
Fast Algorithms for Knapsack via Convolution and Prediction∗†

MohammadHossein Bateni

Google Inc.

New York, NY, USA

bateni@google.com

MohammadTaghi Hajiaghayi

University of Maryland

College Park, MD, USA

hajiagha@cs.umd.edu

Saeed Seddighin

University of Maryland

College Park, MD, USA

saeedreza.seddighin@gmail.com

Cliff Stein

Columbia University

New York, NY, USA

cliff@ieor.columbia.edu

ABSTRACT
The knapsack problem is a fundamental problem in combinatorial

optimization. It has been studied extensively from theoretical as

well as practical perspectives as it is one of the most well-known

NP-hard problems. The goal is to pack a knapsack of size t with
the maximum value from a collection of n items with given sizes

and values.

Recent evidence suggests that a classic O (nt) dynamic program-

ming solution for the knapsack problem might be the fastest in the

worst case. In fact, solving the knapsack problem was shown to be

computationally equivalent to the (min,+) convolution problem,

which is thought to be facing a quadratic-time barrier. This hard-

ness is in contrast to the more famous (+, ·) convolution (generally

known as polynomial multiplication), that has an O (n logn)-time

solution via Fast Fourier Transform.

Our main results are algorithms with near-linear running times

(in terms of the size of the knapsack and the number of items) for

the knapsack problem, if either the values or sizes of items are

small integers. More specifically, if item sizes are integers bounded

by smax, the running time of our algorithm is Õ ((n + t)smax). If
the item values are integers bounded by vmax, our algorithm runs

in time Õ (n + tvmax). Best previously known running times were

O (nt), O (n2smax), O (n2vmax) and O (nsmaxvmax).
At the core of our algorithms lies the prediction technique: Roughly

speaking, this new technique enables us to compute the convolu-

tion of two vectors in time Õ (nemax) when the solution satisfies a

monotonic structure and an approximation of the solution within

an additive error of emax is available.

∗
Supported in part by NSF CAREER awards CCF-1421161, CCF-1714818, and CCF-

1053605, NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant CCF1161365, DARPA

GRAPHS/AFOSR grant FA9550-12-1-0423, and another DARPA SIMPLEX grant

†
The omitted proofs can be found in the full version of this paper

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00

https://doi.org/10.1145/3188745.3188876

Our results also improve the best known solutions for knapsack

whose running times do not depend on t . In the limited size set-

ting, when the items have multiplicities, the fastest algorithms for

knapsack run in time O (n2smax

2) and O (n3smax

2) for the cases of
infinite and given multiplicities, respectively. Our results improve

both running times by a factor of Ω̃(nmax{1,n/smax}).

CCS CONCEPTS
• Theory of computation → Dynamic programming;

KEYWORDS
knapsack, convolution, prediction

ACM Reference Format:
MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin,

and Cliff Stein. 2018. Fast Algorithms for Knapsack via Convolution and

Prediction. In Proceedings of 50th Annual ACM SIGACT Symposium on the
Theory of Computing (STOC’18). ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3188745.3188876

1 INTRODUCTION
The knapsack problem is a fundamental problem in combinatorial

optimization. It has been studied extensively from theoretical as

well as practical perspectives (e.g., [3, 7, 11, 16, 17]), as it is one of
the most well-known NP-hard problems [10]. The goal is to pack a

knapsack of size t with the maximum value from a collection of n
items with given sizes and values. More formally, item i has size si
and value vi , and we want to maximize

∑
i ∈S vi such that S ⊆ [n]

and

∑
i ∈S si ≤ t .

Recent evidence suggests that a classic O (nt) DP solution for

the knapsack problem [3] may not be improved to O ((nt)0.999). In
fact, solving the knapsack problem was shown to be equivalent

to the (min,+) convolution problem [9], which is thought to be

facing a quadratic-time barrier. The two-dimensional extension,

called the (min,+) matrix product problem, appears in several

conditional hardness results. These hardness results for (min,+)
matrix product and equivalently (max,+) matrix product are in

contrast to the more famous (+, ·) convolution (generally known

as polynomial multiplication), that has an O (n logn)-time solution

via Fast Fourier Transform (FFT) [8].

Before moving forward, we present the general form of convo-
lution problems. Consider two vectors a = (a0,a1, . . . ,am−1) and
b = (b0,b1, . . . ,bn−1). We use the notations |a | = m and |b | = n

https://doi.org/10.1145/3188745.3188876
https://doi.org/10.1145/3188745.3188876
https://doi.org/10.1145/3188745.3188876

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

to denote the size of the vectors. For two associative binary op-

erations ⊕ and ⊗, the (⊕, ⊗) convolution of a and b is a vector

c = (c0, c1, . . . , c2n−1), defined as follows.

ci = ⊕
j :0≤j<m
0≤i−j<n

{aj ⊗ bi−j }, for 0 ≤ i < m + n − 1.

The past few years have seen increased attention towards several

variants of convolution problems (e.g., [2, 4–6, 9, 14, 15]). Most

importantly, many problems, such as tree sparsity and 3-sum, have

been shown to have conditional lower bounds on their running

times via their intimate connection with (min,+) convolution.
In particular, previous studies have shown that (max,+) convo-

lution, knapsack, and tree sparsity are computationally (almost)

equivalent [9]. However, these hardness results are obtained by

constructing instances with arbitrarily high item values (in the case

of knapsack) or vertex weights (in the case of tree sparsity). A
fast algorithm can solve (min,+) convolution in almost linear time

when the vector elements are bounded. This raises the question of

whether moderate instances of knapsack or tree sparsity can be

solved in subquadratic time. The recent breakthrough of Chan and

Lewenstein [6] suggests that knapsack and tree sparsity may be

solved in barely subquadratic time O (n1.859) when the values or

weights are small
1
.

Our main results are algorithms with near-linear running times

(in terms of n + t) for the knapsack problem, if either the val-

ues or sizes of items are small integers. More specifically, if item

sizes are integers bounded by smax, the running time of our algo-

rithm is Õ ((n + t)smax). If the item values are integers bounded

by vmax, our algorithm runs in time Õ (n + tvmax). Best previously
known running times were O (nt), O (n2smax), O (n2vmax) [3] and
O (nsmaxvmax) [17]. As with prior work, we focus on two special

cases of 0/1 knapsack (each item may be used at most once) and

unbounded knapsack (each item can be used many times), but un-

like previous work we present near linear-time exact algorithms

for these problems.

Our results are similar in spirit to the work of Zwick [20] (JACM

2002) wherein the author obtains a subcubic time algorithm for the

all pairs shortest paths problem (APSP) where the edge weights
are small integers. Similar to knapsack and (max,+) convolution,
there is a belief that APSP cannot be solved in truly subcubic time.

We obtain our results through new sophisticated algorithms for im-

proving the running time of convolution in certain settings whereas
Zwick uses the known convolution techniques as black box and

develops randomized algorithms to improve the running time of

APSP.
We emphasize that our work does not improve the complexity

of the general (min,+) convolution problem, for which no truly

subquadratic-time algorithm is known to exist. Nevertheless, our

techniques provide almost linear running time for the parame-

terized case of (min,+) convolution when the input numbers are

bounded by the parameters.

A summary of the previously known algorithms along with

our new results is shown in Table 1. Notice that in 0/1 knapsack,

1
The algorithm of Chan and Lewenstein [6] implies a subquadratic time solution

for performing (max, +) convolution on two arrays with small distances between

neighboring cells. It follows from the reduction of [9] that any subquadratic time

algorithm for convolution yields a subquadratic time algorithm for knapsack.

t is always bounded by n smax and thus our results improve the

previously known algorithms even when t appears in the running

time.

Table 1: n and t denote the number of items and the knap-
sack size respectively. vmax and smax denote the maximum
value and size of the items. Notice that when the knapsack
problem does not have multiplicity, t is always bounded by
nsmax and thus our running times are always better than the
previously known algorithms. Theorems 6.2, 7.3, and 7.5, as
well as Corollary 6.3 are randomized and output a correct
solution with probability at least 1 − n−10.

setting running time our improvement
general setting O (nt) [8] -

limited size O (n2smax) Õ ((n + t)smax)
[17] (Theorem 6.2)

limited size, O (n2smax

2) Õ (nsmax + smax

2
min{n, smax })

unlimited [18] (Theorem 7.3)

multiplicity Õ ((n + t)smax)
(Corollary 6.3)

limited size, O (n3smax

2) Õ (nsmax

2
min{n, smax })

given multiplicity [18] (Theorem 7.5)

limited value O (n2vmax) Õ (n + tvmax)
[12, 13] (Theorem 4.4)

limited value, - Õ (n + tvmax)
unlimited (Theorem 5.5)

multiplicity

limited value O (nsmaxvmax) Õ ((n + t)min{vmax, smax })
and size [17] (Theorems 4.4 and 6.2)

2 OUR CONTRIBUTION
2.1 Our Technique
Recall that the (+, ·) convolution is indeed polynomial multiplica-
tion. In this work, we are mostly concerned with (max,+) convolu-
tion (which is computationally equivalent tominimum convolution).
We may drop all qualifiers and simply call it convolution. We use

the notation a⋆b for (max,+) convolution and a×b for polynomial
multiplication of two vectors a and b. Also we denote by a⋆k the

k’th power of a in the (max,+) setting, that is a ⋆ a ⋆ . . . ⋆ a︸ ︷︷ ︸
k times

.

If there is no size or value constraint, it has been shown that

knapsack and (max,+) convolution are computationally equiva-

lent with respect to subquadratic algorithms [9]. In other words,

any subquadratic solution for knapsack (in terms of n + t) yields
a subquadratic solution for (max,+) convolution and vice versa.

Following this intuition, our algorithms are closely related to algo-

rithms for computing (max,+) convolution in restricted settings.

The main contribution of this work is a technique for computing

the (max,+) convolution of two vectors, namely the prediction tech-
nique. Roughly speaking, the prediction technique enables us to

compute the convolution of two vectors in time Õ (nemax) when an

approximation of the solution within an additive error of emax is

given and the solution satisfies a monotonic structure. As we show

in Sections 4 and 5, this method can be applied to the 0/1 knapsack
and unbounded knapsack problems to solve them in Õ (n emax)

Fast Algorithms for Knapsack via Convolution and Prediction STOC’18, June 25–29, 2018, Los Angeles, CA, USA

time (e.g., if emax ≥ vmax). In Section 3, we explain the prediction
technique in three steps:

(1) Reduction to polynomial multiplication:We make use

of a classic reduction to compute a ⋆b in time Õ (emax (|a | +
|b |)) when all values of a and b are integers in the range

[0, emax]. This reduction has been used in many previous

works (e.g., [2, 5, 6, 19, 20]). In addition to this, we show

that when the values are not necessarily integral, an approx-

imation solution with additive error 1 can be found in time

Õ (emax (|a | + |b |)). In the interest of space, we bring a formal

proof for this reduction in the full version of the paper.

