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ABSTRACT

The knapsack problem is a fundamental problem in combinatorial
optimization. It has been studied extensively from theoretical as
well as practical perspectives as it is one of the most well-known
NP-hard problems. The goal is to pack a knapsack of size t with
the maximum value from a collection of n items with given sizes
and values.

Recent evidence suggests that a classic O(nt) dynamic program-
ming solution for the knapsack problem might be the fastest in the
worst case. In fact, solving the knapsack problem was shown to be
computationally equivalent to the (min, +) convolution problem,
which is thought to be facing a quadratic-time barrier. This hard-
ness is in contrast to the more famous (+, -) convolution (generally
known as polynomial multiplication), that has an O(nlog n)-time
solution via Fast Fourier Transform.

Our main results are algorithms with near-linear running times
(in terms of the size of the knapsack and the number of items) for
the knapsack problem, if either the values or sizes of items are
small integers. More specifically, if item sizes are integers bounded
by Smax, the running time of our algorithm is O((n + t)smax)- If
the item values are integers bounded by vmay, our algorithm runs
in time O(n + tvmay). Best previously known running times were
O(nt), O(n*smax), O(n*vmax) and O(NSmaxVmax)-

At the core of our algorithms lies the prediction technique: Roughly
speaking, this new technique enables us to compute the convolu-
tion of two vectors in time 5(nemax) when the solution satisfies a
monotonic structure and an approximation of the solution within
an additive error of ep,x is available.
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Our results also improve the best known solutions for knapsack
whose running times do not depend on t. In the limited size set-
ting, when the items have multiplicities, the fastest algorithms for
knapsack run in time O(n®smax?) and O(n3syax?) for the cases of
infinite and given multiplicities, respectively. Our results improve
both running times by a factor of ﬁ(n max{1, n/smax})-
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1 INTRODUCTION

The knapsack problem is a fundamental problem in combinatorial
optimization. It has been studied extensively from theoretical as
well as practical perspectives (e.g., [3, 7, 11, 16, 17]), as it is one of
the most well-known NP-hard problems [10]. The goal is to pack a
knapsack of size t with the maximum value from a collection of n
items with given sizes and values. More formally, item i has size s;
and value v;, and we want to maximize ;g v; such that S C [n]
and Y ;essi <t

Recent evidence suggests that a classic O(nt) DP solution for
the knapsack problem [3] may not be improved to O((nt)?-%%). In
fact, solving the knapsack problem was shown to be equivalent
to the (min, +) convolution problem [9], which is thought to be
facing a quadratic-time barrier. The two-dimensional extension,
called the (min, +) matrix product problem, appears in several
conditional hardness results. These hardness results for (min, +)
matrix product and equivalently (max, +) matrix product are in
contrast to the more famous (+, -) convolution (generally known
as polynomial multiplication), that has an O(n log n)-time solution
via Fast Fourier Transform (FFT) [8].

Before moving forward, we present the general form of convo-
lution problems. Consider two vectors a = (ag, a1, . . ., am—-1) and
b = (bo,b1,...,bp—1). We use the notations |a| = m and |b| = n
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to denote the size of the vectors. For two associative binary op-
erations @ and ®, the (®,®) convolution of a and b is a vector
¢ = (co,C1,...,C2n—1), defined as follows.

ci = @ {aj ®bi_j},

jio<j<m
0<i—j<n

for0<i<m+n-1.

The past few years have seen increased attention towards several
variants of convolution problems (e.g., [2, 4-6, 9, 14, 15]). Most
importantly, many problems, such as tree sparsity and 3-sum, have
been shown to have conditional lower bounds on their running
times via their intimate connection with (min, +) convolution.

In particular, previous studies have shown that (max,+) convo-
lution, knapsack, and tree sparsity are computationally (almost)
equivalent [9]. However, these hardness results are obtained by
constructing instances with arbitrarily high item values (in the case
of knapsack) or vertex weights (in the case of tree sparsity). A
fast algorithm can solve (min, +) convolution in almost linear time
when the vector elements are bounded. This raises the question of
whether moderate instances of knapsack or tree sparsity can be
solved in subquadratic time. The recent breakthrough of Chan and
Lewenstein [6] suggests that knapsack and tree sparsity may be
solved in barely subquadratic time O(n!-%%°) when the values or
weights are small'.

Our main results are algorithms with near-linear running times
(in terms of n + t) for the knapsack problem, if either the val-
ues or sizes of items are small integers. More specifically, if item
sizes are integers bounded by smax, the running time of our algo-
rithm is O((n + t)smay). If the item values are integers bounded
by Umax, our algorithm runs in time (j(n + tUmax). Best previously
known running times were O(nt), O(n®smax), O(n*vmayx) [3] and
O(nsmaxVmax) [17]. As with prior work, we focus on two special
cases of 0/1 knapsack (each item may be used at most once) and
unbounded knapsack (each item can be used many times), but un-
like previous work we present near linear-time exact algorithms
for these problems.

Our results are similar in spirit to the work of Zwick [20] (JACM
2002) wherein the author obtains a subcubic time algorithm for the
all pairs shortest paths problem (APSP) where the edge weights
are small integers. Similar to knapsack and (max, +) convolution,
there is a belief that APSP cannot be solved in truly subcubic time.
We obtain our results through new sophisticated algorithms for im-
proving the running time of convolution in certain settings whereas
Zwick uses the known convolution techniques as black box and
develops randomized algorithms to improve the running time of
APSP.

We emphasize that our work does not improve the complexity
of the general (min, +) convolution problem, for which no truly
subquadratic-time algorithm is known to exist. Nevertheless, our
techniques provide almost linear running time for the parame-
terized case of (min, +) convolution when the input numbers are
bounded by the parameters.

A summary of the previously known algorithms along with
our new results is shown in Table 1. Notice that in 0/1 knapsack,

!The algorithm of Chan and Lewenstein [6] implies a subquadratic time solution
for performing (max, +) convolution on two arrays with small distances between
neighboring cells. It follows from the reduction of [9] that any subquadratic time
algorithm for convolution yields a subquadratic time algorithm for knapsack.
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t is always bounded by nsmax and thus our results improve the
previously known algorithms even when t appears in the running
time.

Table 1: n and t denote the number of items and the knap-
sack size respectively. vnax and spax denote the maximum
value and size of the items. Notice that when the knapsack
problem does not have multiplicity, ¢ is always bounded by
nsmax and thus our running times are always better than the
previously known algorithms. Theorems 6.2, 7.3, and 7.5, as
well as Corollary 6.3 are randomized and output a correct
solution with probability at least 1 — n=1°,

setting running time our improvement
general setting O(nt) [8] -
limited size O(n®smax) O((n + t)Smax)

[17] (Theorem 6.2)
limited size, O(n%smax?) O(nSmax + Smax? MIN {1, Smax })
unlimited [18] (Theorem 7.3)
multiplicity O((n + t)Smax)

(Corollary 6.3)
limited size, O(n3smax?) O(nSmax? min{n, smax })
given multiplicity [18] (Theorem 7.5)
limited value O(n%vmax) 0 (n + tYmax)

[12,13] (Theorem 4.4)
limited value, - O(n + tUmax)
unlimited (Theorem 5.5)
multiplicity
limited value O(NSmax¥Umax) O((n + t) min{vmax, Smax})
and size [17] (Theorems 4.4 and 6.2)

2 OUR CONTRIBUTION
2.1 Our Technique

Recall that the (+, -) convolution is indeed polynomial multiplica-
tion. In this work, we are mostly concerned with (max, +) convolu-
tion (which is computationally equivalent to minimum convolution).
We may drop all qualifiers and simply call it convolution. We use
the notation a* b for (max, +) convolution and a X b for polynomial
multiplication of two vectors a and b. Also we denote by a*k the
k’th power of a in the (max, +) setting, thatisaxa* ... x a.
k times

If there is no size or value constraint, it has been shown that
knapsack and (max, +) convolution are computationally equiva-
lent with respect to subquadratic algorithms [9]. In other words,
any subquadratic solution for knapsack (in terms of n + t) yields
a subquadratic solution for (max, +) convolution and vice versa.
Following this intuition, our algorithms are closely related to algo-
rithms for computing (max, +) convolution in restricted settings.
The main contribution of this work is a technique for computing
the (max, +) convolution of two vectors, namely the prediction tech-
nique. Roughly speaking, the prediction technique enables us to
compute the convolution of two vectors in time 5(nemax) when an
approximation of the solution within an additive error of epax is
given and the solution satisfies a monotonic structure. As we show
in Sections 4 and 5, this method can be applied to the 0/1 knapsack
and unbounded knapsack problems to solve them in 5(n €max)



Fast Algorithms for Knapsack via Convolution and Prediction

time (e.g., if émax = Umax). In Section 3, we explain the prediction
technique in three steps:

(1) Reduction to polynomial multiplication: We make use
of a classic reduction to compute a x b in time 5(emax(|a| +
[b])) when all values of a and b are integers in the range
[0, emax]. This reduction has been used in many previous
works (e.g., [2, 5, 6, 19, 20]). In addition to this, we show
that when the values are not necessarily integral, an approx-
imation solution with additive error 1 can be found in time
5(emax(|a| + |b])). In the interest of space, we bring a formal
proof for this reduction in the full version of the paper.

(2) Small distortion case: Recall that axb denotes the (max, +)
convolution of vectors a and b. In the second step, we define
the “small distortion” case where a; + b; > (a x b)i+j —
emax for all i and j. Notice that the case where all input
values are in the range [0, emax] is a special case of the small
distortion case. Given such a constraint, we show that a x b
can be computed in time O(emaxn) using the reduction to
polynomial multiplication described in the first step. We
obtain this result via two observations:

(a) If we add a constant value C to each component of either
a or b, each component of their “product” a x b increases
by the same amount C.

