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Abstract—A recently proposed convex formulation of the phase
retrieval problem estimates the unknown signal by solving a
simple linear program. This new scheme, known as PhaseMax, is
computationally efficient compared to standard convex relaxation
methods based on lifting techniques. In this paper, we present
an exact performance analysis of PhaseMax under Gaussian
measurements in the large system limit. In contrast to previously
known performance bounds in the literature, our results are
asymptotically exact and they also reveal a sharp phase transition
phenomenon. Furthermore, the geometrical insights gained from
our analysis led us to a novel nonconvex formulation of the phase
retrieval problem and an accompanying iterative algorithm based
on successive linearization and maximization over a polytope.
This new algorithm, which we call PhaseLamp, has provably su-
perior recovery performance over the original PhaseMax method.

I. INTRODUCTION

A. Background

We consider the real-valued phase retrieval problem, which

seeks to recover an unknown signal vector ξ ∈ R
n from m

magnitude measurements {yi, 1 ≤ i ≤ m} of the form:

yi =
∣∣∣aT

i ξ
∣∣∣ , (1)

where {ai ∈ R
n, 1 ≤ i ≤ m} is a set of (known) sensing

vectors. In order to recover ξ, we must resolve the uncertainty

due to the missing phase (or sign) information. This is a

classical problem [1], [2], with many applications in applied

physics and engineering. Over the past decade, it has attracted

significant attention in the optimization and signal processing

communities, with a particular effort towards establishing rig-

orous recovery guarantees for either already existing or newly

proposed solution methods. See [3]–[8] and many references

therein.

Among the most well-established methods are those based

on semidefinite relaxation (e.g., [3], [9].) Such convex opti-

mization methods operate by lifting the original n-dimensional

natural parameter space to a higher dimensional matrix space.

Unfortunately, the increase in the dimensionality introduces

challenges in computational complexity and memory require-

ment for the resulting algorithms. Subsequent works [6]–[8],

[10] suggest going around this issue by developing nonconvex

formulations of the phase retrieval problem and solution algo-

rithms that start with a careful spectral initialization [6], [10],

[11], which is then iteratively refined by a gradient-descent-like

scheme of low computational complexity.

More recently, an alternative convex formulation of the

phase retrieval problem in the original n-dimensional parame-

ter space was independently proposed by two groups of authors

[12], [13]. The resulting method, referred to as PhaseMax in

[13], relaxes the nonconvex equality constraints in (1) to convex

inequality constraints, and solves the following linear program:

x̂ = arg max
x∈Rn

xT
init x

s.t.

∣∣∣aT
i x
∣∣∣ ≤ yi, for 1 ≤ i ≤ m.

(2)

Here, xinit represents an initial guess (or “anchor vector”) that

is correlated with the target vector ξ.

Despite its simple formulation, PhaseMax has strong the-

oretical performance guarantees. Existing analysis [12]–[14]

shows that PhaseMax achieves exact signal recovery from a

nearly optimal number of random measurements. Specifically,

in the case when the sensing vectors are drawn from the Gaus-

sian distribution, the required number of measurements for

perfect reconstruction is shown to be linear with respect to the

underlying dimension, i.e., m = c n for some constant c that

depends on the quality of the initial vector xinit. The analysis

in [12]–[14] gives various upper bounds on the constant c. The

exact value of c, namely the sharp phase transition threshold,

is predicted in a recent work [15] by a subset of the authors of

the current paper, but the analysis in [15] uses the non-rigorous

replica method from statistical physics.

B. Contributions

Our main contributions in this paper are two-fold.

1. Exact recovery guarantees. We present an exact perfor-

mance analysis of the PhaseMax method for the (real-valued)

phase retrieval problem with Gaussian sensing vectors in the

large system limit. When m,n → ∞ at a proportional ratio

α = m/n, we rigorously establish the exact phase transition

threshold. Furthermore, in the regime where perfect recovery

is not feasible, we derive asymptotically exact formulas for the

normalized mean squared error (NMSE), defined as

NMSEn
def
= min{‖ξ − x̂‖22 ,‖ξ + x̂‖22}/‖ξ‖

2
2.

