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Real-Time Rejection and Mitigation of Time
Synchronization Attacks on the Global
Positioning System

Ali Khalajmehrabadi
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Abstraci—This paper introduces the time synchroniza-
tion attack rejection and mitigation (TSARM) technique for
time synchronization attacks over the global positioning
system (GPS). The technique estimates the clock bias and
drift of the GPS receiver along with the possible attack con-
trary to previous approaches. Having estimated the time
instants of the attack, the clock bias and drift of the re-
ceiver are corrected. The proposed technique is computa-
tionally efficient and can be easily implemented in real time
in a fashion complementary to standard algorithms for posi-
tion, velocity, and time estimation in off-the-shelf receivers.
The performance of this technique is evaluated on a set of
collected data from a real GPS receiver. Our method ren-
ders excellent time recovery consistent with the application
requirements. The numerical results demonstrate that the
TSARM technique outperforms competing approaches in
the literature.

Index Terms—Global positioning system (GPS), spoofing
detection, time synchronization attack (TSAs).

|. INTRODUCTION

NFRASTRUCTURES, such as road tolling systems, terres-
Itrial digital video broadcasting, cell phone and air traffic
control towers, real-time industrial control systems, and phasor
measurement units (PMUs) [1] heavily rely on synchronized
precise timing for consistent and accurate network communi-
cations to maintain records and ensure their traceability. The
global positioning system (GPS) provides a time reference of
microsecond precision for these systems [2]-[5].

The GPS-based time-synchronization systems use the civil-
ian GPS channels, which are open to the public [6], [7]. The
unencrypted nature of these signals makes them vulnerable to
unintentional interference and intentional attacks. Thus, the
unauthorized manipulation of GPS signals leads to the
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disruption of correct readings of GPS-based time references and,
thus, is called time synchronization attack (TSA). To address the
impact of malicious attacks, for instance, on PMU data, the Elec-
tric Power Research Institute published a technical report that
recognizes the vulnerability of PMUs to GPS spoofing under
its scenario WAMPAC.12: GPS Time Signal Compromise [8].
These attacks introduce erroneous time stamps that are even-
tually equivalent to inducing wrong phase angle in the PMU
measurements [9], [10]. The impact of TSAs on generator trip
control, transmission line fault detection, voltage stability mon-
itoring, disturbing event locationing, and power system state
estimation has been studied and evaluated both experimentally
[11] and through simulations [12]-[14].

Intentional unauthorized manipulation of GPS signals is com-
monly referred to as GPS spoofing and can be categorized based
on the spoofer mechanism as follows.

1) Jamming (blocking): The spoofer sends high-power sig-
nals to jam the normal operation of the receiver by dis-
rupting the normal operation of the victim receiver, often
referred to as loosing lock. Then, the victim receiver may
lock onto the spoofer signal after jamming [9], [15]-[17].

2) Data-level spoofing: The spoofer manipulates the naviga-
tion data, such as orbital parameters (ephemerides) that
are used to compute satellite locations [13], [15], [18].

3) Signal-level spoofing: The spoofer synthesizes GPS-like
signals that carry the same navigation data as concurrently
broadcasted by the satellites [11].

4) Record-and-replay attack: The spoofer records the au-
thentic GPS signals and retransmits them with selected
delays at higher power [9], [19]. Typically, the spoofer
starts from low-power transmission and increases its
power to force the receiver to lock onto the spoofed (de-
layed) signal. The spoofer may change the transmitting
signal properties such that the victim receiver miscalcu-
lates its estimates.

Common off-the-shelf GPS receivers lack proper mecha-
nisms to detect these attacks. A group of studies have been
directed toward evaluating the requirements for successful at-
tacks, theoretically [16] and experimentally [11], [29]-[31]. For
instance, in [30], a real spoofer as a software-defined radio that
records authentic GPS signals and retransmits fake signals has
been designed. It provides the option of manipulating various
signal properties for spoofing.
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TABLE |

GPS SPOOFING DETECTION TECHNIQUES: DETECTION DOMAIN AND IMPLEMENTATION ASPECTS

Method Attack Detection Domain Attack Implementation Aspects Relevant
EKF GPS navigation domain Not estimated ~ Benchmark for most common GPS receivers Yes
CUSUM [20] GPS baseband signal domain Not estimated ~ Applies hypothesis testing on packets of received signal No
Ref. [21] GPS baseband and power grid ~ Not estimated =~ Combines the statistics of carrier-to-noise ratio difference No
domains between two GPS antennas

SPREE [22] GPS baseband signal domain Not estimated ~ Applies auxiliary peak tracking in the correlators of receiver No
Ref. [23], [24]  GPS baseband signal domain Not estimated ~ Applies a position-information-aided vector tracking loop No
Ref. [25], [26]  GPS navigation domain Not estimated ~ Needs collaboration among multiple GPS receivers No
Ref. [27] GPS navigation domain Not estimated ~ Applies an anti-spoofing particle filter Yes
Ref. [28] GPS navigation domain Not estimated ~ Applies hypothesis testing on a GPS clock signature Yes
TSARM GPS navigation domain Estimated Applies a real-time optimization technique -