(b) For a given constant C, adding a quantity iC to every
element a; and b; of the vectors a and b, for all i, results
in an increase of iC in (a x b); for every 0 < i < |a % b|
(here |a % b| denotes the size of vector a x b).

These two operations help us transform the vectors a and
b such that all elements fall in the range [0, O(emax)]. Next,
we approximate the convolution of the transformed vectors
via the results of the first step, and eventually compute a x b
in time 5(emaxn). We give more details in Section 3.1.

(3) Prediction: We state the prediction technique in Section 3.2.
Roughly speaking, when an estimate of each component of
the convolution is available, with additive error enay, this
method lets us compute the convolution in time O(emaxn).
More precisely, in the prediction technique, we are given two
integer vectors a and b, as well as |a| intervals [x;,y;]. We
are guaranteed that (1) for every 0 < i < |a] and x; < j < y;,
the difference between (a % b);+; and a; + b; is at most emax;
(2) for every 0 < i < |a x b| we know that for at least one j
we have aj + bj—j = (axb)jand x; < j < y;;and (3) if i < j,
then both x; < x;j and y; < y; hold. We refer to the intervals
as an “uncertain solution” for a * b within an error of epax.

The reason we call such a data structure an uncertain solution
is that given such a structure, one can approximate the solution
in almost linear time by iterating over the indices of the resulting
vector and for every index i find one j such that x; < i—j < y; and
approximate (a x b); by a; + b;—j. Such a j can be found in time
O(log n) via binary search since the boundaries of the intervals are
monotone. In the prediction technique, we show that an uncertain
solution within an additive error of epax suffices to compute the
convolution of two vectors in time 5(emaxn), We obtain this result
by breaking the problem into many subproblems with the small
distortion property and applying the result of the second step to
compute the solution of each subproblem in time O(emaxn). We

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

show that all the subproblems can be solved in time O(emaxn) in
total, and based on these solutions, a x b can be computed in time
O(emaxn). We give more details in Section 3.2.

Theorem 3.5 [restated informally]. Given two integer vectors a and
b and an uncertain solution for a % b within an error of emax, one can
compute a x b in time O(emaxn).

Notice that in Theorem 3.5, there is no assumption on the range
of the values in the input vectors and the running time depends
linearly on the accuracy of the uncertain solution.

2.2 Main Results

We show in Section 4 that the prediction technique enables us to
solve the 0/1 knapsack problem in time 6(Umaxt + n). To this end,
we define the knapsack convolution as follows: given vectors a and
b corresponding to the solutions of two knapsack problems k, and
kp, the goal is to compute a x b. If a vector a is the solution of a
knapsack problem, a; denotes the maximum total value of the items
that can be placed in a knapsack of size i. The only difference be-
tween knapsack convolution and (max, +) convolution is that in the
knapsack convolution both vectors adhere to knapsack structures,
whereas in the (max, +) convolution there is no assumption on the
values of the vectors. We show that if in the knapsack problems, the
values of the items are integers bounded by vpmax, then an uncertain
solution for ax b within an error of v,y can be computed in almost
linear time. The key observation here is that one can approximate
the solution of the knapsack problem within an additive error of
Umax as follows: sort the items in descending order of v;/s; and
put the items in the knapsack one by one until either we run out
of items or the remaining space of the knapsack is too small for
the next item. Based on this algorithm, we compute an uncertain
solution for the knapsack convolution in almost linear time and via
Theorem 3.5 compute a % b in time 5(vmaxn). Finally, we use the
recent technique of [9] to reduce the 0/1 knapsack problem to the
knapsack convolution. This yields an 5(vmaxt + n) time algorithm
for solving the 0/1 knapsack problem when the item values are
bounded by vmax.

Theorem 4.4 [restated]. The 0/1 knapsack problem can be solved in
time O(vmaxt + n) when the item values are integer numbers in the
range [0, Umax]-

As another application of the prediction technique, we present
an algorithm that receives a vector a and an integer k as input and
computes a*K. We show that if the values of the input vector are in-
tegers in the range [0, emax], the total running time of the algorithm
is O(emax|a*¥|). This improves upon the trivial 5(erzmxla*k ). Sim-
ilar to what we do in Section 4, we again show that the convolution
of two powers of a can be approximated within a small additive
error. We use this intuition to compute an uncertain solution within
an additive error of O(emax) and apply the prediction technique to
compute the exact solution in time 5(emax|a*k ).

Theorem 5.4 [restated]. Let a be an integer vector with values in the

range [0, emax]. For any integer k > 1, one can compute a** in time
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5(9max|a*k ).

As a consequence of Theorem 5.4, we show that the unbounded
knapsack problem can be solved in time O(n + vmaxt)-

Theorem 5.5 [restated]. The unbounded knapsack problem can be
solved in time O(n + vmaxt) when the item values are integers in the
range [0, Umax].

To complement our results, we also study the knapsack problem
when the item values are unbounded real values, but the sizes are
integers in the range [1, smax]°. For this case, we present a random-
ized algorithm that solves the problem w.h.p.? in time O(Smax (n+1)).
The idea is to first put the items into #/smax buckets uniformly at
random. Next, we solve the problem for each bucket separately, up
to a knapsack size O(Smax)- We use the Bernstein’s inequality to
show that w.h.p., only a certain interval of the solution vectors are
important and we can neglect the rest of the values, thereby en-
abling us to merge the solutions of the buckets efficiently. Based on
this, we present an algorithm to merge the solutions of the buckets
in time O(smax(n+1)), yielding a randomized algorithm for solving
the knapsack problem in time 5(5max (n+t)) wh.p. when the sizes
of the items are bounded by spmax. This result is not based on the
prediction technique.

Theorem 6.2 [restated]. There exists a randomized algorithm that
correctly computes the solution of the knapsack problem in time

O(smax(n + t)) w.h.p., when the item sizes are integers in the range
[1, smax]-

2.3 Implication to the Limited Settings

When we parameterize the 0/1 knapsack problem by max({s;} <
Smax, one can set t’ := min(¢, nsmax) and solve the problem with
knapsack size t” in time 5((t' +n)Smax) = 5(nsmaxz). This yields a
solution for the knapsack problem whose running time is regardless
of t. However, this only works when we are allowed to use each
item only once. In Section 7, we further extend this solution to the
case where each item (s;, v;) has a given multiplicity m;. For this
case, our algorithm runs in time 5(nsmax2 min{n, smax}) when m;’s
are arbitrary and solves the problem in time (S(rlsmaX min{n, Smax})
when m; = oo for all i. Both results improve the algorithms of [18]
by a factor of ﬁ(max{n, Smax}) in the running time. These results
are all implied by Theorem 6.2.

2.4 Further Results

It has been previously shown that tree sparsity, knapsack, and
convolution problems are equivalent with respect to their compu-
tational complexity. However, these reductions do not hold for the
case of small integer inputs. In the full version of the paper, we
show some reductions between these problems in the small input
setting. In addition to this, we introduce the tree separability prob-
lem and explain its connection to the rest of the problems in both
general and small integer settings. We also present a linear time

ZParallel and independent to our work, Axiotis and Tzamos [1] present an O(n+£Syay)
time algorithm for this case.
3With probability at least 1 — n~1°,
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algorithm for tree separability when the degrees of the vertices and
edge weights are all small integers.

0/1 tree sparsity

I dmax-distance bounded convolution I O(dmaxn)

|b0|1nd(td tree spm’sityl |b0nndc<1 tree s(‘p;u'nhilityl Iholmd(‘d knnpsm‘kl |buunded convolutionl

O(Wnax) O(Wanax) O(Vimax) O(emaxn)

Figure 1: Desired running times are specified in the white
boxes. Here a — b means that an efficient algorithm for a
yields an efficient algorithm for b.

3 THE PREDICTION TECHNIQUE FOR
(max, +) CONVOLUTION

In this section, we present several algorithms for computing the
(max, +) convolution (computationally equivalent to (min, +) con-
volution) of two vectors. Recall that in this problem, two vectors a
and b are given as input and the goal is to compute a vector ¢ of
length |a| + |b| — 1 such that
Ci = Ij’liag([aj + bi_j].

For this definition only, we assume that each vector a or b is padded
on the right with sufficiently many —co components: i.e, a; = —co
fori > |a| and bj = —oo for j > |b|.

Assuming |a| + |b| = n, a trivial algorithm to compute ¢ from
a and b is to iterate over all pairs of indices and compute ¢ in
time O(n?). Despite the simplicity of this solution, thus far, it has
remained one of the most efficient algorithms for computing the
(max, +) convolution of two vectors. However, for special cases,
more efficient algorithms compute the result in subquadratic time.
For instance, if the values of the vectors are integers in the range
[0, emax], one can compute the (max, +) convolution of two vectors
in time 5(emaxn).

In this section, we present several novel techniques for multi-
plying vectors in the (max, +) setting in truly subquadratic time
under different assumptions. The main result of this section is the
prediction technique explained in Section 3.2. Roughly speaking, we
define the notion of uncertain solution and show that if an uncertain
solution of two integer vectors with an error of emax is given, then
it is possible to compute the (max, +) convolution of the vectors in
time 5(emaxn). Later in Sections 4 and 5 we use this technique to
improve the running time of the knapsack and other problems.

