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Abstract— The ubiquitousness of location-based services has
proven effective for many applications such as commercial, mil-
itary, and emergency responders. Software-defined radio (SDR)
has emerged as an adequate framework for the development and
testing of global navigational satellite systems such as the global
position system (GPS). SDR receivers are constantly developing in
terms of acceleration factors and accurate algorithms for precise
user navigation. However, many SDR options for GPS receivers
currently lack real-time operation or could be costly. This paper
presents a LabVIEW (LV) and C/C++-based GPS L1 receiver
platform with real-time capabilities. The system relies on LV
acceleration factors as well as other C/C++ techniques such as
dynamic link library integration into LV and parallelizable loop
structures, and single instruction, multiple data methods, which
leverage host PC multipurpose processors. A hardware testbed
is presented for compactness and mobility, as well as software
functionality and data flow handling inherent in LV environment.
Benchmarks and other real-time results are presented as well
as compared with the other state-of-the-art open-source GPS
receivers.

Index Terms— Global navigation satellite systems (GNSS),
acceleration factors, global positioning systems (GPS), real-time
receiver, software-defined radio (SDR).

I. INTRODUCTION

THE success of U.S. global positioning system (GPS)

in enabling various location-based services triggered

extensive studies in related positioning methods, baseband

technologies, mitigation of errors and interference. Other

similar systems referred to as global navigation satellite sys-

tems (GNSS) have also been deployed using similar signaling

methods and infrastructure solutions [1], [2]. The availability

of accurate source of user position, velocity, and time (PVT)

significantly impacted other technologies such as wireless

communication, military equipment, and transportation.

Conventional GPS receivers operate in open-sky envi-

ronments, and are challenged by signal blockages inside
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buildings, urban canyons, and underground. Also signal inter-

ferences and spoofing may deny GPS availability and dis-

rupt the operation of other systems which rely on GPS

data. Extensive engineering effort is directed in addressing

these challenges to achieve more robust operation of the

receivers and expand their coverage to as many denied areas as

possible.

Serious advances are achieved in increasing sensitivities of

the receivers which have access to terrestrial signaling chan-

nels. Using communication links, one can retrieve orbital data

of satellites, and receiver coarse position and time estimates

from wireless networks, which significantly help in enhancing

the operation of GPS receivers. This approach is called assisted

GPS (A-GPS) [1]–[3] and is estimated to improve startup

sensitivity by as much as 20 dB when used in combination

with advanced parallel correlators. The A-GPS is standardized

for telecommunication networks in terms of defining logistics

of communicating various assistance data, and computing-

delivering PVT information. It is also recommended by FCC

E911 mandate as a solution that will assist emergency services.

Many advances are also made for the better immunity of GPS

receivers against interferences and spoofing [4]–[7].

Despite this progress, GPS operation is still denied in

many indoor and other weak signal environments. Also,

despite many reported spoofing mitigation methods, these

interference techniques also evolve and bring new challenges

for GPS equipment. The researchers thrive to improve the

performance of the receivers, address continuously evolving

spoofing threats, and explore new transformative concepts,

and they need proper instrumentation and software to support

their efforts. As such, software-defined radio (SDR) solutions

become popular because of providing full control of receiver

operations, so the researchers can integrate and test their

methods without redesigning all receiver chains.

SDR solutions provide extended capabilities for tightly

coupled integrations. In this context, SDR integrations pro-

vide research capabilities for many purposes such as indoor

and vehicular navigation in GPS-denied areas. The proposed

integrations include GPS and magnetic positioning systems [8]

tight coupling via an SDR system. Other SDR solutions

provide access to tracking correlators for multipath studies in

urban canyons on vehicular applications [9]. Ranging GPS-like

radios have been explored as well for indoor positioning

applications involving time-of-arrival measurements combined
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with receiver signal strength wireless local area network-type

measurements [10]. In this context, SDR solutions perfectly

fit and can be used for such systems. The inertial navigation

system (INS) integrations with ranging sensors and GPS-

like radios become attractive for SDR fusion applications as

well [11]–[14].

SDRs receive sampled data from peripheral RF front ends

and apply signal processing using general-purpose computing

resources such as computer processors and general-purpose

accelerators such as DSPs and FPGAs. The GPS SDRs are

currently available in various formats. Proprietary commercial

solutions are common and some of them provide application

programming interface (API) access to selected modules for

third party revisions of these modules [15]. They are typically

implemented as C/C++ solutions to provide high quality

and robust performance. The drawback of these solutions

is in constraining access to limited functionalities of the

receiver. Standalone open-source or open-reported C/C++

solutions are also common [16] and provide full receiver

control. The operation quality is not typically guaranteed,

the user interfaces are basic, and front-end compatibility is

limited. Another interesting SDR category exploits rich library

support of dedicated frameworks such as GNU radio [17].

This concept provides essential modular support of integrating

available SDR components for fast prototyping, supports many

front ends including popular Universal Software Radio Periph-

eral (USRP) front ends [18]. Its excellent development envi-

ronment but requires somewhat longer environment learning

period compared to other concepts. MATLAB/Simulink-based

solutions reduce development cycle and are convenient for

research studies, but they are typically not real time [2] or lim-

ited to basic receiver grades. Recently basic-grade academic

GPS SDR solutions exploiting hybrid development environ-

ments, such as C/C++ libraries integrated into LabVIEW (LV)

are reported in [19] and [21]. The SDR computing platforms

and accelerators such as FPGAs and DSPs combined with

multipurpose processors have also gained attention [20]–[23].

Other solutions exploiting graphical processing unit on host

PCs for massive parallel processing operations were reported

[24] in addition to C/C++ features reported in [9].

This paper presents a new generation of LV-based GPS

receivers that achieves high-performance operation exploiting

multiple strengths of LV environment. The described GPS

SDR platform is using advanced graphical user interface (GUI)

and visualization LV libraries. LV supports dataflow environ-

ment and peripheral interfacing for real-time operation. The

LV facilitates application of multithreading, parallelization,

and dedicated loop structures. It allows for C/C++ code

fragments integration for higher performance. It also exploits

C/C++ optimization techniques for single instruction, mul-

tiple data (SIMD) capable processors in software correlators

for the real-time operation of GNSS tracking loops, among

other acceleration factors. With all these features LV allows

for fast prototyping of SDRs, which is the main motivation of

the proposed solution. While LV-based SDRs are not suitable

for high-end industrial grade applications, they are a viable

real-time alternative for research and development. One should

take into account that the proposed SDR relies on LV platform

availability which constrains access to its kernel for highly

specific customizations and optimizations.