A. Spoofing Detection Techniques in the Literature

The first level of countermeasures to reduce the effect of
malicious attacks on GPS receivers typically relies on the re-
ceiver autonomous integrity monitoring (RAIM) [4]. Off-the-
shelf GPS receivers typically apply RAIM consistency checks
to detect the anomalies exploiting measurement redundancies.
For example, RAIM may evaluate the variance of GPS solution
residuals and consequently generate an alarm if it exceeds a
predetermined threshold. Similar variance authentication tech-
niques have been proposed in [22] and [32] based on hypothe-
sis testing on the Kalman filter innovations; however, they are
vulnerable to smarter attacks that pass RAIM checks or the
innovation hypothesis testing.

A plethora of countermeasures have been designed to make
the receivers robust against more sophisticated attacks [9], [15],
[17]-[19], [21]-[25], [27], [28], [33]-[35]. Vector tracking ex-
ploits the signals from all satellites jointly and feeds back the
predicted position, velocity, and time (PVT) to the internal lock
loops [23], [24], [33]. If an attack occurs, the lock loops be-
come unstable which is an indication of attack. Cooperative
GPS receivers can perform authentication checks by analyzing
the integrity of measurements through peer-to-peer communi-
cations [24], [25], [34], [35]. Also, a quick sanity check for
stationary time synchronization devices is to monitor the esti-
mated location. As the true location can be known a priori, any
large shift that exceeds the maximum allowable position esti-
mation error can be an indication of attack [28]. The receiver
carrier-to-noise receiver can be used as an indicator of spoofing
attack [17]. In [21], the difference between the carrier-to-noise
ratios of two GPS antennas has been proposed as a metric of
PMU trustworthiness. In addition, some approaches compare
the receiver’s clock behavior against its statistics in the normal
operation [19], [28], [33].

B. Existing Literature Gaps

As discussed above, prior research studies addressed a breadth
of problems related to GPS spoofing. However, there are certain
gaps that should still be addressed.

1) Most of the works do not provide analytical models for
different types of spoofing attacks. The possible attacking pro-
cedure models are crucial for designing the countermeasures
against the spoofing attacks.

2) Although some countermeasures might be effective for a
certain type of attack, a comprehensive countermeasure devel-
opment is still lacking for defending the GPS receiver. This is
practically needed as the receiver cannot predict the type of
attack.

3) The main effort in the literature is in the detection of possi-
ble spoofing attacks. However, even with the spoofing detection,
the GPS receiver cannot resume its normal operation, especially
in PMU applications where the network’s normal operation can-
not be interrupted. So, the spoofing countermeasures should not
only detect the attacks but also mitigate their effects so that the
network can resume its normal operation.

4) There is a need for simpler solutions, which can be inte-
grated with current systems.

C. Contributions of This Paper

This paper addresses the previously mentioned gaps for sta-
tionary time synchronization systems. To the best of our knowl-
edge, this is the first paper that provides the following major
contributions.

1) The new method is not a mere spoofing detector; it also
estimates the spoofing attack.

2) The spoofed signatures, i.e., clock bias and drift, are cor-
rected using the estimated attack.

3) The new method detects the smartest attacks that maintain
the consistency in the measurement set.

A descriptive comparison between our solution and represen-
tative works in the literature is provided in Table I. A review of
the spoofing detection domain shows that most of the prior art
operates at the baseband signal processing domain, which ne-
cessitates the manipulation of the receiver circuitry. Hence, the
approach in this paper is compared only to those works whose
detection methodology lies in the navigation domain.

The proposed TSA detection and mitigation approach in this
paper consists of two parts. First, a dynamical model is intro-
duced, which analytically models the attacks in the receiver’s
clock bias and drift. Through a proposed novel TSA rejection
and mitigation (TSARM) approach, the clock bias and drift are
estimated along with the attack. Second, the estimated clock
bias and drift are modified based on the estimated attacks so
that the receiver would be able to continue its normal operation
with corrected timing for the application. The proposed method
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detects and mitigates the effects of the smartest and most consis-
tent reported attacks in which the position of the victim receiver
is not altered and the attacks on the pseudoranges are consistent
with the attacks on pseudorange rates.

Different from outlier detection approaches presented in [36]
and [37], the proposed method detects the anomalous behavior
of the spoofer even if the measurement integrity is preserved.
The spoofing mitigation scheme has the following desirable
attributes.

1) It solves a small quadratic program, which makes it appli-
cable to commonly used devices.

2) It can be easily integrated into existing systems without
changing the receiver’s circuitry or necessitating mulitple GPS
receivers as opposed to [21]-[24], [33], and [34].

3) It can run in parallel with current systems and provide an
alert if spoofing has occurred.