In our algorithm, we subsequently make use of a classic reduc-
tion from (max, +) convolution to polynomial multiplication. In the
interest of space, we skip this part here and explain it in the full ver-
sion of the paper. The same reduction has been used as a blackbox
in many recent works [2, 5, 6, 19, 20]. Based on this reduction, we
show that an 5(emaxn) time algorithm can compute the convolu-
tion of two integer vectors whose values are in the range [0, emax]-
We further explain that even if the values of the vectors are real but
in the range [0, emax], one can approximate the solution within an
additive error less than 1. These results hold even if the input values
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can be either in the interval [0, emax] or in the set {—o0, co}. We use
this technique in Section 3.1 to compute the (max, +) convolution
of two integer vectors in time 5(emaxn) when for every i and j we
have |a; + bj — (a % b);+j| < emax. Finally, in Section 3.2 we use
these results to present the prediction technique for computing the
(max, +) convolution of two vectors in time 5(emaxn).

3.1 An 5(emaxn) Time Algorithm for the Case of
Small Distortion

In this section we study a variant of the (max, +) convolution prob-
lem where every a; + b; differs from (a % b);+; by at most emax.
Indeed this condition is strictly weaker than the case where the
input values fall in range [0, emax]. Nonetheless we show that still
an 5(emaxn) time algorithm can compute a % b if the values of the
vectors are integers but not necessarily in the range [0, emax]. In
the interest of space, we omit the proofs of Lemmas 3.1, 3.2, and 3.3
and include them in the full version of the paper.

We first assume that both vectors a and b have size n. Moreover,
since the case of n = 1 is trivial, we assume w.l.o.g. that n > 1.
In order to compute a * b for two vectors a and b, we transform
them into two vectors a’ and b’ via two operations. In the first
operation, we add a constant C to every element of a vector. In the
second operation, we fix a constant C and add iC to every element
i of both vectors. We delicately perform these operations on the
vectors to make sure the resulting vectors a’ and b’ have small
values. This enables us to approximate (and not compute since the
values of a’ and b’ are no longer integers) the solution of a’ x b’
in time 5(emaxn). Finally, we show how to derive the solution of
a * b from an approximation for a’ x b’. We begin by observing a
property of the vectors.

LEMMA 3.1. Let a and b be two vectors of size n such that for all
0 <i,j <nwehave(axb)i+j—aj—bj < emax. Then,

e forevery0 <i,j < n, we have [(a; — b;) — (aj — bj)| < emax;
and

o forevery0 <i < j<k <nsuchthatj—i=k—j, wehave
laj — (a; + ag)/2| < emax-

Note that since there is no particular assumption on vector a, the
condition of Lemma 3.1 carries over to vector b as well. Next we use
Lemma 3.1 to present an O(emaxn) time algorithm for computing
a x b. We obtain this result via two observations:

(1) If we add a constant value C to each component of either a
or b, each component of their “product” a x b increases by
the same amount C.
(2) For a given constant C, adding a quantity iC to every element
a; and b; of the vectors a and b, for all i, results in an increase
of iC in (a *x b); for every 0 < i < |a % b|.
These two operations help us transform the vectors a and b such that
all elements fall in the range [0, O(emax)]. Next, we approximate
the convolution of the transformed vectors via the aforementioned
algorithm, and finally compute a % b in time 5(emaxn).

LEMMA 3.2. Let a and b be two integer vectors of size n such that
forall0 < i,j < n we have (a * b)j1+j — aj — bj < emax. One can
compute a x b in time O(emaxn).
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An implicit corollary of Lemma 3.2 is that for any two vectors
a and b that meet the conditions of Lemma 3.2, there exist values
A, A’, B, B’ such that both

la; — (Ai + A")| < O(emax)]

and
bi — (Bi + B')| < O(emax)|
hold.

All that remains is to extend our algorithm to the case where
we no longer have |a| = |b|. We assume w.l.o.g. that |b| > |a| and
divide |b| into [|b|/|a|] vectors of length |a| such each b; appears in
at least one of these vectors. Then, in time O(emax|al) we compute
the (max, +) convolution of a and each of the smaller intervals, and
finally use the results to compute a % b in time 5(emax(|a| + |b])).

LEMMA 3.3. Let a and b be two integer vectors such that for all
0<i<laland0 < j < |b| we have (a*b)i+j—a; —bj < emax. One
can compute a x b in time O(emax(lal + |b])).

3.2 Prediction

In this section, we explain the prediction technique and show how
it can be used to improve the running time of classic problems
when the input values are small. Roughly speaking, we show that
in some cases an approximation algorithm with an additive error of
emax can be used to compute the exact solution of a (max, +) con-
volution in time O(emaxn). In general, an additive approximation of
emax does not suffice to compute the (max, +) convolution in time
5(emaxn). However, we show that under some mild assumptions,
an additive approximation yields a faster exact solution. We call
this the prediction technique.

Suppose for two integer vectors a and b of size n, we wish to
compute a * b. The values of the elements of a and b range over a
potentially large (say O(n)) interval and thus the previous algorithm
does not improve the O(n?) running time of the trivial solution.
However, in some cases we can predict which a;’s and b;’s are
far away from (a * b);+;. For instance, if a and b correspond to
the solutions of two knapsack problems whose item weights are
bounded by emax, a well-known greedy algorithm can approximate
a* b within an additive error of e,y (a; and b; denote the solutions
of the knapsack problem for size i). The crux of the argument is
that if we sort the items with respect to the ratio of weight over
size in descending order and fill the knapsack in this order until
we run out of space, we always get a solution of at most epax away
from the optimal. Now, if a; + b is less than the estimated value for
(axb);+j for some i and j, then there is no way that the pair (a;, bj)
contributes to the solution of a % b. With a more involved argument,
one could observe that whenever a; + bj is at least epax smaller
than the estimated solution for (a % b);4, then a; + by < (a*b);,x
for either all k’s in [j,n — 1] or all k’s in [0, j]. We explain this in
more details in Section 4.

This observation shows that in many cases, (a;, bj) pairs that are
far from (a % b);; can be trivially detected and ignored. Therefore,
the main challenge is to handle the (a;, b;) options that are close to
(a * b)i+j. Our prediction technique states that such instances can
also be solved in subquadratic time. To this end, suppose that a and
b are two integer vectors of size n, and for every 0 < i < |a| we have
an interval [x;, y;], and we are guaranteed that a; + bj is at most
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emax away from (a x b);+; for all j € [x;,y;]. Also, we know that
forany 0 < i < |a % b| there exists a j such that aj + b;—j = (ax b);
and x; < i —j < y;. We call such data an uncertain solution. We
show in Theorem 3.5 that if an uncertain solution is given, then
one can compute a x b in time 5(emaxn). For empty intervals only,
y; is allowed to be smaller than x;.

Definition 3.4. For two vectors a and b, define an uncertain solu-
tion (to a % b) as |a| intervals [x;, y;] such that
® a;j+bj > (a*xb)itj—emaxforall0 <i < |alandj € [x;,y;];
e for all 0 < i < |a x b|, there exists an index j such that
aj+bj_j=(axb)jandx; <i—j<yj;and
e 0 < x;,y; < |b] for all intervals and x; < xj and y; < y;
holdforall0 <i <j < |al.

THEOREM 3.5. Let a and b be two integer vectors for which an
uncertain solution is provided. Then, one can compute a x b from a, b,
and the intervals in time O(emax (|| + |b])).

PRrROOF. One can set n equal to the smallest power of two greater
than max{|al, |b|} and add extra —oo’s to the end of the vectors to
make sure |a| = |b| = n. Next, for every newly added element of a
we set its corresponding interval [x;, y;] to (n — g,n — ¢ — 1) (that
is, an empty interval) where g is the number of newly added —c0’s
to the end of b. This way, all conditions of the theorem are met
and |a| + |b| is multiplied by at most a constant factor. Therefore,
from now on, we assume |a| = |b| = n and that n is a power of
two. Keep in mind that for every i with property x; < y;, none of
{ai, bx;» bx;+1, - - -, by, } is equal to —co.

Our algorithm runs in log n + 1 rounds. In every round we split b
into several intervals. For an interval [a, f] of b we call the projec-
tion of [a, ] the set of all indices i of a that satisfy both x; < & and
y; > B. We denote the projection of an interval [, f] by P(a, ).
We first show that for every 0 < @ < f < n, P(«, ) corresponds
to an interval of a. We defer the proof of Observation 3.1 to the full
version of the paper.

OBSERVATION 3.1. For every 0 < a < f < n, P(a,p) is an
interval of a.

Furthermore, for any pair of disjoint intervals [a1, f1] and [az, B2],
we observe that P (a1, f1) \ P (a2, f2) is always an interval. Similar
to Observation 3.1, we include the proof of Observation 3.2 in the
full version of the paper.

OBSERVATION 3.2. For 0 < a1 < f1 < as < f2 < n, both
P(ar, f1) \ Plaz, f2) and P(az, f2) \ P (a1, f1) are intervals of the
indices of a.

The proof for P (a2, f2) \ P (a1, f1) being an interval follows
from symmetry.

Before we start the algorithm, we construct a vector c of size
2n—1and set all its indices equal to —co. In Round 1 of our algorithm,
we only have a single interval [a1, $1] = [0,n — 1] for b. Therefore,
we compute P(0,n — 1) = [y1,81] and construct a vector a' of
size 81 — y1 + 1 and set a} = aj+y. Similarly, we construct a vector
bl of size p1 — a1 + 1 and set b} = bj+q. Next, we compute =
a! % b! using Lemma 3.3, and then based on that we set Citaty &
max{cj+q+y,c;} forall 0 < i< lel].
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The second round is similar to Round 1, except that this time we
split b into two intervals [a1, 1] and [a2, f2] where a1 = 0, 1 =
n/2—1,az = n/2,and fy = n— 1. For interval [a1, 1] of b we com-
pute [y1,61] = P(a1, f1) \ P(a2, f2) and similarly for the second
interval of b we compute [yz, §2] = P(az, f2) \ P (a1, f1). Similar
to Round 1, we construct al, a?, b1, b? from a and b with respect to
the intervals and compute ¢! = a! % b! and ¢ = a® % b2. Finally we
update the solution based on ¢! and c?.