This paper will explain the proposed GPS L1 SDR receiver

testbed and its implementation in detail in Section III. This

paper also discusses performance comparison metrics to assess

general capabilities and robustness of the receiver. It is com-

pared with GNU-Radio-based popular representative open-

source C/C++ solution GNSS-SDR [25]. It is demonstrated

by simulations and experiments that LV-based features enable

competitive real-time operation.

This paper is organized as follows. Section II will describe

conventional GPS functionality modules. Section III will

explain the overall system architecture such as hardware and

software components that were used and chosen based on

compactness and mobility. Section IV will focus on accel-

eration factors as well as SDR configurability options for

real-time receiver operation. Section V will discuss receiver

performance metrics with respect to acquisition, tracking, and

navigation modules, as well as comparisons with open-source

solutions such as fast-gps [16] and GNSS-SDR [25]. Section VI

will present conclusion remarks.

II. CONVENTIONAL GPS BASEBAND MODULES

The main communication system focus on this paper is on

the conventional L1 civilian GPS signal: a direct sequence

spread-spectrum signal consisting of a main binary phase

shift keying (BPSK) navigation payload signal operating at

50 Hz, spread by a faster rate BPSK pseudorandom code

signal (PRN) at 1.023 Mchips/s. The spreading sequence is

called the coarse acquisition (C/A) code. Finally, the signal is

mixed to a sinusoidal carrier at 1.57542 GHz corresponding

to the L1 band, forming a bandpass signal transmitted by GPS

satellites orbiting the earth, for civilian positioning.

To successfully demodulate GPS L1 signals and receive

navigation data, the receiver synchronizes to the incoming

signal by correlating to incoming PRN code and wiping off the

L1 carrier. To do this, the receiver generates local replicas of

the code (time) and carrier (frequency), and mixes them with

the received signal. Therefore, synchronization is achieved in

both frequency and time domains, by estimating the Doppler

modulation called carrier phase, and by aligning the signal

and PRN replica to estimate their relative shift, called code-

phase, respectively. The synchronization is typically performed

in two phases: acquisition (coarse) and tracking (fine). After

fine synchronization, navigation data are simply obtained after

sinusoidal carrier and PRN code wipe-off. Also, to estimate

user position, synchronization should be very precise to com-

pute distance traveled from incoming signal. The receiver

structure is modular consisting of three modules, acquisition,

tracking, and navigation.

A. Conventional and Advanced Acquisition Baseband Module

The first stage of baseband signal processing is the acquisi-

tion (coarse synchronization) of GPS satellites. Conventional

receivers achieve acquisition by searching over a 2-D time-

frequency discrete zone for each satellite. The receiver repli-

cates candidate PRN code and residual carrier modulation
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Fig. 1. Simplified tracking feedback loop for a single channel.

pairs, attempting to match those of the received signal. Several

signal replica candidates are locally generated and correlated

with incoming signal to find a match and thus to identify input

parameters. The correlation operation assumes an element-

wise multiplication of the received samples with the samples of

each replica. Then, resulting products are added over coherent

integration lengths, by exploiting periodicity of GPS PRN

codes. Typically, a threshold is applied to the correlation

and integration result, to determine if a signal acquisition

has been reached. If a certain PRN is acquired, then this

coarse synchronization is terminated, and the receiver starts

the tracking (fine synchronization) stage for that satellite;

if not, the search continues and moves to the next code-phase/

frequency option for each satellite PRN.

Conventional GPS baseband algorithms such as C/A could

be computationally costly for real-time operation due to its

nature of typically 3-D search space: code-phase, Doppler

frequency, and satellite number. At the same time several

optimizations can be achieved by means of fast Fourier

transform (FFT) implementations and other joint algorithm

computations [16]. An extended parallel code-phase (PCS)

search algorithm which leverages its modular structure for

concurrent joint search space in code-phase and frequency is

used in the proposed SDR [26]. The algorithm implements

a massive correlator by concurrently combining code-phase

and Doppler frequency search bins while sharing computations

even for different satellites as the received signal forward

FFT output is reused for all iterations. The algorithm is

effectively implemented in C/C++ language and improves

massively on speed when compared to conventional FFT-based

PCS methods [20]. Comparative results showing algorithmic

acceleration factors will be discussed in Section V.

B. Tracking Loops

Once a channel has been acquired, a fine synchronization to

keep track of the candidate channel is desired. Fig. 1 shows a

common tracking feedback loop used for GPS signals. Similar

to acquisition, but now in a finer search grid, tracking loops use

closed loops to continuously follow the PRN code and carrier

parameters of current channel. To determine code and carrier

changes of incoming signal, conventional feedback loops, such

as delay lock loops for code-phase estimation, phase lock

loops, and frequency lock loops for Doppler modulations,

are implemented [2]. Once these loops obtain correction

measurements, the discriminator processes correlator outputs

to provide measurable quantities which are used as feedback

Fig. 2. Hardware architecture for the proposed SDR.

for the next iteration, therefore achieving a continuous lock to

the incoming signal (see Fig. 7).

C. Navigation Module

Well-known navigation algorithms discussed in [2] and [16],

are implemented in the receiver such as least-squares (LS)

methods and position averaging.

III. SYSTEM ARCHITECTURE

The development and testbed platform is implemented at

the Software Communications and Navigation Systems Labo-

ratory at The University of Texas at San Antonio, San Antonio,

TX, USA. This paper provides the detailed description of a

real-time LV-based SDR receiver with various applied con-

cepts to enable high-performance computing. The testbed also

includes a GPS simulator which acts as a generator/transmitter

of GPS signals. Current implementation is using National

Instruments GNSS simulation toolkit [27] that can simulate

different satellites, signals strengths, Doppler effects, user

movement, among other features.