(2) Small distortion case: Recall thata⋆b denotes the (max,+)
convolution of vectors a and b. In the second step, we define

the “small distortion” case where ai + bj ≥ (a ⋆ b)i+j −
emax for all i and j. Notice that the case where all input

values are in the range [0, emax] is a special case of the small

distortion case. Given such a constraint, we show that a ⋆b
can be computed in time Õ (emaxn) using the reduction to

polynomial multiplication described in the first step. We

obtain this result via two observations:

(a) If we add a constant value C to each component of either

a or b, each component of their “product” a ⋆b increases

by the same amount C .
(b) For a given constant C , adding a quantity iC to every

element ai and bi of the vectors a and b, for all i , results
in an increase of iC in (a ⋆ b)i for every 0 ≤ i < |a ⋆ b |
(here |a ⋆b | denotes the size of vector a ⋆b).

These two operations help us transform the vectors a and

b such that all elements fall in the range [0,O (emax)]. Next,
we approximate the convolution of the transformed vectors

via the results of the first step, and eventually compute a⋆b

in time Õ (emaxn). We give more details in Section 3.1.

(3) Prediction: We state the prediction technique in Section 3.2.

Roughly speaking, when an estimate of each component of

the convolution is available, with additive error emax, this

method lets us compute the convolution in time Õ (emaxn).
More precisely, in the prediction technique, we are given two

integer vectors a and b, as well as |a | intervals [xi ,yi]. We

are guaranteed that (1) for every 0 ≤ i < |a | and xi ≤ j ≤ yi ,
the difference between (a⋆b)i+j and ai +bj is at most emax;

(2) for every 0 ≤ i < |a ⋆b | we know that for at least one j
we have aj + bi−j = (a⋆b)i and xi ≤ j ≤ yi ; and (3) if i < j ,
then both xi ≤ x j and yi ≤ yj hold. We refer to the intervals

as an “uncertain solution” for a ⋆b within an error of emax.

The reason we call such a data structure an uncertain solution

is that given such a structure, one can approximate the solution

in almost linear time by iterating over the indices of the resulting

vector and for every index i find one j such that x j ≤ i − j ≤ yj and
approximate (a ⋆ b)i by aj + bi−j . Such a j can be found in time

O (logn) via binary search since the boundaries of the intervals are

monotone. In the prediction technique, we show that an uncertain

solution within an additive error of emax suffices to compute the

convolution of two vectors in time Õ (emaxn). We obtain this result

by breaking the problem into many subproblems with the small

distortion property and applying the result of the second step to

compute the solution of each subproblem in time Õ (emaxn). We

show that all the subproblems can be solved in time Õ (emaxn) in
total, and based on these solutions, a ⋆b can be computed in time

Õ (emaxn). We give more details in Section 3.2.

Theorem 3.5 [restated informally]. Given two integer vectors a and
b and an uncertain solution for a⋆b within an error of emax, one can
compute a ⋆b in time Õ (emaxn).

Notice that in Theorem 3.5, there is no assumption on the range

of the values in the input vectors and the running time depends

linearly on the accuracy of the uncertain solution.

2.2 Main Results
We show in Section 4 that the prediction technique enables us to

solve the 0/1 knapsack problem in time Õ (vmaxt + n). To this end,

we define the knapsack convolution as follows: given vectors a and

b corresponding to the solutions of two knapsack problems ka and

kb , the goal is to compute a ⋆ b. If a vector a is the solution of a

knapsack problem, ai denotes the maximum total value of the items

that can be placed in a knapsack of size i . The only difference be-

tween knapsack convolution and (max,+) convolution is that in the
knapsack convolution both vectors adhere to knapsack structures,

whereas in the (max,+) convolution there is no assumption on the

values of the vectors. We show that if in the knapsack problems, the

values of the items are integers bounded byvmax, then an uncertain

solution for a⋆b within an error ofvmax can be computed in almost

linear time. The key observation here is that one can approximate

the solution of the knapsack problem within an additive error of

vmax as follows: sort the items in descending order of vi/si and
put the items in the knapsack one by one until either we run out

of items or the remaining space of the knapsack is too small for

the next item. Based on this algorithm, we compute an uncertain

solution for the knapsack convolution in almost linear time and via

Theorem 3.5 compute a ⋆b in time Õ (vmaxn). Finally, we use the
recent technique of [9] to reduce the 0/1 knapsack problem to the

knapsack convolution. This yields an Õ (vmaxt + n) time algorithm

for solving the 0/1 knapsack problem when the item values are

bounded by vmax.

Theorem 4.4 [restated]. The 0/1 knapsack problem can be solved in
time Õ (vmaxt + n) when the item values are integer numbers in the
range [0,vmax].

As another application of the prediction technique, we present

an algorithm that receives a vector a and an integer k as input and

computes a⋆k . We show that if the values of the input vector are in-

tegers in the range [0, emax], the total running time of the algorithm

is Õ (emax |a
⋆k |). This improves upon the trivial Õ (e2

max
|a⋆k |). Sim-

ilar to what we do in Section 4, we again show that the convolution

of two powers of a can be approximated within a small additive

error. We use this intuition to compute an uncertain solution within

an additive error of O (emax) and apply the prediction technique to

compute the exact solution in time Õ (emax |a
⋆k |).

Theorem 5.4 [restated]. Let a be an integer vector with values in the
range [0, emax]. For any integer k ≥ 1, one can compute a⋆k in time

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

Õ (emax |a
⋆k |).

As a consequence of Theorem 5.4, we show that the unbounded

knapsack problem can be solved in time Õ (n +vmaxt).

Theorem 5.5 [restated]. The unbounded knapsack problem can be
solved in time Õ (n +vmaxt) when the item values are integers in the
range [0,vmax].

To complement our results, we also study the knapsack problem
when the item values are unbounded real values, but the sizes are

integers in the range [1, smax]
2
. For this case, we present a random-

ized algorithm that solves the problemw.h.p.
3
in time Õ (smax (n+t)).

The idea is to first put the items into t/smax buckets uniformly at

random. Next, we solve the problem for each bucket separately, up

to a knapsack size Õ (smax). We use the Bernstein’s inequality to

show that w.h.p., only a certain interval of the solution vectors are

important and we can neglect the rest of the values, thereby en-

abling us to merge the solutions of the buckets efficiently. Based on

this, we present an algorithm to merge the solutions of the buckets

in time Õ (smax (n+ t)), yielding a randomized algorithm for solving

the knapsack problem in time Õ (smax (n + t)) w.h.p. when the sizes

of the items are bounded by smax. This result is not based on the

prediction technique.

Theorem 6.2 [restated]. There exists a randomized algorithm that
correctly computes the solution of the knapsack problem in time
Õ (smax (n + t)) w.h.p., when the item sizes are integers in the range
[1, smax].

2.3 Implication to the Limited Settings
When we parameterize the 0/1 knapsack problem by max{si } ≤
smax, one can set t ′ := min(t ,nsmax) and solve the problem with

knapsack size t ′ in time Õ ((t ′ +n)smax) = Õ (nsmax

2). This yields a
solution for the knapsack problemwhose running time is regardless

of t . However, this only works when we are allowed to use each

item only once. In Section 7, we further extend this solution to the

case where each item (si ,vi) has a given multiplicitymi . For this

case, our algorithm runs in time Õ (nsmax

2
min{n, smax}) whenmi ’s

are arbitrary and solves the problem in time Õ (nsmaxmin{n, smax})
whenmi = ∞ for all i . Both results improve the algorithms of [18]

by a factor of Ω̃(max{n, smax}) in the running time. These results

are all implied by Theorem 6.2.

2.4 Further Results
It has been previously shown that tree sparsity, knapsack, and
convolution problems are equivalent with respect to their compu-

tational complexity. However, these reductions do not hold for the

case of small integer inputs. In the full version of the paper, we

show some reductions between these problems in the small input

setting. In addition to this, we introduce the tree separability prob-

lem and explain its connection to the rest of the problems in both

general and small integer settings. We also present a linear time

2
Parallel and independent to our work, Axiotis and Tzamos [1] present anO (n+t smax)
time algorithm for this case.

3
With probability at least 1 − n−10 .

algorithm for tree separability when the degrees of the vertices and

edge weights are all small integers.

Figure 1: Desired running times are specified in the white
boxes. Here a → b means that an efficient algorithm for a
yields an efficient algorithm for b.

3 THE PREDICTION TECHNIQUE FOR
(max,+) CONVOLUTION

In this section, we present several algorithms for computing the

(max,+) convolution (computationally equivalent to (min,+) con-
volution) of two vectors. Recall that in this problem, two vectors a
and b are given as input and the goal is to compute a vector c of
length |a | + |b | − 1 such that

ci =
i

max

j=0
[aj + bi−j].

For this definition only, we assume that each vector a or b is padded

on the right with sufficiently many −∞ components: i.e., ai = −∞
for i ≥ |a | and bj = −∞ for j ≥ |b |.

Assuming |a | + |b | = n, a trivial algorithm to compute c from
a and b is to iterate over all pairs of indices and compute c in

time O (n2). Despite the simplicity of this solution, thus far, it has

remained one of the most efficient algorithms for computing the

(max,+) convolution of two vectors. However, for special cases,

more efficient algorithms compute the result in subquadratic time.

For instance, if the values of the vectors are integers in the range

[0, emax], one can compute the (max,+) convolution of two vectors

in time Õ (emaxn).
In this section, we present several novel techniques for multi-

plying vectors in the (max,+) setting in truly subquadratic time

under different assumptions. The main result of this section is the
prediction technique explained in Section 3.2. Roughly speaking, we

define the notion of uncertain solution and show that if an uncertain

solution of two integer vectors with an error of emax is given, then

it is possible to compute the (max,+) convolution of the vectors in

time Õ (emaxn). Later in Sections 4 and 5 we use this technique to

improve the running time of the knapsack and other problems.

In our algorithm, we subsequently make use of a classic reduc-

tion from (max,+) convolution to polynomial multiplication. In the

interest of space, we skip this part here and explain it in the full ver-

sion of the paper. The same reduction has been used as a blackbox

in many recent works [2, 5, 6, 19, 20]. Based on this reduction, we

show that an Õ (emaxn) time algorithm can compute the convolu-

tion of two integer vectors whose values are in the range [0, emax].

We further explain that even if the values of the vectors are real but

in the range [0, emax], one can approximate the solution within an

additive error less than 1. These results hold even if the input values

Fast Algorithms for Knapsack via Convolution and Prediction STOC’18, June 25–29, 2018, Los Angeles, CA, USA

can be either in the interval [0, emax] or in the set {−∞,∞}. We use

this technique in Section 3.1 to compute the (max,+) convolution

of two integer vectors in time Õ (emaxn) when for every i and j we
have |ai + bj − (a ⋆ b)i+j | ≤ emax. Finally, in Section 3.2 we use

these results to present the prediction technique for computing the

(max,+) convolution of two vectors in time Õ (emaxn).

3.1 An Õ (emaxn) Time Algorithm for the Case of
Small Distortion

In this section we study a variant of the (max,+) convolution prob-

lem where every ai + bj differs from (a ⋆ b)i+j by at most emax.