More precisely, in Step s + 1 of the algorithm, we split b into 2°
intervals [a;, fi] where a; = (i—1)2008™)=S and g; = ja(logm)=s _q,
For odd intervals we compute

[V2i+1, 02i+1] = P(o2i+1, Priv1) \ Plazi, f2i)

and for even intervals we compute

[y2i» 82i] = Plazi, f2i) \ Pazi+1, P2i+1)-

Next, we construct vectors al, a?, . . ., a® and blob2, ..., b2’ from
a and b and compute ¢! = a' x b' using Lemma 3.3 for every
1 <i < 2% Finally, forevery 1 < i < 2%and 0 < j < |c!], we set

Cayryrtj = MaX{Capty;tjs €

Algorithm 1: PredictionMethod(a, b, emax, xi’s, yi’s)

Data: Two integer vectors a and b of size n, intervals [x;, y;]
for 0 < i < n meeting the conditions of Theorem 3.5
Result: a x b
1 ¢ « a vector of size 2n — 1 with indices set to oo initially;
2 for s € [0,logn] do

3 foric[1,2°] do
4 a; — (i —1)200gm)=s,
ﬁi - l-z(logn)—s -1

foriec[1,2°] do
7 if s = 0 then
8 | [yi» 6] «— Plai. Bi);
9 else
10 if i is odd then
11 | i 6] « Plai, fi) \ Pai+1, fis1);
12 else
13 | [yis 6 & Plai, i) \ Pl@i-1, fi-1);
14 al « avector of size §; — vi+1st. aj. = Ay;+js
15 b « avector of size 208~ g ¢, b]’: = b, +j;
16 ¢! « DistortedConvolution(a?, b, emax);
17 for j € [1,c!|] do
18 | cartyirs < max{ea,y,+j. ¢k
19 Return c;

We show that (i) Algorithm 1 finds a correct solution for a x b,
and (ii) its running time is 5(emax(|a| +|b|)). Observe that Line 1 of
Algorithm 1 runs in time O(n) and all basic operations (e.g., Lines 4
and 5) run in time O(1) and thus all these lines in total take time
O(nlogn) = 5(n). Moreover, for any [a, f], P(a, f) can be found
in time O(log n) by binary searching the indices of a. More precisely,
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in order to find P(«, ) we need to find an index y of a such that
xy < aand an index 6 such that ys5 > f. Since both x and y are non-
decreasing, we can find such indices in time O(log n). Therefore,
the total running times of Lines 8, 11, and 13 is O(nlog? n) = O(n).
The running time of the rest of the operations (Lines 14, 15, 16,
and 18) depend on the length of the intervals [«;, ;] and [y;, J;].
For aRound s + 1, let &4 = |a'| +|a?| +.. ., |a25| be the total length
of the intervals [y;, §;]. Similarly, define £, = B+ B2 +. ..+ |b2S|
and €c = |c!| + |c?] + ... + |c25| as the total length of the intervals
[ai, Bi] and vectors c'. It follow from the algorithm that in Round
s + 1, the running time of Lines 14, 15, and 18 is 5([6) and the
running time of Line 16 is 5(emaxfc). Therefore, it only suffices to
show that £, = O(n) to prove Algorithm 1 runs in time O(emaxn).

Notice that in every Round s + 1 we have |b;| = 2198 1= and thus
£y, = 25219815 = n_Moreover, for every ¢! we have ¢! = a! x b’
and thus |c!| < |a?| + |b’|. Therefore, £, < €4 + £}, = {4 + n. Thus,
in order to show ¢, = O(n), we need to prove that £, = O(n). To
this end, we argue that for every 0 < i < n, the i’th element of a
appears in at most two intervals of [y;, §;]. Suppose for the sake
of contradiction that for 0 < aj, < B, < aj, < fj, < aj, < fj, we
have i € [yj,,8;,1N[yj,» 8j,1N[yjs» 6j;]. Recall that depending on the
parity of ja, [yj,, 6j,] is either equal to P(atj,, Bj,) \ P(tj,+1, Bjr+1)
or P(aj,, Bj,) \ P(aj,~1,Pj,—1) and since i € [yj,, §j,] then either
of i ¢ P(aj,~1,Pj,-1) or i & P(aj,+1, fj,+1) hold. This implies that
either y; < fj,+1 or x; > aj,—1 which imply eitheri ¢ P («j,, fj,) or
i ¢ P(aj,, fj;) which is a contradiction. Thus, {; < 2n and therefore
{c < 3n. This shows that Algorithm 1 runs in time 5(emaxn),

To prove correctness, we show that (i) every a’ and b’ meet
the condition of Lemma 3.3, and (ii) for every a; and b; such that
j € [xi,y;] in some round of the algorithm and for some k, a*
contains a; and b¥ contains b;.

We start with the former. Due to our algorithm, in every round
for every [a;, ;] we have [y;, §;] € P(a;, fi). This implies that for
every i’ € [y;,8;] and every j’ € [aj, f;] we have

i i —
Ajr_y, + bj'—a,- —emax = @ + bj — emax

> (axb)irsj

> (a' % bl)i’+j’—yi/—ajr .

Thus, the condition of Lemma 3.3 holds for every a’ and b'.

We finally show that for every 0 < i < nandevery 0 < j <n
such that j € [x;,y;], in some round of the algorithm we have
Jj € [ar,Pr] and i € [y, %] for some k. To this end, consider
the first Round s + 1 in which i € P(ocrj/zlognfs],ﬁrj/zh,gnfs]). We
know that this eventually happens in some round since in Round
logn + 1 we have i € P(arj/zlognflogn‘l,ﬂrj/zlognflogn‘l) = P(],])
Round s + 1 is the first round that i € P(arj/zlogn-s],ﬂrj/zlogn—s])
happens and thus either s = 0 or s > 0. The former completes
the proof since it yields i € [al'j/zlognfs'l7ﬁ|’j/210gn—s'|]. The lat-
ter implies that i ¢ [al'j/zlogn—s-H]gﬁl’j/zlogn—5+1‘|] and thus i €
[arj/zlcgn_s], ﬂw/zlogn_s] ]. Thus, in Round s+ 1 we have i € [y, 6x]
and j € [a, fi] for k = [j/2lo8n=s7, o
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4 THE KNAPSACK PROBLEM

In this section, we consider the knapsack problem and present a fast
algorithm that can solve this problem for small values. In particular,
when the maximum values of the items are constant, our algorithm
runs in linear time. In this problem, we have a knapsack of size ¢,
and n items each associated with size s; and value v;. The goal is
to place a subset of the items into the knapsack with maximum
total value subject to their total size being limited by ¢. In the 0/1
knapsack problem, we are allowed to use each item at most once,
whereas in the unbounded knapsack problem, each item may be
used several times. From this point on, the term “knapsack problem”
refers to the 0/1 knapsack problem unless stated otherwise.

A classic dynamic programming algorithm yields a running time
of O(nt) [8] for the knapsack problem. On the negative side, it
was shown recently that both the 0/1 and unbounded knapsack
problems are as hard as (max, +) convolution. Thus it is unlikely
to solve either problem in time O((n + t)27€) for any € > 0 [9].
However, there is no assumption on the values of the items in
these reductions. Hence the hardness results do not carry over to
the case of small values. In particular, a barely subquadratic time
(O(t1+859 +n)) algorithm follows from the work of [6] when the item
values are constant integer numbers. In what follows, we show that
we can indeed solve the problem in truly subquadratic time when
the input values are small. We assume throughout this section that
the values of the items are integers in range [0, Umax]. Using the
prediction technique we present an O(vmax! + n) time algorithm
for the knapsack problem.

We begin by defining a knapsack variant of the (max, +) convo-
lution in Section 4.1, and show that if the corresponding knapsack
problems have non-negative integer values bounded by vmay, then
one can compute the (max, +) convolution of two vectors in time
5(vmaxn). It follows from the recent technique of [9] that using
this type of (max, +) convolution, one can solve the knapsack prob-
lem in time 5(vmaxn). However, for the sake of completeness, we
include a formal proof in the full version of the paper.

4.1 Knapsack Convolution

Let a and b be two vectors that correspond to the solutions of two
knapsack instances k, and k. More precisely, a; is the maximum
value of the items in knapsack problem k, with a total size of at
most i. Similarly, b; is the maximum value of the items in knapsack
problem k; with a total size of at most i. We show that if the values
of the items in k, and k; are non-negative integers bounded by
Umax, then one can compute a % b in time 5(vmax(|a| +1b|) + n)
where n is the total number of items in k, and k.

The sketch of the algorithm is as follows: We first define the
fractional variants for the knapsack problem and the knapsack con-
volution. We show that both problems can be efficiently solved in
time O(nlog n) where n is the total number of items in each knap-
sack problem. Next, we observe that any solution of the fractional
knapsack problem can be turned into a solution for the knapsack
problem with an additive error of at most vpax. Similarly, any so-
lution for the fractional knapsack convolution is always at most
2Umax away from the solution of the knapsack convolution. We
then show that the solutions of the fractional knapsack problem
and fractional knapsack convolution have certain properties. We
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explore these properties and show that they enable us to find an
uncertain solution for the knapsack convolution in time 5(1‘ +n).
This yields an 6] (vmaxn) time solution for knapsack convolution via
Theorem 3.5. In the interest of space, we omit some of the proofs
of this section and include them in the full version of the paper.