4) Without halting the normal operation of the system, cor-
rected timing estimates can be computed.

The proposed antispoofing technique has been evaluated us-
ing a commercial GPS receiver with open-source measurements
access [38]. These measurements have been perturbed with
spoofing attacks specific to PMU operation. Applying the pro-
posed antispoofing technique shows that the clock bias of the
receiver can be corrected within the maximum allowable error
in the PMU IEEE C37.118 standard [39].

Paper Organization: A brief description of the GPS is de-
scribed in Section II. Then, we provide the models for possible
spoofing attacks in Section III. Section IV elaborates on the pro-
posed solution to detect and modify the effect of these attacks.
Our solution is numerically evaluated in Section V followed by
the conclusions in Section VI.

[I. GPS PVT ESTIMATION

In this section, a brief overview of the GPS PVT estimation
is presented.

The main idea of localization and timing through GPS is
trilateration, which relies on the known location of satellites
as well as distance measurements between satellites and the
GPS receiver. In particular, the GPS signal from satellite n
contains a set of navigation data, comprising the ephemeris
and the almanac (typically updated every 2 h and one week,
respectively), together with the signal’s time of transmission
(t,). These data are used to compute the satellite’s position
P = [0 (tn), Yn (tn), 20 (t,)]" in Earth Centered Earth Fixed
coordinates, through a function known to the GPS receiver. Let
tr denote the time that the signal arrives at the GPS receiver.
The distance between the user (GPS receiver) and satellite n» can
be found by multiplying the signal propagation time ¢tz — t,, by
the speed of light c. This quantity is called pseudorange: p,, =
c(tp —t,), n=1,...,N, where N is the number of visible
satellites. The pseudorange is not the exact distance because the
receiver and satellite clocks are both biased with respect to the
absolute GPS time. Let the receiver and satellite clock biases
be denoted by b, and b,, respectively. Therefore, the times
of reception tp and ¢, are related to their absolute values in
GPS time as follows: tp = t3F5 + b, ¢, =SS +b,, n =

1,...,N. The b,’s are computed from the received navigation
data and are considered known. However, the bias b, must be
estimated and should be subtracted from the measured t; to
yield the receiver absolute GPS time t%5, which can be used as
a time reference for synchronization. Synchronization systems
time stamp their readings based on the Coordinated Universal
Time (UTC), which has a known offset with the GPS time as
t9TC = ¢8PS — Atyre, where Atyre is available online.!
Letp, = [*y, Yu, 2u]” be the coordinates of the GPS receiver,
and d,, its true range to satellite n. This distance is expressed via
the locations p,, p, and the times t%PS tSPS as d, = ||p, —

> n

Pull2 = c(t$FS — t$PS). Therefore, the measurement equation
becomes

Pn = ||pn - pu||2 + C(bu - bn) + €, (1)
where n=1,..., N, and ¢, represents the noise. The un-

knowns in (1) are x, Y4, zu,and b, and, therefore, measure-
ments from at least four satellites are needed to estimate them.

Furthermore, the nominal carrier frequency (f. =
1575.42 MHz) of the transmitted signals from the satellite ex-
periences a Doppler shift at the receiver due to the relative
motion between the receiver and the satellite. Hence, in addi-
tion to pseudoranges, pseudorange rates are estimated from the
Doppler shift and are related to the relative satellite velocity v,
and the user velocity v, via

T Pn — Pu

+ by + €5, 2
T / @

pn = (Vn - Vu)
where i)u is the clock drift.

In most cases, there are more than four visible satellites, re-
sulting in an overdetermined system of equations in (1) and (2).
Typical GPS receivers use nonlinear weighted least squares
(WLS) to solve (1) and (2) and provide an estimate of the
location, velocity, clock bias, and clock drift of the receiver,
often referred to as PVT solution. To additionally exploit the
consecutive nature of the estimates, a dynamical model is used.
The conventional dynamical model for stationary receivers is a
random walk model [3, Ch. 9]

o[l + 1] [l
Yull +1] I3 . 032 Yu [l]
i+ | = At || wl [ +wl G
bull +1] ST bull]
bull + 1] ' bu 1]

where [ is the time index, At is the time resolution (typically 1 s),
and w is the noise. The dynamical system (3) and measurement
equations (1) and (2) are the basis for estimating the user PVT
using the extended Kalman filter (EKF).

Previous works have shown that simple attacks are able to
mislead the solutions of WLS or EKF. Stationary GPS-based
time synchronization systems are currently equipped with the
position-hold mode option that can potentially detect an attack
if the GPS position differs from a known receiver location by

[Online].  Available: https://confluence.qps.nl/ginsy/en/utc-to-gps-time-
correction-32245263.html (accessed Jan. 16, 2018).
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a maximum allowed error [40]. This can be used as the first
indication of attack. But, more advanced spoofers, such as the
ones developed in [30], have the ability to manipulate the clock
bias and drift estimates of the stationary receiver without altering
its position and velocity (the latter should be zero). So, even
with EKF on the conventional dynamical models, perturbations
on the pseudoranges in (1) and pseudorange rates in (2) can
be designed so that they directly result in clock bias and drift
perturbations without altering the position and velocity of the
receiver.

