
Scheduling When You Don’t Know the Number of Machines∗

Clifford Stein† Mingxian Zhong‡

Abstract

Often in a scheduling problem, there is uncertainty about

the jobs to be processed. The issue of uncertainty regarding

the machines has been much less studied. In this paper, we

study a scheduling environment in which jobs first need to

be grouped into some sets before the number of machines is

known, and then the sets need to be scheduled on machines

without being separated. In order to evaluate algorithms in

such an environment, we introduce the idea of an α-robust

algorithm, one which is guaranteed to return a schedule on

any number m of machines that is within an α factor of the

optimal schedule on m machine, where the optimum is not

subject to the restriction that the sets cannot be separated.

Under such environment, we give a (5
3

+ ε)-robust algorithm

for scheduling on parallel machines to minimize makespan,

and show a lower bound 4
3
. For the special case when the jobs

are infinitesimal, we give a 1.233-robust algorithm with an

asymptotic lower bound of 1.207. We also study a case of fair

allocation, where the objective is to minimize the difference

between the maximum and minimum machine load.

1 Introduction

For many problems, one does not know the entire input
accurately and completely in advance. There are dif-
ferent ways of addressing such uncertainty, e.g. via on-
line algorithms (assuming the input arrives over time),
dynamic algorithms (assuming the input changes over
time), stochastic optimization (assuming the input in-
cludes random variables) or robust optimization (as-
suming that there is bounded uncertainty in the data).
Another way of addressing uncertainty is to require one
solution that is good against all possible values of the
uncertain parameters. Examples of work in this di-
rection include the universal traveling salesman prob-
lem (one tour that is good no matter which subset of
points arrive) [15], robust matchings (one matching is
chosen and then evaluated by its top k edges, where
k is unknown) [9, 13], a knapsack of unknown capac-
ity(one policy of packing that is good irrespective of
the actual capacity) [6] and 2-stage scheduling (some

∗Supported in part by NSF grants CCF-1421161 and CCF-

1714818.
†Columbia University, cliff@ieor.columbia.edu
‡Columbia University, mz2325@columbia.edu.

decisions must be made before the actual scenario is
known) [5, 17]. In scheduling problems, there are many
ways to model uncertainty in the jobs, including online
algorithms [1, 2], in which the set of jobs is not known
in advance, stochastic scheduling [12], in which the jobs
are modeled as random variables, and work on sched-
ules that are good against multiple objective functions
[4, 14, 16]. But there is much less work studying the
possibility of uncertainty in the machines, and the work
we are aware of studies uncertainty in speed or reliabil-
ity (breakdowns) [3, 7].

Motivated by the need to understand how to make
scheduling decisions without knowing how many ma-
chines we will have, we consider a different notion of
uncertainty – a scenario in which you don’t know how
many machines you are going to have, but you still have
to commit (partially) to a schedule by making signifi-
cant decisions about partitioning the jobs before know-
ing the number of machines.

This type of decision arises in a variety of settings.
For example, many scheduling problems are fundamen-
tally about packing items onto machines and there are
many examples of problems that concern packing items
where there are multiple levels of commitment to be
made with partial information. For example, in a ware-
house, a large order may need to be placed into multiple
boxes, without knowing exactly how many trucks there
will be to ship the items. You therefore want to be able
to pack the items well, given the various possible num-
ber of trucks. Another example involves problems in
modern data centers. In data centers, there are some
systems which require you to group work together into
“bundles” without knowing exactly how many machines
will be available. For example, in a map-reduce type
computation, the mapping function naturally breaks the
data into some number of groups g. However, there are
some unknown number of available machines m, and
you typically have to design your mapping function,
choosing a g and associated grouping, without know-
ing m. You may know a range of possible values for m,
or it may vary widely depending on the availability of
machines at the time you run the map-reduce compu-
tation (and the availability is typically not under your
control). As more and more computing moves to the
“cloud”, that is, moves to large shared data centers,

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

we anticipate that this problem of grouping work with-
out knowing the number of machines will become more
widespread.

In this paper, we consider one of the simplest
scheduling problems – minimizing makespan on iden-
tical parallel machines. We choose this problem partly
as a proof of concept for our two stage model. We con-
sider the following specific model. We are given a set of
n jobs, J , with a known processing times p(j) for each
job j, and a number M , which is an upper bound on
the number of machines we might have. An algorithm
must commit, before knowing how many machines there
are, to grouping the jobs into M bags, where each job
is assigned to exactly one of the bags. We call this
step the packing step. Only after completing the pack-
ing step do we learn the number of machines m. We
now need to compute a schedule, with the restriction
that we must keep the bags together, that is, we will
assign one or more bags to each machine. We call this
step the scheduling step. As in other robust problems,
we want to do well against all possible numbers of ma-
chines. We therefore evaluate our schedule by the ratio
of the makespan of our schedule, ALG(m,M), to the
makespan of a schedule that knew m in advance, optm,
taking the worst case over all possible values of m. If an
algorithm always provides a ratio of at most α, where

α = max
1≤m≤M

ALG(m,M)
optm

, we call it α-robust. (We may

also consider scenarios in which there are different up-
per and lower bounds on the range of m; the definition
of robustness extends in the obvious way.)

Our main result is an algorithm for mini-
mizing makespan on parallel machines. which is
(5
3 + ε)-robust; and we show a lower bound of 4/3

on the robustness of any algorithm for minimiz-
ing makespan on parallel machines. As with many
scheduling problems, there are two different aspects to
address. One is the load-balancing aspect, but in this
two-stage problem, it seems that one wants to create
bags of a variety of different sizes, in order to allow a
more balanced final schedule. The second is to deal with
large jobs, and to handle cases where one or several large
jobs are the dominant term in the makespan. Large jobs
seem to provide a particular challenge in this problem,
and much of our algorithm and analysis are devoted to
handling various cases involving large jobs.

In order to focus on the load balancing issues, we
consider the “continuous” case where we have a set of
infinitesimal jobs. That is, in the packing stage, we
simply need to divide our total load into M bags. In
traditional makespan scheduling, this case is trivial,
we would just divide the load into M equal pieces
and achieve an optimal makespan. But in this two
stage-problem, even the continuous case is challenging.

We can, however, obtain significantly stronger
results than in the discrete case, showing an
upper bound of 1.233 and a lower bound of 1.207
on the robustness.

The continuous case also models a problem in
fair allocation. In fair allocation, you typically have
resources that you want to split “fairly” among several
parties. The literature on this problem is vast and
we will not attempt to summarize it here. We will
only observe that we are solving a problem in fair
allocation that has not previously been studied, to our
knowledge. We are given some objects to share, and
everyone agrees on the values, but we don’t know how
many people will be sharing them. We place the objects
into bags, and have the restriction that each person
must take a subset of the bags. In the makespan variant,
we are minimizing the maximum amount that anyone
gets. Motivated by fairness, we also consider a version
where you want to minimize the difference between
the maximum allocation and the minimum allocation
(this objective makes sense in fair allocation, but not
necessarily in scheduling). Here we consider a case
where we know a lower bound of αM on the eventual
number of machines, and can show a lower bound of
min{2/3, 2/(4α+ 1)}A on the difference and we can
obtain an upper bound of min{2/3, 1/(α+ 1)}A, where
A is the average load.

1.1 Overview of the Paper and a Lower Bound
We give a brief overview of our paper, and for intuition,
a simple lower bound. The order of our paper is
different than the order presented in the introduction.
We present the continuous case first, because the proofs
are simpler and it gives some intuition for the discrete
case.

In Section 2, we consider the case when all jobs
are infinitesimal. We give an algorithm which is ap-
proximately 1.233 robust. And we also show a lower
bound which is approximately 1.207. For the infinites-
imal case, we also consider the objective of minimiz-
ing the maximum difference between the most loaded
and least loaded machine. For this case, and the av-
erage load is A, if we know that the eventual number
of machines is in the range [αM,M], we can show an
asymptotic lower bound of min{2/3, 2/(4α+ 1)}A on
the difference and we can obtain an upper bound of
min{2/3, 1/(α+ 1)}A.