Indeed this condition is strictly weaker than the case where the

input values fall in range [0, emax]. Nonetheless we show that still

an Õ (emaxn) time algorithm can compute a ⋆b if the values of the

vectors are integers but not necessarily in the range [0, emax]. In

the interest of space, we omit the proofs of Lemmas 3.1, 3.2, and 3.3

and include them in the full version of the paper.

We first assume that both vectors a and b have size n. Moreover,

since the case of n = 1 is trivial, we assume w.l.o.g. that n > 1.

In order to compute a ⋆ b for two vectors a and b, we transform
them into two vectors a′ and b ′ via two operations. In the first

operation, we add a constant C to every element of a vector. In the

second operation, we fix a constant C and add iC to every element

i of both vectors. We delicately perform these operations on the

vectors to make sure the resulting vectors a′ and b ′ have small

values. This enables us to approximate (and not compute since the

values of a′ and b ′ are no longer integers) the solution of a′ ⋆ b ′

in time Õ (emaxn). Finally, we show how to derive the solution of

a ⋆b from an approximation for a′ ⋆b ′. We begin by observing a

property of the vectors.

Lemma 3.1. Let a and b be two vectors of size n such that for all
0 ≤ i, j < n we have (a ⋆b)i+j − ai − bj ≤ emax. Then,

• for every 0 ≤ i, j < n, we have |(ai − bi) − (aj − bj) | ≤ emax;
and
• for every 0 ≤ i ≤ j ≤ k < n such that j − i = k − j, we have
|aj − (ai + ak)/2| ≤ emax.

Note that since there is no particular assumption on vector a, the
condition of Lemma 3.1 carries over to vector b as well. Next we use

Lemma 3.1 to present an Õ (emaxn) time algorithm for computing

a ⋆b. We obtain this result via two observations:

(1) If we add a constant value C to each component of either a
or b, each component of their “product” a ⋆b increases by

the same amount C .
(2) For a given constantC , adding a quantity iC to every element

ai and bi of the vectors a and b, for all i , results in an increase
of iC in (a ⋆b)i for every 0 ≤ i < |a ⋆b |.

These two operations help us transform the vectorsa andb such that
all elements fall in the range [0,O (emax)]. Next, we approximate

the convolution of the transformed vectors via the aforementioned

algorithm, and finally compute a ⋆b in time Õ (emaxn).

Lemma 3.2. Let a and b be two integer vectors of size n such that
for all 0 ≤ i, j < n we have (a ⋆ b)i+j − ai − bj ≤ emax. One can
compute a ⋆b in time Õ (emaxn).

An implicit corollary of Lemma 3.2 is that for any two vectors

a and b that meet the conditions of Lemma 3.2, there exist values

A,A ′,B,B′ such that both

|ai − (Ai +A ′) | ≤ O (emax) |

and

|bi − (Bi + B′) | ≤ O (emax) |

hold.

All that remains is to extend our algorithm to the case where

we no longer have |a | = |b |. We assume w.l.o.g. that |b | ≥ |a | and
divide |b | into ⌈|b |/|a |⌉ vectors of length |a | such each bi appears in
at least one of these vectors. Then, in time O (emax |a |) we compute

the (max,+) convolution of a and each of the smaller intervals, and

finally use the results to compute a ⋆b in time Õ (emax (|a | + |b |)).

Lemma 3.3. Let a and b be two integer vectors such that for all
0 ≤ i < |a | and 0 ≤ j < |b | we have (a⋆b)i+j − ai −bj ≤ emax. One
can compute a ⋆b in time Õ (emax (|a | + |b |)).

3.2 Prediction
In this section, we explain the prediction technique and show how

it can be used to improve the running time of classic problems

when the input values are small. Roughly speaking, we show that

in some cases an approximation algorithm with an additive error of

emax can be used to compute the exact solution of a (max,+) con-

volution in time Õ (emaxn). In general, an additive approximation of

emax does not suffice to compute the (max,+) convolution in time

Õ (emaxn). However, we show that under some mild assumptions,

an additive approximation yields a faster exact solution. We call

this the prediction technique.

Suppose for two integer vectors a and b of size n, we wish to

compute a ⋆b. The values of the elements of a and b range over a

potentially large (sayO (n)) interval and thus the previous algorithm
does not improve the O (n2) running time of the trivial solution.

However, in some cases we can predict which ai ’s and bj ’s are
far away from (a ⋆ b)i+j . For instance, if a and b correspond to

the solutions of two knapsack problems whose item weights are

bounded by emax, a well-known greedy algorithm can approximate

a⋆b within an additive error of emax (ai and bi denote the solutions
of the knapsack problem for size i). The crux of the argument is

that if we sort the items with respect to the ratio of weight over

size in descending order and fill the knapsack in this order until

we run out of space, we always get a solution of at most emax away

from the optimal. Now, if ai +bj is less than the estimated value for

(a⋆b)i+j for some i and j , then there is no way that the pair (ai ,bj)
contributes to the solution of a⋆b. With a more involved argument,

one could observe that whenever ai + bj is at least emax smaller

than the estimated solution for (a⋆b)i+j , then ai +bk < (a⋆b)i+k
for either all k’s in [j,n − 1] or all k’s in [0, j]. We explain this in

more details in Section 4.

This observation shows that in many cases, (ai ,bj) pairs that are
far from (a ⋆b)i+j can be trivially detected and ignored. Therefore,

the main challenge is to handle the (ai ,bj) options that are close to
(a ⋆b)i+j . Our prediction technique states that such instances can

also be solved in subquadratic time. To this end, suppose that a and

b are two integer vectors of size n, and for every 0 ≤ i < |a | we have
an interval [xi ,yi], and we are guaranteed that ai + bj is at most

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

emax away from (a ⋆b)i+j for all j ∈ [xi ,yi]. Also, we know that

for any 0 ≤ i < |a⋆b | there exists a j such that aj +bi−j = (a⋆b)i
and x j ≤ i − j ≤ yj . We call such data an uncertain solution. We

show in Theorem 3.5 that if an uncertain solution is given, then

one can compute a ⋆b in time Õ (emaxn). For empty intervals only,

yi is allowed to be smaller than xi .

Definition 3.4. For two vectors a and b, define an uncertain solu-

tion (to a ⋆b) as |a | intervals [xi ,yi] such that

• ai +bj ≥ (a⋆b)i+j − emax for all 0 ≤ i < |a | and j ∈ [xi ,yi];
• for all 0 ≤ i < |a ⋆ b |, there exists an index j such that

aj + bi−j = (a ⋆b)i and x j ≤ i − j ≤ yj ; and
• 0 ≤ xi ,yi < |b | for all intervals and xi ≤ x j and yi ≤ yj
hold for all 0 ≤ i < j < |a |.

Theorem 3.5. Let a and b be two integer vectors for which an
uncertain solution is provided. Then, one can compute a⋆b from a, b,
and the intervals in time Õ (emax (|a | + |b |)).

Proof. One can set n equal to the smallest power of two greater

than max{|a |, |b |} and add extra −∞’s to the end of the vectors to

make sure |a | = |b | = n. Next, for every newly added element of a
we set its corresponding interval [xi ,yi] to (n − q,n − q − 1) (that
is, an empty interval) where q is the number of newly added −∞’s

to the end of b. This way, all conditions of the theorem are met

and |a | + |b | is multiplied by at most a constant factor. Therefore,

from now on, we assume |a | = |b | = n and that n is a power of

two. Keep in mind that for every i with property xi ≤ yi , none of
{ai ,bxi ,bxi+1, . . . ,byi } is equal to −∞.

Our algorithm runs in logn+ 1 rounds. In every round we split b
into several intervals. For an interval [α , β] of b we call the projec-

tion of [α , β] the set of all indices i of a that satisfy both xi ≤ α and

yi ≥ β . We denote the projection of an interval [α , β] by P (α , β).
We first show that for every 0 ≤ α ≤ β < n, P (α , β) corresponds
to an interval of a. We defer the proof of Observation 3.1 to the full

version of the paper.

Observation 3.1. For every 0 ≤ α ≤ β < n, P (α , β) is an
interval of a.

Furthermore, for any pair of disjoint intervals [α1, β1] and [α2, β2],
we observe that P (α1, β1) \ P (α2, β2) is always an interval. Similar

to Observation 3.1, we include the proof of Observation 3.2 in the

full version of the paper.

Observation 3.2. For 0 ≤ α1 ≤ β1 < α2 ≤ β2 < n, both
P (α1, β1) \ P (α2, β2) and P (α2, β2) \ P (α1, β1) are intervals of the
indices of a.

The proof for P (α2, β2) \ P (α1, β1) being an interval follows

from symmetry.

Before we start the algorithm, we construct a vector c of size
2n−1 and set all its indices equal to−∞. In Round 1 of our algorithm,

we only have a single interval [α1, β1] = [0,n − 1] for b. Therefore,
we compute P (0,n − 1) = [γ1,δ1] and construct a vector a1 of

size δ1 − γ1 + 1 and set a1i = ai+γ . Similarly, we construct a vector

b1 of size β1 − α1 + 1 and set b1i = bi+α . Next, we compute c1 =

a1 ⋆b1 using Lemma 3.3, and then based on that we set ci+α+γ ←

max{ci+α+γ , c
′
i } for all 0 ≤ i < |c1 |.

The second round is similar to Round 1, except that this time we

split b into two intervals [α1, β1] and [α2, β2] where α1 = 0, β1 =
n/2 − 1,α2 = n/2, and β2 = n − 1. For interval [α1, β1] of b we com-

pute [γ1,δ1] = P (α1, β1) \ P (α2, β2) and similarly for the second

interval of b we compute [γ2,δ2] = P (α2, β2) \ P (α1, β1). Similar

to Round 1, we construct a1,a2,b1,b2 from a and b with respect to

the intervals and compute c1 = a1⋆b1 and c2 = a2⋆b2. Finally we

update the solution based on c1 and c2.
More precisely, in Step s + 1 of the algorithm, we split b into 2

s

intervals [αi , βi]where αi = (i−1)2(logn)−s and βi = i2
(logn)−s −1.

For odd intervals we compute

[γ2i+1,δ2i+1] = P (α2i+1, β2i+1) \ P (α2i , β2i)

and for even intervals we compute

[γ2i ,δ2i] = P (α2i , β2i) \ P (α2i+1, β2i+1).

Next, we construct vectors a1,a2, . . . ,a2
s
and b1, b2, . . ., b2

s
from

a and b and compute ci = ai ⋆ bi using Lemma 3.3 for every

1 ≤ i ≤ 2
s
. Finally, for every 1 ≤ i ≤ 2

s
and 0 ≤ j < |ci |, we set

cαi+γi+j = max{cαi+γi+j , c
i
j }.