I1l. MODELING TSAS

This section puts forth a general attack model that encom-
passes the attack types discussed in the literature. This model is
instrumental for designing the antispoofing technique discussed
in the next section.

While TSAs have different physical mechanisms, they man-
ifest themselves as attacks on pseudorange and pseudorange
rates. These attacks can be modeled as direct perturbations on
(1) and (2) as

pull]l = pli) + 5,1

pull]l = plI) + 5,11
where s, and s; are the spoofing perturbations on pseudoranges
and pseudorange rates, respectively; and ps and p, are, respec-
tively, the spoofed pseudorange and pseudorange rates.

A typical spoofer follows practical considerations to intro-
duce feasible attacks. These considerations can be formulated
as follows.

1) An attack is meaningful if it infringes the maximum al-
lowed error defined in the system specification. For instance,
in PMU applications, the attack should exceed the maximum
allowable error tolerance specified by the IEEE C37.118 Stan-
dard, which is 1% total variation error, equivalently expressed
as 0.573° phase angle error, 26.65 s clock bias error, or 7989 m
of distance-equivalent bias error [39]. On the other hand, code-
division multiple-access (CDMA) cellular networks require tim-
ing accuracy of 10 ys.?

2) Due to the peculiarities of the GPS receivers, the internal
feedback loops may loose lock on the spoofed signal if the
spoofer’s signal properties change rapidly [11], [29].

3) The designed spoofers have the ability to manipulate the
clock drift (by manipulating the Doppler frequency) and clock
bias (by manipulating the code delay) [30]. These perturbations
can be applied separately; however, the smartest attacks main-
tain the consistency of the spoofer’s transmitted signal. This
means that the pertubations on pseudoranges s, are the integra-
tion of perturbations over pseudorange rates s, in (4).

Here, distinguishing between two attack procedures is advan-
tageous as the literature includes very few research reports on
the technical intricacies of the spoofer constraints.

1) Type I: The spoofer manipulates the authentic signal so
that the bias abruptly changes in a very short time [13],

“4)

2[Online]. Available: http://www.endruntechnologies.com/cdma (accessed
Sept. 11, 2017).
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Fig. 1. Type | attack on (a) pseudorange and (b) pseudorange rate
versus local observation time.

[15], [28]. Fig. 1 illustrates this attack. The attack on the
pseudoranges suddenly appears at ¢ = 30 s and perturbs
the pseudoranges by 8000 m. The equivalent attack on
pseudorange rates is a Dirac delta function.

2) Type II: The spoofer gradually manipulates the authentic
signals and changes the clock bias through time [11],
[17], [19], [28], [29], [41]. This attack can be modeled by

spll] = s,[l — 1] + s4[]At
S,‘,[l] = S[,[l — 1] + ép' [Z]At

where s, and $; are, respectively, called distance equiv-

alent velocity and distance equivalent acceleration of

the attack. To maintain the victim receiver lock on the
spoofer’s signals, the attack should not exceed a cer-

tain distance equivalent velocity. Two such limiting num-

bers are reported in the literature, namely |s p| < 400 m/s

in [29] and |s;| < 1000 m/s in [11]. The acceleration

to reach the maximum spoofing velocity is reported to

be |$;| < 5m/s>. The spoofer acceleration $, can be
random, which makes Type II attack quite general. The
distance equivalent velocity can be converted to the equiv-

alent bias change rate (in s/s) through dividing the ve-

locity by the speed of light. Fig. 2 illustrates this attack.

The attack on the pseudoranges starts at ¢ = 30 s and per-

turbs the pseudoranges gradually with distance equivalent
velocity not exceeding 400 m/s and maximum distance
equivalent random acceleration satisfying |s,| < 5 m/s”.

The introduced attack models are quite general and can math-
ematically capture most attacks on the victim receiver’s mea-
surements (pseudoranges and pseudorange rates) discussed in
Section I. In another words, Type I and Type II attacks can be the
result of data-level spoofing, signal-level spoofing, record-and-
replay attack, or a combination of the aformentioned attacks.
The main difference between Type I and Type II attacks is the
spoofing speed. The speed of the attack depends on the capabili-
ties of the spoofer with respect to manipulating various features
of the GPS signals. Indeed, attacks of different speeds have been
reported in the literature provided earlier in this section. This

(&)
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paper does not deal with jamming, which disrupts the navigation
functionality completely, whereas spoofing misleads it.

In the following section, a dynamical model for the clock bias
and drift is introduced, which incorporates these attacks. Based
on this dynamical model, an optimization problem to estimate
these attacks along with the clock bias and drift is proposed.