The SDR is a novel LV-based GPS receiver which imple-

ments GPS L1 baseband processing functionalities into

C/C++ software components that have been compiled as

dynamic link libraries (DLLs). It exploits several fast algo-

rithms, LV-based acceleration factors, C/C++ parallel algo-

rithms such as SIMD matching on multipurpose host CPUs,

and external C/C++-based application program interface

optimized libraries, among other features. This section will

describe the overall development hardware and software test-

bed components used in this SDR system and their specifi-

cations as well as the overall receiver architecture and LV

functionalities.

A. Hardware Components

The hardware used in the system was chosen with an effort

to achieve portability and mobility for the SDR receiver. Fig. 2

shows exemplified hardware components and their connec-

tivity. The hardware of choice is an Ettus USRP B200 [18]

front end along with an Intel NUC 5i5RYK [28] serving as

the host PC where the baseband software resides. Table I

shows specifications for the host PC. The host PC is a small

form-factor device. The processor is a low-power multipur-

pose CPU (it consumes 15 W). An active antenna, Talisman

TW2010 [29], which is power driven by an in-line amplifier,

model A11 from GPS Source [30], are the RF components
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TABLE I

INTEL NUC HOST PC DEVICE SPECIFICATIONS

TABLE II

RF FRONT-END TECHNICAL SPECIFICATIONS

connected to the front end. The front end is fed via an

USB 3.0 for power as well as interface with the host PC.

(A USB Y-cable is used to pull extra power.) The front-end

RF coverage is broad and can process various GNSS signals

including GPS L1 band (1575.42 MHz) that is used for the

performance evaluation of the platform. The internal analog-

to-digital (ADC) sampling rate from the front end can achieve

speeds up to 56 Ms/s. Since the GPS SDR system is tested

for 5-MHz sampling rate in I–Q interleaved format, the total

throughput through the USB cable can reach up to 10 MB/s

for INT8 data format, well suitable for USB 3.0 capabilities

and with enough resolution for GPS samples.

Table II shows specifications for the front end. Both front

end and host PC of choice weight around 400–500 g each, thus

achieving small dimension and weight. Common internal RF

components of the front end are a low-noise amplifier, local

oscillator (LO), low-pass filter, and an ADC. Specifications

for these components can be seen here [18], [31].

Budget SDR front ends (including USRP B200) typically

come with an internal temperature-controlled crystal oscil-

lator (TCXO), which has limited frequency accuracy. For

GNSS satellite signals, a low-frequency accuracy oscillator

can introduce uncertainties due to phase discontinuities caused

by imperfect oscillator frequency accuracy, therefore affect-

ing position accuracy. These phenomena are called cycle-

slips [32]. The observed phenomena can cause abrupt channel

loss of lock from satellites. To avoid these phase jumps and

for better calibration on the front-end oscillator, many SDR

solutions in the literature propose a 10-MHz reference signal

which is used as an external frequency source to replace or aid

the LO on the front end, which is not convenient for mobility.

Other SDR solutions propose advanced frequency-disciplined

systems based on neural model predictive filters to compensate

the LO [33] which aim for ultrahigh accuracy on timing

applications but require additional software and hardware that

Fig. 3. Front end and LV interface via NI-USRP driver. Samples delivered
in chunks to DLL baseband modules for postprocessing.

lacks portability. Instead, for our approach, a relatively low-

cost and accurate oven-controlled crystal oscillator (OCXO)

module from Ettus [34] is added to the front end as a compact

board-mounted kit, compatible with the B200 board. This is

also called a GPS-disciplined oscillator (GPSDO) clock due to

an additional built-in GPS unit that can meet even higher and

more accurate frequency and stability requirements than the

OCXO by itself if needed due to synchronization with GNSS

signals. The proposed GPSDO can lock to satellites in 1 min

and provide stability to the OCXO. The GPSDO mechanism

works like a PLL by compensating phase and frequency

changes in the LO with respect to GPS satellite signals, as well

as adapting to environmental parameters such as temperature

and aging [35]. This board-mounted kit OCXO replaces the

internal TCXO on the B200 board, therefore three distinct

types of time references are available for experimentation:

TCXO (built-in), OCXO (board-mounted kit), and OCXO

with disciplining (OCXO + GPSDO). Experimental testing

is conducted in Section V-D to assess the board-mounted kit

precision with and without disciplining.

B. Host PC Software Architecture

The SDR receiver is shown in Fig. 3. The outermost layer

of the software part in the host PC is LV based, which

acts as a data flow handling and visualization environment,

interfacing the front end with the internal C/C++ DLL

baseband processing modules. The main functionality of the

LV interface is in collecting raw digitized samples from the

front end and processing them in real time to find PVT solution

via the baseband modules. The contribution of this paper is

demonstrating and characterizing various acceleration tech-

niques for real-time operation in SDR mode for cost-effective

research platform purposes. Most of the implemented GPS
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Fig. 4. SDR main VI block diagram architecture consisting of three main stages: initial setup and variables, main loop, and finalize setup. The main loop
runs infinitely and consists of while-loops running in parallel for different processes, until user halts receiver operation.

algorithms are similar to common receiver implementations

such as in [2] and [16].

1) LabVIEW Development Environment: LV is a software

development environment based on programs called virtual

instruments (VIs) which can be visually programmed indepen-

dently and attached to work either as main or sub VIs. There

is always a main VI where all the upper layer functionality

is held such as data flow and main execution of loops.

LV has a front panel, which acts as a GUI editor where

built-in visualizations and controls are available, and a block

diagram, where actual visual flow programming is done by

wiring built-in and customized function blocks (sub VIs) and

loops to achieve visual programming requirements. The flow

programming occurs logically from left to right, thus allowing

pipelining parallelism.

LV interfaces with native (NI-USRP) drivers to commu-

nicate with the front end. As shown in Fig. 3, this driver

sends control signals to the front end and fetches data in a

preconfigured size of blocks (or chunks) and sends them to

the main LV VI, which eventually passes these samples to the

DLL baseband modules. This interface is easily handled by

LV with built-in NI-USRP configuration and sample fetching

VI blocks which configure the front end and requests blocks

of samples. The block NI-USRP Rx Fetch.vi fetches samples

from the front end on every iteration (see Fig. 3).

2) Main Producer–Consumer Loop: The way LV controls

the data flow between the front-end interface, and the baseband

processing is by a common application design architecture

called the producer–consumer loop (see Fig. 3). Based on this

design pattern, LV can handle a real-time continuous operation

by acquiring data on the producer loop in a nonrestrictive and

high priority way and sending it to a data queue which allows

the raw data to be collected in memory as it is acquired.