Algorithm 1: PredictionMethod(a,b, emax,xi ’s,yi ’s)

Data: Two integer vectors a and b of size n, intervals [xi ,yi]
for 0 ≤ i < n meeting the conditions of Theorem 3.5

Result: a ⋆b
1 c ← a vector of size 2n − 1 with indices set to∞ initially;

2 for s ∈ [0, logn] do
3 for i ∈ [1, 2s] do
4 αi ← (i − 1)2(logn)−s ;

5 βi ← i2(logn)−s − 1;

6 for i ∈ [1, 2s] do
7 if s = 0 then
8 [γi ,δi]← P (αi , βi);

9 else
10 if i is odd then
11 [γi ,δi]← P (αi , βi) \ P (αi+1, βi+1);

12 else
13 [γi ,δi]← P (αi , βi) \ P (αi−1, βi−1);

14 ai ← a vector of size δi − γi + 1 s.t. a
i
j = aγi+j ;

15 bi ← a vector of size 2
(logn)−s

s.t. bij = bαi+j ;

16 ci ← DistortedConvolution(ai ,bi , emax);

17 for j ∈ [1, |ci |] do
18 cαi+γi+j ← max{cαi+γi+j , c

i
j };

19 Return c;

We show that (i) Algorithm 1 finds a correct solution for a ⋆b,

and (ii) its running time is Õ (emax (|a |+ |b |)). Observe that Line 1 of
Algorithm 1 runs in timeO (n) and all basic operations (e.g., Lines 4
and 5) run in time O (1) and thus all these lines in total take time

O (n logn) = Õ (n). Moreover, for any [α , β], P (α , β) can be found

in timeO (logn) by binary searching the indices of a. More precisely,

Fast Algorithms for Knapsack via Convolution and Prediction STOC’18, June 25–29, 2018, Los Angeles, CA, USA

in order to find P (α , β) we need to find an index γ of a such that

xγ ≤ α and an index δ such thatyδ ≥ β . Since both x andy are non-

decreasing, we can find such indices in time O (logn). Therefore,

the total running times of Lines 8, 11, and 13 is O (n log2 n) = Õ (n).
The running time of the rest of the operations (Lines 14, 15, 16,

and 18) depend on the length of the intervals [αi , βi] and [γi ,δi].

For a Round s + 1, let ℓa = |a
1 | + |a2 | + . . . , |a2

s
| be the total length

of the intervals [γi ,δi]. Similarly, define ℓb = |b
1 |+ |b2 |+ . . .+ |b2

s
|

and ℓc = |c
1 | + |c2 | + . . . + |c2

s
| as the total length of the intervals

[αi , βi] and vectors ci . It follow from the algorithm that in Round

s + 1, the running time of Lines 14, 15, and 18 is Õ (ℓc) and the

running time of Line 16 is Õ (emaxℓc). Therefore, it only suffices to

show that ℓc = O (n) to prove Algorithm 1 runs in time Õ (emaxn).

Notice that in every Round s +1we have |bi | = 2
logn−s

and thus

ℓb = 2
s
2
logn−s = n. Moreover, for every ci we have ci = ai ⋆ bi

and thus |ci | ≤ |ai | + |bi |. Therefore, ℓc ≤ ℓa + ℓb = ℓa + n. Thus,
in order to show ℓc = O (n), we need to prove that ℓa = O (n). To
this end, we argue that for every 0 ≤ i < n, the i’th element of a
appears in at most two intervals of [γi ,δi]. Suppose for the sake
of contradiction that for 0 ≤ α j1 < βj1 < α j2 < βj2 < α j3 < βj3 we
have i ∈ [γj1 ,δj1]∩[γj2 ,δj2]∩[γj3 ,δj3]. Recall that depending on the
parity of j2, [γj2 ,δj2] is either equal to P (α j2 , βj2) \ P (α j2+1, βj2+1)
or P (α j2 , βj2) \ P (α j2−1, βj2−1) and since i ∈ [γj2 ,δj2] then either

of i < P (α j2−1, βj2−1) or i < P (α j2+1, βj2+1) hold. This implies that

eitheryi < βj2+1 or xi > α j2−1 which imply either i < P (α j1 , βj1) or
i < P (α j3 , βj3)which is a contradiction. Thus, ℓa ≤ 2n and therefore

ℓc ≤ 3n. This shows that Algorithm 1 runs in time Õ (emaxn).
To prove correctness, we show that (i) every ai and bi meet

the condition of Lemma 3.3, and (ii) for every ai and bj such that

j ∈ [xi ,yi] in some round of the algorithm and for some k , ak

contains ai and b
k
contains bj .

We start with the former. Due to our algorithm, in every round

for every [αi , βi] we have [γi ,δi] ⊆ P (αi , βi). This implies that for

every i ′ ∈ [γi ,δi] and every j ′ ∈ [αi , βi] we have

aii′−γi + b
i
j′−αi − emax = ai′ + bj′ − emax

≥ (a ⋆b)i′+j′

≥ (ai ⋆bi)i′+j′−γi′−α j′ .

Thus, the condition of Lemma 3.3 holds for every ai and bi .
We finally show that for every 0 ≤ i < n and every 0 ≤ j < n

such that j ∈ [xi ,yi], in some round of the algorithm we have

j ∈ [αk , βk] and i ∈ [γk ,δk] for some k . To this end, consider

the first Round s + 1 in which i ∈ P (α ⌈j/2logn−s ⌉ , β ⌈j/2logn−s ⌉). We

know that this eventually happens in some round since in Round

logn + 1 we have i ∈ P (α ⌈j/2logn−logn ⌉ , β ⌈j/2logn−logn ⌉) = P (j, j).

Round s + 1 is the first round that i ∈ P (α ⌈j/2logn−s ⌉ , β ⌈j/2logn−s ⌉)

happens and thus either s = 0 or s > 0. The former completes

the proof since it yields i ∈ [α ⌈j/2logn−s ⌉ , β ⌈j/2logn−s ⌉]. The lat-

ter implies that i < [α ⌈j/2logn−s+1 ⌉ , β ⌈j/2logn−s+1 ⌉] and thus i ∈

[α ⌈j/2logn−s ⌉ , β ⌈j/2logn−s ⌉]. Thus, in Round s+1we have i ∈ [γk ,δk]

and j ∈ [αk , βk] for k = ⌈j/2
logn−s ⌉. □

4 THE KNAPSACK PROBLEM
In this section, we consider the knapsack problem and present a fast

algorithm that can solve this problem for small values. In particular,

when the maximum values of the items are constant, our algorithm

runs in linear time. In this problem, we have a knapsack of size t ,
and n items each associated with size si and value vi . The goal is
to place a subset of the items into the knapsack with maximum

total value subject to their total size being limited by t . In the 0/1

knapsack problem, we are allowed to use each item at most once,

whereas in the unbounded knapsack problem, each item may be

used several times. From this point on, the term “knapsack problem”

refers to the 0/1 knapsack problem unless stated otherwise.

A classic dynamic programming algorithm yields a running time

of O (nt) [8] for the knapsack problem. On the negative side, it

was shown recently that both the 0/1 and unbounded knapsack

problems are as hard as (max,+) convolution. Thus it is unlikely
to solve either problem in time O ((n + t)2−ϵ) for any ϵ > 0 [9].

However, there is no assumption on the values of the items in

these reductions. Hence the hardness results do not carry over to

the case of small values. In particular, a barely subquadratic time

(O (t1.859+n)) algorithm follows from the work of [6] when the item

values are constant integer numbers. In what follows, we show that

we can indeed solve the problem in truly subquadratic time when

the input values are small. We assume throughout this section that

the values of the items are integers in range [0,vmax]. Using the

prediction technique we present an Õ (vmaxt + n) time algorithm

for the knapsack problem.

We begin by defining a knapsack variant of the (max,+) convo-
lution in Section 4.1, and show that if the corresponding knapsack

problems have non-negative integer values bounded by vmax, then

one can compute the (max,+) convolution of two vectors in time

Õ (vmaxn). It follows from the recent technique of [9] that using

this type of (max,+) convolution, one can solve the knapsack prob-

lem in time Õ (vmaxn). However, for the sake of completeness, we

include a formal proof in the full version of the paper.

4.1 Knapsack Convolution
Let a and b be two vectors that correspond to the solutions of two

knapsack instances ka and kb . More precisely, ai is the maximum

value of the items in knapsack problem ka with a total size of at

most i . Similarly, bi is the maximum value of the items in knapsack

problem kb with a total size of at most i . We show that if the values

of the items in ka and kb are non-negative integers bounded by

vmax, then one can compute a ⋆ b in time Õ (vmax (|a | + |b |) + n)
where n is the total number of items in ka and kb .

The sketch of the algorithm is as follows: We first define the

fractional variants for the knapsack problem and the knapsack con-

volution. We show that both problems can be efficiently solved in

time O (n logn) where n is the total number of items in each knap-

sack problem. Next, we observe that any solution of the fractional

knapsack problem can be turned into a solution for the knapsack

problem with an additive error of at most vmax. Similarly, any so-

lution for the fractional knapsack convolution is always at most

2vmax away from the solution of the knapsack convolution. We

then show that the solutions of the fractional knapsack problem

and fractional knapsack convolution have certain properties. We

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

explore these properties and show that they enable us to find an

uncertain solution for the knapsack convolution in time Õ (t + n).

This yields an Õ (vmaxn) time solution for knapsack convolution via

Theorem 3.5. In the interest of space, we omit some of the proofs

of this section and include them in the full version of the paper.

We define the fractional variant of the knapsack problem as

follows. Here we are allowed to divide the items into smaller pieces

such that the value of each piece is proportional to the size of that

piece. More formally, the fractional knapsack problem is defined as

follows:

Definition 4.1. Given a knapsack of size t , and n items with

sizes s1, s2, . . . , sn and valuesv1,v2, . . . ,vn , the fractional knapsack
problem is to find non-negative real values f1, f2, . . . , fn ≤ 1 such

that

∑
i si fi ≤ t , and

∑
i fivi is maximized.

It is well-known that the fractional variant of the knapsack prob-

lem can be solved exactly via a greedy algorithm: sort the items in

decreasing order of the ratio of value over size, and place them in

the knapsack one by one. If at some point there is not enough space

for the next item, we break it into a smaller piece that completely

fills the knapsack. We stop when either we run out of items or the

knapsack is full. We call this the greedy knapsack algorithm and

name this simple observation.

Observation 4.1. The greedy algorithm solves the fractional
knapsack problem in time O (n logn).

It is easy to see that in any solution of the greedy algorithm for

knapsack, at most one item in the knapsack is broken into a smaller

piece. Therefore, one can turn any solution of the fractional knap-

sack problem into a solution of the knapsack problem by removing

the only item with 0 < fi < 1 (if any). If all the values are bounded

byvmax, this hurts the solution by at most an additive error ofvmax.

Moreover, the solution of the fractional knapsack problem cannot

be worse than that of the integral knapsack problem. Thus, any

solution for the fractional knapsack problem can be turned into a

solution for the knapsack problem with an additive error of at most

vmax.