IV. TSA-AWARE DYNAMICAL MODEL AND TSARM

This section introduces a dynamical model to accommodate
the spoofing attack and a method to estimate the attack. After-
ward, a procedure for approximately nullifying the effects of
the attack on the clock bias and drift is introduced.

A. Novel TSA-Aware Dynamical Model

Modeling of the attack on pseudoranges and pseudorange
rates is motivated by the attack types discussed in the previous
section. These attacks do not alter the position or velocity, but
only the clock bias and clock drift. Our model does not follow
the conventional dynamical model for stationary receivers that
allows the position of the receiver to follow a random walk
model (3). Instead, the known position and velocity of the victim
receiver are exploited jointly. The state vector contains the clock
bias and clock drift, and the attacks are explicitly modeled on
these components, leading to the following dynamical model

cho[l+1]\ (1 At cby [1]
chol+1] ) (0 1 ) ¢y [1]
R i

Xit+1 F X
R
S| W

where s;, and s; are the attacks on clock bias and clock drift,
respectively, and wy, and w;, are colored Gaussian noise samples
with covariance function defined in [3, Ch. 9]. Here, both sides
are multiplied with ¢, which is a typically adopted convention.

The state noise covariance matrix Q; is particular to the crystal
oscillator of the device.

Similarly, define p[l] = [p1[l],...,pon[l]]7 and p[l] =

[p111],-- -, pn[l)]T . The measurement equation can be given as
p[l] _ 1NX1 ON><1 Cbu [l]
pll] Onx1 Inxi cby [1]
N—— N——
yi H X
[p11] — pull]l ch [1] €p, ]
n llpx[1] — pull]]l cby [l N €py (7]
1 - u l - 1
(Vi) = valI)T Ref el chy ] €p 1]
(v (1] = v )T 2Rl ) b ll]) \epy [
C; €
(N

Explicit modeling of p, and v, in c¢; indicates that the dy-
namical model benefits from using the stationary victim re-
ceiver’s known position and velocity (the latter is zero). The
measurement noise covariance matrix R; is obtained through
the measurements in the receiver. A detailed explanation of
how to obtain the state and measurement covariance matrices
Q; and R; is provided in Section V. It should be noted that
the state covariance QQ; only depends on the victim receiver’s
clock behavior and does not change under spoofing. However,
the measurement covariance matrix R; experiences contraction.
The reason is that to ensure that the victim receiver maintains
lock to the fake signals, the spoofer typically applies a power
advantage over the real incoming GPS signals at the victim
receiver’s front end [17].

Comparing (5)—(7), TSAs that do not alter the position and
velocity transfer the attack on pseudoranges and pseudorange
rates directly to clock bias and clock drift. Thus, it holds that
s; = csp and s; = c¢s;.

B. Attack Detection

Letl=k,...,k+ L —1 define the time index within the
observation window of length L, where k£ is the running time
index. The solution to the dynamical model of (6) and (7) is
obtained through stacking L measurements and forming the
following optimization problem

k+L-1
(x,8) = argrilin {2 ; ly: — Hx; — cl||%{;1
| FEL , k+L—1
t3 ; %11 = Fxi —sifg1 + ; )\||DSZ||1}

®)

where ||x|3; = x'Mx and % = [%1,...,%;]! are the esti-
mated states, § = [81,...,87]7 are the estimated attacks, A is
a regularization coefficient, and D is an L x 2L total variation

]T
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matrix that forms the variation of the signal over time as [42]

-1 0 1 0o ... 0
0 -1 0 1 ... 0

D= ©)
o ... 0 -1 0 1

The first term is the weighted residuals in the measurement
equation, and the second term is the weighted residuals of the
state equation. The last regularization term promotes sparsity
over the total variation of the estimated attack.

In (8), the clock bias and clock drift are estimated jointly
with the attack. Here, the model of the two introduced attacks
should be considered. In a Type I attack, a step attack is applied
over the pseudoranges. The solution to the clock bias equiva-
lently experiences a step at the attack time. The term ||Ds;||; =

P sell] = soll — 1] + |sy 1] — 5311 — 1][] indicates a
rise as it tracks the significant differences between two sub-
sequent time instants. If the magnitude of the estimated attack
in two adjacent times does not change significantly, the total
variation of the attack is close to zero. Otherwise, in the pres-
ence of an attack, the total variation of the attack includes a
spike at the attack time.

In a Type II attack, the total variation of the attack does not
show significant changes as the attack magnitude is small at the
beginning and the sparsity is not evident initially. Although we
explained why it is meaningful to expect only few nonzero en-
tries in the total variation of the attacks, in general, this is not a
necessary condition for capturing the attacks during initial small
total variation magnitudes. This means that explicit modeling of
the attacks in (6) and estimation through (8) does not require the
attacks to exhibit sparsity over the total variation. Furthermore,
when the bias and bias drift are corrected using the estimated at-
tack (we will provide one mechanism in Section IV-C), sparsity
over the total variation appears for subsequent time instants. In
these time instants, the attack appears to be more prominent, and
in effect, the low dynamic behavior of the attack is magnified, a
fact that facilitates the attack detection and will also be verified
numerically. This effect is a direct consequence of (8) and the
correction scheme discussed in the next section.