Then, the consumer loop dequeues the data from memory

in a first-input-first-output (FIFO) order and sends it to the

baseband blocks, i.e., DLL modules, for further processing.

Both producer and consumer loops are a while-loop structure

each running indefinitely and in parallel. These loops operate

continuously until the user halts the receiver execution.

The producer loop should be the highest priority of the loop

pair, since it interfaces with the front end by commanding it to

collect raw data chunks (NI-USRP Rx Fetch.vi) in real time;

this, to avoid discontinuities on the incoming GPS signal. Also,

if there would be more tasks involved in each loop iteration

of the producer loop, overflows and underflows could easily

be triggered since the front end is expected to collect data

without interruptions and typically lacks an internal buffer.

The internal queue or buffer utilized between this loop pair is

automatically handled by LV in terms of memory allocation,

thus occurring in the background. The consumer loop should

also be capable of processing incoming data in real time so

that it outputs up-to-date user location.

3) DLL Integration: Conventional GPS baseband function-

ality can be divided into three main modules: acquisition,

tracking, and navigation. Each GPS baseband module includes

numerous relevant C/C++ functions which are compiled into

DLLs for further integration in LV environment. Full opti-

mization is done at compilation by, e.g., Visual Studio C/C++

64-bit compiler. Once generated, these DLLs can be accessed

by LV’s built-in Call library function node. When called

upon, LV sends relevant input arguments to these functions

such as clusters of data types, which are compatible with

C/C++ data type structures. The input arguments can be

passed by reference, therefore omitting duplicates of the input

data structures on every function call.

4) Main VI Block Diagram Data Flow: Fig. 4 illus-

trates the contents of the main VI block diagram. The flow

inside the main VI consists of three stages: Initialization of

data structures and variables, the main loop (multiproducer–

consumer loop), and the finalize setup and close session.
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The initialization part oversees allocating and initializing

memory on two main data structures (clusters in LV) which

act as pipe flows that connect to relevant function blocks as

input arguments: the system configuration which is a structure

of shared global configuration parameters relevant to GPS

L1 parameters and current receiver session (e.g., sampling

rate and receiver gain), and the channel structure containing

specific variables linked to a locked channel. Each chan-

nel structure contains a structure of variables which keeps

track of the channel status, health, tracking loops, Doppler,

Ephemeris and other essential information associated with a

satellite lock. Eventually, all the channels are gathered into

an array and therefore flow in a single line or wire. After

these two main variable pipe flows are initialized, the USRP

session is configured. This involves communicating to the front

end via the USB port to properly initialize and setup the

receiver gain, sampling rate, data block fetch size, data format

(e.g., INT8), reference clock, and other relevant settings for

current session. Once initial configuration is done, the main

producer–consumer loop is where the receiver operates in real

time until the stop button is toggled. When stopped, the VI

goes to the finalize setup stage where it closes current USRP

session, frees previously allocated memory on buffers and

structures, and closes input and output file sessions for log

files if configured.

5) Multiproducer–Consumer Loop for Multithreading:

As shown in Fig. 4, multiple producer and consumer loop

pairs are being used. A multiproducer–consumer loop mech-

anism was added to increase multithreading which relieves

overhead computational loads for concurrent tasks such as

real-time visualizations. Now independent rate configuration is

possible for each visualization. Multithreading is accomplished

by creating several lower priority producer–consumer loops

generated in the main consumer loop, therefore acting as the

producer. Otherwise the main consumer loop should process

the incoming GPS signal and generate output visualizations

sequentially on each iteration. This sequential processing

affected every iteration of consumer loop processing time

and ultimately created bottleneck effects. With multiproducer–

consumer loops added, the main consumer loop is now respon-

sible to send (produce) output data to other three loop-pair

queues: the tracking display loop, the channel health loop

and the navigation display loop, and its tasks are therefore

lightened. Then, these low-priority consumer loops can now

postprocess, or in this case, display output visualizations at an

independent rate which can be configured.

Fig. 5 shows the interaction of these loop pairs. Each loop

pair is a thread in LV and can have a different priority

and rate. Also, each loop pair is assigned a buffer that

inputs data blocks into memory (producer) and then process

this data (consumer) at different rates. Therefore, these rates

can be independently configured based on user requirements.

LV uses built-in Queue/Dequeue function blocks that are

used for sending data to buffers automatically allocated to

each producer–consumer loop pair so independent tasks can

handle data from these buffers in an automatic multithreading

setting. Therefore, inside the main consumer loop, there are

three Queue blocks (three producer loops inside the main

Fig. 5. Multiproducer–consumer loops interaction for multithreading and
independent data flow rates.

consumer loop) that are sending data to each of these three

categories, but the visualization does not execute until these

lower priority consumer loops are activated. These loops are

activated with a delay timer to control the rate.

6) Main Consumer Loop and Baseband Modules: Fig. 6

shows a detailed view on the main consumer loop where all

baseband processing occurs. This is the core of the SDR GPS

receiver where most computation processing occurs. This flow

occurs on every while-loop iteration, and quasi-sequentially

because of LV’s multithreading and parallelism. The Dequeue

block collects a fixed-size of samples from the FIFO buffer

coming from the producer loop and sends it to the acquisition

and tracking blocks. The two main flow pipes: the system

configuration and channel parameters are updated accordingly

on each loop iteration by setting them as shift registers (SR),

as shown in Fig. 6. This means, only one iteration is done, both

pipe flows are recirculated to the initial left side of the structure

retaining modified value output from the block modules, ready

for the next iteration.

As for the baseband modules, first the Acquisition module

checks whether the receiver is lost (i.e., no channels are being

tracked) and/or if a set of quality metrics are held, for it

to run fast acquisition algorithms. The acquisition/continuous

acquisition (ACQ/CACQ) block runs through a set of quality-

of-service metrics when deciding to run acquisition algorithms,

all of them having the same priority.

1) The number of tracking channels is less than four

(minimum required for PVT solution).

2) The percentage number of tracking channels drop rate

(for instance, if 30% of initial number of acquired

channels drops in a short period of time, denoting a

blockage or so).