In Section 3, we consider the general case with
arbitrary sized jobs. We give an algorithm which gives
a robust ratio of 5

3 +ε, breaking the simple 2 bound that
can be obtained by running LPT on M sets and then
repeatedly merging the two smallest sets until m sets
remain. In our algorithm, we first calculate the optimal

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

schedule for m ∈ {M2 ,
3M
4 ,M} within a factor of 1 + ε

using the algorithm in [11]. We then take one of these
schedules and partition the jobs that were scheduled on
some machines into a larger number of sets, which we
call bags. After learning how many machines we have,
we place the bags on the machines. This algorithm is
more involved than the previous ones, and has several
cases, based on the values of optM , opt3M/4 and optM/2

and demonstrates how a more careful investigation of
the packing and scheduling steps can lead to improved
bounds.

We conclude the introduction with a simple lower
bound. Consider the following example. Let the
upper bound on the number of machines, M , be 3
and assume we have n = 6 identical jobs, each of
which has processing time 1. We will prepare 3 bags
which will ultimately have to be scheduled on either
1, 2 or 3 machines. Note that the unconstrained
optimal makespan for 1, 2 and 3 machines are 6, 3
and 2 respectively. First, consider the packing which
gives each bag 2 jobs. Then the makespans are 6, 4,
and 2 respectively if there are 1, 2 and 3 machines.
Hence this algorithm is max{6/6, 4/3, 2/2} = 4/3-
robust. Next consider the packing which places {1, 2, 3}
jobs in each bag respectively. Then the makespans are
6, 3, and 3 respectively if there are 1, 2 and 3 machines,
which makes this algorithm max{6/6, 3/3, 3/2} = 3/2-
robust. In this example, the former algorithm is better.
Moreover, this example demonstrates that 4/3 is a lower
bound on the robustness of any algorithm. Note that
there exists a same lower bound for any number of M :
Consider an arbitrary M and n = 2M identical jobs
with each processing time 1, if we put at least one bag
with at least 3 jobs, then the robust ratio is at least 3/2;
otherwise we put 2 jobs in each bag and it provides a
robust ratio which is at least 4/3.

2 Scheduling infinitesimal jobs

Throughout this paper, we use p(j) to denote the
processing time of job j. For any set of jobs S, we use
p(S) =

∑
pi∈S p(i) to denote the sum of the processing

times of jobs in S. We informally say a job set S is big
if the value of p(S) is large and small otherwise.

We now consider the case of infinitesimal jobs.
Suppose we are given a job set J with all infinitesimal
jobs such that p(J) = s, for some s > 0. We
first pack the jobs to M ≥ 3 sets and then schedule
the bags on m machines, where m ∈ [1,M] is only
known after we pack the jobs. Let ALG(m,M) be
the makespan of scheduling the bags on m machines,
then our objective is to minimize the robust ratio, α =

maxm

{
ALG(m,M)

optm

}
. Recall optm is the makespan

Figure 1: k as a function of M .

of a schedule that knew m in advance, and specifically
optm = s/m when all jobs are infinitesimal.

The main idea in the packing is to produce a set of
bags with a diverse set of sizes. More precisely, we con-
sider the following packing, which we call packing PC.
S1, S2, . . . , SM are the bags: for i = 1, 2, 3, . . . , 2 bM/3c,

p(Si) =
ks

M − d i2e
− ks

2(M − 1)
; for j = 2 bM/3c +

1, 2 bM/3c + 2, . . . ,M , p(Sj) =
ks

M
, were k is a param-

eter which only depends on M , chosen to ensure that
M∑
i=1

p(Si) = s. Specifically, k = 1/(2 ·
bM/3c∑
i=1

1

M − i
−⌊

M

3

⌋
1

M(M − 1)
+ 3

{
M

3

}
1

M
) ≈ 1.233 when M is

large (Here we use {} to denote the integer remainder).
And we will show that for all M , k ≤ 1.2333. See Fig-
ure 1 to see how k changes with M .

Using packing PC to put the jobs into bags, we
obtain the following theorem.

Theorem 2.1. For m ∈ [1,M], there exists a schedule
with makespan at most koptm ≤ 1.2333optm which
schedules {S1, S2, . . . , SM} on m machines.

Proof. We first consider the case when m ≥ M/2, and
we schedule the bags as follows. Let t = M − m.
For machine i = 1, 2, . . . , t, we schedule bags Si and
S2t−i+1 on machine i; for machine j = t+ 1, . . . ,m, we
schedule bag Sj+t on machine i . The machines with

one bag are all within the bound, since for i ≤ 2

⌊
M

3

⌋
,

p(Si) =
ks

M − d i2e
− ks

2(M − 1)
≤ ks

M −M/3
− ks

2M
=

ks

M
≤ ks

M
≤ ks

m
= koptm. Therefore it remains to

bound the load on machines with two bags. We will
use L(i, t) to denote the load on the machine i for a
particular value of t. We therefore need to prove that
L(i, t) = p(Si) + p(S2t−i+1) ≤ koptm for 1 ≤ i ≤ t,

t = M − m ≤
⌊
M

2

⌋
. Observe that when i is even,

L(i, t) = p(Si) + p(S2t−i+1) = p(Si−1) + p(S2t−i+2) =

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

L(i − 1, t), hence we may assume that i is odd. Since

i ≤
⌊
M

2

⌋
≤ 2

⌊
M

3

⌋
, p(Si) =

ks

M − i+1
2

− ks

2(M − 1)
.

We first consider the subcase when 2t − i + 1 ≥
2

⌊
M

3

⌋
+ 1, then p(S2t−i+1) =

ks

M
. Since i is odd,

i ≤ 2t− 2

⌊
M

3

⌋
− 1. Hence we have

L(i, t) =
ks

M − i+1
2

− ks

2(M − 1)
+
ks

M
(2.1)

≤ ks

M − t+ bM/3c
+

ks(M − 2)

2(M − 1)M

Recall that optm =
ks

m
=

ks

M − t
. Since t ≥⌊

M

3

⌋
+
i

2
, t ≥

⌊
M

3

⌋
+ 1. Using (2.1), it follows that

L(i, t)− ks

M − t

=
ks

M + bM/3c − t
+

ks(M − 2)

2(M − 1)M
− ks

M − t

≤ ks(M − 2)

2(M − 1)M
− ks bM/3c

(M + bM/3c − t)(M − t)

≤ ks(M − 2)

2(M − 1)M
− ks bM/3c

(M − 1)(M − bM/3c − 1)

= ks
M2 − 3M + 2− (3M − 2) bM/3c

2M(M − 1)(M − bM/3c − 1)

≤ ks
M2 − 3M + 2− (3M − 2)(M/3− 2

3)

2M(M − 1)(M − bM/3c − 1)

= ks
−M/3 + 2

3

2M(M − 1)(M − bM/3c − 1)
< 0 .

That is, L(i, t) ≤ ks

M − t
= koptm. Next, we consider

the subcase that that 2t − i + 1 ≤ 2

⌊
M

3

⌋
. Now,

we have p(S2t−i+1) =
ks

M − 2t−i+1
2

− ks

2(M − 1)
=

ks

M + (i+ 1)/2− (t+ 1)
− ks

2(M − 1)
(Recall that we

assume i is odd then 2t − i + 1 is even). Hence we
have

L(i, t) =
ks

M − i+1
2

+
ks

M + i+1
2 − (t+ 1)

− ks

M − 1

=
ks(2M − t− 1)

(M − i+1
2)(M + i+1

2 − (t+ 1))
− ks

M − 1

=
ks(2M − t− 1)

− 1
4 (i− t)2 + 1

4 (t+ 1)2 +M2 − (t+ 1)M

− ks

M − 1

≤ ks(2M − t− 1)

− 1
4 (1− t)2 + 1

4 (t+ 1)2 +M2 − (t+ 1)M

− ks

M − 1

=
ks(2M − t− 1)

(M − 1)(M − t)
− ks

M − 1
=

ks

M − t
.

The inequality holds because 1 ≤ i ≤ t. This
proves that for the case m ≥ M/2, the makespan of

our schedule is at most
ks

M − t
= koptm.

Next, we consider the case when 1 ≤ m < M/2.
Let x ≥ 2 be the integer such that M

x+1 ≤ m <
M
x . Let t = M − mx. For machine i = 1, 2, . . . , t,

we schedule bags Si, S2t−i+1, Si+2t, . . . , Si+xt on such
machine; for machine j = t+1, . . . ,m, we schedule bags
Sj+xt, Sj+xt+(m−t), Sj+xt+2(m−t) . . . , Sj+xt+(x−1)(m−t)

on such machine. Recall that ∀i ≤ M , p(Si) ≤
ks

M
.

