The proposed attack on the dynamic zero pruning scheme al-
lows each weight to be expressed as a function of the bias. This
significantly reduces the entropy in weights as only the bias is left
to be unknown. This unknown bias cannot be determined only
from the information leak through the number of non-zero pixels.
The changes in the number of non-zero pixels in OFM provides
n? unique equalities, one for each pixel for a n x n convolutional
filter. Yet, there exists n? + 1 variables for the filter (n? weights
and one bias value). In order to determine the exact weights and
the bias, an adversary needs to leverage additional information.
For example, recent accelerator designs [1, 12] proposed to use a
tunable threshold function in place of the ReLU function in order to
prune more pixels with small values and thus improves efficiency.
However, if this non-zero threshold value is known and can be
adjusted, an adversary can set the input to be all zeros and vary
the threshold to find the bias values. Since the ratio between each
weight and bias is known, this optimization enables an adversary
to fully recover the weight and bias values.

4.2 Case Study

We demonstrate the proposed attack on the first layer of a com-
pressed AlexNet model [6], which contains zero-valued weights.
The inferred w/b of all 96 filters are shown in Figure 7. The zero-
valued weights are detected and the maximum difference between
the inferred and the original ratio is less than 2710,

5 RELATED WORK

While this work represents the first concrete study on exploiting
information leaks through memory access patterns in the context
of reverse engineering CNNs, hiding information leaks through
memory access patterns in general is a well-studied problem. In
particular, oblivious RAM (ORAM) algorithms [4] provide a strong
theoretical guarantee for obfuscating the memory accesses. ORAM
can be used to prevent attacks proposed in this paper. However,

even an efficient hardware implementation [3] of the state-of-the-
art ORAM algorithm [15] significantly increases the number of
memory accesses, and likely to result in significant overhead for
the CNN inference, which is a memory-intensive task.
Membership inference attack [14] proposed constructing shadow
models to identify whether a input belongs to the original training
dataset or not. This attack relies on training the shadow models
when the network structure is already known. The proposed struc-
ture reverse-engineering attack can be used to enable such attacks.

6 CONCLUSION

This paper studies potential vulnerabilities in CNN accelerators in
the context of stealing a CNN model. The study shows that both
the network structure and weights of a CNN model can be revealed
through the memory access patterns and the input/output of the
accelerator even when no internal access is allowed and all off-
chip data are encrypted. Our findings highlight the need for hiding
memory access patterns for CNN accelerators. The study also shows
that performance optimization can lead to an unexpected security
vulnerability and needs to be carefully reviewed.

7 ACKNOWLEDGMENTS

This work was partially sponsored by NSF award CNS-1618275,
Semiconductor Research Corporation under Task 2686.001, and a
GPU donation from NVIDIA Corporation.

REFERENCES

[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free Deep Neural
Network Computing. In ISCA, 2016.

[2] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptology
ePrint Archive, 2016.

[3] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov,
Dimitrios Serpanos, and Srinivas Devadas. A Low-Latency, Low-Area Hardware
Oblivious RAM Controller. In FCCM, 2015.

[4] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on
Oblivious RAMs. J. ACM, 1996.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.
In NIPS. 2014.

[6] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.
CoRR, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. CoRR, 2015.

[8] Forrest N. Jandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR, 2016.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In NIPS. 2012.

[10] Lichun Li and Anwitaman Datta. Write-only Oblivious RAM-based Privacy-
preserved Access of Outsourced Data. Int. J. Inf. Secur., 2017.

[11] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and

William J. Dally. SCNN: An Accelerator for Compressed-sparse Convolutional

Neural Networks. In ISCA, 2017.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. HernAandez-

Lobato, G. Y. Wei, and D. Brooks. Minerva: Enabling Low-Power, Highly-Accurate

Deep Neural Network Accelerators. In ISCA, 2016.

Reza Shokri and Vitaly Shmatikov. Privacy-Preserving Deep Learning. In Pro-

ceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications

Security, CCS, 2015.

Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Membership Inference

Attacks against Machine Learning Models. CoRR, 2016.

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path ORAM: An Extremely Simple Oblivious

RAM Protocol. In CCS, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going Deeper with Convolutions. CoRR, 2014.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks:

Deterministic Side Channels for Untrusted Operating Systems. In S&P, 2015.

[12

[13

[14

[15

[16

7

	Abstract
	1 Introduction
	2 Threat Model
	3 Structure Reverse Engineering
	3.1 Attack Methodology
	3.2 Case Studies

	4 Reverse Engineering Weights Exploiting Zero Pruning
	4.1 Attack Methodology
	4.2 Case Study

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