We define the fractional variant of the knapsack problem as
follows. Here we are allowed to divide the items into smaller pieces
such that the value of each piece is proportional to the size of that
piece. More formally, the fractional knapsack problem is defined as
follows:

Definition 4.1. Given a knapsack of size ¢, and n items with
sizes s1, Sz, . . ., Sp and values v1, vy, . . ., Uy, the fractional knapsack
problem is to find non-negative real values fi, f2,..., fn < 1such
that }};s; fi < t, and }; fiv; is maximized.

It is well-known that the fractional variant of the knapsack prob-
lem can be solved exactly via a greedy algorithm: sort the items in
decreasing order of the ratio of value over size, and place them in
the knapsack one by one. If at some point there is not enough space
for the next item, we break it into a smaller piece that completely
fills the knapsack. We stop when either we run out of items or the
knapsack is full. We call this the greedy knapsack algorithm and
name this simple observation.

OBSERVATION 4.1. The greedy algorithm solves the fractional
knapsack problem in time O(nlog n).

It is easy to see that in any solution of the greedy algorithm for
knapsack, at most one item in the knapsack is broken into a smaller
piece. Therefore, one can turn any solution of the fractional knap-
sack problem into a solution of the knapsack problem by removing
the only item with 0 < f; < 1 (if any). If all the values are bounded
by Umax. this hurts the solution by at most an additive error of vay.
Moreover, the solution of the fractional knapsack problem cannot
be worse than that of the integral knapsack problem. Thus, any
solution for the fractional knapsack problem can be turned into a
solution for the knapsack problem with an additive error of at most
Umax-

Based on a similar idea, we define the fractional knapsack con-
volution of two vectors as follows:

Definition 4.2. Let a and b be two vectors corresponding to two
knapsack problems k, and k; with knapsack sizes t, and t;,. For a
real value ¢, we define the fractional knapsack convolution of a and
b with respect to t as the solution of the knapsack problem with
knapsack size t and the union of items of k, and k; subject to the
following two additional constraints:

e The total size of the items of k, in the solution is bounded
by t,.

o The total size of the items of k;, in the solution is bounded
by tp.

One can modify the greedy algorithm to compute the solution
of the fractional knapsack convolution as well. The only difference
is that once the total size of the items of either knapsack instances
in the solution reaches the size of that knapsack, we ignore the rest
of the items from that knapsack. A similar argument to what we
stated for Observation 4.1 proves the correctness of this algorithm.
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Algorithm 2: GreedyAlgorithmForFractionalKnapsackConvo-

lution(a, b, kg, kp)
Data: ¢, a, b, and two knapsack instances k, and ky,

corresponding to a and b.
Result: The solution of fractional knapsack convolution of a
and b with respect to ¢

1 Let items be a sequence of size n containing all items of k, and
kp;

2 Sort items according to v;/s; in non-increasing order.

3 Answer < 0;
4 forie€ [1,n] do

5 if (si,v;) belongs to k, then

6 cut « min{s;, t,tq};

7 Answer <« Answer + vjcut/s;;
8 t <« t — cut;

9 tgq < tq — cut;

10 else

1 cut « min{s;, t,t};

12 Answer < Answer + vjcut/s;;
13 t « t — cut;

14 |ty < tp —cut;

15 Return Answer;

OBSERVATION 4.2. Algorithm 2 solves the fractional knapsack
convolution in time O(nlog n).

Again, one can observe that in any solution of the greedy al-
gorithm for fractional knapsack convolution, at most two items
may be included in the solution fractionally (at most one for each
knapsack instance). Thus, we can get a solution with an additive
error of at most 2vmay for the knapsack convolution problem from
the solution of the fractional knapsack convolution.

We explore several properties of the fractional solutions for
the knapsack problems and the knapsack convolution. Based on
these, we present an algorithm to compute an uncertain solution
for the knapsack convolution within an error of O(vmax). Define
a’ : [0,t4] = Randd’ : [0,t,] — R as the solutions of the
fractional knapsack problems for k, and k, respectively. Therefore,
for any real value x in the domain of the functions, a’(x) and
b’ (x) denote the solution of each fractional knapsack problem for
knapsack size x. Moreover, we define a function c : [0,t4 + 5] - R
where ¢’ (x) is the solution of the fractional knapsack convolution of
a and b with respect to x. Note that for a’, b’, and ¢’, the parameter
x may be a real value. The following observations follow from the
greedy solutions for a’, b’, and ¢’.

OBSERVATION 4.3. There exist non-decreasing functions F : [0, t4+
tp] — [0,t4] and Fp, : [0,tq + t5] — [0,1,] such that ¢’(x) =
a'(Fa(x)) + 0" (Fp(x)).

Since in Algorithm 2 we put the items greedily in the knapsack,
for every 0 < x < tg, there exists a 0 < y < t4 + t5 such that
Fa(y) = x. Similarly, for every 0 < x < t, there existsa 0 < y <
tq + tp such that 7 (y) = x. We define 7, !(x) as the smallest y
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such that 7, (y) = x. Moreover, 7"1;1 (x) is equal to the smallest y
such that 7, (y) = x.

OBSERVATION 4.4. Forx,y,y’ such that0 < x <tz and0 <y <
y' < Fol(x) —x, wehavec (x +y) —a’(x) +b'(y) = ' (x +¢’) —
a’(x) = b'(y’).

OBSERVATION 4.5. Forx,y,y’ suchthat0 < x < t, and ﬁ_l(x)—
x<y<y <tp,wehavec' (x +y) —a'(x) +b'(y) < (x+y’) -
a’(x) = b'(y’).

Let us define g5 (y) = ¢’(x +y) —a’(x) —b’(y) forany 0 < x < ¢,.
Then Observations 4.4 and 4.5 show that gy is non-increasing
in the interval [0, ﬂ_l(x) — x] and non-decreasing in the inter-
val [F,1(x) — x,t,]. Now, for every integer i € [0,t,], define
(xi’ to be the smallest number in range [0, 7, !(x) — x] such that
gi(@]) < 2Umay. Similarly, define § to be the largest number in
range [F, !(x) — x,t;] such that g; (B]) < 2Umax. It follows from
Observations 4.4 and 4.5 that g; (x) < 2vmax holds in the interval
[}, B;] and gi(x) > 20max holds for any x outside this range. More-
over, Observations 4.6 and 4.7 imply that [a/, B/]’s are monotonic.

OBSERVATION 4.6. Let x,x’, and y be three real values such that
0<x<x'"<tgand0 <y < F, 1 (x)—x. Thenc’'(x +y)—a’(x) -
b(y) <c'(x" +y) —a'(x") - b'(y).

OBSERVATION 4.7. Let x,x’, and y be three real values such that
0<x<x' <tgand0 < F;l(x")—x" < y. Thenc'(x+y)—a’(x) -
b(y) 2 c'(x" +y) —a'(x") = b'(y).

Notice that for every pair of integers i and j such that a] < j < f/,
we have ¢’ (i+j)—a’ (i) = b’ (j) < 2Umax. Recall that a’ and b’ are the
solutions of the fractional knapsack problems, and thus a’(i) — a;
and b’(j) — b; are bounded by umax. Moreover, since ¢’ (i + j) is
always at least as large as cj+j, we have cj1j — a; — bj < 4vmayx for
all @ < j < B/. Furthermore, for every integer j € [0, ;] \ [e], B}]
we have ¢/(i + j) — a’(i) — b’(j) > 2Umax. Similarly, one can argue
that ¢’(i + j) < ciyj + 2Umax, @’ (i) = a;, and b’ (j) > bj, and thus
ci+j — ai — bj > 0. Therefore, intervals [a{,ﬁi’] make an uncertain
solution for a x b within an error of 4vy,x. To make the intervals
integer, we set o; = [a]] and f; = |B;]. Since [a;, ;] is also an
uncertain solution within an error of 4vmax We can compute a * b
in time O(vmax(|al + |b]) + n).

THEOREM 4.3. Let k, and k;, be two knapsack problems with
knapsack sizes t, and ty, and n items in total. Moreover, let the item
values in kq, and kg, be integer values bounded by vmax and a and b be
the solutions of these knapsack problems. There exists an 6(vmax(ta +
tp) + n) time algorithm for computing a x b using a, b, kg, and k.

PROOF. Lett = t;+1p be the largest index of ax b. As shown ear-
lier, intervals [«;, f;] formulated above make an uncertain solution
for a x b within an error of 4vmax. Thus, it only suffices to compute
these intervals and then using Theorem 3.5 we can compute a * b
in time 5(vmax(|a| + |b])). In order to determine the intervals, we
first compute three arrays a’, b’, and ¢’ with ranges [0, 4], [0, 3],
and [0, 4 + t3], respectively. Then for every i in range [0, t,] we
compute a to be the solution to the fractional knapsack problem
of k, with knapsack size i. This can be done in time O(nlogn + t),
since we can use the greedy algorithm to determine these values.
Similarly, we compute b] equal to the solution to the fractional
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knapsack problem for kj and c¢; equal to the solution of the frac-
tional knapsack convolution for a x b. This step of the algorithm
takes a total time of O(nlogn +t) = 5(n +t).