3) At least < min_num_chans > with <min_cn0>

(i.e., at least five channels with 40 dB·Hz).

If acquisition is toggled to run (which is always the case at

initial receiver execution), it then first requires filling its buffer

depending on the coherent integration length setting (i.e., 4 ms

of data), before algorithm execution. The N found satellites are
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Fig. 6. Main consumer loop detailed showing all three main pipe flows: data samples, system configuration, and channels, passing through baseband modules.

assigned to one out of 12 total tracking channels and the sys-

tem configuration modifies the state to Tracking. If continuous

acquisition is triggered later, the system returns to ACQ/CACQ

block for a parallel acquisition not affecting current tracking

channels and assigns new channels accordingly (see Fig. 6).

When ACQ/CACQ algorithm is executed, visualization table

is updated with results.

For Tracking and Navigation, on each consumer loop iter-

ation, data sample chunks (an array of raw samples) obtained

from the data queue are sent in parallel to the tracking base-

band module (as well as acquisition). There should be N active

tracking channels processed with the current data samples.

This is the most computationally intense part of the SDR

receiver as it should process data in real time since GPS signals

are continuously being received and a missed data sample

chunk could signify a loss of lock in most channels. The

post-tracking block collects relevant data from all channels

and translates it into channel health statistics, as well as real-

time tracking plots for Doppler frequency in Hz, navigation

bits versus time, and in-phase versus quadrature (I versus Q)

graph also known as constellation diagram. Finally, navigation

module extracts relevant information from all N tracking

channels and computes a PVT solution if available. Position

solution is enqueued and should be displayed in a latitude

versus longitude graph, as well as an integrated Google Maps

visualization which uses a web Google Maps API. For Google

Maps display, an active internet connection is required in the

host PC to download display actual maps from Google servers.

7) LabVIEW and C/C++ Memory Compatibility: Since

there is an interchange of variables, clusters, and other data

structures between two programming environments, i.e., LV

and C/C++, when exchanging data between both environ-

ments via DLLs which are typically passed as reference, three

concepts should be considered: 1) memory alignment; 2) data

type compatibility; and 3) the order of data types in a structure.

Memory alignment between data types should be fully

compatible to avoid fatal errors such as data corruption and

TABLE III

LV AND C/C++ DATA TYPES COMPATIBILITY

memory access violations. LV 64 bit and Visual C++ 64 bit

are both compatible with the same memory alignment method

called “natural alignment.” This type of memory alignment

takes the biggest data type in the structure, typically 8 B

(64 bit) for a complex data type, and uses it as a base to line

up with other data types. This means, all data types smaller

than 8 B (i.e., char data type which is 1 B) will still take 8 B

of space in memory by adding padding or dummy bytes, thus

making each memory address a multiple of 8 B, for a given

data structure.

Another important consideration is the data types used

interchangeably between both programming environments. LV

has its own data type names that are compatible with C/C++

data types. Table III shows data type compatibility between

both environments.

Finally, the order of the variables inside a generated data

structure is also relevant between both platforms, as they

should match on both environments to avoid data corruption.

As an example, if a cluster (struct in C/C++) is created in

LV with two I8 and then a DBL variable types, this the same

order should be reflected in C/C++ as two char variables,

then a double variable sequentially.

8) LabVIEW Parallelizable Loops: Parallelizable loops are

an LV feature that is similar to the inherent parallel scheduling
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Fig. 7. LV parallelizable loops feature applied to tracking baseband DLL module for individual channel processing and overall computational acceleration.
(a) Sequential implementation of tracking channels on C/C++ for-loop. (b) Parallelization loops applied to built-in LV for-loop.

mentioned before, but should be assigned manually onto for-

loop structures. Parallelizable loop candidates can be assessed

by LV based on the block diagrams and dependence between

input and output variables, but ultimately are assigned man-

ually by the developer. A very useful parallelization loop is

in the tracking channels, since each satellite channel can run

independently and accomplish speed gains to compete for real-

time operation. There are ways to parallelize code in C/C++

coding but requires high programming skills to do so, as

opposed to LV’s Parallelizable Loops feature which can be

assessed and configured within LV’s block diagram. There

should be no resource dependence between each tracking

channel, when applying this feature to avoid fatal program-

ming errors such as memory access violations.

Fig. 7 shows the adjustments to the receiver to incorporate

the parallelizable loops accelerator feature. Initially, the base-

band tracking DLL call function was processing all tracking

channels by using an internal C/C++ for-loop structure,

therefore, the input and output variables from LV to the

DLL were an array of channel structures. The DLL tracking

call function code was internally modified so that it would

process only one channel structure, thus leaving the for-loop

structure previously found in the C/C++ code, to LV, as shown

in Fig. 7. This LV for-loop structure takes as input the same

array of channel structures with size N and extracts one by

one to send it to the DLL call function node, then regroups

them at the end of the structure. Of course, all channels

are now processed concurrently with the Parallelizable Loops

feature, therefore accelerating each consumer loop iteration

when dealing with tracking loops.

IV. ACCELERATION FACTORS AND CONFIGURABILITY

Table IV shows a summary of acceleration factors that

leverage the proposed SDR receiver’s computational power

for real-time operation. Most of the implemented features

are exploited from LV platform built-in features. Many

SDRs use a combination of acceleration factors as found

in Table IV, so a brief description of the proposed SDR features

follows.

TABLE IV

PROPOSED SDR ACCELERATION FACTORS

Algorithm accelerators include the advanced acquisition

module [26] implemented in C/C++ as a replacement to PCS

algorithms, which shows dramatic gains in joint computations.

SIMD processing is also implemented in the DLL func-

tions and resulted in dramatic computational gains in the

tracking loops. SIMD are specialized, built-in machine lan-

guage instructions (or opcodes), mostly found on modern Intel

64-bit processors. These assembly coded functions can be

implemented directly by using Intel Intrinsics [36] which are

function calls in C++ language. The benefit of SIMD is the

direct usage of multipurpose processors’ dedicated registers

capable of parallel complex arithmetic operations such as

table mapping, dot products, accumulators, and other parallel

operations resulting in speed increase. The receiver’s latest

version v5.0 leverages from SIMD features since its baseband

algorithms are developed in C/C++ language.