Based on a similar idea, we define the fractional knapsack con-

volution of two vectors as follows:

Definition 4.2. Let a and b be two vectors corresponding to two

knapsack problems ka and kb with knapsack sizes ta and tb . For a
real value t , we define the fractional knapsack convolution of a and

b with respect to t as the solution of the knapsack problem with

knapsack size t and the union of items of ka and kb subject to the

following two additional constraints:

• The total size of the items of ka in the solution is bounded

by ta .
• The total size of the items of kb in the solution is bounded

by tb .

One can modify the greedy algorithm to compute the solution

of the fractional knapsack convolution as well. The only difference

is that once the total size of the items of either knapsack instances

in the solution reaches the size of that knapsack, we ignore the rest

of the items from that knapsack. A similar argument to what we

stated for Observation 4.1 proves the correctness of this algorithm.

Algorithm 2: GreedyAlgorithmForFractionalKnapsackConvo-
lution(a,b, ka , kb)

Data: t , a, b, and two knapsack instances ka and kb
corresponding to a and b.

Result: The solution of fractional knapsack convolution of a
and b with respect to t

1 Let items be a sequence of size n containing all items of ka and

kb ;
2 Sort items according to vi/si in non-increasing order.

3 Answer ← 0;

4 for i ∈ [1,n] do
5 if (si ,vi) belongs to ka then
6 cut ← min{si , t , ta };

7 Answer ← Answer +vicut/si ;

8 t ← t − cut ;

9 ta ← ta − cut ;

10 else
11 cut ← min{si , t , tb };

12 Answer ← Answer +vicut/si ;

13 t ← t − cut ;

14 tb ← tb − cut ;

15 Return Answer ;

Observation 4.2. Algorithm 2 solves the fractional knapsack
convolution in time O (n logn).

Again, one can observe that in any solution of the greedy al-

gorithm for fractional knapsack convolution, at most two items

may be included in the solution fractionally (at most one for each

knapsack instance). Thus, we can get a solution with an additive

error of at most 2vmax for the knapsack convolution problem from

the solution of the fractional knapsack convolution.

We explore several properties of the fractional solutions for

the knapsack problems and the knapsack convolution. Based on

these, we present an algorithm to compute an uncertain solution

for the knapsack convolution within an error of O (vmax). Define
a′ : [0, ta] → R and b ′ : [0, tb] → R as the solutions of the

fractional knapsack problems for ka and kb , respectively. Therefore,
for any real value x in the domain of the functions, a′(x) and
b ′(x) denote the solution of each fractional knapsack problem for

knapsack size x . Moreover, we define a function c : [0, ta + tb]→ R
where c ′(x) is the solution of the fractional knapsack convolution of
a and b with respect to x . Note that for a′, b ′, and c ′, the parameter

x may be a real value. The following observations follow from the

greedy solutions for a′, b ′, and c ′.

Observation 4.3. There exist non-decreasing functionsFa : [0, ta+
tb] → [0, ta] and Fb : [0, ta + tb] → [0, tb] such that c ′(x) =
a′(Fa (x)) + b

′(Fb (x)).

Since in Algorithm 2 we put the items greedily in the knapsack,

for every 0 ≤ x ≤ ta , there exists a 0 ≤ y ≤ ta + tb such that

Fa (y) = x . Similarly, for every 0 ≤ x ≤ tb , there exists a 0 ≤ y ≤
ta + tb such that Fb (y) = x . We define F −1a (x) as the smallest y

Fast Algorithms for Knapsack via Convolution and Prediction STOC’18, June 25–29, 2018, Los Angeles, CA, USA

such that Fa (y) = x . Moreover, F −1b (x) is equal to the smallest y

such that Fb (y) = x .

Observation 4.4. For x ,y,y′ such that 0 ≤ x ≤ ta and 0 ≤ y <
y′ ≤ F −1a (x) − x , we have c ′(x + y) − a′(x) + b ′(y) ≥ c ′(x + y′) −
a′(x) − b ′(y′).

Observation 4.5. For x ,y,y′ such that 0 ≤ x ≤ ta and F −1a (x)−
x ≤ y < y′ ≤ tb , we have c ′(x + y) − a′(x) + b ′(y) ≤ c ′(x + y′) −
a′(x) − b ′(y′).

Let us define дx (y) = c
′(x +y)−a′(x)−b ′(y) for any 0 ≤ x ≤ ta .

Then Observations 4.4 and 4.5 show that дx is non-increasing

in the interval [0,F −1a (x) − x] and non-decreasing in the inter-

val [F −1a (x) − x , tb]. Now, for every integer i ∈ [0, ta], define
α ′i to be the smallest number in range [0,F −1a (x) − x] such that

дi (α
′
i) ≤ 2vmax. Similarly, define β ′i to be the largest number in

range [F −1a (x) − x , tb] such that дi (β
′
i) ≤ 2vmax. It follows from

Observations 4.4 and 4.5 that дi (x) ≤ 2vmax holds in the interval

[α ′i , β
′
i] and дi (x) > 2vmax holds for any x outside this range. More-

over, Observations 4.6 and 4.7 imply that [α ′i , β
′
i]’s are monotonic.

Observation 4.6. Let x ,x ′, and y be three real values such that
0 ≤ x < x ′ ≤ ta and 0 ≤ y ≤ F −1a (x) − x . Then c ′(x +y) − a′(x) −
b ′(y) ≤ c ′(x ′ + y) − a′(x ′) − b ′(y).

Observation 4.7. Let x ,x ′, and y be three real values such that
0 ≤ x < x ′ ≤ ta and 0 ≤ F −1a (x ′)−x ′ ≤ y. Then c ′(x +y)−a′(x)−
b ′(y) ≥ c ′(x ′ + y) − a′(x ′) − b ′(y).

Notice that for every pair of integers i and j such thatα ′i ≤ j ≤ β ′i ,
we have c ′(i+ j)−a′(i)−b ′(j) ≤ 2vmax. Recall that a

′
and b ′ are the

solutions of the fractional knapsack problems, and thus a′(i) − ai
and b ′(j) − bj are bounded by vmax. Moreover, since c ′(i + j) is
always at least as large as ci+j , we have ci+j − ai − bj ≤ 4vmax for

all α ′i ≤ j ≤ β ′i . Furthermore, for every integer j ∈ [0, tb] \ [α
′
i , β
′
i]

we have c ′(i + j) − a′(i) − b ′(j) > 2vmax. Similarly, one can argue

that c ′(i + j) ≤ ci+j + 2vmax, a
′(i) ≥ ai , and b

′(j) ≥ bj , and thus

ci+j − ai − bj > 0. Therefore, intervals [α ′i , β
′
i] make an uncertain

solution for a ⋆b within an error of 4vmax. To make the intervals

integer, we set αi = ⌈α
′
i ⌉ and βi = ⌊β

′
i ⌋. Since [αi , βi] is also an

uncertain solution within an error of 4vmax we can compute a ⋆b

in time Õ (vmax (|a | + |b |) + n).

Theorem 4.3. Let ka and kb be two knapsack problems with
knapsack sizes ta and tb and n items in total. Moreover, let the item
values in ka and kb be integer values bounded byvmax and a and b be
the solutions of these knapsack problems. There exists an Õ (vmax (ta +
tb) + n) time algorithm for computing a ⋆b using a, b, ka , and kb .

Proof. Let t = ta +tb be the largest index of a⋆b. As shown ear-
lier, intervals [αi , βi] formulated above make an uncertain solution

for a⋆b within an error of 4vmax. Thus, it only suffices to compute

these intervals and then using Theorem 3.5 we can compute a ⋆b

in time Õ (vmax (|a | + |b |)). In order to determine the intervals, we

first compute three arrays a′, b ′, and c ′ with ranges [0, ta], [0, tb],
and [0, ta + tb], respectively. Then for every i in range [0, ta] we
compute a′i to be the solution to the fractional knapsack problem

of ka with knapsack size i . This can be done in time O (n logn + t),
since we can use the greedy algorithm to determine these values.

Similarly, we compute b ′i equal to the solution to the fractional

knapsack problem for kb and ci equal to the solution of the frac-

tional knapsack convolution for a ⋆b. This step of the algorithm

takes a total time of O (n logn + t) = Õ (n + t).
Along with the construction of array c ′, we also compute two

arrays Fa and Fb in time O (t) where c ′i = a′
Fa i
+ b ′
Fb i

. More

precisely, every time we compute c ′i for some integer i we also

keep track of the total size of the solution corresponding to each

knapsack and store these values in arrays Fa and Fb . Also one can

compute an array F −1a from Fa in time O (t). Next, we iterate over
all integers i in range [0, ta] and for each i compute αi and βi in
timeO (logn). Recall that αi (βi) is the smallest (largest) integer j in
range [0,F −1a i − i] ([F

−1
a i − i, tb]) such that c ′i+j −a

′
i −b

′
j ≤ 2vmax.

Moreover, c ′i+j−a
′
i−b

′
j is monotonic in both ranges [0,F −1a i−i] and

[F −1a i−i, tb] and henceαi and βi can be computed in timeO (log tb)

for every i . This makes a total running time of O (ta log tb) = Õ (t).
Finally, since intervals [αi , βi] make an uncertain solution for a⋆b

within an error of 4vmax, we can compute a⋆b in time Õ (vmax (ta +
tb) + n) (Theorem 3.5). □

In the full version of the paper, we show that Theorem 4.3 yields

a solution for the 0/1 knapsack problem in time Õ (vmaxt + n). The
algorithm follows from the reduction of [9] from 0/1 knapsack to

knapsack convolution.

Theorem 4.4 (a corollary of Theorem 4.3 and the reduction

of [9] from 0/1 knapsack to (max,+) convolution). The 0/1
knapsack problem can be solved in time Õ (vmaxt + n) when the item
values are integer numbers in range [0,vmax].

5 COMPUTING a⋆k AND APPLICATION TO
UNBOUNDED KNAPSACK

Throughout this section, we denote

k times︷ ︸︸ ︷
a ⋆ a ⋆ . . . ⋆ a by a⋆k . In this

section, we present another application of the prediction technique

for computing the k’th power of a vector in the (max,+) setting.

The classic algorithm for this problem runs in time Õ (n2) and thus

far, there has not been any substantial improvement for this prob-

lem. We consider the case where the input values are integers in

range [0, emax], nonetheless, this result carries over to any range

of integer numbers within an interval of size emax.
4
Using known

FFT-based techniques, one can compute a ⋆ a in time Õ (emax |a |).
However, the values of the elements of a⋆2 no longer lie in range

[0, emax] and thus computing a⋆2⋆a⋆2 requires more computation

than a ⋆ a. In particular, the values of the elements of a⋆k/2 are

in range [0, emaxk/2] and thus computing a⋆k/2 ⋆ a⋆k/2 via the

known techniques requires a running time of Õ (emaxk |a
⋆k |). The

main result of this section is an algorithm for computing a⋆k in

time Õ (emax |a
⋆k |). Moreover, we show that any prefix of size n of

a⋆k can be similarly computed in time Õ (emaxn). We later make

a connection between this problem and the unbounded knapsack

problem and show this results in an Õ (emaxt + n) time algorithm

for the unbounded knapsack problem when the item values are

4
It only suffices to add a constantC to every element of the vector to move the numbers

to the interval [0, emax]. After computing the solution, we may move the solution

back to the original space.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

integers in range [0, emax]. Our algorithm is based on the prediction

technique explained in Section 3.