Observe that we schedule x bags on the last m − t
machines, hence the processing times of jobs on such

those machines are at most
xks

M
=

ks

M/x
≤ ks

m
=

koptm. The processing time of the bags scheduled on
machine i ≤ t is (note that m = (M − t)/x):

p(Si) + p(S2t−i+1) +
x∑
j=2

p(Si+jt) = L(i, t) +
x∑
j=2

p(Si+jt)

≤ ks

M − t
+ (x− 1)

ks

M

≤ kxs

M − t
= koptm

The last is to show a bound of k. Recall that k is

chosen to ensure that
M∑
i=1

p(Si) = s, so we have (here we

use {} to denote the integer remainder),

M∑
i=1

p(Si) = 2 ·
bM/3c∑
i=1

(
ks

M − i
− ks

2(M − 1)
)

+ (M − 2 bM/3c) · ks
M

= 2 ·
bM/3c∑
i=1

ks

M − i
− bM/3c ks

M(M − 1)
(2.2)

+ 3{M/3}ks
M

.

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

We can solve (2.2) for k and obtain that k = 1/b(M)

where b(M) = 2 ·
bM/3c∑
i=1

1

M − i
−
⌊
M

3

⌋
1

M(M − 1)
+

3{M
3
} 1

M
. Note that when M is large,

b(M) ≈ 2
M−1∑

i=M−bM/3c

1

i
≈ 2(ln(M − 1)− ln(2M/3))

≈ 2 ln 1.5

Hence k = 1/b(M) ≈ 1/(2 ln 1.5) ≈ 1.233 when M is
large. We verify by computer that when M < 10000.
k ≤ 1.2333. And for M ≥ 10000,

b(M) ≥ 2 ·
∫ bM/3c

0

1

M − i
− 1

3(M − 1)

≥ 2ln
M − bM/3c

M
− 4 · 10−5 ≥ 0.81089

So k ≤ 1/0.81089 ≤ 1.2333.

We can also show a lower bound. That is, we can
show that, no matter how you divide the jobs, you
cannot achieve a robust ratio below 1.207, which is close
to (but does not exactly match) our upper bound. We
state the theorem in terms of a function Q(M) which we
define precisely below and which, for large M is 1.207.

Theorem 2.2. Let S1, S2, . . . , SM be M bags of in-

finitesimal jobs such that
M∑
i=1

p(Si) = s for some s >

0. Assume there exists a constant k′ such for all
m ∈ [1,M], we can schedule {S1, S2, . . . , SM} on m
machines with makespan at most k′optm. Then k′ ≥
Q(M), where Q(M) = max

t≤M
2 ,t∈N

1
t

M−t + M−2t
M

≈ 1.207.

Proof. We may assume that p(S1) ≤ p(S2) ≤ · · · ≤
p(SM). We first prove the following statement.

(2.3)
For t ≤M/2, there exists a schedule of {S1, S2, . . . , SM}
on m = M − t machines with minimum makespan such
that S1, S2, . . . , S2t are on the first t machines.

Let {T1, T2, . . . , Tm} be a schedule of
{S1, S2, . . . , SM} on m machines with minimum
makespan, where Ti is a set of bags scheduled on
machine i. We may assume that every Ti contains
at least one bag. Since we schedule M bags on
M − t machines, there are at least M − 2t machines
contain exactly one bag. We rename the machines
such that Tt+1, Tt+2, . . . , Tt+(M−2t) = Tm contain only
one bag. Suppose that at least one of S1, S2, . . . , S2t

is not scheduled on the first t machines, that is,
there exists i ≤ 2t, j ≥ t + 1 such that Tj = {Si} .

Then since |
⋃t
i=1 Ti| = M − |

⋃m
i=t+1 Ti| = 2t, there

exists i′ ≥ 2t + 1, j′ ≤ t such that Si′ ∈ Tj′ . Define
T ′j = {Si′}, T ′j′ = Tj′ \ {Si′} ∪ {Si}, and T ′` = T` for
` 6= j, j′. Since p(Si′) ≥ p(Si), p(T

′
j′) ≤ p(Tj′). Note

also that p(T ′j) ≤ maxMi=1{p(Si)} ≤ maxmi=1{p(Ti)}.
Hence maxmi=1{p(T ′i)} ≤ maxmi=1{p(Ti)}. This implies
that {T ′1, . . . , T ′m} is also a schedule with minimum
makespan. Note that the first t machine of schedule
{T ′1, . . . , T ′m} contains more bags from {S1, S2, . . . , S2t}
than the first t machine of schedule {T1, . . . , Tm}. By
repeating the above process, we can get a schedule with
minimum makespan such that S1, S2, . . . , S2t are all
scheduled on the first t machines. This completes the
proof of (1).

By choosing m = M , we know that p(Si) ≤

k′optM =
k′s

M
for any 1 ≤ i ≤ M . For t ≤ M/2,

consider the schedule with minimum makespan on m =
M − t machines such that S1, S2, . . . , S2t are scheduled

on the first t machines. It follows that
2t∑
i=1

p(Si) ≤

t · k′optm =
tk′s

M − t
Hence for any t ≤M/2, we have

s =
M∑
i=1

p(Si) =
2t∑
i=1

p(Si) +
M∑

i=2t+1

p(Si)

≤ tk′s

M − t
+ (M − 2t) · k

′s

M

It follow that k′ ≥ Q(M) = max
t≤M

2 ,t∈N

1
t

M−t + M−2t
M

.

Let L(t) =
t

M − t
+
M − 2t

M
. Then by taking the

derivative, it is not hard to obtain that min
0≤t≤M

2

L(t) =

L((1−
√
2
2)M) = 2(

√
2−1). And Q(M) ≈ 1

min
0≤t≤M

2

L(t)
=

√
2 + 1

2
≈ 1.207.

Figure 2 shows how Q(M) changes with M .

2.1 Minimizing the Maximum Difference An-
other objective we consider is to minimize the difference
between the load of the most loaded and least loaded
machines. This objective is particularly relevant to set-
tings in which we want to achieve fairness. First of
all, minimizing the maximum difference is a well-studied
scheduling objective in situations where fairness is im-
portant. Second, it models a type of fair allocation

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

Figure 2: Q(M) as a function of M

problem. Suppose that we want to split some goods
among m people, where we don’t know what m is in
advance. In order to simplify the process, we can first
divide the goods into M groups or bags, and then have
the restriction that each person must take a subset of
the bags.

For this problem, we consider a case where after
packing the jobs into M bags, we are given m ∈
[αM,M] machines on which to schedule. Our bounds
(see below) will depend on α, with, not surprisingly,
better bounds for larger α. Since we assume every job is
infinitesimal, the minimum difference between the load
of the most loaded and least loaded machines is always
0 if we know the number of machines in advance. So
we can not use the α-robust settings to evaluate our
algorithms in this section and we introduce some new
definitions here. Let s denote the sum of processing
time of all jobs and let A = s/M . For a set of bags
S = {S1, S2, . . . , SM}, we use Dm(S) to denote the
minimum difference between the load of the most loaded
and least loaded machines when we schedule S on m
machines. Our goal is to choose S so as to minimize
D(M,α, S,A) = maxm∈[αM,M]{Dm(S)}.

Assume that αM is an integer with value at
most M − 1 and M ≥ 3. Let D∗(M,α,A) =
minS{D(M,α, S,A)}. We now give a lower bound of
D∗(M,α,A), and the proof is included in the appendix.

Theorem 2.3. If αM > M
2 , then

D∗(M,α,A) ≥ 2(1− α)M

1 + (4α+ 1)(1− α)M
·A .

If αM ≤ M
2 , then

D∗(M,α,A) ≥ 2M2 − 2M

3M2 +M − 2
·A, if M is odd;

D∗(M,α,A) ≥ 2M2 − 4M

3M2 − 8
·A, if M is even.

Proof. We may assume that p(S1) ≤ p(S2) ≤ · · · ≤
p(SM). For i = 1, 2, . . . ,M , let Ai =

∑i
j=1 p(Sj)/i. We

first prove the following statement.