Along with the construction of array ¢/, we also compute two
arrays ¥ and F, in time O(t) where ¢; = a’ﬂi + b;ﬁ;i' More
precisely, every time we compute c; for some integer i we also
keep track of the total size of the solution corresponding to each
knapsack and store these values in arrays 7, and 3. Also one can
compute an array 7, ! from ¥, in time O(t). Next, we iterate over
all integers i in range [0, t,] and for each i compute @; and f; in
time O(log n). Recall that «; (f;) is the smallest (largest) integer j in
range [0, F; 1, —i] ([F41; — i, tp]) such that c;+j —a;— b]'. < 2Umax-
Moreover, ¢}, ;
[F21;—i.t,] and hence a; and ; can be computed in time O(log t)

-aj —bJ’. is monotonic in both ranges [0, ;! ;—i] and

for every i. This makes a total running time of O(t,4 log t;) = O(t).
Finally, since intervals [;, ;] make an uncertain solution for a x b
within an error of 4vmax, We can compute ax b in time %] (Umax (ta +
tp) + n) (Theorem 3.5). O

In the full version of the paper, we show that Theorem 4.3 yields
a solution for the 0/1 knapsack problem in time 5(vmaxt +n). The
algorithm follows from the reduction of [9] from 0/1 knapsack to
knapsack convolution.

THEOREM 4.4 (A COROLLARY OF THEOREM 4.3 AND THE REDUCTION
OF [9] FROM 0/1 KNAPSACK TO (max,+) CONVOLUTION). The 0/1
knapsack problem can be solved in time 5(vmaxt + n) when the item
values are integer numbers in range [0, Umax].

5 COMPUTING a** AND APPLICATION TO
UNBOUNDED KNAPSACK

k times

Throughout this section, we denote a x a x ... % a by a*k In this
section, we present another application of the prediction technique
for computing the k’th power of a vector in the (max, +) setting.
The classic algorithm for this problem runs in time O(n?) and thus
far, there has not been any substantial improvement for this prob-
lem. We consider the case where the input values are integers in
range [0, emax], nonetheless, this result carries over to any range
of integer numbers within an interval of size emax.* Using known
FFT-based techniques, one can compute a * a in time 5(emax|a|).
However, the values of the elements of a*2 no longer lie in range
[0, emax] and thus computing a*? x a*? requires more computation

than a % a. In particular, the values of the elements of a*k/2
*k/2 * a*k/z

are

in range [0, emaxk/2] and thus computing a via the

known techniques requires a running time of 5(emaxk|a*k ). The
main result of this section is an algorithm for computing a*k in

time 5(emax|a*k )

a*k

. Moreover, we show that any prefix of size n of
can be similarly computed in time O(emaxn). We later make
a connection between this problem and the unbounded knapsack
problem and show this results in an 5(emaxt + n) time algorithm
for the unbounded knapsack problem when the item values are

41t only suffices to add a constant C to every element of the vector to move the numbers
to the interval [0, emax]. After computing the solution, we may move the solution
back to the original space.
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integers in range [0, emax]. Our algorithm is based on the prediction
technique explained in Section 3.

We first explore some observations about the powers of a vector
in the (max, +) setting. We begin by showing that if b = a*k
for some positive integer i, then the elements of b are (weakly)
monotone.

LEMMA 5.1. Let a be a vector whose values are in range [0, emax |
and b = a*k for a positive integer k. Then, for0 < i < j < |a*¥| we
haveb; > b; — emax.

Proor. If k = 1, the lemma follows from the fact that all values
of the elements of a are in range [0, emax]. For k > 1, we define
¢ = a**1 and let I be an index of ¢ with the maximum c; subject
tol < j.Since b = ¢ x a we have b; = ¢y + a;_y for some i’. Note
that ¢;; < ¢; and also all values of the indices of ¢ are bounded by
emax- Thus we have b; < ¢; + emax. In addition to this, since [ < j
we have b; > ¢; + aj—;. Notice that all values of the indices of a are
non-negative and therefore b; > c;. This along with the fact that

bi < cj + emax implies that bj > b; — emax. O

Another observation that we make is that if for a k and a k’
we have |k — k’| < 1, then a** % a*" can be computed by just
considering a few (i, j) pairs of the vectors with close values.

LEMMA 5.2. Let k and k’ be two positive integer exponents such
that |k — k’| < 1. Moreover, let a be an integer vector whose elements’
values lie in range [0, emax]. Then, for every 0 < i < Ia*kl, there
exist two indices j and i — j such that (i) a;‘k+k = a}‘ + a;‘_kj, and (ii)

’
|a§c - a?_kj| < emax-

k+k’ times

—_——
ProoF. By definition K — Gxax... xa Therefore, for

every 0 < i < |a*k+k/|, there exist k + k” indices iy, 2, . . ., g
such that a;"”k’ =aj +ap,+...+ai,, andij+iz+.. . +igpp =1
We assume w.lo.g. that a; < a;, <... < aj,,,,. We separate the
odd and even indices of i to form two sequences iy, i3, ... and
is, is, . ... Notice that since |k — k’| < 1, the size of one of such
sequences is k and the size of the other one is k’. We assume w.l.o.g.
that the size of the odd sequence is k and the size of the even
sequence is k’. We now define j = iy +is+...and j' = ig+ig+.. ..

Since i1 +iz+... = i then j’ = i—j holds. Since a;‘k+k' =aj +a;,+
’
...+aj,,,, wealso have a;k =aj +ap+... a}ik =aj,+aj,+...,
’ !
and also a;‘k”‘ = a*f + a*K' To complete the proof, it only

suffices to show that |a;.‘k - a’.ﬁk,I < emax. This follows from the

fact that the value of all indices of a are in range [0, emax] and that
aj; < ai, < aj; < ... S Ajy - O

What Lemma 5.2 implies is that when computing a** = a*k/21x
a*Lk/2] it only suffices to take into account (i, j) pairs such that

|a;( Mk/21 _ a;Lk/ZJI < emax- This observation enables us to com-

pute a*k = g*Tk/21 5 g*Lk/2] in time O(emax|a**|) via the pre-
diction technique. Suppose a is an integer vector with values in
range [0, emax]. In addition to this, assume that ¢ = a* Tk/21 and
a = a*k/2] we propose an algorithm that receives d and a as
input and computes a*k = axaas output. The running time of
our algorithm is O(emax|a*¥)).

Bateni, Hajiaghayi, Seddighin, Stein

We define two integer vectors b and b where l;i = max;<; 4j.
Similarly, b; = max j<i dj. By definition, both vectors b and b are
non-decreasing. Now, for every index i of b we find an interval
[xi, y;] of b such that 5,— —2emax < Ej < l;i + 2emax for any j within
[xi,yi]. Since both vectors b and b are non-decreasing, computing
each interval takes time O(logn) via binary search. Finally, we
provide these intervals to the prediction technique and compute
a*f = 4 x ain time 5(emax|a*k|). In Lemma 5.3, we prove that
the intervals adhere to the conditions of the prediction technique
and thus Algorithm 3 correctly computes a*¥ from @ and  in time
5(emax|a*k ).

Algorithm 3: FastPower(d, d, emax)

Data: Two vectors d and a s.t. @ = a*[k/21 and a = a*Lk/2]
for some a and k.
Result: @ x a
1 Let b, b be two vectors of size |a*[%/21| and |a*Lk/2]|
respectively.;
2 l;o «— dg;
3 by < ap;
foriec[1,|d —1] do
5 L b « max{b;_y,d;);
forie€[1,|al —1] do
| bi «— max{b;_1,a;};
for i€ [1,]a**| - 1] do
x; « the smallest j such that Ej > b — 2emax;
L y; < the largest j such that l;j < bi + 2emax;

'S

N o

o »

10

11 ¢ = PredictionMethod(d, a, Semax, xi’s, yi’s);
12 Return c;

LEMMA 5.3. Let a be an integer vector with values in range [0, emax]-
For some integerk > 0, letd = a* [k/21 anda = a*%/2] Given d and
a as input, Algorithm 3 computes a** = axa in time O(emax|a* ¥ 1]).

Proor. The correctness of Algorithm 3 boils down to whether
intervals [x;,y;] provided for the prediction technique meet the
conditions of Theorem 3.5. Before we prove that the conditions are
met, we note that by Lemma 5.1, the values of b and b are at most
emax more than that of d and a. Moreover, by definition, the vectors
b and b are non-decreasing and lower bounded by the values of d
and a.

First condition: The first condition is that for every 0 < i <
la*Tk/21| and x; < j < y; we have d; +d@; > (A% a)i+j — O(emax). In
what follows, we show that in fact 4; +a; > (@*@);+j — 5emax holds
for such i’s and j’s. Due to Lemma 5.2, for every such i and j, there
exist an i’ and a j* such that dy + ajy = (@x @)y4j, i’ +j =i+,
and |4y — @j| < emax. Therefore,

(A% a)irj = (A% Q)irtjr
= di’ + d]/
< 2minf{dy + dj} + emax

< 2min{5i/ + l;j/} + emax-
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In addition to this, we know that i + j = i’ + j* and thus either
i’ <iorj < j.Inany case, since both b and b are non-decreasing,
max{bj, Ej} > min{by, by} and therefore,

(@%a)i+j <2 min{l;,-/, Ej/} + emax
< 2max{l;,-, Ej} + emax.

Due to Algorithm 3, max{l;i, l;j} - min{l;i, Bj} < 2emax and hence

(d*ﬁ)nj < 2max{l;i,51} + €max

IA

l;i + l;j + 3emax

IA

a; + aj + Semax-

Second condition: The second condition is that for every 0 <
i< |a*rk/2] |, there exists a 0 < j < i such that d; + a;—;j = (@ x a);
and that x; < i - j < y;. We prove this condition via Lemma 5.2.
Lemma 5.2 states that for every |a* Tk/27| there exists a 0 < j<i
such that satisfies d; + d;—j = (d * @); and also |d; — d;—j| < emax-
Since the values of b, b differ from d, b by an additive factor of at
most emay, the latter inequality implies Il; i — b jl < 2emax. Due
to Algorithm 3, if |I;j - l;i_jl < 2emax then i — j lies in the interval
[xj, yj].