Our formulas reveal the precise dependence of the NMSE on

the oversampling ratio α and on the quality of the initial guess



xinit as measured via the input cosine similarity

ρinit
def
=

∣∣xT
initξ
∣∣

‖xinit‖2‖ξ‖2
. (3)

Our main results can be summarized by the following asymp-

totic characterization of the NMSE:

NMSEn
n→∞−−−−→

{
0 , if ρinit > ρc(α),

f(ρinit, α) > 0 , otherwise,
(4)

where

ρc(α)
def
=

√
1− π/α

tan(π/α)
, (5)

and f(ρinit, α) is explicitly determined by solving a one-

dimensional deterministic fixed point equation [see (8) and

Theorem 1.]

Our analysis builds upon the recently developed convex

Gaussian min-max theorem (CGMT) [16], [17], which involves

a tight version of a classical Gaussian comparison inequality

[18]. The CGMT framework has been successfully applied to

derive precise performance guarantees for structured signal

recovery under (noisy) linear Gaussian measurements, e.g.,

[16], [17], [19], [20]. In [21], the CGMT is used to study signal

recovery from a class of non-linear measurements. However,

this excludes magnitude-only or quadratic measurements that

are relevant for the phase retrieval problem considered here.

The precise nature of our results serves to tighten up the

previously known performance bounds of PhaseMax [12], [13],

[22]. They also exactly match and thus rigorously verify the

predictions in [15] obtained from the non-rigorous replica

method from statistical physics. In fact, to the best of our

knowledge, this is the first exact performance analysis of any of

the existing solution methods for the phase retrieval problem.

2. From precise analysis to algorithmic improvements. As

the second contribution of this paper, we propose a new

nonconvex formulation and an efficient iterative algorithm for

the phase retrieval problem. Our new formulation is inspired

by PhaseMax, the key idea of which is to relax the nonconvex

equality constraints in (1) to convex inequality constraints. The

intersections of all these inequality constraints form a high-

dimensional (random) polytope. Our analysis of the PhaseMax

method provides useful insights on the exact high-dimensional

geometry of that random polytope. These insights then lead

us to a novel nonconvex formulation of the phase retrieval

problem, as follows:

x̂ = arg max
x∈Rn

‖x‖22

s.t.

∣∣∣aT
i x
∣∣∣ ≤ yi, for 1 ≤ i ≤ m.

(6)

Note that (6) is indeed a nonconvex problem, as we aim to

maximize a convex function over a convex domain. We devise

an efficient iterative method, which we call PhaseLamp, to

solve (6). The name comes from the fact that the algorithm is

based on the idea of successive linearization and maximization

over a polytope, where in each step we solve a PhaseMax
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Fig. 1. The NMSE of the PhaseLamp method: theory versus simulations. The
signal dimension is set to n = 1000, and the results are averaged over 10

independent trials. The red curve shows the sufficient condition, as given in
(7), for PhaseLamp to successfully recover the target signal. This is compared
against the blue curve, which shows the phase transition boundary of the
original PhaseMax method as given in (5).

problem with the initialization given by the estimate from the

previous iteration.

We prove that the proposed PhaseLamp method has (strictly)

superior recovery performance over PhaseMax. Specifically,

we show that a sufficient condition for PhaseLamp to perfectly

recover the target signal ξ is

ρinit > ρs(α), (7)

where ρs(α) is determined explicitly by solving a one-

dimensional deterministic fixed point equation (see (17) and

Theorem 3.) In particular, ρs(α) is strictly smaller than ρc(α)
as defined in (5). This is illustrated through a numerical

example shown in Figure 1. We can see that the proposed

PhaseLamp method significantly improves the recovery per-

formance of the PhaseMax method, especially in the more

challenging, and arguably the more practically relevant regime

of small input cosine similarities ρinit. Moreover, although (7)

is only a sufficient condition, it nevertheless provides a good

estimate of the actual performance of the algorithm.