The optimization problem of (8) boils down to solving a
simple quadratic program. Specifically, the epigraph trick in
convex optimization can be used to transform the ¢;-norm into
linear constraints [43]. The observation window L slides for a
lag time Ti,, < L, which can be set to Ti,, = 1 for a real-time
operation. The next section details the sliding window operation
of the algorithm and elaborates on how to use the solution of (8)
in order to provide corrected bias and drift.

C. State Correction

In observation window of length L, the estimated attack § is
used to compensate the impact of the attack on the clock bias,
clock drift, and measurements.

Revisiting the attack model in (6), the bias at time [ + 1 de-
pends on the clock bias and clock drift at time {. This dependence
successively traces back to the initial time. Therefore, any attack

Algorithm 1: TSA Rejection and Mitigation (TSARM).

1: Setk=1

2: while True do

3: Batchy, Vi=k,....k+L—1

4: Construct H,¢c;,F Vi=k,... ., k+L—1

5:  Compute Q; and R; (details provided in Section V)

6:  Estimate x, S via (8) A

70 Assign chy[l] = X[m],m = 21 — 1 and cb, [I] =
X[m]l,m=2l Vi=k,....,k+L—-1

8:  Assign §[l] =8[m],m =2/ —1and §;[l] =
Sml,m=20Vi=k,...,k+L—1

9:  Modify by 1], by [1], p[l] and p[l] via (10) VI =
., L for the first window and k + L — Tj,, <[
< k + L — 1 for the windows afterwards

WU
10: Sety; = (P \vi=k,.. k+L—1
Y (p[l]

11:  Output tTC[l] = tg[l] — by[l] — Atyre VI =
k,...,k+ L — 1 to the user for time stamping

12:  Slide the observation window by setting k = £ + T,

13: end while

on the bias that occurred in the past is accumulated through time.
A similar observation is valid for the clock drift. The clock bias
at time [ is, therefore, contaminated by the cumulative effect of
the attack on both the clock bias and clock drift in the previous
times. The correction method takes into account the previously
mentioned effect and modifies the bias and drift by subtracting
the cumulative outcome of the clock bias and drift attacks as
follows:

cb[11\ _ (chull]) _ 3
(m) < m) (Z ol
T 2 l

bu[l] _ cbu[l] . 511
()= () - ()

where l~)u and i)u are, respectively, the corrected clock bias and
clock drift, p and p are, respectively, the corrected pseudorange
and pseudorange rates, and 1 is an all one vector of length
N +1.In (10), I =1,..., L for the first observation window
(k=1and k+ L —Ti,, <1< k+ L — 1 forthe observation
windows afterward. This ensures that the measurements and
states are not doubly corrected. The corrected measurements
are used for solving (8) for the next observation window.

The overall attack detection and modification procedure is
illustrated in Algorithm 1. After the receiver collects L mea-
surements, problem (8) is solved. Based on the estimated attack,
the clock bias and clock drift are cleaned using (10). This pro-
cess is repeated for a sliding window and only the clock bias
and drift of the time instants that have not been cleaned previ-
ously are corrected. In another words, there is no duplication of
modification over the states.

The proposed technique boils down to solving a simple
quadratic program with only few variables and can, thus, be

i)

(10)
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performed in real time. For example, efficient implementa-
tions of quadratic programming solvers are readily available in
low-level programming languages. The implementation of this
technique in GPS receivers and electronic devices is thus
straightforward and does not necessitate creating new libraries.

V. NUMERICAL RESULTS

We first describe the data collection device and then assess
three representative detection schemes in the literature that fail
to detect the TSA attacks. These attacks mislead the clock bias
and clock drift, while maintaining correct location and velocity
estimates. The performance of our detection and modification
technique over these attacks is illustrated afterward.

A. GPS Data Collection Device

A set of real GPS signals has been recorded with a Google
Nexus 9 Tablet at the University of Texas at San Antonio on
June, 1, 2017.% The ground truth of the position is obtained
through taking the median of the WLS position estimates for
a stationary device. This device has been recently equipped
with a GPS chipset that provides raw GPS measurements. An
android application, called GNSS Logger, has been released
along with the postprocessing MATLAB codes by the Google
Android location team [38].

Of interest here are the two classes of the Android.
location package. The GnssClock? provides the GPS re-
ceiver clock properties and the GnssMeasurement?’ provides
the measurements from the GPS signals both with subnanosec-
ond accuracies. To obtain the pseudorange measurements, the
transmission time is subtracted from the time of reception.
The function getReceivedSvTimeNanos () provides the
transmission time of the signal which is with respect to the cur-
rent GPS week (Saturday—Sunday midnight). The signal recep-
tion time is available using the function getTimeNanos ().
To translate the receiver’s time to the GPS time (and GPS time of
week), the package provides the difference between the device
clock time and GPS time through the function getFullBi-
asNanos ().