Third condition: The third condition is regarding the mono-
tonicity of x;’s and y;’s. This condition directly follows from the
fact that both vectors b and b are non-decreasing and as such, the
computed intervals are also non-decreasing.

Apart from an invocation of Algorithm 1, the rest of the op-
erations in Algorithm 3 run in time 5(n) and therefore the total
running time of Algorithm 3 is 5(emax|a*rk] ). m

Based on Lemma 5.3, for an integer vector with values in range
[0, emax], we can compute a*k via O(log k) % operations, each of
which takes time O(emax|a* [kl |). Moreover, we always need to

make at most O(log k) = O(1) x operations in order to compute
a*k.

THEOREM 5.4. Let a be an integer vector with values in range
[0, emax]- For any integer k > 1, one can compute a*k
Oemaxla*T1)).

in time

Proor. The proof follows from the correctness of Algorithm 3
and the fact that it runs in time O(emax|a* (k1 ). m}

Theorem 5.4 provides a strong tool for solving many combina-
torial problems including the unbounded knapsack problem. In
order to compute the solution of the unbounded knapsack problem,
it only suffices to construct a vector a of size t wherein a; spec-
ifies the value of the heaviest items with size i. a itself specifies
the solution of the unbounded knapsack problem if we are only
allowed to put one item in the bag. Similarly, a*? denotes the so-
lution of the unbounded knapsack problem when we can put up
to two items in the knapsack. More generally, for every 1 < k, a*k
denotes the solution of the unbounded knapsack problem subject
to using at most k items. This way, a*! formulates the solution
of the unbounded knapsack problem. Note that in order to solve
the knapsack problem, we only need to compute a prefix of size
t + 1 of a*!. This makes the running time of every * operation
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5(emaxt) and thus computing the first t + 1 elements of a*’ takes
time O(emaxt).

THEOREM 5.5 (A COROLLARY OF THEOREM 5.4). The unbounded
knapsack problem can be solved in time O(vmaxt + n) when the item
values are integers in range [0, Umax]-

6 KNAPSACKFOR ITEMS WITH SMALL SIZES

We also consider the case where the size of the items is bounded
by smax. Note that in such a scenario, the values of the items can
be large real values, however, each item has an integer size in
range [1, Smax]. We propose a randomized algorithm that solves
the knapsack problem w.h.p. in time 5(smax(n + t)) in this case.
Although our technique is novel, the idea of putting the items in
random buckets has been used before (see e.g. [5, 9]). Our algorithm
is as follows: we randomly put the items in /smax different buckets.
Using the classic quadratic time knapsack algorithm we solve the
problem for each bucket up to a knapsack size O(smax). Next, we
merge the solutions in log(t/smax) rounds. In the first round, we
merge the solutions for buckets 1 and 2, buckets 3 and 4, and so on.
This results in ¢/2smax different solutions for every pair of buckets
at the end of the first round. In the second round, we do the same
except that this time the number of buckets is divided by 2. After
log(t/smax) rounds, we only have a single solution and based on
that, we determine the maximum value of the solution with a size
bounded by t and report that value.

If we use the classic (max, +)-convolution for merging the solu-
tions of two buckets, it takes time O(t%) for merging two solutions
and yields a slow algorithm. The main idea to improve the run-
ning time of the algorithm is to merge the solutions via a faster
algorithm. We explain the idea by stating a randomized argument.
Throughout this paper, every time we use the term w.h.p. we mean
with a probability of at least 1 — n10.

LEmMMA 6.1. Let (s1,v1), (S2,02), . - ., (Sn, Un) ben items with sizes
in range 1, smax]. Let the total size of the items be S. For some0 < p <
1/2, we randomly select each item of this set with probability p and
denote their total size by S’. If smax < 2pS then for some C = o(1)
[pS—5S’| < CfsmaxpS holds w.h.p. (with probability at least 1—n~1°),

In the interest of space, we omit the proof of Lemma 6.1 here
and include it in the full version.

In our analysis, we fix an arbitrary optimal solution of the prob-
lem and state our observations based on this solution. Since the
sizes of the items are bounded by spax, then either our solution
uses all items and has a total size of ), s; (if ) s; is not larger than t)
or leaves some of the items outside the knapsack and therefore has
a size in range [t — smax + 1, ¢]. One can verify in O(n) if the total
size of the items is bounded by ¢ and compute the solution in this
case. Therefore, from now on, we assume that the total size of the
items is at least ¢ and thus the solution size is in [t — spax + 1, £].

Now, if we randomly distribute the items into #/smax buckets
then the expected size of the solution in each bucket is O(smax)
and thus we expect the size of the solution in each bucket to be in
range [0, O(smax)] w.h.p. due to Lemma 6.1. Therefore, it suffices to
compute the solution for each bucket up to a size of 5(smax)4 Next,
we use Lemma 6.1 to merge the solutions in faster than quadratic
time. Every time we plan to merge the solutions of two sets of items
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S1 and Sp, we expect the size of the solutions in these two sets to be

in ranges [|S1]/n — O(VtsmaxIS11/n), tIS11/n + O(VtsmaxIS11/n)]

and [#1S21/n — O(Vtsmax[S21/n), t1S21/n + O(Vtsmax|S21/n)] W.h.p.

Therefore, if we only consider the values within these ranges, we
can merge the solutions correctly w.h.p. and thus one can compute

the solution for S; U S w.h.p. in time 5(\/tsmax(|51| + ISgl)/nz) =

O(tsmax(IS1] + 1S2])/n). This enables us to compute the solution
w.h.p. in time O(smax(n + t)).

Algorithm 4: KNPKSmallSizes

Data: Knapsack size ¢ and n items (s;, v;) where 1 < s; < Smax
for all items.
Result: Solution for knapsack size t
1 Randomly distribute the items into #/smax buckets;
2 for j € [t/smax] do

3 x1,j = solution of the problem for bucket i up to size
L (C + 2)Smax;
4 fori € [2, [log(t/smax)1] do

5 | forj € [t/smax/2'] do
6 L Combine the solutions of x;—1,2j-1 and x;_1,2; into

xi,j (based on Lemma 6.1 );

7 Return MAX X[og(/smax) |, 15

THEOREM 6.2. There exists a randomized algorithm that correctly
computes the solution of the knapsack problem in time O(smax(n+1t))
w.h.p., if the item sizes are integers in range [1, smax].

ProoF. We assume w.l.o.g. that the total size of the items is at
least t and thus the solution size is in range [t — Smax + 1,t]. As

outlined earlier, we randomly put the items into t/smax buckets.

Based on Lemma 6.1, the expected size of the solution in each

bucket is in range [Smax — 1, Smax]- Therefore, by Lemma 6.1 w.h.p.

the size of the solution in every bucket is at most smax + 5(smax) =
5(smax). Therefore, for each bucket with n; items we can compute
the solution up to size 5(smax) in time 5(smaxn,~). Since Y n; = n,
the total running time of this step is 5(smaxn).

We merge the solutions in log(#/smax) rounds. In every round i,
we make t/Smax /2! merges each corresponding to the solutions of 21
buckets. By Lemma 6.1, the range of the solution size in every merge
is [Smaxzi _6( VSmaxzzi)a Smax2’ +6( VSmaxzzi)] w.h.p. Thus, every
merge takes time smaxzzi. Moreover, in every round i the number
of merges is t/smax /2. Therefore, the total running time of each
phase is O(Smaxt) and thus the algorithm runs in time O(Smax (n+1)).
In order to show our solution is correct with probability at least
1-n719, we argue that we make at most n merges and therefore the
total error of our solution is at most nn~1% = n=?. Thus, if we run
Algorithm 4 twice and output the better of the generated answers,
our error is bounded by 2(n%)? = n718/2 < n71° and thus the
output is correct with probability at least 1 — n~10. O

As a corollary of Theorem 6.2, we can also solve the unbounded
knapsack problem in time O(smax(n + t)) if the sizes of the items
are bounded by smax.
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__ CoROLLARY 6.3 (oF THEOREM 6.2). There exists a randomized
O(smax(n + t)) time algorithm that solves the unbounded knapsack
problem w.h.p. when the sizes are bounded by smax.

Proor. The crux of the argument is that in an instance of the
unbounded knapsack problem if the sizes of two items are equal,
we never use the item with the smaller value in our solution. Thus,
this leaves us with sy, different items. We also know that we
use each item of size s; at most | ¢/s;] times and thus if we copy
the most profitable item of each size s;, | t/s;] times, this gives us
an instance of the 0/1 knapsack problem with O(t log smax) items.
Using the algorithm of Theorem 6.2 we can solve this problem
in time 5(smaxt). Since the reduction takes time O(n) the total
running time is 5(smax(n +1)). O

Using the same idea, one can also solve the problem in time
O((n + t)smax) when each item has a given multiplicity.

7 ALGORITHMS FOR KNAPSACK WITH
MULTIPLICITIES

In this section, we study the knapsack problem where items have
multiplicities. We assume throughout this section that the sizes
of the items are bounded by spyax. More precisely, for every item
(si, vi), m; denotes the number of copies of this item that can appear
in any solution. Using our algorithms, we show that when all the
sizes are integers bounded by smax, one can solve the problem
in time 5(nsmaxz min{n, smax}). Notice that this running time is
independent of ¢. This result improves upon the O(n*syax?) time
algorithm of [18].

We begin, as a warm-up, by considering the case where m; = oo
for all items. We show that in this case, the O(n®spay?) time algo-
rithm of [18] can be improved to an 5(nsmax + Smax? Min{n, smax})
time algorithm. Before we explain our algorithm, we state a mathe-
matical lemma that will be later used in our proofs.