We first explore some observations about the powers of a vector

in the (max,+) setting. We begin by showing that if b = a⋆k

for some positive integer i , then the elements of b are (weakly)

monotone.

Lemma 5.1. Let a be a vector whose values are in range [0, emax]

and b = a⋆k for a positive integer k . Then, for 0 ≤ i < j < |a⋆k | we
have bj ≥ bi − emax.

Proof. If k = 1, the lemma follows from the fact that all values

of the elements of a are in range [0, emax]. For k > 1, we define

c = a⋆k−1 and let l be an index of c with the maximum ci subject
to l ≤ j. Since b = c ⋆ a we have bi = ci′ + ai−i′ for some i ′. Note
that ci′ ≤ cl and also all values of the indices of c are bounded by

emax. Thus we have bi ≤ cl + emax. In addition to this, since l ≤ j
we have bj ≥ cl + aj−i . Notice that all values of the indices of a are

non-negative and therefore bj ≥ cl . This along with the fact that

bi ≤ cl + emax implies that bj ≥ bi − emax. □

Another observation that we make is that if for a k and a k ′

we have |k − k ′ | ≤ 1, then a⋆k ⋆ a⋆k
′

can be computed by just

considering a few (i, j) pairs of the vectors with close values.

Lemma 5.2. Let k and k ′ be two positive integer exponents such
that |k −k ′ | ≤ 1. Moreover, let a be an integer vector whose elements’
values lie in range [0, emax]. Then, for every 0 ≤ i ≤ |a⋆k |, there
exist two indices j and i − j such that (i) a⋆k+k

′

i = akj + a
⋆k ′
i−j and (ii)

|akj − a
⋆k ′
i−j | ≤ emax.

Proof. By definition a⋆k+k
′

=

k+k ′ times︷ ︸︸ ︷
a ⋆ a ⋆ . . . ⋆ a. Therefore, for

every 0 ≤ i < |a⋆k+k
′

|, there exist k + k ′ indices i1, i2, . . . , ik+k ′

such that a⋆k+k
′

i = ai1 +ai2 + . . .+aik+k′ and i1+i2+ . . .+ik+k ′ = i .
We assume w.l.o.g. that ai1 ≤ ai2 ≤ . . . ≤ aik+k′ . We separate the

odd and even indices of i to form two sequences i1, i3, . . . and
i2, i4, Notice that since |k − k ′ | ≤ 1, the size of one of such

sequences is k and the size of the other one is k ′. We assume w.l.o.g.

that the size of the odd sequence is k and the size of the even

sequence is k ′. We now define j = i1 + i3 + . . . and j
′ = i2 + i4 +

Since i1+i2+ . . . = i then j ′ = i− j holds. Since a⋆k+k
′

i = ai1 +ai2 +

. . .+aik+k′ we also have a
⋆k
j = ai1 +ai3 + . . ., a

⋆k ′
j′ = ai2 +ai4 + . . .,

and also a⋆k+k
′

i = a⋆kj + a⋆k
′

j′ . To complete the proof, it only

suffices to show that |a⋆kj − a⋆k
′

j′ | ≤ emax. This follows from the

fact that the value of all indices of a are in range [0, emax] and that

ai1 ≤ ai2 ≤ ai3 ≤ . . . ≤ aik+k′ . □

What Lemma 5.2 implies is that when computinga⋆k = a⋆⌈k/2⌉⋆

a⋆⌊k/2⌋ , it only suffices to take into account (i, j) pairs such that

|a⋆⌈k/2⌉i − a⋆⌊k/2⌋j | ≤ emax. This observation enables us to com-

pute a⋆k = a⋆⌈k/2⌉ ⋆ a⋆⌊k/2⌋ in time Õ (emax |a
⋆k |) via the pre-

diction technique. Suppose a is an integer vector with values in

range [0, emax]. In addition to this, assume that â = a⋆⌈k/2⌉ and

ā = a⋆⌊k/2⌋ . We propose an algorithm that receives â and ā as

input and computes a⋆k = â ⋆ ā as output. The running time of

our algorithm is Õ (emax |a
⋆k |).

We define two integer vectors
ˆb and

¯b where
ˆbi = maxj≤i âj .

Similarly,
¯bi = maxj≤i āj . By definition, both vectors

ˆb and
¯b are

non-decreasing. Now, for every index i of ˆb we find an interval

[xi ,yi] of ¯b such that
ˆbi − 2emax ≤ ¯bj ≤ ˆbi + 2emax for any j within

[xi ,yi]. Since both vectors
ˆb and

¯b are non-decreasing, computing

each interval takes time O (logn) via binary search. Finally, we

provide these intervals to the prediction technique and compute

a⋆k = â ⋆ ā in time Õ (emax |a
⋆k |). In Lemma 5.3, we prove that

the intervals adhere to the conditions of the prediction technique

and thus Algorithm 3 correctly computes a⋆k from â and ā in time

Õ (emax |a
⋆k |).

Algorithm 3: FastPower(â, ā, emax)

Data: Two vectors â and ā s.t. â = a⋆⌈k/2⌉ and ā = a⋆⌊k/2⌋

for some a and k .
Result: â ⋆ ā

1 Let
ˆb, ¯b be two vectors of size |a⋆⌈k/2⌉ | and |a⋆⌊k/2⌋ |

respectively.;

2 ˆb0 ← â1;

3 ¯b0 ← ā1;

4 for i ∈ [1, |â | − 1] do
5 ˆbi ← max{ ˆbi−1, âi };

6 for i ∈ [1, |ā | − 1] do
7 ¯bi ← max{ ¯bi−1, āi };

8 for i ∈ [1, |a⋆k | − 1] do
9 xi ← the smallest j such that

¯bj ≥ ¯bi − 2emax;

10 yi ← the largest j such that
¯bj ≤ ¯bi + 2emax;

11 c = PredictionMethod(â, ā, 5emax,xi ’s,yi
′s);

12 Return c;

Lemma 5.3. Leta be an integer vector with values in range [0, emax].
For some integer k > 0, let â = a⋆⌈k/2⌉ and ā = a⋆⌊k/2⌋ . Given â and
ā as input, Algorithm 3 computes a⋆k = â⋆ā in time Õ (emax |a

⋆⌈k ⌉ |).

Proof. The correctness of Algorithm 3 boils down to whether

intervals [xi ,yi] provided for the prediction technique meet the

conditions of Theorem 3.5. Before we prove that the conditions are

met, we note that by Lemma 5.1, the values of
ˆb and

¯b are at most

emax more than that of â and ā. Moreover, by definition, the vectors

ˆb and
¯b are non-decreasing and lower bounded by the values of â

and ā.
First condition: The first condition is that for every 0 ≤ i <

|a⋆⌈k/2⌉ | and xi ≤ j ≤ yi we have âi + āj ≥ (â⋆ā)i+j −O (emax). In
what follows, we show that in fact âi + āj ≥ (â⋆ā)i+j −5emax holds

for such i’s and j’s. Due to Lemma 5.2, for every such i and j , there
exist an i ′ and a j ′ such that âi′ + āj′ = (â ⋆ ā)i′+j′ , i

′ + j ′ = i + j,
and |âi′ − āj′ | ≤ emax. Therefore,

(â ⋆ ā)i+j = (â ⋆ ā)i′+j′

= âi′ + āj′

≤ 2min{âi′ + āj′ } + emax

≤ 2min{ ˆbi′ + ¯bj′ } + emax.

Fast Algorithms for Knapsack via Convolution and Prediction STOC’18, June 25–29, 2018, Los Angeles, CA, USA

In addition to this, we know that i + j = i ′ + j ′ and thus either

i ′ ≤ i or j ′ ≤ j. In any case, since both
ˆb and

¯b are non-decreasing,

max{ ˆbi , ¯bj } ≥ min{ ˆbi′ , ˆbj′ } and therefore,

(â ⋆ ā)i+j ≤ 2min{ ˆbi′ , ¯bj′ } + emax

≤ 2max{ ˆbi , ¯bj } + emax.

Due to Algorithm 3, max{ ˆbi , ˆbj } −min{ ˆbi , ¯bj } ≤ 2emax and hence

(â ⋆ ā)i+j ≤ 2max{ ˆbi , ¯bj } + emax

≤ ˆbi + ¯bj + 3emax

≤ âi + āj + 5emax.

Second condition: The second condition is that for every 0 ≤

i < |a⋆⌈k/2⌉ |, there exists a 0 ≤ j ≤ i such that âj + āi−j = (â⋆ ā)i
and that x j ≤ i − j ≤ yj . We prove this condition via Lemma 5.2.

Lemma 5.2 states that for every |a⋆⌈k/2⌉ | there exists a 0 ≤ j ≤ i
such that satisfies âj + āi−j = (â ⋆ ā)i and also |âj − āi−j | ≤ emax.

Since the values of
¯b, ˆb differ from â, ˆb by an additive factor of at

most emax, the latter inequality implies | ˆbj − ¯bi−j | ≤ 2emax. Due

to Algorithm 3, if | ˆbj − ¯bi−j | ≤ 2emax then i − j lies in the interval

[x j ,yj].
Third condition: The third condition is regarding the mono-

tonicity of xi ’s and yi ’s. This condition directly follows from the

fact that both vectors
ˆb and

¯b are non-decreasing and as such, the

computed intervals are also non-decreasing.

Apart from an invocation of Algorithm 1, the rest of the op-

erations in Algorithm 3 run in time Õ (n) and therefore the total

running time of Algorithm 3 is Õ (emax |a
⋆⌈k ⌉ |). □

Based on Lemma 5.3, for an integer vector with values in range

[0, emax], we can compute a⋆k via O (logk) ⋆ operations, each of

which takes time Õ (emax |a
⋆⌈k ⌉ |). Moreover, we always need to

make at most O (logk) = Õ (1) ⋆ operations in order to compute

a⋆k .

Theorem 5.4. Let a be an integer vector with values in range
[0, emax]. For any integer k ≥ 1, one can compute a⋆k in time
Õ (emax |a

⋆⌈k ⌉ |).

Proof. The proof follows from the correctness of Algorithm 3

and the fact that it runs in time Õ (emax |a
⋆⌈k ⌉ |). □

Theorem 5.4 provides a strong tool for solving many combina-

torial problems including the unbounded knapsack problem. In

order to compute the solution of the unbounded knapsack problem,

it only suffices to construct a vector a of size t wherein ai spec-
ifies the value of the heaviest items with size i . a itself specifies

the solution of the unbounded knapsack problem if we are only

allowed to put one item in the bag. Similarly, a⋆2 denotes the so-
lution of the unbounded knapsack problem when we can put up

to two items in the knapsack. More generally, for every 1 ≤ k , a⋆k

denotes the solution of the unbounded knapsack problem subject

to using at most k items. This way, a⋆t formulates the solution

of the unbounded knapsack problem. Note that in order to solve

the knapsack problem, we only need to compute a prefix of size

t + 1 of a⋆t . This makes the running time of every ⋆ operation

Õ (emaxt) and thus computing the first t + 1 elements of a⋆t takes

time Õ (emaxt).