II. PRECISE PERFORMANCE ANALYSIS OF PHASEMAX

A. Technical Assumptions

The asymptotic predictions derived in this paper are based

on the following assumptions.

(A.1) The sensing vectors {ai}1≤i≤m are known and drawn

independently from a Gaussian distribution with zero

mean and covariance matrix In.

(A.2) m = m(n) with αn = m(n)/n→ α > 0 as n→ ∞.

(A.3) Both the target signal vector ξ and the initial guess vector

xinit are independent from the sensing vectors {ai}1≤i≤m.

For convenience, we shall also assume that the initial guess

vector xinit has a positive correlation with the target signal

vector ξ, i.e., ξTxinit > 0. This can be made without loss of

generality since the vectors ξ and −ξ are both valid target

vectors.

B. Fundamental Limits of PhaseMax

In this section, we characterize the asymptotic NMSE of the

PhaseMax method under the stated assumptions. In particular,



our results point out necessary and sufficient conditions on

the oversampling ratio α and on the cosine similarity ρinit for

perfect recovery.

In order to state our results we need a few definitions. For

any fixed cosine similarity ρinit and fixed oversampling ratio

α > 2, define s∗ as follows:

s∗
def
= arg max

0≤s≤1
ρinits+

√
(1− ρ2init)gα(s) (8)

where the function gα(s) : [−1, 1] → (0,∞) (parametrized by

α) is given by

gα(s)
def
= −1−s2+ 2α rα(s)

π
+

2αs

π
atan

(
s

rα(s) + cα

)
, (9)

with cα = 1/tan
(
π/α

)
and

rα(s)
def
=
√
c2α + 1− s2 − cα. (10)

Moreover, define

r∗
def
= rα(s

∗). (11)

Theorem 1 (NMSE of PhaseMax): For any fixed input cosine

similarity ρinit > 0 and any fixed oversampling ratio α > 2, let

s∗, r∗ be defined as in (8) and (11), respectively. Then, under

the assumptions in Section II-A, the NMSE of the PhaseMax

method converges in probability as follows:

NMSEn
n→∞−−−−→ 1 + (s∗)2 + (r∗)2 − 2|s∗| . (12)

The proof of Theorem 1 is based on the CGMT [16],

[17]. To streamline our presentation, we postpone a sketch of

the proof to the appendix. Theorem 1 accurately predicts the

NMSE of PhaseMax in the large system limit. The prediction is

expressed in terms of s∗, the solution to the one-dimensional

deterministic maximization problem in (8). It can be shown

that this optimization problem is concave and that s∗ can be

uniquely determined by a fixed point equation.

Theorem 2 (Phase transition of PhaseMax): For any fixed

cosine similarity ρinit and any fixed oversampling ratio α > 2,

the PhaseMax method perfectly recovers the target signal (in

the sense that NMSEn
n→∞−−−−→ 0, in probability) if and only if

ρinit >

√
1− π/α

tan(π/α)

def
= ρc(α). (13)

A sketch of the proof of Theorem 2 can be found at the

end of the appendix. The theorem establishes a precise phase

transition behavior on the performance of PhaseMax: for any

fixed oversampling ratio α > 2, there is a critical cosine

similarity ρc(α) such that the PhaseMax method perfectly

recovers the target signal vector ξ if and only if ρinit > ρc(α).

C. Numerical Simulations

In this section, we present simulation results that verify the

validity of our predictions given in Theorems 1 and 2. We

solve the convex optimization problem (2) using the technique

introduced in [23]. The signal dimension is set to n = 1000.
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Fig. 2. Asymptotic predictions v.s. numerical simulations. (a) The NMSE of
the PhaseMax method as a function of ρinit, for two different values of α;
(b) The NMSE of the PhaseMax method as a function of α, for two different
values of ρinit. The results are averaged over 50 independent Monte Carlo
trials. The CGMT expressions in this paper verify the non-rigorous replica
predictions derived in [15]. The asymptotic formulas are also in excellent
agreement with the actual performance the PhaseMax method, for n = 1000.