For m > M/2,

Dm(M,α, S,A) ≥ 2A2M−2m − p(S2M−2m+1).(2.4)

It is sufficient to proof the following: there exists
a scheduling to minimize the differences by schedule
S1, S2, . . . , S2M−2m on the first M − m machines and
schedule S2M−2m+1, . . . , SM to the rest of the 2m−M
machines. Since then the maximum load on a machine
is at least

∑2M−2m
i=1 Si/(M − m) = 2A2M−2m and the

minimum load on a machine is at most S2M−2m+1. Sup-
pose not. Let the optimal way to schedule {Si} on m
machines is by scheduling a set of bags, Yi, on the i-
th machine. We may assume that every Yi contains at
least one bag. Note that are at least 2m −M machine
receive exactly one bag. We rename the machines so
that YM−m+1, YM−m+2, . . . , YM−m+(2m−M) = Ym con-
tain only one bag. Suppose there exists i ≤ 2M − 2m,
j ≥M −m+ 1 such that Yj = {Si} . Then there exists
i′ ≥ 2M − 2m + 1, j′ ≤ M − m such that Si′ ∈ Yj′ .
Define Y ′j = {Si′}, Y ′j′ = Yj′ \ Si′ ∪ {Si}, and Y ′` = Y`
for ` 6= j, j′. Since p(Si′) ≥ p(Si), p(Y ′j′) ≥ p(Yj′). Note

also that p(Y ′j) ≤ maxMi=1{p(Si)} ≤ maxMi=1{p(Yi)}.
Hence maxmi=1{p(Y ′i)} ≤ maxmi=1{p(Yi)}. Since p(Y ′j′) ≥
p(Si) = p(Yj) and p(Y ′j) = p(Si′) ≥ p(Yj),
minmi=1{p(Y ′i)} ≥ minmi=1{p(Yi)}. This implies that
{Y ′i } is also an optimal way of scheduling the bags. So
we may assume that {Yi} satisfies that

⋃m
i=M−m+1 Yi =

{S2M−2m+1, S2M−2m+2 . . . S2M−2m+2m−M = SM}.
This completes the proof of (4).

Let D = D∗(M,α,A) and let S = {Si} be the
set of bags that reaches the optima. First we assume
that αM > M

2 . Let A′ = A2M−2αM . By (2.4),
p(S(2−2α)M+1) ≥ 2A′ − DαM (S) ≥ 2A′ − D. Since
D ≥ DM (S) = p(SM)−p(S1) ≥ p(S(2−2α)M+1)−p(S1),
p(S1) ≥ 2A′ − 2D and p(SM) ≥ p(S(2−2α)M+1) ≥
2A′ −D.

We know that A2 ≥ p(S1) ≥ 2A′ − 2D. For
1 ≤ k < (1 − α)M , assume we know that A2k ≥

2A′ − 2D +
k − 1

2
(2A′ − 3D). Then by (2.4), we

have p(S2k+1) ≥ 2A2k − DM−k(S) ≥ 2(2A′ − 2D +
k − 1

2
(2A′ − 3D)) − D = 2A′ − 2D + k(2A′ − 3D).

Also p(S2k+2) ≥ p(S2k+1) ≥ 2A′ − 2D + k(2A′ − 3D).

Therefore A2k+2 ≥ A2k
2k

2k + 2
+ (2A′ − 2D + k(2A′ −

3D))
2

2k + 2
≥ 2A′ − 2D +

k

2
(2A′ − 3D). Inductively,

this implies that A′ = A2M−2αM ≥ 2A′ − 2D +
(1− α)M − 1

2
(2A′ − 3D), which is equivalent to

D ≥ 2(1− α)M

1 + 3(1− α)M
A′

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

Recall that p(Si) ≤ p(S1) + D ≤ A′ + D for any i, we
have

MA = s ≤ 2(1− α)MA′ + (2α− 1)M(A′ +D)

= MA′ + (2α− 1)MD

≤ 1 + 3(1− α)M

2(1− α)
D + (2α− 1)MD

This is equivalent to

D ≥ 2(1− α)M

1 + (4α+ 1)(1− α)M
·A .

For the case of αM ≤ M
2 , if M is odd, then

D∗(M,α,A) ≥ D∗(M,
M + 1

2M
,A) ≥ 2M2 − 2M

3M2 +M − 2
·A .

If M is even, then

D∗(M,α,A) ≥ D∗(M,
M + 2

2M
,A) ≥ 2M2 − 4M

3M2 − 8
·A .

These bounds can most simply be parsed by saying
that, if M is large then the lower bound is given by
min{2/3, 2/(4α+ 1)}A. Note that when α ≤ 1

2 , the
lower bound goes to 2

3A as M goes large. If M is
even, then the bound of 2

3A can be reached by setting
the bags as follows. Choose S = {S1, S2, . . . , SM}
such that p(S1) = p(S2) = · · · = p(SM/2) = 2

3A and

p(SM/2+1) = p(SM/2+2) = · · · = p(SM) = 4
3A, then it

is easy to verify that Dm(S) ≤ 2
3A for any m ∈ [1,M].

For α > 1
2 , we can set D =

(1− α)M

α+ (1− α)(α+ 1)M
·A

and A′ =
1 + 3(1− α)M

2(1− α)M
· D. Now we can choose the

bags, T = {T1, T2, . . . , TM}, as follows. For k ≤ (1 −
α)M , set p(T2k+1) = p(T2k+2) = 2A′−2D+k(2A′−3D);
for i ≥ 2(1−α)M + 1, set p(Ti) = 2A′−D. The idea of
this construction follows from the proof of Theorem 2.3
in the appendix, and by following this proof, it is not
hard to verify that Dm(S) ≤ D for any m ∈ [αM,M].
Note that D′ ≈ 1

α+1 ·A if M is large.

3 Scheduling discrete jobs

In this section we will provide an algorithm which, for
any set of jobs, gives a 5

3 +ε robust ratio for m ∈ [1,M].
For ease of presentation, in this section we assume M
is divisible by 4. In Appendix B, we sketch the changes
that are needed when M is not divisible by 4.

Our algorithm will start by computing minimum
makespan schedules for M , 3M/4 and M/2 machines.
We can use a PTAS for minimizing makespan on parallel
machines to compute a (1 + ε)-approximate schedule.

Partition I(S)

Input: A set of jobs S = {j1, j2, .., jK} with p(j1) ≥
p(j2) ≥ .. ≥ p(jK) and p(S) ≤ b.
Main Process: Run LPT on 2 machines, A and B,
breaking ties in favor of A. If p(A) ≤ p(B),
swap the names of A and B.
Output: (A,B).

Figure 3: Partition I

We use opt′i to denote the value of the makespan
obtained by running the PTAS on a scheduling instance
with i machines. We will especially use opt′M/2 and will

denote this value by b. We use PTAS(i) = {S1, S2, ..Si}
to denote the result of the PTAS on a scheduling
instance with i machines, where Sj is the set of jobs
assigned to machine j.

Based on the values opt′M , opt′3M/4 and opt′M/2, we
will consider several cases. Each case will have the same
structure. First, we will compute sets of jobs Si from a
PTAS. Second we will use partitioning routines to split
the job set into M bags. We then learn the number of
machines and need to schedule the bags on machines.
In different cases, we will use different combinations of
partitioning and scheduling routines. We then show
that, for each case, the resulting schedule is 5

3 (1 + ε)
robust.

In Section 3.1, we will give our partitioning rou-
tines and prove some properties about each one. In
Section 3.2, we will describe how to assemble the jobs
into bags and then schedule them on machines.

3.1 Partitioning In this subsection we will describe
three useful partitioning algorithms, which will be used
as subroutines in the main algorithm. Each one will
take one or four sets of jobs and partition them into
multiple bags with special properties, achieving some
balance between the sizes of the bags and controlling the
placement of large jobs. In all routines we will assume
that we process the jobs in sorted size order, largest-to-
smallest.

We begin with the first partitioning algorithm,
Partition I, which partitions a job set into two bags
such that neither of them is too big. This partitioning
algorithm will be useful when we want to partition a job
set “evenly”. It implements the LPT algorithm, sorting
the jobs in non-increasing order and then repeatedly
placing the next job in the least loaded bag. It appears
in Figure 3.