Theorem 5.5 (a corollary of Theorem 5.4). The unbounded
knapsack problem can be solved in time Õ (vmaxt + n) when the item
values are integers in range [0,vmax].

6 KNAPSACK FOR ITEMSWITH SMALL SIZES
We also consider the case where the size of the items is bounded

by smax. Note that in such a scenario, the values of the items can

be large real values, however, each item has an integer size in

range [1, smax]. We propose a randomized algorithm that solves

the knapsack problem w.h.p. in time Õ (smax (n + t)) in this case.

Although our technique is novel, the idea of putting the items in

random buckets has been used before (see e.g. [5, 9]). Our algorithm
is as follows: we randomly put the items in t/smax different buckets.

Using the classic quadratic time knapsack algorithm we solve the

problem for each bucket up to a knapsack size Õ (smax). Next, we
merge the solutions in log(t/smax) rounds. In the first round, we

merge the solutions for buckets 1 and 2, buckets 3 and 4, and so on.

This results in t/2smax different solutions for every pair of buckets

at the end of the first round. In the second round, we do the same

except that this time the number of buckets is divided by 2. After

log(t/smax) rounds, we only have a single solution and based on

that, we determine the maximum value of the solution with a size

bounded by t and report that value.

If we use the classic (max,+)-convolution for merging the solu-

tions of two buckets, it takes time O (t2) for merging two solutions

and yields a slow algorithm. The main idea to improve the run-

ning time of the algorithm is to merge the solutions via a faster

algorithm. We explain the idea by stating a randomized argument.

Throughout this paper, every time we use the term w.h.p. we mean

with a probability of at least 1 − n−10.

Lemma 6.1. Let (s1,v1), (s2,v2), . . . , (sn ,vn) be n items with sizes
in range [1, smax]. Let the total size of the items be S . For some 0 < p <
1/2, we randomly select each item of this set with probability p and
denote their total size by S ′. If smax ≤ 2pS then for some C = Õ (1)
|pS−S ′ | ≤ C

√
smaxpS holds w.h.p. (with probability at least 1−n−10).

In the interest of space, we omit the proof of Lemma 6.1 here

and include it in the full version.

In our analysis, we fix an arbitrary optimal solution of the prob-

lem and state our observations based on this solution. Since the

sizes of the items are bounded by smax, then either our solution

uses all items and has a total size of

∑
si (if

∑
si is not larger than t)

or leaves some of the items outside the knapsack and therefore has

a size in range [t − smax + 1, t]. One can verify in O (n) if the total
size of the items is bounded by t and compute the solution in this

case. Therefore, from now on, we assume that the total size of the

items is at least t and thus the solution size is in [t − smax + 1, t].
Now, if we randomly distribute the items into t/smax buckets

then the expected size of the solution in each bucket is O (smax)
and thus we expect the size of the solution in each bucket to be in

range [0, Õ (smax)] w.h.p. due to Lemma 6.1. Therefore, it suffices to

compute the solution for each bucket up to a size of Õ (smax). Next,
we use Lemma 6.1 to merge the solutions in faster than quadratic

time. Every time we plan to merge the solutions of two sets of items

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

S1 and S2, we expect the size of the solutions in these two sets to be

in ranges [t |S1 |/n − Õ (
√
tsmax |S1 |/n), t |S1 |/n + Õ (

√
tsmax |S1 |/n)]

and [t |S2 |/n − Õ (
√
tsmax |S2 |/n), t |S2 |/n + Õ (

√
tsmax |S2 |/n)] w.h.p.

Therefore, if we only consider the values within these ranges, we

can merge the solutions correctly w.h.p. and thus one can compute

the solution for S1 ∪ S2 w.h.p. in time Õ (
√
tsmax (|S1 | + |S2 |)/n

2

) =

Õ (tsmax (|S1 | + |S2 |)/n). This enables us to compute the solution

w.h.p. in time Õ (smax (n + t)).

Algorithm 4: KNPKSmallSizes

Data: Knapsack size t and n items (si ,vi) where 1 ≤ si ≤ smax

for all items.

Result: Solution for knapsack size t
1 Randomly distribute the items into t/smax buckets;

2 for j ∈ [t/smax] do
3 x1, j = solution of the problem for bucket i up to size

(C + 2)smax;

4 for i ∈ [2, ⌈log(t/smax)⌉] do
5 for j ∈ ⌈t/smax/2

i ⌉ do
6 Combine the solutions of xi−1,2j−1 and xi−1,2j into

xi, j (based on Lemma 6.1);

7 Return maxx ⌈log(t/smax)⌉,1;

Theorem 6.2. There exists a randomized algorithm that correctly
computes the solution of the knapsack problem in time Õ (smax (n+t))
w.h.p., if the item sizes are integers in range [1, smax].

Proof. We assume w.l.o.g. that the total size of the items is at

least t and thus the solution size is in range [t − smax + 1, t]. As
outlined earlier, we randomly put the items into t/smax buckets.

Based on Lemma 6.1, the expected size of the solution in each

bucket is in range [smax − 1, smax]. Therefore, by Lemma 6.1 w.h.p.

the size of the solution in every bucket is at most smax + Õ (smax) =

Õ (smax). Therefore, for each bucket with ni items we can compute

the solution up to size Õ (smax) in time Õ (smaxni). Since
∑
ni = n,

the total running time of this step is Õ (smaxn).
We merge the solutions in log(t/smax) rounds. In every round i ,

wemake t/smax/2
i
merges each corresponding to the solutions of 2

i

buckets. By Lemma 6.1, the range of the solution size in every merge

is [smax2
i −Õ (

√
smax

2
2
i), smax2

i +Õ (
√
smax

2
2
i)]w.h.p. Thus, every

merge takes time smax

2
2
i
. Moreover, in every round i the number

of merges is t/smax/2
i
. Therefore, the total running time of each

phase is Õ (smaxt) and thus the algorithm runs in time Õ (smax (n+t)).
In order to show our solution is correct with probability at least

1−n−10, we argue that we make at most n merges and therefore the

total error of our solution is at most nn−10 = n−9. Thus, if we run
Algorithm 4 twice and output the better of the generated answers,

our error is bounded by 2(n−9)2 = n−18/2 ≤ n−10 and thus the

output is correct with probability at least 1 − n−10. □

As a corollary of Theorem 6.2, we can also solve the unbounded

knapsack problem in time Õ (smax (n + t)) if the sizes of the items

are bounded by smax.

Corollary 6.3 (of Theorem 6.2). There exists a randomized
Õ (smax (n + t)) time algorithm that solves the unbounded knapsack
problem w.h.p. when the sizes are bounded by smax.

Proof. The crux of the argument is that in an instance of the

unbounded knapsack problem if the sizes of two items are equal,

we never use the item with the smaller value in our solution. Thus,

this leaves us with smax different items. We also know that we

use each item of size si at most ⌊t/si ⌋ times and thus if we copy

the most profitable item of each size si , ⌊t/si ⌋ times, this gives us

an instance of the 0/1 knapsack problem with O (t log smax) items.

Using the algorithm of Theorem 6.2 we can solve this problem

in time Õ (smaxt). Since the reduction takes time O (n) the total

running time is Õ (smax (n + t)). □

Using the same idea, one can also solve the problem in time

Õ ((n + t)smax) when each item has a given multiplicity.

7 ALGORITHMS FOR KNAPSACKWITH
MULTIPLICITIES

In this section, we study the knapsack problem where items have

multiplicities. We assume throughout this section that the sizes

of the items are bounded by smax. More precisely, for every item

(si ,vi),mi denotes the number of copies of this item that can appear

in any solution. Using our algorithms, we show that when all the

sizes are integers bounded by smax, one can solve the problem

in time Õ (nsmax

2
min{n, smax}). Notice that this running time is

independent of t . This result improves upon the O (n3smax

2) time

algorithm of [18].

We begin, as a warm-up, by considering the case wheremi = ∞

for all items. We show that in this case, the O (n2smax

2) time algo-

rithm of [18] can be improved to an Õ (nsmax + smax

2
min{n, smax})

time algorithm. Before we explain our algorithm, we state a mathe-

matical lemma that will be later used in our proofs.

Lemma 7.1. Let S be a subset of items with integer sizes. If |S | ≥ k
then there exists a non-empty subset of S whose total size is divisible
by k .

Proof. Select k items of S and give them an arbitrary ordering.

Let si be the total size of the first i items in this order. Therefore,

0 = s0 < s1 < s2 < . . . < sk holds. By pigeonhole principal, from set

{s0, s1, . . . , sk } two numbers have the same remainder when divided

by k . Therefore, for some i < j we have si Mod k = sj Mod k . This
means that the total size of the items in positions i+1 to j is divisible
by k . □

When all multiplicities are infinity, our algorithm is as follows:

define H := argmaxvi/si to be the index of an item with the high-

est ratio of vi/si or in other words, the most profitable item. We

claim that there always exists an optimal solution for the knap-

sack problem in which the total size of all items except (sH,vH) is
bounded by smax

2
.

Lemma 7.2. Let I be an instance of the knapsack problem where the
multiplicity of every item is equal to infinity and let (sH,vH) be an
item with the highest ratio of vi/si . There exists an optimal solution
for I in which the number of items except (sH,vH) is smaller than sH.

Fast Algorithms for Knapsack via Convolution and Prediction STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Proof. We begin with an arbitrary optimal solution and mod-

ify the solution until the condition of the lemma is met. Due to

Lemma 7.1, every set S with at least sH items contains a subset

whose total size is divisible by sH. Therefore, until the number of

items other than (sH,vH) drops below sH, we can always find a sub-

set of such items whose total size is divisible by sH. Next, we replace
this subset with multiple copies of (sH,vH) with the same total size.

Since vH/sH is the highest ratio over all items, the objective value

of the solution doesn’t hurt, and thus it remains optimal. □

Since si ≤ smax holds for all items, Lemma 7.2 implies that in

such a solution, the total size of all items except (sH,vH) is bounded
by smax

2
. This implies that at leastmax{0, ⌊(t − smax

2)/sH⌋} copies
of item (sH,vH) appear in an optimal solution. Thus, one can put

these items into the knapsack and solve the problem for the remain-

ing space of the knapsack. Let the remaining space be t ′ which is

bounded by smax

2 + smax. Therefore, the classic O (nt ′) time algo-

rithm for knapsack finds the solution in time O (nsmax

2). Also, by

Theorem 6.2, one can solve the problem in time Õ ((n + t ′)smax) =

Õ (nsmax + smax

3). Thus, the better of two algorithms runs in time

Õ (nsmax + smax

2
min{n, smax}). This procedure is shown in Algo-

rithm 5.