In the first example, we investigate the performance of our

asymptotic predictions for PhaseMax given in (12). Specifi-

cally, we compare the asymptotic predictions against simula-

tion results for different values of the input cosine similarity

ρinit and the oversampling ratio α. Figure 2(a) illustrates the

NMSE of PhaseMax as a function of the input cosine similarity

given in (3), for two different values of the oversampling

ratio. It can be noticed that our asymptotic predictions of

the PhaseMax performance obtained using the CGMT per-

fectly match the asymptotic predictions derived using the non-

rigorous replica method [15]. The asymptotic predictions are

also in excellent agreement with the actual performance of

the PhaseMax method in finite dimensions. Figure 2(a) further

shows that the critical cosine similarity for the considered

oversampling ratio α is given by ρinit(α = 3) ≈ 0.63 and

ρinit(α = 5) ≈ 0.37, respectively, which perfectly matches the

theoretical predictions given in Theorem 2.

Figure 2(b) provides an additional example, where we plot

the NMSE of the PhaseMax method as a function of the

oversampling ratio, for two different values of the input cosine

similarity. Again, the asymptotic performance obtained in

our analysis perfectly matches the actual performance of the

algorithm.

III. ALGORITHMIC IMPROVEMENTS

A. PhaseLamp: A New Algorithm

This section proposes an efficient iterative algorithm to

solve the norm maximization problem formulated in (6). The

optimization problem (6) consists of maximizing a convex

function over a convex feasibility set. Hence, it is nonconcave

where the cost function can be written as a difference of

concave functions. To solve this problem, we propose the

following scheme, named PhaseLamp, based on the idea of

successive linearization and maximization over a polytope:

xk+1 = arg max
x

xT
k x

s.t.

∣∣∣aT
i x
∣∣∣ ≤ yi, for 1 ≤ i ≤ m.

(14)



In essence, at each iteration we approximate (i.e., linearize)

the cost function of (6) via

‖x‖22 ≈ xT
k x,

where xk is the estimate obtained from the previous iteration.

The proposed algorithm starts from an initial guess x0 = xinit

of the target vector ξ. In practice, we terminate the proposed

iterative algorithm when the number of iterations exceeds a

pre-specified number Imax or when ‖xk+1 − xk‖2 ≤ ε for

some fixed threshold ε > 0.

There are several ways to interpret the proposed PhaseLamp

algorithm. First, it can be viewed as an iterative and boot-

strapped version of the PhaseMax method (2) where at each

iteration the previous optimal solution is used as an (improved)

initial guess of the target signal vector ξ. Second, PhaseLamp

is a special case of a minorize-maximization (MM) algorithm

[24]. To see this, we note from the convexity of the cost

function ‖x‖22 that

‖x‖22 ≥ xT
k xk + 2xT

k (x− xk) , ∀xk,x ∈ R
n. (15)

The PhaseLamp procedure consists of iteratively maximizing

the lower bound in (15) over the convex feasibility set in

(6). One particular property of the MM procedure is that it

guarantees that the optimal objective value of the optimization

problem (14) is nondecreasing, i.e.,

‖xk+1‖22 ≥‖xk‖22 , ∀k ≥ 1. (16)

Due to the nonconcavity of the maximization problem (6),

the proposed iterative algorithm is not guaranteed to converge

to the global optimal solution of (6). One particular property

of the fixed points of the optimization problem (14) is that it

is an extreme point of the feasibility set given in (6).

B. Performance Guarantees for PhaseLamp

Using the analysis strategy that leads to Theorems 1 and

2, we are further able to derive a sufficient condition for

PhaseLamp to perfectly recover the target signal ξ.