We now bound the sizes of the bags. Recall that the

Copyright c© by SIAM
Unauthorized reproduction of this article is prohibited

standard analysis of LPT shows that it is a 4/3−1/3m =
7/6-approximation algorithm on 2 machines [8]. The
bounds that we give are tight and are not implied by
the standard analysis of LPT.

Lemma 3.1. Let (A,B) be the output of Partition I,
then p(A) = max{p(A), p(B)} ≤ max{p(j1), 2b/3}. If
the maximum is achieved by p(j1) then A = {j1}.

Proof. If j1 has larger processing time than all the other

jobs combined, i.e. p(j1) ≥
K∑
i=2

p(ji), then for i =

2, ..,K, LPT will put ji in B and max{p(A), p(B)} =
p(A) = p(j1).

Next consider the case when p(j1) <
K∑
i=2

p(ji). We

use dt to denote the difference in the loads of A and B
after adding job jt (Note that dK = p(A)− p(B)) Pick

k as the smallest integer such that p(j1) <
k∑
i=2

p(ji),

clearly k ≥ 3. Then p(jk) ≥ dk =
k∑
i=2

p(ji)− p(j1) since

k−1∑
i=2

p(ji) ≤ p(j1). When we decide where to put ji+1,

the difference between the loads of A and B is di, and
we put ji+1 in the bag with less load. Hence we must
have di+1 ≤ max{p(ji+1), di}. Then inductively dK ≤
max{p(jK), p(jK−1), .., p(jk+1), p(jk), dk}. Because the
jobs are indexed largest to smallest, and because k ≥ 3,
we can simplify the previous inequality to dK ≤ p(j3) ≤
b/3 (recall that dk ≤ jk). Since p(A) + p(B) = b, it
immediately follows that max{p(A), p(B)} ≤ 2b/3.

Since we almost always need to put multiple bags
on one machine, we want to create enough small bags to
control the makespan. This demand leads to the next
two partitioning algorithms, in which we partition job
sets to bags such that half of them are small enough and
the others are not too big. The first one, Partition II,
works for the case when we have a job set with at most
one large job. We will place the job with the largest
processing time in set A and then fill set B greedily up
to b/3 and then place the remaining jobs in A. The
details appear in Figure 4.

Lemma 3.2. Let (A,B) be the output of Partition II,
then p(A) ≤ 5b/6 and p(B) ≤ b/3.

Proof. By line 2 clearly we have p(B) ≤ b/3. Suppose,
for a contradiction, that p(A) > 5b/6. Then t 6= K

and it follows that p(j1) +
K∑

i=t+1

p(ji) > 5b/6. Since

K∑
i=1

p(ji) ≤ b, we must have
t∑
i=2

p(ji) =
K∑
i=1

p(ji)−(p(j1)+

Partition II(S)

Input: A set of jobs S = {j1, j2, . . . , jK} with 5b/6
≥ p(j1) ≥ p(j2) ≥ · · · ≥ p(jK), p(j2) ≤ b/3 and
p(S) ≤ b.
Main Process:

1 B = ∅, A = {j1}.
2 Let t be the largest integer such that

p(j2) + p(j3) + · · ·+ p(jt) ≤ b
3 ; put j2, . . . , jt in B.

3 Add jt+1, . . . , jK into A if t 6= K.
Output: (A,B).

Figure 4: Partition II

K∑
i=t+1

p(ji)) < b/6 .

But since
t+1∑
i=2

p(ji) > b/3, we also have p(jt+1) =

t+1∑
i=2

p(ji)−
t∑
i=2

p(ji) > b/3− b/6 = b/6. Note that t ≥ 2,

hence p(j2) ≥ p(jt+1) > b/6 >
t∑
i=2

p(ji), a contradiction.

The last partitioning algorithm, Partition III, will
handle the case when we have at least two large jobs
and Partition II is not working. Specifically, we will
take four job sets as input; three of them, S1, S3, S4,
have two large (≥ b/3) jobs and the other, S2, has all
small (< b/3) jobs. We partition them into eight bags
such that we have four small bags and four bags that are
not too big. The algorithm first puts the second biggest
job from S1 into A1 and the remaining jobs from S1 into
A2. It then greedily puts jobs from S2 into A1 and A2

as long as they don’t cause the load to go over 5b/6. By
greedily, here, we mean that it goes through the jobs
in non-decreasing order of processing time, and if the
job can fit on A1 or A2, we place it on one which it
fits. We then use Partition I on the remaining jobs of
S2, running LPT to place jobs on B1 and B2. We also
use Partition I to partition S3 to (A3, B3), and S4 to
(A4, B4). We will show that either p(B1) + p(B3) and
p(B2)+p(B4) are both not too big or we can switch jobs
to ensure that neither is. The details of the algorithm
appear in Figure 5.

Lemma 3.3. Let (A1, A2, A3, A4, B1, B2, B3, B4) be the
output of Partition III. These bags satisfy:

1. p(Ai) ≤ 5b/6, for i = 1, 2, 3, 4;

2. p(Bi) ≤ b/2, for i = 1, 2, 3, 4;

3. p(B1) + p(B3) ≤ 5b/6, p(B2) + p(B4) ≤ 5b/6.

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

Partition III(S1, S2, S3, S4)

Input: Four sets of jobs: S1 = {x1, . . . , xp} such
that p(x1) ≥ p(x2) ≥ b/3, p(S1) ≤ b, S2 = {y1, . . . ,
yq} such that b/3 ≥ p(y1) ≥ .. ≥ p(yq), p(S2) ≤ b,
S3 with p(S3) ≤ b and S4 with p(S4) ≤ b. Moreover
for i = 1, 2, 3, 4, p(j) ≤ 2b/3 for every j ∈ Si.
Main Process:

1 A1 = {x2}. A2 = S1 − {x2}, i = 1.
2 while ((p(A1) + p(yi) ≤ 5b/6) or

(p(A2) + p(yi) ≤ 5b/6)) and (i ≥ 1)
3 if p(A1) + p(yi) ≤ 5b/6, add yi to A1 else add

yi to A2,
4 i+ +
5 Let S′ be the jobs remaining in S2.
6 Set (B1, B2) = Partition I(S′), (A3, B3) =

Partition I(S3), (A4, B4) = Partition I(S4).
7 if B1 ∪B2 contains 3 jobs and B2 contains only

one job, let j3 be the job with the least processing
time in B1.

if p(j3) + p(A3) ≤ 5b/6, move j3 from B1 to
A3.
else if p(j3) + p(A4) ≤ 5b/6, move j3 from B1

to A4;
else Set temp = B1, B1 = B4, B4 = temp.

8 else if B1 ∪B2 contains more than 3 jobs and B2

contains one job.
Let j′ denotes the job in B2 with the least
processing time. Move j′ from B2 to A3 if
p(j′) + p(A3) ≤ 5b/6.

Output: (A1, A2, A3, A4, B1, B2, B3, B4).

Figure 5: Partition III

Proof. Let kij denote the load of jobs from Si that
are placed in bag Aj . Note that the jobs in bags B1

and B2 all come from S2. Thus k11 + k12 ≤ b and
k21 + k22 + p(B1) + p(B2) ≤ b. For i = 1, 2, define the
non-negative slack in each Ai as δi = 5b/6 − k1i − k2i
and δ = max{δ1, δ2}.

Note that at line 1, p(A1) = p(x2) ≤ b/2 and
p(A2) = p(S1) − p(x2) ≤ b − b/3 ≤ 2b/3. Since
we call Partition I to separate S3 and S4, by Lemma
3.1, p(A3) ≤ 2b/3, p(A4) ≤ 2b/3 at line 6. Since for
i = 1, 2, 3, 4, we will only add job to Ai as long as the
load does not exceed 5b/6, condition 1 holds.

We now consider conditions 2 and 3. By line 2,
any job in B1 ∪ B2 has load greater than δ. First
consider the case when B1 ∪ B2 contains at most two
job. Then p(B1) ≤ b/3 and p(B2) ≤ b/3. Note that
also p(B3) ≤ p(S3)/2 ≤ b/2 and similarly p(B4) ≤ b/2,
hence the claim follows.

Next we consider the case when B1 ∪ B2 contains
l ≥ 3 job before line 7. Note that,

p(B1) + p(B2) ≤ b− k21 − k22

= b−
(

5b

6
− δ1 − k11

)
−
(

5b

6
− δ2 − k12

)
≤ b

3
+ 2δ .