Algorithm 5: KNPKInfiniteMultiplicities

Data: A knapsack size t and n items with sizes and values

(si ,vi).mi = ∞ and si ≤ smax hold for all 1 ≤ i ≤ n
Result: The solution of the knapsack problem for knapsack

size t
1 H← argmaxvi/si ;

2 cnt← max{0, ⌊(t − smax

2)/sH}⌋;

3 t ′ ← t − cnt · sH;
4 if n ≤ smax then
5 Report cnt · vH +

ClassicKNPK(t ′, n, {(s1, t1), . . . , (sn, tn) }, {m1, . . . ,mn });

6 else
7 Report cnt · vH +

KNPKSmallSizes(t ′, n, {(s1, t1), . . . , (sn, tn) }, {m1, . . . ,mn });

Theorem 7.3. When si ∈ [smax] andmi = ∞ hold for every item,
Algorithm 5 computes the solution of the knapsack problem in time
Õ (nsmax + smax

2
min{n, smax}).

Proof. The main ingredient of this proof is Lemma 7.2. Ac-

cording to Lemma 7.2, there exists a solution in which apart from

(sH,vH) type items, the total size of the remaining items is bounded

by smax

2
. Therefore, we are guaranteed that at least cnt copies of

item (sH,vH) appear in an optimal solution of the problem. Thus,

the remaining space of the knapsack (t ′) is at most smax

2 + smax

and therefore Algorithm 5 solves the problem in time Õ (nsmax +

smax

2
min{n, smax}). □

Next, we present our algorithm for the general case where every

multiplicitymi ≥ 1 is a given integer number. Our solution for this

case runs in time Õ (nsmax

2
min{n, smax}). We assume w.l.o.g. that

t ≥ smax

2
, otherwise the better of the classic knapsack algorithm

and our limited size knapsack algorithm solves the problem in time

Õ (nsmax + smax

2
min{n, smax}). In addition to this, we assume that

the items are sorted in decreasing order of vi/si , that is

v1/s1 ≥ v2/s2 ≥ . . . ≥ vn/sn .

We define t ′ = t − smax

2
to be a smaller knapsack size which is

less than t by an additive factor of smax

2
. We construct a pseudo

solution for the smaller knapsack problem, by putting the items

one by one into the smaller knapsack (of size t ′) greedily. We stop

when the next item does not fit into the knapsack. Let bi be the
number of copies of item (si ,vi) in our pseudo solution for the

smaller knapsack problem. In what follows, we show that there

exists an optimal solution for the original knapsack problem such

that if bi ≥ smax holds for some item (si ,vi), then at least bi − smax

copies of (si ,vi) appear in this solution.

Lemma 7.4. Let bi denote the number of copies of item (si ,vi) in
our pseudo solution for the smaller knapsack problem. There exists an
optimal solution for the original knapsack problem that contains at
least bi − smax copies of each item (si , ti) such that bi ≥ smax.

Proof. To show this lemma, we start with an optimal solution

and modify it step by step to make sure the condition of the lemma

is met. We denote the number of copies of item (si ,vi) in our

solution by ai . In every step, we find the smallest index i such
that ai < bi − smax. Notice that due to the greedy nature of our

algorithm for constructing the pseudo solution and the fact that

bi > 0 then bj =mj for every j < i . Hence, aj ≤ mj = bj holds for
all j ≤ i . Since at least one copy of item (si ,vi) is not used in the

optimal solution, then the unused space in the optimal solution is

smaller than si . Recall that the total size of the pseudo solution is

bounded by t ′ = t − smax

2
and since aj ≤ bj for all j ≤ i , then the

first i items contribute to at most t − smax

2 − smaxsi space units of
the solution. Moreover, as we discussed above, the total size of the

solution is at least t − smax and thus the rest of the items have a

size of at least smax

2
in our optimal solution. Therefore we have

n∑
j=i+1

ajsj ≥ smax

2

and since sj ≤ smax holds, we have

∑n
j=i+1 aj ≥ smax ≥ si . Based

on Lemma 7.1 there exists a subset of these items whose total size

is divisible by si and thus we can replace them with enough (and at

most smax) copies of item (si ,vi) without hurting the solution. At
the end of this step ai increases and all aj for j < i remain intact.

Therefore after at most

∑
bi steps, our solution has the desired

property. □

What Lemma 7.4 suggests is that although our pseudo solution

may be far from the optimal, it gives us important information about

the optimal solution of our problem. If our pseudo solution uses all

copies of items, it means that all items fit into the knapsack and

therefore the solution is trivial. Otherwise, we know that the total

size of the pseudo solution is at least t ′ − smax = t − smax

2 − smax.

Based on Lemma 7.4, for any item with bi ≥ smax we know that at

least bi − smax copies of this item appear in an optimal solution of

our problem. Therefore, we can decrease the multiplicity of such

items by bi − smax and decrease the knapsack size by (bi − smax)si .

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Bateni, Hajiaghayi, Seddighin, Stein

We argue that after such modifications, the remaining size of the

knapsack is at most smax + smax

2 +nsmax

2
. Recall that the total size

of the pseudo solution is at least t − smax

2 − smax and therefore∑
bisi ≥ t − smax

2 − smax. This implies that∑
max{0,bi − smax}si ≥

∑
(bi − smax)si

=
∑

bisi −
∑

smaxsi

≥ [t − smax

2 − smax] −
∑

smaxsi

≥ [t − smax

2 − smax] −
∑

smax

2

= [t − smax

2 − smax] − nsmax

2

= t − smax − (n + 1)smax

2

Therefore, after the above modifications, the remaining size of

the knapsack is at most smax + (n + 1)smax

2
. Thus, we can solve

the problem in time Õ (nsmax

3) using Lemma 6.2 and solve the

problem in time Õ (n2smax

2) using the classic knapsack algorithm.

This procedure is explained in details in Algorithm 6.

Algorithm 6: KNPKGivenMultiplicities

Data: A knapsack size t and n items with sizes and values

(si ,vi). n multiplicitiesm1,m2, . . . ,mn . si ≤ smax holds

for all 1 ≤ i ≤ n
Result: The solution of the knapsack problem for knapsack

size t
1 t ′ ← max{0, t − smax

2};

2 for i ∈ [1,n] do
3 bi ← min{mi , ⌊t

′/si ⌋};

4 t ′ ← t ′ − bisi ;

5 if bi ,mi then
6 break;

7 t ′′ ← t ;

8 surplus← 0;

9 for i ∈ [1,n] do
10 t ′′ ← t ′′ −max{0,bi − smax}si ;

11 m′i ←mi −max{0,bi − smax} ;

12 surplus← surplus +max{0,bi − smax}vi ;

13 if n ≤ smax then
14 Report surplus +

ClassicKNPK(t ′′,n, {(s1, t1), . . . , (sn , tn)}, {m′
1
, . . . ,m′n });

15 else
16 Report surplus +

KNPKSmallSizes(t ′′,n, {(s1, t1), . . . , (sn , tn)}, {m′
1
, . . . ,m′n });

Theorem 7.5. Algorithm 6 solves the knapsack problem in time
Õ (nsmax

2
min{n, smax}) when the sizes of the items are integers in

range [1, smax] and each item has a given integer multiplicity.

Proof. The proof is based on Lemma 7.4. After determining

the values of vector b ′, we know that for each item (si , ti) at least
bi − smax copies appear in the solution. Thus, we can remove the

space required by these items and reduce the knapsack size. As we

discussed before, after all these modifications, the new knapsack

size (t ′′) is bounded by smax + (n + 1)smax

2
and thus the better of

the classic knapsack algorithm and the algorithm of Section 6 solve

the problem in time Õ (nsmax

2
min{n, smax}). □

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their careful

reading of our paper and their many insightful comments and

suggestions.

REFERENCES
[1] Kyriakos Axiotis and Christos Tzamos. 2018. Capacitated Dynamic Programming:

Faster Knapsack and Graph Algorithms. arXiv preprint arXiv:1802.06440 (2018).
[2] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. 2017. Better Approximations

for Tree Sparsity in Nearly-linear Time. In SODA. 2215–2229.
[3] Richard Bellman. 1957. Dynamic Programming (first ed.). Princeton University

Press, Princeton, NJ, USA.

[4] David Bremner, TimothyM. Chan, Erik D. Demaine, Jeff Erickson, FerranHurtado,

John Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. 2006.

Necklaces, Convolutions, and X+Y. In ESA. 160–171.
[5] Karl Bringmann. 2017. A near-linear pseudopolynomial time algorithm for subset

sum. In SODA. 1073–1084.
[6] Timothy M Chan and Moshe Lewenstein. 2015. Clustered integer 3SUM via

additive combinatorics. In STOC. 31–40.
[7] V. Chvatal. 1980. Hard knapsack problems. Operations Research 28 (1980), 1402–

1411.

[8] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein.

2001. Introduction to algorithms. MIT press Cambridge.

[9] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. 2017.

On problems equivalent to (min, +)-convolution. In ICALP. 22:1–22:15.
[10] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA.

[11] Ellis Horowitz and Sartaj Sahni. 1974. Computing Partitions with Applications

to the Knapsack Problem. J. ACM 21, 2 (April 1974), 277–292.

[12] Hans Kellerer and Ulrich Pferschy. 2004. Improved Dynamic Programming in

Connection with an FPTAS for the Knapsack Problem. J. Comb. Optim. 8, 1 (2004),
5–11. https://doi.org/10.1023/B:JOCO.0000021934.29833.6b

[13] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack problems.
Springer.

[14] Konstantinos Koiliaris and Chao Xu. 2017. A Faster Pseudopolynomial Time

Algorithm for Subset Sum. In SODA. 1062–1072.
[15] Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. 2017. On the

Fine-grained Complexity of One-Dimensional Dynamic Programming. In ICALP.
21:1–21:15.

[16] Silvano Martello and Paolo Toth. 1990. Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons, Inc., New York, NY, USA.

[17] David Pisinger. 1999. Linear Time Algorithms for Knapsack Problems with

Bounded Weights. Journal of Algorithms 33 (1999), 1–14.
[18] Arie Tamir. 2009. New pseudopolynomial complexity bounds for the bounded

and other integer Knapsack related problems. Operations Research Letters 37, 5
(2009), 303–306.

[19] Uri Zwick. 1998. All pairs shortest paths in weighted directed graphs-exact and

almost exact algorithms. In FOCS. 310–319.
[20] Uri Zwick. 2002. All pairs shortest paths using bridging sets and rectangular

matrix multiplication. JACM 49, 3 (2002), 289–317.

https://doi.org/10.1023/B:JOCO.0000021934.29833.6b

	Abstract
	1 Introduction
	2 Our Contribution
	2.1 Our Technique
	2.2 Main Results
	2.3 Implication to the Limited Settings
	2.4 Further Results

	3 The Prediction Technique for (max,+) Convolution
	3.1 An "0365O(emaxn) Time Algorithm for the Case of Small Distortion
	3.2 Prediction

	4 The Knapsack Problem
	4.1 Knapsack Convolution

	5 Computing ak and Application to Unbounded Knapsack
	6 Knapsack for Items with Small Sizes
	7 Algorithms for Knapsack with Multiplicities
	References