The receiver clock’s covariance matrix Q; is dependent on
the statistics of the device clock oscillator. The following model

is typically adopted:
2 2 2 2 At? 2 2 At?
_(C O'bAt+C O'bT CO'I-72> (11)
= 2
2 2 At? 2 2
oSy c O’bAt
where O'g = %“ and O'Z = 27m2h_y; and we select hy = 8 X

1071 and h_o =2 x 1072% [44, Ch. 9]. For calculating the
measurement covariance matrix R, the uncertainty of the
pseuodrange and pseudorange rates are used. These uncertain-
ties are available from the device together with the respective

3[Online]. Available: https:/github.com/Alikhalaj2006/UTSA_GPS_DATA.
git

4[Online].  Available:  https://developer.android.com/reference/android/
location/GnssClock.html (accessed Feb. 20, 2017).

3[Online].  Available: https:/developer.android.com/reference/android/
location/GnssMeasurement.html (accessed Feb. 20, 2017).
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Fig. 8.  Effect of Type Il attack on the EKF and the antispoofing particle

filter [27] on (a) clock bias and (b) clock drift. The attack started at
t = 30 s. Panel (b) does not include the drift.

measurements.’ In the experiments, we set A = 5 x 10719, be-
cause the distance magnitudes are in tens of thousands of meters.
The estimated clock bias and drift through EKF in a normal op-
eration is considered as the ground truth for the subsequent
analysis. In what follows, reported times are local.

B. Failure of Prior Work in Detecting Consistent Attacks

This section demonstrates that three relevant approaches from
Table I may fail to detect consistent attacks, that is, attacks where
s, 1s the integral of s, in (4).

The performance of the EKF and the antispoofing particle
filter of [27] subject to a Type II attack is reported first. The
perturbations over GPS measurements are the same as in Fig. 2
and are used as an input to the EKF and the particle filter. The
attack starts at ¢ = 30 s. Fig. 3 depicts the effect of attack on
the clock bias and drift. The EKF on the dynamical model in
(6) and (7) blindly follows the attack after a short settling time.
The antispoofing particle filter only estimates the clock bias
and assumes the clock drift is known from WLS. Similarly to
the EKF, the particle filter is not able to detect the consistent
spoofing attack. The maximum difference between the receiver
estimated position obtained from the EKF on (3) under Type
IT attack and under normal operation is zqig = 67 m, Yqix =
112 m, and zqig = 71 m. The position estimate has thus not
been considerably altered by the attack.

The third approach to be evaluated has been proposed in [28]
and monitors the statistics of the receiver clock, as a typical
spoofing detection technique [33]. Considering that off-the-shelf
GPS receivers compute the bias at regular At intervals, a partic-
ular approach is to estimate the GPS time after k time epochs and
confirm that the time elapsed is indeed kAt [28]. To this end,
the following statistic can be formulated: D(k) = [t5FS(k) —
9P (1) — (k — 1)At — 325, b[k']At]c. The test statistic D is
normally distributed with mean zero when there is no attack
and may have nonzero mean depending on the attack, as will be
demonstrated shortly. Its variance needs to be estimated from a
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Fig. 4. Performance of hypothesis testing based on statistic (see

Section V-B) [28] under Type | attack for different false alarm proba-
bilities: (a) no attack, (b) inconsistent attack, and (c) consistent attack.

few samples under normal operation. The detection procedure
relies on statistical hypothesis testing. For this, a false alarm
probability Pga is defined. Each Pga corresponds to a threshold
~ to which D(k) is compared against [45, Ch. 6]. If |D(k)| > ~,
the receiver is considered to be under attack.

The result of this method is shown in Fig. 4 for different false
alarm probabilities. Fig. 4(a) depicts D(k) when the system is
not under attack. The time signature lies between the thresholds
only for low false alarm probabilities. The system can detect
the attack in case of an inconsistent Type I attack, in which s,
is not the integration of perturbations over pseudorange rates
s;, and only pseudoranges are attacked. Fig. 4(b) shows that
the attack is detected right away. However, for smart attacks,
where the spoofer maintains the consistency between the pseu-
dorange and pseudorange rates, Fig. 4(c) illustrates that the
signature D(k) fails to detect the attack. This example shows
that the statistical behavior of the clock can remain untouched
under smart spoofing attacks. In addition, even if an attack is
detected, the previous methods cannot provide an estimate of
the attack.

C. Spoofing Detection on Type | Attack

Fig. 5 shows the result of solving (8) using the GPS measure-
ments perturbed by the Type I attack of Fig. 1. The spoofer has
the capability to attack the signal in a very short time so that the
clock bias experiences a jump at ¢ = 30 s. The estimated total
variation of bias attack renders a spike right at the attack time.
The modification procedure of (10) corrects the clock bias using
the estimated attack.