Optimized C/C++ libraries feature matching internal archi-

tecture for specific resource utilization based on target host

PC. As much as threefold acceleration was achieved on the

proposed SDR receiver for FFT routines by implementing

optimization libraries such as FFTW [37] when compared

to other libraries such as kissFFT [38]. Eigen [39] was

another library used which specializes in matrix operations

for LS computation relevant to conventional PVT solutions.
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TABLE V

PROPOSED SDR CONFIGURATION OPTIONS

These optimized libraries have internal functions that try to

exploit as much as possible the host PCs architecture and

processor capabilities. These libraries can, for instance, apply

built-in SIMD functions to the FFT routines, or schedule

computations for multithreading execution based on number

of cores in the processor.

LV has characteristic functionalities that effortlessly assign

parallel tasks to multicore processors by taking advantage of

the visual block diagram programming style. Program par-

allelism achieves performance gains by concurrently running

several independent block diagram paths which occur trans-

parently to the developer since LV’s compiler takes care of

scheduling these processes. The compiler also recognizes the

host PCs’ capabilities in terms of cores and threads available.

The SDR receiver is strongly tied to LV’s visual programming

for real-time processing and parallelization due to this feature.

In addition, the Parallelizable loops feature was used in the

SDR tracking loops as mentioned in Section III-B8.

Based on DLL integration into LV, the proposed SDR

uses baseband modules that were successfully implemented

in C/C++ with their respective data type compatibilities.

LV uses inherent multithreading which applies also to data

acquisition and data flow. All these concepts are integrated

when using the previously described producer–consumer loop

pairs. Also, visualizations are included in this integration.

Many real-time SDR GPS receivers use FPGA accelera-

tors [21] for common functions such as FFT-based acquisition

routines. For simplicity in hardware components, this SDR

was chosen to have all functionality in software and exploit

host PC architecture as mentioned in Section III-B.

A. Software Configuration and Instrumentation

Measurement Output

The proposed SDR has several configuration options that

are compatible with the USRP B200 front end as well as the

host PC capabilities. Table V lists the available configuration

options which can be used in online (real time) operation

mode as well as in offline mode with a prerecorded file. The

receiver operates only in INT8 mode, and for offline mode

can chose between two types of sample inputs: in-phase (I )

only, and in-phase and quadrature (I–Q) interleaved samples.

The former is used for when an intermediate frequency (IF)

is used in the front end such as in [40]. This IF can be

specified (in hertz) when running in offline mode, and all

visualizations can be utilized the same was as in online mode.

TABLE VI

LIST OF SDR INSTRUMENT MEASUREMENTS AND VISUALIZATIONS

Since the proposed front end (USRP B200) uses a direct down-

conversion system, there is no IF involved and captured sam-

ples are I–Q interleaved as follows: s I
0 , s

Q
0 , s I

1 , s
Q
1 , s I

2 , s
Q
2 , . . .,

which are already in baseband level. The receiver has a

maximum of 12 tracking channels; however, this could be

expanded in the future releases. The PVT update rate defines

the number of position samples outputted per second, and the

PVT averaging depth uses an averaging sliding window on

PVT output samples, thus smoothening final user position. The

rest of the configurations are conventional on a GPS receiver.

Table VI shows common GPS receiver instrumentation

measurement outputs as well as visualization outputs included

in the proposed SDR. Most outputs are well-known measure-

ments for real-time visualization and monitoring of GPS health

channels, as well as other statistics. Measurements such as

carrier-to-noise ratio, carrier-lock ratio, and channel state, are

found in the channel health display and their refresh rate for

each visualization and/or instrument can be independently con-

figured. Logging outputs for tracking channels and navigation

outputs such as .kml file for Google Earth can be configured

for output when session finalizes.

V. COMPARATIVE RESULTS

This paper discusses several comparative results of the

proposed SDR against other open-source receivers such as

fast-gps [16] and GNSS-SDR [25], to assess overall per-

formance of the receiver. It also compares against several

acceleration factors of the receiver. Table VII summarizes

the most important acceleration factors taken into account for

comparison results, which differentiate cumulative upgrades

between the proposed receiver concepts (i.e., each newer

version contains previous features). The results will be roughly

divided into the three baseband modules: acquisition, tracking,

and navigation. In most cases, the receiver was used in the

following configuration parameters: sampling rate of 5 MHz,

acquisition coherent integration of 4 ms, acquisition search

radius of 10 kHz, among other settings. Also, since DLL func-

tions are C/C++ based, certain tests were made in command

line interface (CLI) only, as well as in the complete LV-based

receiver, since no front-end interface is required for offline
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TABLE VII

SUMMARY LIST OF SDR VERSIONS BASED ON

CHARACTERISTIC ACCELERATION FACTORS

test and benchmarking can be computed for certain tracking

loops and acquisition algorithms. This final testing scenario

(offline mode) is desired to assess possible LV overhead when

compared to CLI-only receiver (DLLs and executable).

A. Open-Source GPS Receiver Alternatives

The open-source receiver, GNSS-SDR, was selected for

comparative results against the proposed SDR. The GNSS-SDR

version used for this open-source receiver was 0.0.6.

GNSS-SDR works in Linux environment and it is heavily

dependent on GNU-radio framework [17] as well as other

dependencies for installation. This receiver alternative was

chosen since it is one of few real-time open-source receivers

available for online comparisons against the proposed SDR.

Although GNSS-SDR is a CLI only therefore lacking advanced

real-time visualization aspects, it allows for output logging

of several channel parameters. GNSS-SDR is also compatible

with the same host PC and front end (NUC and B200);

therefore, the same computational resources, sampling rates,

receiver gain, and other similar parameters can be used as

a direct comparison. Several tests to assess performance,

robustness, precision, among others are desired. The other

alternative, fast-gps, was chosen and used as a reference

receiver for the development of the proposed SDR. Since

fast-gps works only in offline mode, this receiver was used

on similar comparisons for benchmarking and other features.

B. Acquisition Comparative Results

Significant comparisons in acquisition are made in this

section. One can summarize them into four categories:

1) platform performance; 2) optimized libraries performance;

3) advanced algorithm performance; and 4) LV overhead

performance. All said comparison dimensions are integrated

into acquisition comparison tables.