Again, we first need a few definitions. One can show that,

for any α > 2, the equation

θ cos2 θ + (1 + 3 sin2 θ) atan

(
sin θ cos θ

1 + sin2 θ

)

= 2 sin θ cos θ +
(π
α

)
sin2 θ cos2 θ,

(17)

has a unique solution in the interval θ ∈ (0, π/2). We denote

that solution by θ∗α. Let

ŝα
def
=

tan(θ∗α)√
1 + c2α + tan(θ∗α)

2 + cα
, (18)

where cα = 1/tan
(
π/α

)
, and

`α
def
=

ŝα − α
π

atan

(
ŝα√

c2
α
+1−ŝ2

α

)

√
gα(ŝα)

, (19)

where gα is the function defined in (9). We are now ready to

state the main theorem of this section.
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Fig. 3. Sufficient condition for successful recovery of the PhaseLamp method.
The NMSE as a function of the oversampling ratio α, for (a) ρinit = 0.1; (b)
ρinit = 0.3. The maximum number of iterations is set to Imax = 20 and
ε = 10

−4. The results are averaged over 10 independent Monte Carlo trials.
In both cases, the PhaseLamp method outperforms the PhaseMax method.
Moreover, the sufficient condition for perfect recovery (20) denoted by αs

provides a good estimate of the actual recovery performance of the PhaseLamp
method.

Theorem 3 (Sufficient condition for perfect recovery): Phase-

Lamp perfectly recovers the unknown signal, i.e., it holds in

probability that NMSEn
n→∞−−−−→ 0, if

ρinit >
`α√
`2α + 1

=: ρs(α). (20)

The proof of Theorem 3 is based on CGMT and the

properties of the fixed points of the optimization problem

(14). Due to space constraint, we defer the proof of this

theorem to the long version of the current paper. Unlike the

asymptotically exact characterization given in Theorem 2, the

condition given in Theorem 3 is sufficient but not necessary.

However, as shown in Figure 1 and the additional simulation

results given in the next section, the condition in (20) provides

a reasonably tight bound on the actual performance of the

PhaseLamp algorithm.

C. Numerical Results

We present some numerical results to illustrate the perfor-

mance of the proposed PhaseLamp method and our theoretical

predictions given in Theorem 3. In our experiments, the signal

dimension is set to n = 1000. Figure 3 plots the NMSE as

a function of the oversampling ratio for two different values

of the input cosine similarity (ρinit = 0.1 and ρinit = 0.3,

respectively.)

We observe that the proposed PhaseLamp method indeed

outperforms the original PhaseMax method, and the amount

of improvement is greater when the input cosine similarity is

smaller. Specifically, for ρinit = 0.1, the empirical minimum

sampling ratio for PhaseLamp to perfectly recover ξ is at

α ≈ 3.3, whereas PhaseMax requires α ≈ 18.2 . [The latter

point is not shown in Figure 3(a).] Moreover, Figure 3 also

shows that the sufficient condition developed in Theorem 3 for

PhaseLamp provides a good estimate of the actual performance

of the proposed algorithm. For example, Figure 3(b) demon-

strates that the actual critical oversampling ratio of PhaseLamp

is at αc ≈ 2.9, whereas the sufficient oversampling ratio as

given in Theorem 3 is αs ≈ 3.3.



IV. CONCLUSION

We presented in this paper an asymptotically exact character-

ization of the performance of the PhaseMax method for phase

retrieval. Specifically, our analysis reveals a sharp phase tran-

sition behavior in the performance of the method as one varies

the oversampling ratio and the input cosine similarity. Our

analysis is based on the CGMT, and the results match previous

predictions derived from the non-rigorous replica method.

Moreover, we also presented a new nonconvex formulation

of the phase retrieval problem and PhaseLamp, an iterative

algorithm based on linearization and maximization over a

polytope. We provided a sufficient condition for PhaseLamp to

perfectly retrieve the target vector. Simulation results confirm

the validity of our theoretical predictions. They also show

that the proposed iterative algorithm significantly improves the

recovery performance of the original PhaseMax method.

APPENDIX

In this appendix we provide proof sketches for Theorems 1

and 2.

A. Notation

To simplify the exposition we assume onwards that ξ = e1,

the first vector of the canonical basis of Rn, and that‖xinit‖2 =
1. This assumption can be made without loss of generality due

to rotational invariance of the Gaussian distribution and since

the optimization problems (2) and (6) are scale invariant.