D. Spoofing Detection on Type Il Attack

The impact of the Type II attack on the pseudoranges and
pseuodrange rates is shown in Fig. 6. Specifically, Fig. 6(a)

Fig. 5. Result of attack detection and modification over a Type | attack
that started at ¢ = 30 s. From top to bottom: (a) normal clock bias (blue)
and spoofed bias (red), (b) total variation of the estimated bias attack s;,,
(c) total variation of the estimated drift attack s; , and (d) true bias (blue)
and modified bias (magenta).
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Fig. 6.  Comparison of (a) normal pseudorange change (p(k) — p(1))

and spoofed pseudoranges change (ps(k) — ps(1)), and (b) normal
pseudorange rates (p) and spoofed pseudorange rates (ps) under
Type Il attack for some of the visible satellites. The attack started at
t=30s.

illustrates the normal and spoofed pseudorange changes with
respect to their initial value at ¢ = 0 s for some of the visible
satellites in the receiver’s view. Fig. 6(b) depicts the correspond-
ing pseudorange rates. The tag at the end of each line indicates
the satellite ID and whether the pseudorange (or pseudorange
rate) corresponds to the normal operation or operation under
attack. The spoofed pseudoranges diverge quadratically starting
att = 30 s following the Type II attack.

For the Type II attack, Algorithm 1 is implemented for an
sliding window with L = 50 s with Tj,; = 10s. Fig. 7 shows
the attacked clock bias starting at £ = 30 s. Since the attack
magnitude is small at initial times of the spoofing, neither
the estimated attack S, nor the total variation does not show
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Fig. 7. Result of attack detection and modification over Type Il attack

for t = 1 s through ¢ = 50 s. The attack started at ¢t = 30 s. From top to
bottom: (a) normal clock bias (blue) and spoofed bias (red), (b) estimated
bias attack s,, (c) total variation of the estimated bias attack, and (d) true
bias (blue) and modified bias (magenta).
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for t = 11 s through ¢t = 60 s. From top to bottom: (a) normal clock bias
(blue) and spoofed bias (red), (b) estimated bias attack s;, (c) total vari-
ation of the estimated bias attack, and (d) true bias (blue) and modified
bias (magenta).

significant values. The procedure of the sliding window is to
correct the current clock bias and clock drift for all the times
that have not been modified previously. Hence, at the first run
the estimates of the whole window are modified. Fig. 8 shows
the estimated attack and its corresponding total variation after
one Ti,q. As is obvious from the figure, the modification of the
previous clock biases transforms the low dynamic behavior of
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Fig. 9. RMSE of TSARM for various values of L and T},

the spoofer to a large jump at ¢ = 50 s, which facilitates the
detection of attack through the total variation component in (8).
The clock bias and drift have been modified for the previous
time instants and need to be cleaned only for ¢t = 50 s — 60 s.

E. Analysis of the Results

Let K be the total length of the observation time (in this ex-
periment, ' = 386). The root mean square error (RMSE) is in-

troduced: RMSE = %\/ XL (by [K) — by [k])2, which shows

k=0
the average error between the clock bias that is the output from

the spoofing detection technique, by, and the estimated clock
bias from EKF under the normal operation, E,L, which is con-
sidered as the ground truth. Comparing the results of the esti-
mated spoofed bias from the EKF and the normal bias shows
that RMSEgkr = 3882 m. This error for the antispoofing par-
ticle filter is RMSEpr = 3785 m. Having applied TSARM,
the clock bias has been modified with a maximum error of
RMSErsarym = 258 m. Fig. 9 illustrates the RMSE of TSARM
for a range of values for the window size L and the lag time
Tiag . When the observation window is smaller, fewer measure-
ments are used for state estimation. On the other hand, when
L exceeds 40 s, the number of states to be estimated grows al-
though more measurements are employed for estimation. The
numerical results illustrate that (6) models the clock bias and
drift attacks effectively, which are subsequently estimated using
(8) and corrected through (10).

V1. CONCLUDING REMARKS AND FUTURE WORK

This paper discussed the research issue of TSAs on devices
that rely on GPS for time tagging their measurements. Two
principal types of attacks are discussed, and a dynamical model
that specifically models these attacks is introduced. The attack
detection technique solves an optimization problem to estimate
the attacks on the clock bias and clock drift. The spoofer ma-
nipulated clock bias and drift are corrected using the estimated
attacks. The proposed method detects the behavior of spoofer
even if the measurements integrity is preserved. The numeri-
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cal results demonstrate that the attack can be largely rejected,
and the bias can be estimated within 0.86 us of its true value,
which lies within the standardized accuracy in PMU and CDMA
applications. The proposed method can be implemented for a
real-time operation.

In this paper, the set of GPS signals are obtained from an
actual GPS receiver in a real environment, but the attacks are
simulated based on the characteristics of real spoofers reported
in the literature. Experimentation on the behavior of the pro-
posed detection and mitigation approach under real spoofing
scenarios is the subject of future research.
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