With respect to platform performance, acquisition algo-

rithms are developed in C/C++ compiled and optimized

versions as well as with LV-based blocks such as FFTs. This

to assess comparisons in timing when algorithms are built

and compiled with either platform. For optimized libraries

comparisons, kissFFT [38] and FFTW [37] libraries are com-

pared as a second dimension. For a third dimension, refer-

ence receiver fast-gps uses a conventional PCS acquisition

algorithm, and since an advanced acquisition [26] is used

in place, a comparison is made in this respect. Finally, for

a possible LV overhead performance, a C/C++ only (CLI)

version is ran to compare optimized libraries and algorithms.

For all tests, 4 ms of integration length were used, as well

TABLE VIII

PERFORMANCE ACQUISITION IMPLEMENTATION ON

THE HOST PC WITH LV-BASED RECEIVER

TABLE IX

PERFORMANCE ACQUISITION IMPLEMENTATION ON

THE HOST PC WITH CLI-ONLY RECEIVER

as 10-kHz acquisition search band. Also, an offline recording

file was used with 12 visible satellites. Only the acquisition

algorithm along with data fetching was benchmarked for a fair

comparison, thus avoiding variable initializations, and other

steps in the programs. Data fetching was included specially

for LV overhead comparisons.

Table VIII shows comparisons between platforms, algo-

rithms, and optimized libraries. With respect to platform,

C/C++ optimized functions can be as much as 7.8 times

faster than built-in LV blocks when using fastest optimization

library. Also, between the optimized libraries kissFFT and

FFTW, the latter is more than twice as fast as the former, for

all cases. For the advanced algorithms, as much as 54 times

faster can be seen when comparing algorithms developed in

LV-based blocks, and around 22 times faster when C/C++

DLLs are used in LV receiver. Finally, an 8-ms acquisition

integration length was compared, which show twofold slower

in timing for all dimensions (this is expected) when compared

against 4-ms integration length, but at the same time, still

maintaining drastic improvements of up to 26 times faster than

PCS algorithm with 4 ms, for LV-based algorithms, and up

to 11 times faster with C/C++ DLLs.

Table IX shows the comparison of acquisition algorithms

and optimized libraries, and at the same time, compare against

Table VIII for possible LV overheads, since tests in Table IX

were made in CLI only. In average, numbers seem very similar,

thus showing little to no computation overhead when using

LV with DLL integration against CLI only offline receiver for

acquisition algorithms.

C. Tracking Comparative Results

Since tracking is considered the highest computational cost

and most time-critical operation for GPS receivers, relevant

comparisons are made in this section. Important comparisons

were divided into two categories: online and offline tests. Tests

aim to assess the proposed receiver performance, robustness,
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TABLE X

OFFLINE REPLICA CARRIER WAVE QUANTIZATION

PERFORMANCE ON HOST PC

precision, real-time operation, among others. For offline test-

ing, three important comparisons were made to demonstrate

robustness and configurability of the receiver. For online mode,

two comparisons were made to assess CPU load, memory, and

other metrics. In total, five comparison tests were evaluated.

1) OFFLINE: Local Replica Carrier Wave Configurability:

Tracking correlators continuously generate local replicas for

carrier and code phases for synchronization, based on discrim-

inator output parameters. Since these local replicas should be

generated continuously and in real time, computation efforts

for host PC can be high. Typically, quantization of carrier

waves stored in generated lookup tables (LUTs), are used for

faster computations, while at the same time sacrificing channel

quality. In addition, the proposed SDR tracking correlators

not only use integer arithmetic (INT8 for input samples)

for faster computations, but also can choose different carrier

wave generation methods. Comparative results between several

carrier wave generation methods, beginning from conven-

tional C/C++ floating-point sin() function, are evaluated. The

second option is a floating-point exponential series approxima-

tion of the sin() function, which uses only the first two terms of

the sine and cosine Taylor expansions. The next three options

are related to 16, 8, and 2 value LUTs.

For carrier wave quantization tests, the tracking integration

lengths were 1 ms (epoch). Relative loss in decibels (dB)

metric compares against floating-point sin() function to assess

performance and robustness. An offline recording (the same as

used in acquisition tests section) was used, running 300 s and

averaging dB loss for 12 channels when comparing relative

loss in carrier wave generation methods and timing to obtain

an experimental evaluation of the complexity of computations

for each method.

Table X shows the results for carrier wave configurability in

the proposed receiver in offline mode. Performance times are

in nanoseconds. The average time per epoch is 1 ms, and it is

normalized per channel, since recording file showed 12 track-

ing channels during all times. The number of real-time track-

ing channels shows tracking-only complexity of computations,

but lacks a possible online overhead such as LV front-end

interface, data acquisition, among others. The number of real-

time channels was found by dividing average time per epoch

TABLE XI

OFFLINE TRACKING EPOCH PERFORMANCE ON HOST PC FOR

DIFFERENT ACCELERATION FACTORS

TABLE XII

OFFLINE OVERALL RECEIVER PERFORMANCE COMPARISON ON

HOST PC FOR THE SAME LENGTH RECORDING FILE

per channel to a single tracking integration length (1 ms),

which would show real-time operation. The exponential series

approximation is 1.91 faster and barely sees any relative loss

when compared to base sin() function. The 16 level LUT

shows the best performance gain (2.2 times faster) while at

the same time keeping relative loss to a minimum (0.05 dB).

Still, for all tracking tests, the eight-level LUT was used for

simplified debugging purposes, among others.

2) OFFLINE: Acceleration Factors on Tracking Loops:

As shown in Table VII, four acceleration factors were sum-

marized for comparison purposes. The acceleration factors test

aims to see performance gains in timing when comparing these

acceleration factors for different cumulative versions of the

receiver, i.e., each newer version contains previous features.

Using similar comparison metrics as shown in Table X, tests

were performed with eight-level LUT, 5-MHz sampling rate,

and the same offline recording file with 12 channels.

Table XI shows the results for cumulative receiver accel-

eration factors. Between first and second version, a small

gain is seen since the multiproducer–consumer loop factor

aims to increase multithreading and allow more visualizations

in LV receiver, and not to accelerate actual tracking loops.