If both B1 and B2 contain at least 2 jobs, then
p(B1) ≥ 2δ and p(B2) ≤ b/3 + 2δ − p(B1) ≤ b/3.
Similarly p(B2) ≤ b/3, hence the claim follows.

Next we consider the case when l = 3. If B1

contains only one job, then b/3 ≥ p(B1) ≥ p(B2) and
the claim follows. We may assume B1 = {j2, j3}, B2 =
{j1} and p(j1) ≥ p(j2) ≥ p(j3). Since k11 = p(x2) ≤ b/2
and 5b/6 − k11 ≥ b/3 ≥ p(y1), we will always put
y1 in A1. It implies that S2 contains at least 4 jobs
and j3 ≤ p(S2)/4 ≤ b/4. If in line 7 we move j3 to
either A3 or A4, then clearly claim follows since after
line 7, both B1 and B2 contains one job and thus have
load at most b/3. So we may assume that before line
7, p(A3) > 5b/6 − p(j3) ≥ 5b/6 − b/4 = 7b/12, and
then p(B3) ≤ b − p(A3) < 5b/12. Similarly, we have
p(B4) < 5b/12. Hence p(B3) + p(B4) < 5b/6 before
line 7. Note also that p(j2) + p(j3) ≤ p(j1) + p(y1),
hence p(j2) + p(j3) ≤ p(S2)/2 ≤ b/2. So before line 7,
p(B1) ≤ b/2 and p(B2) ≤ b/3. Recall that we will swap
the name of B1 and B4, hence the claim follows.

The last case is when l ≥ 4 and one of B1 and
B2 contains only one job. If B1 contains only one job,
then b/3 ≥ p(B1) ≥ p(B2) and the claim follows. We
may assume that B2 = {j1} and B1 = {j2, j3, . . . , jl}
with p(j1) ≥ p(j2) ≥ · · · ≥ p(jl). Then by Partition I,
p(j2) + · · · + p(jl−1) ≤ p(B1) ≤ b/3. Recall that l ≥ 4,
hence p(jl) ≤ (p(j2) + · · · + p(jl−1))/(l − 2) ≤ b/6. By
Lemma 3.1, p(A3) ≤ 2b/3. Thus p(A3) + p(jk) ≤ 5b/6.
So in line 8 we will always move jk to A3. After line 8,
p(B2) = p(j2) + · · · + p(jl−1) ≤ b/3. Hence the claim
also follows.

3.2 Packing and Scheduling In the previous sub-
section, we gave different algorithms to partition jobs
into bags. We will now show how to use these algorithms
in conjunction with additional algorithms to schedule
the bags (and thus jobs) onto machines. Recall that
opt′M/2 is the value of the makespan obtained by run-

ning the PTAS on a scheduling instance with M/2 ma-
chines and b = opt′M/2. Two simple facts we will use
throughout this section are that optm is non-increasing
with m, the number of machine, and that 2optM ≥
optM/2, which implies that optM ≥

opt′M/2

2(1+ε) = b
2(1+ε) .

We now prove our bound of 5
3 + ε by considering

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

three different cases. The first case is when opt′M ≥
3b/5, which implies that the PTAS of the jobs on M/2
is good enough for M machines. We remark that
if this case does not hold then there is no job with
processing time greater than 3b/5. The next case is
when opt′3M/4 ≤ 4b/5, which implies that we can start

with opt′3M/4 and do not need to split all job sets. The

last and the hardest case is when opt′3M/4 > 4b/5 and

opt′M < 3b/5. In this case we will start with the PTAS
onM/2 and split each job sets according to its structure.
Before going to the detail of those three cases, we start
with a lemma which gives a sufficient condition for bags
to give a 5

3 (1 + ε) robust ratio when the number of
machine is less than M/2. It will be used in both the
second and the last case.

Lemma 3.4. Let {S1, . . . , SM} denotes M bags such
that for i = 1, 2, . . . ,M/2, p(Si) ≤ 5b/6, and for
i = M/2 + 1,M/2 + 2, . . . ,M , p(Si) ≤ 2b/3. Then
the following algorithm yields a schedule for the bags
with a makespan of at most 5(1 + ε)optm/3 for any
m ∈ [1,M/2).

1 if M/4 ≤ m < M/2. For i = 1, 2, . . . ,m, put Si on
machine i; for i = m+ 1,m+ 2, . . . ,M/2, put Si on
machine i−m; for i = M/2 + 1, . . . ,M , put Si on
the machine with the least load.

2 if M
2(k+1) ≤ m < M

2k for some integer k ≥ 2, sort {S1

, S2, . . . , SM} in decreasing order according to their
processing times. For i = 1, . . . ,m, put Si on
machine i; for i = m+ 1, . . . , 2m, put Si on machine
i−m; for i = 2m+ 1, . . . ,M , put Si on the machine
with the least load.

Proof. First note that since m < M/2, optm ≥
optM/2 ≥ b/(1 + ε). Let machine r be the machine
with the largest load and among the bags scheduled on
machine r, St is the one with the largest index. For
the case M/4 ≤ m < M/2, if t > M/2, then we know
p(St) ≤ 2b/3 ≤ 2(1+ε)optm/3 and the makespan of our
algorithm is at most p(St) + optm ≤ 5(1 + ε)optm/3.
Else t ≤M/2, then we know that we only put two bags
on machine r, and therefore the makespan is at most
2 · 5b/6 = 5b/3 ≤ 5(1 + ε)optm/3.

For the case M
2(k+1) ≤ m < M

2k with k ≥ 2, if

t ≤ 2m, then similarly we know that we only put two
bags on machine r, and therefore the makespan is at
most 2 · 5b/6 = 5b/3 ≤ 5(1 + ε)optm/3. So we may

assume that t ≥ 2m + 1. Since
2m∑
i=1

p(Si) ≥
2m∑
i=1

p(St) =

2mp(St), optm ≥
2m∑
i=1

p(Si)/m ≥ 2p(St). This implies

that p(St) ≤ optm/2 and the makespan of our algorithm
is at most p(St) + optm ≤ 3optm/2.

Algorithm 1

Packing:
1 Let S = PTAS(M/2) = {S1, . . . , SM/2}.
2 for k = 1 . . . ,M/2, let (Ak, Bk) = Partition I(Sk).
3 Return the M bags {A1, . . . , AM/2, B1, . . . , BM/2}.

Scheduling:
1 if m ≥M/2, schedule Ai and Bi on machine i for

i ≤M/2. Leave the remaining machines empty.
2 if m < M/2, run LPT to schedule the bags on m

machines.

Figure 6: Algorithm 1

3.2.1 Case I: opt′M ≥ 3b/5. The first case is quite
simple. We start with PTAS(M/2), and partition each
job set into two bags using Partition I. Those are our
bags. For scheduling, if m ≥M/2, we just revert to the
M/2 machine schedule, leaving the remaining machines
empty. If m < M/2, we can run LPT to the bags on
the machines. The details appear in Figure 6.

Lemma 3.5. If opt′M ≥ 3b/5, Algorithm 1 is 5
3 (1 + ε)-

robust.

Proof. For m ≥M/2,

ALG(m,M)

optm
≤

opt′M/2

optM
≤ b

opt′M
1+ε

≤ b
3b/5
1+ε

= (1 + ε)
5

3
.

For m < M/2, optm ≥ optM/2 ≥ b/(1 + ε). We
may assume the bags are S′1, . . . , S

′
M such that p(S′1) ≥

p(S′2) · · · ≥ p(S′M). Let k be the number such that for
i ≤ k, p(S′i) > 2b/3 and for i > k, p(S′i) ≤ 2b/3. Recall
that each bag S′i comes from running Partition I on some
job set Sj with p(Sj) ≤ b. Hence by Lemma 3.1, either
p(S′i) ≤ 2b/3 or it is a bag with a single job. Specifically,
S′1, . . . , S

′
k all contain only one job. Let the jobs be

j1, j2, . . . , jk respectively. Let machine r be the machine
with the largest load and among the bags scheduled on
machine r, St is the one with the largest index. If t > k,
then we know p(St) ≤ 2b/3 ≤ 2(1 + ε)optm/3. By the
property of LPT, the makespan of our algorithm is at
most p(St) + optm ≤ 5(1 + ε)optm/3. If t ≤ k, then the
makespan of our algorithm is equal to the makespan
of running LPT on jobs {j1, j2, . . . , jk}, which is at
most 4/3 times the minimum makespan of scheduling
{j1, j2, . . . , jk} on m machines [8]. Since the minimum
makespan of scheduling {j1, j2, . . . , jk} on m machines
is at most optm, our makespan in this case is at most
4optm/3.