Further, we stack the sensing vectors {aT
i , 1 ≤ i ≤ m} to

form the sensing matrix A ∈ R
m×n. Let q denote the first

column of A and G ∈ R
m×(n−1) the remaining part, i.e.,

A = [q G].

Similarly, define η1 and η̃ such that

xinit = [η1 η̃
T ]T .

Finally, for a vector c, we let |c| and sign(c) to denote its

component-wise absolute value and sign, respectively. Also,

we let min(c) return the minimum value in the vector, and,

z = c ∧ 0 be a vector such that zi = min(ci, 0).

B. Convex Gaussian Min-Max Theorem (CGMT)

The proof follows the CGMT framework [16], [17]. For

ease of reference we summarize here the essential ideas of the

framework; please see [16, Section 6] for the formal statement

of the theorem and further details. The CGMT associates with

a primary optimization (PO) problem a simplified auxiliary

optimization (AO) problem from which we can tightly infer

properties of the original (PO), including the optimal cost and

the optimal solution. The two problems are of the following

form:

Φ(C) = min
w∈Sw

max
u∈Su

uTCw + ψ(w,u), (21)

and

φ(g,h) = min
w∈Sw

max
u∈Su

‖w‖2 gTu+‖u‖2 hTw+ψ(w,u), (22)

respectively. Above, C ∈ R
m×n, g ∈ R

m, h ∈ R
n, the sets

Sw ⊂ R
n and Su ⊂ R

m are compact, and, ψ : Rn×R
m → R.

We think of the two problems in (21) and (22) as random

optimization problems, in which C, g and h all have i.i.d

standard normal entries. According to the CGMT [16, Theorem

6.1], if the sets Sw and Su are convex and ψ is continuous

convex-concave on Sw × Su, then, for any µ ∈ R and t > 0,

it holds

P

(∣∣Φ(C)− µ
∣∣ > t

)
≤ 2P

(∣∣φ(g,h)− µ
∣∣ > t

)
. (23)

In words, concentration of the optimal cost of the AO problem

around µ implies concentration of the optimal cost of the

corresponding PO problem around the same value µ. Moreover,

starting from (23) and under strict convexity conditions, the

CGMT shows that concentration of the optimal solution of

the AO problem implies concentration of the optimal solution

of the PO to the same value. For example, if minimizers of

(22) satisfy
∥∥w∗(g,h)

∥∥
2
→ ζ∗ for some ζ∗ > 0, then, the

same holds true for the minimizers of (21):
∥∥w∗(C)

∥∥
2
→ ζ∗

[16, Theorem 6.1(iii)]. Thus, one can analyze the AO to infer

corresponding properties of the PO, the premise being of

course that the former is simpler to handle than the latter.

C. CGMT for the PhaseMax Method

We apply the CGMT to characterize the asymptotic NMSE

of the PhaseMax optimization in (2) as in (12) and (13). In

this section, we write the PhaseMax optimization in the form

of a PO as in (21), which in turn leads to a corresponding AO

optimization problem. For these problems, we can show that

the conditions of the CGMT on convexity and compactness

are satisfied.

First, we appropriately write the linear program in (2) as a

minmax program. Start with its dual:

min
λ≥0
µ≥0

µT |Aξ|+ λT |Aξ| s.t. ATµ−ATλ = xinit. (24)

Since m > n (recall: α > 2) both the primal and the dual

are bounded feasible with probability one, and strong duality

holds [25]. Therefore, (24) is equivalent to the following

min
λ∈Sλ

µ∈Sµ

max
x

xT
init x+ µT

(
|Aξ| −Ax

)
+ λT

(
|Aξ|+Ax

)
,

(25)

for Sλ = {λ ∈ R
m s.t ‖λ‖∞ ≤ Γ, λ ≥ 0}, Sµ = {µ ∈

R
m s.t ‖µ‖∞ ≤ Γ, µ ≥ 0}, and Γ a sufficiently large positive

constant. Note that the feasibility sets Sλ and Sµ are convex

and compact in R
m, the feasibility set of the variable x is

convex and the cost function in (25) is linear with respect to

each optimization variable. Thus, the order of min-max can be

flipped to obtain the following equivalent,

max
x

min
λ∈Sλ

µ∈Sµ

xT
init x+ µT

(
|Aξ| −Ax

)
+ λT

(
|Aξ|+Ax

)
.