LEMMA 7.1. Let S be a subset of items with integer sizes. If |S| > k
then there exists a non-empty subset of S whose total size is divisible
by k.

PRroOF. Select k items of S and give them an arbitrary ordering.
Let s; be the total size of the first i items in this order. Therefore,
0 =59 <51 <s2 <...< s holds. By pigeonhole principal, from set
{s0,$1, . . ., Sk} two numbers have the same remainder when divided
by k. Therefore, for some i < j we have s; Mod k = s; Mod k. This
means that the total size of the items in positions i+1 to j is divisible
by k. O

When all multiplicities are infinity, our algorithm is as follows:
define H := arg max v;/s; to be the index of an item with the high-
est ratio of v;/s; or in other words, the most profitable item. We
claim that there always exists an optimal solution for the knap-
sack problem in which the total size of all items except (s, vy) is
bounded by Smax>-

LEMMA 7.2. Let| be an instance of the knapsack problem where the
multiplicity of every item is equal to infinity and let (sy,vy) be an
item with the highest ratio of v;/s;. There exists an optimal solution
for | in which the number of items except (sy, vy) is smaller than syy.
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Proor. We begin with an arbitrary optimal solution and mod-
ify the solution until the condition of the lemma is met. Due to
Lemma 7.1, every set S with at least sy items contains a subset
whose total size is divisible by sy. Therefore, until the number of
items other than (sy, vy ) drops below sy, we can always find a sub-
set of such items whose total size is divisible by sp. Next, we replace
this subset with multiple copies of (sy, vy) with the same total size.
Since vy /sy is the highest ratio over all items, the objective value
of the solution doesn’t hurt, and thus it remains optimal. O

Since s; < smax holds for all items, Lemma 7.2 implies that in
such a solution, the total size of all items except (sy, vy) is bounded
by Smax>. This implies that at least max{0, | (t — Smax2)/sH} copies
of item (sy, vyy) appear in an optimal solution. Thus, one can put
these items into the knapsack and solve the problem for the remain-
ing space of the knapsack. Let the remaining space be ¢’ which is
bounded by Smax? + Smax. Therefore, the classic O(nt’) time algo-
rithm for knapsack finds the solution in time O(nsmax?). Also, by
Theorem 6.2, one can solve the problem in time 5((n +t")Smax) =
5(nsmax + Smax>). Thus, the better of two algorithms runs in time
5(nsmaX + Smax® Min{n, Smax}). This procedure is shown in Algo-
rithm 5.

Algorithm 5: KNPKInfiniteMultiplicities

Data: A knapsack size t and n items with sizes and values
(si,vi). mj =coand s; < spax holdforall1 <i<n
Result: The solution of the knapsack problem for knapsack
size t
H « arg maxv;/s;;

-

)

ent — max{0, [ (£ — smax?)/sH}J;
3t/ «t—cnt-sy;

if n < spax then

L Report cnt - vy +

[N

ClassicKNPK(t', n, {(s15 t1)s - - -» (Sn»> tn)}> (M1, - . ., mp});
¢ else
7 Report cnt - vy +
KNPKSmallSizes(t', n, {(s1, 1), - - -5 (Sn» tn) ), {m1, . .., mn});

THEOREM 7.3. When's; € [Smax] and m; = oo hold for every item,
Algorithm 5 computes the solution of the knapsack problem in time
O(nsmax + Smax” Min{n, smay})-

Proor. The main ingredient of this proof is Lemma 7.2. Ac-
cording to Lemma 7.2, there exists a solution in which apart from
(sH,vy) type items, the total size of the remaining items is bounded
by Smax?. Therefore, we are guaranteed that at least cnt copies of
item (sy,vy) appear in an optimal solution of the problem. Thus,
the remaining space of the knapsack (¢’) is at most Smax® + Smax
and therefore Algorithm 5 solves the problem in time 5(nsmax +

Smax2 min{n, smax}). o

Next, we present our algorithm for the general case where every
multiplicity m; > 1is a given integer number. Our solution for this
case runs in time O(nsmax2 min{n, smax}). We assume w.l.o.g. that
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> smax?, otherwise the better of the classic knapsack algorithm
and our limited size knapsack algorithm solves the problem in time
5(nsmaX + Smax? mMin{n, smax}). In addition to this, we assume that
the items are sorted in decreasing order of v;/s;, that is

v1/s1 = vy/s2 = ... = Un/Spy.

We define t’ = t — Spax? to be a smaller knapsack size which is
less than t by an additive factor of Smax>. We construct a pseudo
solution for the smaller knapsack problem, by putting the items
one by one into the smaller knapsack (of size t") greedily. We stop
when the next item does not fit into the knapsack. Let b; be the
number of copies of item (s;, v;) in our pseudo solution for the
smaller knapsack problem. In what follows, we show that there
exists an optimal solution for the original knapsack problem such
that if b; > spax holds for some item (s;, v;), then at least b; — spyax
copies of (s;, v;) appear in this solution.

LEMMA 7.4. Let b; denote the number of copies of item (s;, v;) in
our pseudo solution for the smaller knapsack problem. There exists an
optimal solution for the original knapsack problem that contains at
least bj — smax copies of each item (s;, t;) such that b; > Smax.

Proor. To show this lemma, we start with an optimal solution
and modify it step by step to make sure the condition of the lemma
is met. We denote the number of copies of item (s;,v;) in our
solution by a;. In every step, we find the smallest index i such
that a; < b; — smax. Notice that due to the greedy nature of our
algorithm for constructing the pseudo solution and the fact that
b; > 0 then bj = mj for every j < i. Hence, aj < m; = b; holds for
all j < i. Since at least one copy of item (s;,v;) is not used in the
optimal solution, then the unused space in the optimal solution is
smaller than s;. Recall that the total size of the pseudo solution is
bounded by t’ =t — Smax> and since aj < bj forall j < i, then the
first i items contribute to at most ¢ — Smax> — SmaxSi space units of
the solution. Moreover, as we discussed above, the total size of the
solution is at least t — spyax and thus the rest of the items have a
size of at least spax? in our optimal solution. Therefore we have

n
Z a;sj > smax2
j=i+l

n

j=i+1
on Lemma 7.1 there exists a subset of these items whose total size
is divisible by s; and thus we can replace them with enough (and at
most smax) copies of item (s;, v;) without hurting the solution. At
the end of this step a; increases and all a; for j < i remain intact.
Therefore after at most }; b; steps, our solution has the desired
property. [m}

and since s; < spax holds, we have 3} aj > smax = Si. Based

What Lemma 7.4 suggests is that although our pseudo solution
may be far from the optimal, it gives us important information about
the optimal solution of our problem. If our pseudo solution uses all
copies of items, it means that all items fit into the knapsack and
therefore the solution is trivial. Otherwise, we know that the total
size of the pseudo solution is at least ¢’ — syax = t — Smax® — Smax-
Based on Lemma 7.4, for any item with b; > spax we know that at
least b; — smax copies of this item appear in an optimal solution of
our problem. Therefore, we can decrease the multiplicity of such
items by b; — smax and decrease the knapsack size by (b; — smax)si-
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We argue that after such modifications, the remaining size of the
knapsack is at most syax + Smax> + NSmax 2. Recall that the total size
of the pseudo solution is at least ¢t — Smax? — Smax and therefore
3 bisi > t — Smax® — Smax. This implies that

Z max{0, b; — Smax}si = Z(bt ~ Smax)Si

= Z bis; — Z SmaxSi

2
[t — Smax” — Smax] — Z SmaxSi
2 [t- Smax2 — Smax] — Z Smax2

[t- Smax2 ~ Smax] — nsmax2

\%

Vv

=t—Smax — (n + 1)5max2
Therefore, after the above modifications, the remaining size of
the knapsack is at most smax + (n + 1)smax>. Thus, we can solve
the problem in time O(nsmax’) using Lemma 6.2 and solve the
problem in time O(n?smax?) using the classic knapsack algorithm.
This procedure is explained in details in Algorithm 6.

Algorithm 6: KNPKGivenMultiplicities

Data: A knapsack size t and n items with sizes and values
(si, vi). n multiplicities my, ma, ..., mp. s; < Smax holds
forall1<i<n

Result: The solution of the knapsack problem for knapsack

size t
' — max{0, f — Smax>};

[

2 fori € [1,n] do

3 | bj < min{m;, [t'/s;]};
4 t' — t' = b;si;

5 if b; # m; then

6 L break;

7t —t;

8 surplus « 0;

9 fori € [1,n] do

10 t" «— t'" —max{0,b; — smax}si;

11 m; — m; —max{0, b; — Smax} ;

12 surplus < surplus + max{0, b; — smax}vi;

13 if n < spax then
14 Report surplus +
| ClassicKNPK(t"”, n, {(s1,t1), - - -, (sn> tn)}, {m], . . .. mp});

15 else
16 Report surplus +
KNPKSmallSizes(t”, n, {(s1, 1), - . -, (Sn, tn) }, {m), ... .m});

THEOREM 7.5. Algorithm 6 solves the knapsack problem in time

O(nSmax® min{n, smax}) when the sizes of the items are integers in
range [1, smax] and each item has a given integer multiplicity.

Bateni, Hajiaghayi, Seddighin, Stein

Proor. The proof is based on Lemma 7.4. After determining
the values of vector b’, we know that for each item (s;, t;) at least

bi — smax copies appear in the solution. Thus, we can remove the
space required by these items and reduce the knapsack size. As we

discussed before, after all these modifications, the new knapsack
size (t"’) is bounded by Spmayx + (1 + 1)smax® and thus the better of
the classic knapsack algorithm and the algorithm of Section 6 solve
the problem in time 5(nsmax2 min{n, smax})- O
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