Copyright c© by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2

Packing:
1 Let S = PTAS(3M/4) = {S1, .., S3M/4}. Let v be

the number of bad sets in S. Rename the sets
so that S1, . . . , Sv are bad sets.

2 For M
2 < k ≤ 3M

4 , let (Ak, Bk) = Partition I(Sk).
3 Return the M bags {S1, S2, .., SM/2, AM/2+1, . . . ,

A3M/4, BM/2+1, .., B3M/4}.
Scheduling:

1 if m ≥ 3M
4 , schedule Si on machine i for i ≤ M

2 ,
and schedule Aj , Bj on machine j for j > M

2 .
Leave the remaining machines empty.

2 if v > M
2 and v ≤ m < 3M

4 , first put S1, S2, . . . ,
SM/2, AM/2+1 ∪BM/2+1, . . . , Av ∪Bv on v
machines respectively, then schedule the rest of the
bags with at most one in each machine.

3 if v > M
2 and M

2 ≤ m < v − 1, or v ≤ M
2 and

M
2 ≤ m < 3M

4 , schedule the bags arbitrarily such
that each machine contains at most two bags and
at most one bag comes from {S1, . . . , SM/2}.

4 if m < M
2 , we follow the strategy in Lemma 3.4.

Figure 7: Algorithm 2

3.2.2 Case II: opt′M < 3b
5 and opt′3M/4 ≤ 4b/5. In

this case, we will use the PTAS schedule for 3M/4 ma-
chines as input to Partition I. For Si ∈ PTAS(3M/4),
we call Si bad if Si contains a job with processing time
at least 2

3opt′3M/4. For the packing step, We will run

Partition I on M/4 job sets, try to avoid a bad set if
possible and then schedule the bags on machines. For
the scheduling step, we will have several cases, based
on how many bad machines that we have. The details
appear in Figure 7.

Lemma 3.6. If opt′M < 3b
5 and opt′3M/4 ≤ 4b/5 then

Algorithm 2 is 5
3 (1 + ε)-robust.

Proof. For m ≤ 3M/4, the load on each machine is at
most opt′3M/4 ≤ 4b/5, hence we have,

ALG(m,M)

optm
≤

opt′3M/4

optM
≤ 4b/5

b
2(1+ε)

< (1 + ε)
5

3
.

By Lemma 3.1, for k > max{v,M/2}, p(Bk) ≤
p(Ak) ≤ 2

3opt′3M/4. If v > M/2, and v ≤ m < 3M/4

or v ≤ M/2 and M/2 ≤ m < 3M/4, the load on
each machine is at most opt′3M/4 + maxi>v{p(Ai)} ≤

5
3opt′3M/4, so we have,

ALG(m,M)

optm
≤

5
3opt′3M/4

opt3M/4

≤ (1 + ε)
5

3
.

If v > M/2 and M/2 ≤ m < v − 1, then since the
number of jobs with processing time at least 2

3opt′3M/4

is at least v, optv−1 ≥ 4
3opt′3M/4. On the other hand,

each machine has load at most 2opt′3M/4. So we obtain

ALG(m,M)

optm
≤

2opt′3M/4

optv−1
≤

2opt′3M/4

4
3opt′3M/4

< (1 + ε)
5

3
.

Since opt′M < 3b/5, every job has processing time
at most 3b/5. Notice that for i ≤ M/2 and j >
M/2, p(Si) ≤ opt′3M/4 ≤ 4b/5 and p(Bj) ≤ p(Aj) ≤
max{3b/5, 2opt′3M/4/3} = 3b/5 < 2b/3, we can apply

Lemma 3.4 on the case m < M/2.

3.2.3 Case III: opt′M < 3b
5 and opt′3M/4 > 4b/5.

This final case is the most complicated one. We say a
job is big if it has processing time at least b/3. Given a
set of jobs, we call the set 2-big if it has two big jobs.
We call the set 1-big if it is not 2-big and has one big
job. We call a set that is neither 1-big nor 2-big, 0-big.
Give a set S of job sets, we let vi(S) denote the number
of i-big sets and we assume that we have functions i-
big(S) which return an i-big set from S, assuming one
exists. For a job set Si, we use Si(j) to denote the jth
largest job in set Si.

The main idea for packing here is to use the
optimal schedule for M/2 machines, but to split the
jobs assigned to each machine into 2 bags. For each
Si, we want to partition it into two sets such that one
is small enough and the other is not too big. We can
use Partition II to achieve this goal, if and only if Si
contains at most one big job, that is, Si is 0-big or 1-
big. If Si is 2-big and thus contain two big jobs, we
try to group three 2-big job sets with one 0-big job set,
and then partition them into eight sets such that four
are small enough and four not too big, using Partition
III. Roughly speaking, if many Si contain two big jobs,
then we can give a good lower bound on opt, else we will
have a good partition. The details appear in Figure 8.

Lemma 3.7. If opt′M < 3b/5 and opt′3M/4 > 4b/5,

Algorithm 3 is 5
3 (1 + ε)-robust.

Proof. Since opt′M < 3b/5, every job has processing
time at most 3b/5. For k = 1, 2, 3, . . . , 4u, by Lemma
3.2, we have p(Ak) ≤ 5b/6 and p(Bk) ≤ b/2 and
if moreover k = 4t + 1 or 4t + 2 for an integer t,
p(Bk) + p(Bk+2) ≤ 5b/6 and we call such Bk and Bk+2

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 3:

Packing:
1 Let S = PTAS(M2) = {S1, .., SM

2
},

u = min{
⌊
v2(S)

3

⌋
, v0(S)},

w = max{v2(S)− 3u, 0} and S′ = S.
2 if u ≥ 1, for k = 1, 5, 9, . . . , 4u− 3,

C = 2-big(S′);D = 0-big(S′);E = 2-big(S′);
F = 2-big(S′); (Ak, . . . , Ak+3, Bk, . . . , Bk+3)
= Partition III(C,D,E, F); S′ = S′ − C−
D − E − F .

3 if w ≥ 1, for k = 4u+ 1, 4u+ 2, . . . , 4u+ w,
C = 2-big(S′);Bk = {C(2)};Ak = C/Bk;
S′ = S′ − C.

4 for k = 4u+ w + 1, 4u+ w + 2, . . . , M2 .
Let C be any set in S′. (Ak, Bk) = Partition
II(C); S′ = S′ − C.

5 Return the bags {A1, A2, . . . , AM
2
, B1, . . . , BM

2
}.

Scheduling:
1 if m ≥ max{3M/4,M/2 + w + 2u}

for i ≤M/2, schedule Ai on machine i;
for i = M/2 + 1,M/2 + 3, . . . ,M/2 + 2u− 1;
schedule B2i−M−1 and B2i−M+1 on machine i
and B2i−M and B2i−M+2 on machine i+ 1;
for i = M/2 + 2u+ 1, . . . ,m, schedule the rest
of the bags on those machines such that each
machine contains at most two bags and if
there are two bags on a machine, at most one
of them is from B4u+1, . . . , B4u+w;

2 if w + 2u > M/4 and 3M/4 ≤ m < M/2 + w + 2u
for i ≤M/2, schedule Ai on machine i;
for i = M/2 + 1, . . . ,m, schedule the rest of
the bags on machines so that each machines
contains at most two bags;

3 if M/2 ≤ m < 3M/4
schedule all bags amongst the machines so
that there are at most two bags on each
machine and if there are 2 bags on a machine,
at most one of the bag is Ai for some i.

4 if m < M/2, we follow the strategy in Lemma 3.4.

Figure 8: Algorithm 3

paired bags. For k = 4u+1, 4u+2, .., 4u+w, we partition
a 2-big job set Si into {Ak, Bk} by putting the second
biggest job in Bk and the rest in Ak. Hence b/3 ≤
p(Bk) ≤ b/2, p(Ak) = p(Si) − p(Bk) ≤ b − b/3 = 2b/3.
For k = 4u + w + 1, 4u + w + 2, .., M2 , by Lemma 3.3
we have p(Ak) ≤ 5b/6, p(Bk) ≤ b/3 (note that after line
3 there is no 2-big job set left and hence we can use
Partition II in line 4).