(26)

From strict duality, this is also equivalent to (2). Furthermore,

as already discussed, the optimality set of (2) is bounded.



Naturally then there is a sufficiently large constant B > 0
and sets Sx1

= {x1 ∈ R s.t |x1| ≤ B} and Sx̃ = {x̃ ∈
R

n−1 s.t ‖x̃‖∞ ≤ B} such that (26) can be formulated as

max
x1∈Sx1

x̃∈Sx̃

min
λ∈Sλ

µ∈Sµ

η1x1 + η̃
T
x̃+ (λ− µ)Tqx1 + (λ− µ)TGx̃

+ (λ+ µ)T |q| (27)

At this point, observe that (27) is in the desired form of a PO

as in (21) with G ∈ R
m×(n−1) having i.i.d standard normal

entries and the function ψ, defined as

ψ(x, (λ,µ)) = η1x1 + η̃
T
x̃+ (λ− µ)Tqx1 + (λ+ µ)T |q| .

Further note that the constraint sets are convex compact and ψ
is concave-convex on Sx × (Sλ × Sµ), where x = [x1 x̃

T ]T

and Sx = Sx1
× Sx̃.

We are now ready to formulate the corresponding AO

problem:

max
x1∈Sx1

x̃∈Sx̃

min
λ∈Sλ

µ∈Sµ

‖x̃‖2 gT (λ− µ) +‖λ− µ‖2 hT x̃+ η1x1

+ η̃
T
x̃+ (λ− µ)Tqx1 + (λ+ µ)T |q| . (28)

Following the CGMT framework we proceed onwards with

analyzing (28).

D. Analysis of the Auxiliary Optimization Problem

1) Simplifying the AO: Consider the following change of

variables: v = λ − µ and b = λ + µ. To respect the

nonnegativity of λ and µ, it must be that b ≥ |v|. In fact,

it can be checked that the optimal solution for b is b = |v|.
Thus, the optimization problem (28) can be reduced to the

following:

max
x1∈Sx1

x̃∈Sx̃

min
v∈Sv

(
‖x̃‖2 g + x1q

)T
v +‖v‖2 hT x̃+ η1x1

+ η̃
T
x̃+|v|T |q| .

Above, the set Sv is defined as Sv = {v ∈ R
m s.t ‖v‖∞ ≤

∆}, where ∆ is a sufficiently large positive constant.

Next, observe that if we fix |v|, then the optimal v satisfies

sign(v) = −sign
(
‖x̃‖2 g + qx1

)
which simplifies the opti-

mization to the following

max
x1∈Sx1

x̃∈Sx̃

min
∆≥v≥0

[|q| − |‖x̃‖2 g + qx1|]Tv +‖v‖2 hT x̃

+ η1x1 + η̃
T
x̃.

Next, in the optimization above one can fix the norm of v

and optimize over its direction. Omitting some details, the

optimization becomes

max
x1∈Sx1

x̃∈Sx̃

η1x1 + η̃
T
x̃ (29)

s.t. hT x̃+ h
(
|q| −

∣∣‖x̃‖2 g + x1q
∣∣
)
≥ 0,

where we defined the function h : Rn → R as

h(c) =

{
−‖c ∧ 0‖2 , if min(c) ≤ 0,

min(c) , otherwise.

The final step in simplifying the AO problem is as follows.

For fixed value of x1 (say x1 = s > 0), and for fixed norm

of x̃ (say, ‖x̃‖2 = r), we optimize over the direction of x̃. It

can be shown that this optimization further reduces (29) to the

following two-dimensional optimization problem:

max
s∈Sx1

B≥r≥0

η1s+‖η̃‖2
√
r2 − c(s, r)2 (30)

s.t. c(s, r) ≤ r,

where the function c : R× R → R is defined as

c(s, r) = −h
(
|q| −|rg + sq|

)

‖h‖2
.

