






Layer WI FM DI FM WOFM DOFM Fconv Sconv Pconv Fpool Spool Ppool

CONV 11 227 3 27 96 11 4 1 3 2 0

CONV 12 227 3 27 96 11 4 2 4 2 0

CONV 21 27 96 13 256 5 1 2 3 2 0

CONV 22 27 96 26 64 10 1 4 N/A N/A N/A

CONV 31 13 256 13 384 3 1 1 N/A N/A N/A

CONV 32 26 64 13 384 6 2 2 N/A N/A N/A

CONV 4 13 384 13 384 3 1 1 N/A N/A N/A

CONV 51 13 384 6 256 3 1 1 3 2 0

CONV 52 13 384 12 64 6 1 2 N/A N/A N/A

CONV 53 13 384 3 1024 3 2 0 2 2 0

CONV 54 13 384 3 1024 3 2 0 4 1 0

CONV 55 13 384 3 1024 3 2 1 3 2 0

CONV 56 13 384 4 576 2 1 0 3 3 0

Table 4: Possible AlexNet layer configurations ś N/A indi-
cates that there is no pooling operation.

46

48

50

52

54

56

58

60

4
6
.
5 4
7
.
2

4
7
.
3 4
8
.
1 4
8
.
9

4
9
.
8

5
0
.
2

5
0
.
4 5
0
.
9 5
1
.
5 5
2
.
2 5
2
.
7

5
3
.
8

5
4
.
2

5
4
.
6

5
4
.
9

5
5
.
3

5
6
.
9

5
7 5
7
.
1 5
7
.
7

5
7
.
9

5
8
.
8

5
7
.
3

Possible AlexNet structures

T
o
p
-1

v
al

id
at

io
n

ac
cu

ra
cy

(%
)

Other possible network structures

Original AlexNet structure

Figure 4: Top-1 validation accuracy among 24 possible struc-
tures for AlexNet.

In addition to AlexNet, we also studied reverse engineering of
a more recent state-of-art CNN structure. Compared to AlexNet,
two new trends emerged in network structure designs in the past
few years. GoogLeNet [16] proposed concatenating multiple con-
volution filters with different Fconv as a module and using this
module repeatedly to form the network. ResNet [7] introduced a
bypass connection between two non-adjacent layers. SqueezeNet
adopted both of these structural changes and achieves an accuracy
comparable to that of AlexNet while using 50x less weights.

We use SqueezeNe as an example to demonstrate the effective-
ness of the proposed attack on a more recent network. SqueezeNet
consists of two CONV layers and eight fire modules and each fire
module is made of concatenating one 1x1 and two 3x3 convolutional
filters. The 1x1 CONV layer uses small DOFM to squeeze the size of
FMAPs. The OFM of the 1x1 CONV layer feeds into two 3x3 CONV
layers in parallel and the OFMs of the two following layers are con-
catenated along the depth dimension as the final OFM of the fire
module. Compared to normal feed-through structure, SqueezeNet
also introduces three bypass paths connecting non-adjacent fire
modules. The bypass path is combined with the feed-through path
by applying element-wise additions on the OFMs.

To our best knowledge, there is no accelerator design that uses
dedicated hardware for the fire module because it can be imple-
mented using existing CONV layer accelerators. The three CONV
layers will be executed sequentially. The IFM is convolved with 1x1

CONV filter1 first and the OFM of this 1x1 convolution is then con-
voluted with 1x1 and 3x3 CONV filters in series. Assuming that the
three convolution operations are executed sequentially on a CNN
accelerator, the adversary can observe the RAW dependency be-
tween layers which reveals the structure of the fire module. Instead
of having RAW dependency between the neighboring layers, the

1N ×N filter is an abbreviation of N ×N ×DOFM filter. And N ×N convolution
stands for performing convolution with N × N × DOFM filter.

0 1 2 3
0

0.1

0.2

0.3

Training epochs

V
al
id
at
io
n
ac
cu
ra
cy

(%
)

Original SqueezeNet architecture

Figure 5: The top-5 validation accuracy of nine possible
structures for SqueezeNet.

bypass path introduces extra RAW dependency across non-adjacent
layers. The easiest way of implementing this bypass function is
to wait until two OFMs from two paths are both ready, then load
them from memory and perform the element-wise additions. This
method is adopted by Caffe and TensorFlow. In both frameworks, a
separate element-wise layer is introduced to realize the bypass func-
tion. Assuming that the CNN accelerator follows the same strategy,
the bypass path can also be detected from the RAW dependency in
memory accesses.

We performed the proposed attack on SqueezeNet, and found
that there are nine possible configurations for CONV1 layer, 12
possible configurations for the fire modules, and two possible con-
figurations for the CONV10 layer. Theoretically, there exists 329
valid combinations, which makes it expensive to test all valid com-
binations to identify the network structure. However, large CNNs
are typically constructed in a modular fashion, where the same
building block is reused in order to reduce the complexity. If we
assume that the structures of all fire module are identical, there
exists only one valid configuration for the fire module and CONV10
layer. The number of possible CNN structure candidates is reduced
to nine. This example shows that the number of possible structures
does not necessarily grow exponentially with the number of layers.

The time to search for the best network structure among the
possible candidates can be reduced by using short training to
quickly filter out unpromising candidates with low classification
accuracy. For example, CNN training is often performed using
many epochs, where one epoch goes through the entire training
dataset once. Figure 5 shows the accuracy of possible candidates for
SqueezeNet when only three epochs were used for training. The
original SqueezeNet proposed using around 70 epochs for training.
There is a significant difference in accuracy among the structure
candidates even with a small number of epochs, suggesting that
unpromising network structures can be quickly filtered out.

4 REVERSE ENGINEERING WEIGHTS
EXPLOITING ZERO PRUNING

In this section, we introduce an attach to obtain information on
weights when an optimization technique is used to prune zeros in
FMAPs. This attack also exploits information leaks throughmemory
access patterns of the CNN accelerator. However, only the write
accesses need to be observable for the attack.

In recent years, multiple CNN accelerator designs observed that
the ReLU function leads to a large number of zeros in the feature
maps and proposed to dynamically prune those zeros [1, 11, 12].

4






	Abstract
	1 Introduction
	2 Threat Model
	3 Structure Reverse Engineering
	3.1 Attack Methodology
	3.2 Case Studies

	4 Reverse Engineering Weights Exploiting Zero Pruning
	4.1 Attack Methodology
	4.2 Case Study

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