Next consider the scheduling process in Algorithm
4. First consider the case m ≥ max {3M/4,M/2 +
w + 2u}. For i ≤ M/2, the load of each machine is at
most maxi{p(Ai)} ≤ 5b/6. For i = M/2 + 1,M/2 +
2, . . . ,M/2 + 2u, we always schedule a paired bags on
the machines, so the load is still at most 5b/6. For
the rest of the machines, we schedule B4u+1, . . . , BM/2

on them such that at most two bags on each machines
and if there are two bags, at most one of them is from
B4u+1, . . . , B4u+w, hence the load is at most b/3+b/2 =
5b/6. Therefore

ALG(m,M)

optm
≤ 5b/6

optM
≤ 5b/6

b
2(1+ε)

= (1 + ε)
5

3
.

Next consider the case w+ 2u > M/4 and 3M/4 ≤
m < M/2 + w + 2u. Since 4u ≤ v2(S) + v0(S) ≤ M/2,
2u ≤M/4 and v2(S)− 3u = w ≥ 1. If u = bv2(S)/3c <
v0(S), since v2(S) ≥ 3u + 1, v2(S) = 3u + 1 or 3u + 2.
If v2(S) = 3u + 1, then M/4 < w + 2u = v2(S) − u =
2u + 1 and M/4 ≤ 2u, but M/2 ≥ v2(S) + v0(S) >
3u + 1 + u, a contradiction. If v2(S) = 3u + 2, then
M/4 < v2(S) − u = 2u + 2 and M/4 ≤ 2u + 1, but
M/2 ≥ v2(S)+v0(S) > 3u+2+u, a contradiction. So we
have u ≥ v0(S) and w+2u = v2(S)−u ≤ v2(S)−v0(S).
Note that in total we have at least 2v2(S) + v1(S) =
M/2 + v2(S)− v0(S) jobs with processing time at least
b/3. Hence optM/2+w+2u−1 ≥ 2b/3. On the other
hand in this case the load on each machine is at most
max{maxi{Ai}, 2 maxi{Bi}} ≤ b.

ALG(m,M)

optm
≤ b

optM/2+w+2u−1
≤ b

2b/3
< (1 + ε)

5

3
.

In the case M/2 ≤ m < 3M/4, the load on each
machine is at most maxi{Ai}+maxi{Bi} ≤ 5b/6+b/2 =
4b/3. Therefore we have

ALG(m,M)

optm
≤ 4b/3

opt3M/4

≤ (1 + ε)
4b/3

4b/5
= (1 + ε)

5

3
.

For the case when m < M/2, by Lemma 3.4 the
claim follows.

By combining Lemma 3.5, 3.6 and 3.7, we can
deduce the following lemma. The running time comes
from calling the PTAS [11] 3 times, various sorting and
heap data structure operations needed to implement
LPT and the other algorithms. The M term is in the
running time because of the need to perform operations
on the M bags.

Lemma 3.8. When M is divisible by 4, Algorithm 1-3
together gives a 5

3 (1 + ε)-robust algorithm with running
time of O((M + n) log n), where the hidden constant
depends exponentially on 1/ε.

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

Recall that the algorithm uses the terms M/2 and
3M/4 and assumes that they are integers. When M is
not divisible by 4, the algorithm and analysis still work
with some small changes, which we omit here. In sum,
we have the following main theorem.

Theorem 3.1. There exists a (5
3 + ε)-robust algorithm

with running time of O((M+n) log n), where the hidden
constant depends exponentially on 1/ε.

4 Conclusion and Open Problems

We initiate the idea of scheduling with uncertainty in
the number of machines and give several results. In this
paper, we focus on the case when m ∈ [1,M], but there
still exists a gap between the lower bound of 4/3 and the
upper bound of 5/3. It would be very interesting to close
the gap. We can also generalize the idea to consider the
case when m ∈ [αM, βM] to see whether we can give
a better upper bound if we know a restriction on the
possible number of machines in advance. Some of our
partitioning lemmas in Section 3.1 can be generalized
and may be useful in such analysis. For example, if
we have a set S = {j1, j2, .., jK}, with jobs satisfying
1 − αb/2 ≥ p(j1) ≥ p(j2) ≥ .. ≥ p(jK), p(j2) ≤ αb
and p(S) ≤ b, we can use the idea of Partition II to
partition S to one set with load at most 1 − αb/2 and
another set with load at most αb. Partition III can also
be generalized similarly.

It would be natural to consider other scheduling
problems and other objectives, such as average comple-
tion time or flow time. Makespan is really a partitioning
problem, but other objectives raise additional questions
regarding the ordering of the jobs, which would be in-
teresting to study. Finally, it might be interesting to
consider the case where the number of machines come
from a distribution and you need to schedule to mini-
mize the expected makespan.

Acknowledgement

We are thankful to Tsvi Kopelowitz for many helpful
discussions. We thank the anonymous reviewer who
pointed out the simple 2-robust algorithm mentioned
in Section 1.

References

[1] S. Albers, Recent advances for a classical scheduling
problem. In Proceedings of ICALP, Springer LNCS
7966, 4-14, 2013.

[2] S. Albers and M. Hellwig, Online makespan minimiza-
tion with parallel schedules. In Proceedings of SWAT ,
Springer LNCS 8513, 13-25, 2014.

[3] S. Albers and G. Schmidt, Scheduling with unexpected
machine breakdowns. Discrete Applied Mathematics,
110(2-3):85-99, 2001.

[4] J. A. Aslam, A. Rasala, C. Stein and N. E. Young, Im-
proved Bicriteria Existence Theorems for Scheduling.
In Proceedings of SODA, 846-847, 1999.

[5] L. Chen, N. Megow, R. Rischke and L. Stougie,
Stochastic and Robust Scheduling in the Cloud. In Pro-
ceedings of APPROX-RANDOM, 175-186, 2015.

[6] Y. Disser, M. Klimm, N. Megow, S. Stiller, Packing
a Knapsack of Unknown Capacity. In Proceedings of
STACS, 276-287, 2014.

[7] L. Epstein, A. Levin, A. Marchetti-Spaccamela, N.
Megow, J. Mestre, M. Skutella, and L. Stougie, Univer-
sal Sequencing on an Unreliable Machine. SIAM Jour-
nal on Computing, 41:565-586, 2012.

[8] R. L. Graham, Bounds for certain multiprocessing
anomalies. Bell Syst. Tech. J. 45 , 1563-1581, 1966.

[9] R. Hassin and S. Rubinstein, Robust matchings. SIAM
Journal on Discrete Mathematics 15(4):530-537, 2002.

[10] D. S. Hochbaum and D. B. Shmoys, Using dual approx-
imation algorithms for scheduling problems: theoreti-
cal and practical results. Journal of the ACM, 34:144-
162, 1987.

[11] K. Jansen, K. M. Klein, and J. Verschae, Closing
the gap for makespan scheduling via sparsification
technique. In Proceedings of ICALP, 72:1-72:13, 2016.

[12] J. Niño-Mora, Stochastic scheduling. Encyclopedia of
Optimization, 2nd edition, C.A. Floudas and P.M.
Pardalos, eds., 3818-3824. Springer, New York, 2009.

[13] J. Matuschke, M. Skutella, and J. A. Soto, Ro-
bust Randomized Matchings. In Proceedings of SODA.
1904-1915,2015

[14] N. Megow, Robustness and Approximation for Univer-
sal Sequencing. Gems of Combinatorial Optimization
and Graph Algorithms 2015, 133-141.

[15] L. K. Platzman and I. John J. Bartholdi, Spacefilling
curves and the planar travelling salesman problem.
Journal of the ACM, 36, 719-737, 1989.

[16] A. Rasala, C. Stein, E. Torng, and P. Uthaisom-
but, Existence theorems, lower bounds and algorithms
for scheduling to meet two objectives. Proceedings of
SODA. 723-731, 2002.

[17] D. B. Shmoys and M. Sozio, Approximation algorithms
for 2-stage stochastic scheduling problems. In Integer
Programming and Combinatioral Optimization, 145-
157, 2007.

Copyright c© by SIAM

Unauthorized reproduction of this article is prohibited