2) Convergence Analysis: Now that we have simplified the

AO to a maximization problem over only two scalar variables

as in (30), we are ready to study its asymptotic behavior in the

regime m,n → ∞,m/n → α. Specifically, it can be shown

that the optimization problem (30) converges to the following

deterministic optimization problem

max
|s|<B
B≥r≥0

η1s+‖η̃‖2
√
r2 − α cd(r, s) (31)

s.t. cd(s, r) ≤ r2/α,

where cd(s, r) = Eq,g

[
min

{
|q|−|rg + sq| , 0

}2]
, which takes

the following closed-form:

cd(s, r) =
1

π

[
((1− s)2 + r2)

(
π

2
− atan

(
1− s

r

))

+ ((1 + s)2 + r2)

(
π

2
− atan

(
1 + s

r

))
− 2r

]
. (32)

The full technical details of obtaining the convergence result

in (31) are deferred to the full version of the paper. In short,

pointwise convergence of the objective function of (30) to

(31) for fixed s and r follows easily from the weak law of

large numbers. The corresponding convergence of the optimal

costs requires proof of uniform convergence, which follows by

pointwise convergence and concavity of the objective function

[26, Lemma 7.75]. We call the deterministic two-dimensional

optimization problem in (31) as the scalar performance op-

timization (SPO); according to the CGMT solving the SPO

allows us to conclude on the asymptotic performance of the

PhaseMax problem (cc. the PO).

3) Solving the scalar performance optimization: Recall

that the SPO in (31) is the converging limit of the AO in

(28). Specifically, the optimization variables s and r in (31)

correspond exactly to x1 and ‖x̃‖2 in (28). From this and

uniform convergence discussed previously, the optimal values

of s and r are the converging limits of x1 and of ‖x̃‖2,

respectively. In what follows, we solve the SPO problem for



the optimal s and r. First, using the assumption of the theorem

that α > 2, it can be shown that the feasible set of (31) is

nonempty iff |s| ≤ 1. Second, for fixed |s| ≤ 1, the problem

max
r≥0

r2 − α cd(s, r) (33)

is concave and admits a unique solution

r∗(s) =

√
1

tan
(
π
α

)2 + (1− s2)− 1

tan
(
π
α

) . (34)

At this point, note that we can always find a large enough

constant B̃ > 0 such that r∗(s) < B̃ for all |s| < 1. Therefore,

choosing B in (31) such that B = B̃ guarantees that the

optimal value of r in (31) is given by (34). Substituting this

value back in (31), we can now optimize over s by solving the

following:

max
|s|≤1

η1s+‖η̃‖2
√

(r∗(s))2 − α cd(r∗(s), s). (35)

A few algebra manipulations show that (35) is equivalent to

(8) in the statement of the theorem. To show the equivalence,

further note that η1 and η̃ in (35) are related to the input cosine

similarity ρinit, defined in (3), as follows (recall: ξ = e1.),

η1
‖η̃‖2

=
ρinit√
1− ρ2init

. (36)

Finally, note that the optimization in (35) [eqv., in (8)] inherits

the concavity of (31), i.e., it is a concave program.

4) Phase transition calculations: In this section, we com-

pute the phase transition boundary of the PhaseMax method.

Our goal is to find necessary and sufficient conditions under

which the solution x̂ of the PhaseMax is, with high probability,

equal to ξ = e1. Mapping this to the SPO in (35) [eqv., see

(8)], we seek conditions under which s∗ = 1 and r∗ = 0.

From concavity, this happens if and only if the derivative of

the cost function of the optimization problem (8) at s = 1 is

nonnegative. Hence, the necessary and sufficient condition for

perfect recovery of the PhaseMax method is given by

ρinit√
1− ρ2init

>

√
α

π
tan

(
π

α

)
− 1, (37)

for α > 2. Equivalently, the oversampling ratio α and the input

cosine similarity given in (3) must satisfy

π

α tan
(
π/α

) > 1− ρ2init. (38)

This then gives us the statement of Theorem 2.
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