Thus, similar performance is seen for both versions. For

the Parallelizable loops feature, the average time per epoch

per channel metric is 1.88 faster than first version, therefore

almost doubling the total number of real-time channels that the

receiver can support in real-time operation at present configu-

ration and host PC. Finally, the SIMD feature version performs

6.82 faster than first version, thus dramatically increasing

the number of possible real-time tracking channels to almost

90 when using 5-MHz sampling rate.
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3) OFFLINE: Overall Receiver Performance Benchmarks:

This test compares overall receiver benchmark from the time

of execution to finalization for several receivers in offline

mode: the proposed receiver in LV with DLL integration,

proposed receiver in CLI only, GNSS-SDR, and fast-gps.

This way, all variable initializations, computations, and other

algorithms are measured in performance timings. For the test,

the same offline recording file was used, which broadcasts

12 satellites during recording, thus simulating a 5-min signal.

Also, the proposed SDR uses the latest acceleration features

and all tests were performed in host PC.

Table XII shows the results for overall receiver performance.

For offline mode, LV adds a small overhead of 2.9% increase

in time when comparing with proposed receiver in CLI

only mode. At the same time, both proposed SDR modal-

ities outperform fast-gps and GNSS-SDR receivers, running

3.5 and 6 times faster, respectively.

4) ONLINE: Overall Receiver Performance Metrics:

An overall assessment of receiver robustness and performance

was measured in the following tests in the online mode

of operation. The testing measurements were for CPU load

percentage, memory occupancy, number of threads, number

of real-time channels in a stable operating point at 5 MHz,

and maximum number of channels on maximum sampling

frequency.

For the number of channels, the aim is to find a stability

point in the receiver where it operates in real time with no

crucial delays, overflows, or lost packets. Although 12 chan-

nels are generated from NI GPS simulator, both receivers

can configure and limit the total number of actual tracking

channels. The tests were compared against latest version of

proposed receiver and GNSS-SDR, which also has online

operating capabilities. For the proposed SDR, a careful compu-

tation of whether producer and consumer loops were operating

at similar pace was assessed to decide how many real-time

channels the receiver was capable to handle. For GNSS-SDR,

numerous tests were assessed until a more-less stable point of

operation was observed, with minimal overflow occurrences:

this stability point differentiated between uncontrollable over-

flows rendering the receiver nonoperational, and a more-less

continuous operation of GNSS-SDR. For the maximum number

of channels at a given sampling frequency, no limit was set,

and the best performance was assessed for both number of

channels and sampling frequency (having 12 channels as a

limit for the proposed SDR).

For the online tests, a total of 10 executions of 5 min each

(total of 50 min of operation) was evaluated. Similar configura-

tion parameters were used throughout the tests such as NI GPS

simulator broadcasting 12 satellites signal, 5-MHz sampling

frequency, similar receiver gain, the same RF hardware and

antenna, 4-ms acquisition coherent integration lengths, 10-kHz

acquisition search band, among other parameters.

Table XIII shows the comparative performance results for

online operation for multiple acceleration factors, as well as

GNSS–SDR receiver.

From CPU load perspective, the proposed SDR began

gaining load as versions increased, but on the last version

with SIMD feature the load decreased by more than twofold.

TABLE XIII

ONLINE OVERALL RECEIVER PERFORMANCE COMPARISON

ON HOST PC FOR SEVERAL METRICS

This is because tracking correlator arithmetic operations are

now handled by internal SIMD registers on host PC, making

multiple operations at a time while consuming less CPU

resources with high efficiency. For GNSS-SDR, a quick glance

at the high load is shown due to floating-point operations in

acquisition and tracking algorithms, as well as many config-

uration options and a strict dependence on GNU-Radio and

other numerous dependencies which require a high number of

threads to be instantiated when executed.

From memory occupancy, all receiver showed a similar

performance which is minimal compared to host PC’s total

memory of 16 GB. On threads’ perspective, the proposed SDR

gained five threads since the multiproducer–consumer loop

feature version. GNSS-SDR showed higher thread occupancy,

again, due to many instantiations when executed.

At 5-MHz sampling rate, the proposed SDR gained tracking

channel capacity as versions increased. If comparing online

tracking channel capacity against Table XI, one can analyze

an overhead cost from LV environment which includes data

acquisition, USRP interfacing, visualizations, among other

reasons. For the first and second versions, two real-time

tracking channels are traded for several LV-based receiver

benefits. For the maximum number of channels, since the

proposed receiver’s limit is 12 channels, sampling rate was

used as a variable for finding the maximum optimal operating

point of all versions. For the latest version of the proposed

SDR, a total of 8 channels at 25 MHz were able to operate in

real time for selected host PC and hardware.

5) ONLINE: Data Interruptions and Overflows Statistics:

For this online test, the latest version of the proposed SDR

and GNSS-SDR were tested for overflows, with the same

parameters as previous test. A total of 10 runs of 5 min

each (totaling 50 min) in real-time operation, with NI GPS

simulator and 12 satellites. Using the results from Table XIII

to obtain stability point on both receivers, overflows and
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TABLE XIV

ONLINE RECEIVER OVERFLOW ROBUSTNESS COMPARISON ON HOST PC

data interruptions were evaluated. Table XIV shows statistics

for data interruptions on both receivers. The proposed SDR

showed no overflows. GNSS-SDR showed 40 overflows on

50 min of operation, which averages to 0.01 overflows per sec-

ond. Another statistic measured was the average time between

overflows, which was found to be 70 s. This means, when

running receiver, in average every 70 s it will overflow and

channels will be lost.

D. Navigation Comparative Results

For GPS receivers, navigation precision is an important

statistic that characterizes receiver performance. Two statistics

were evaluated for precision: root-mean square (rms) error

(in meters) and true mean error. PVT solutions usually output

user position in several coordinate systems. The x , y, and z

cartesian coordinates for user location were used to measure

both statistics. RMS error in this evaluation corresponds to

the standard deviation, or how much position measurement

samples change between one another. For the true mean

error, since the NI GPS simulator can be configured with an

exact geolocation, the actual receiver output was compared

against the true position, and the Euclidean rms distance error

was calculated. For one scenario, and since navigation does

not require online operation, the same offline recording file

used in acquisition and tracking results was used. It contains

12 satellites and a duration of 5 min. Both receivers were

set with similar parameters for acquisition, tracking, and

navigation, such as sampling rate of 5 MHz, 4-ms coherent

integration length, 10-kHz acquisition search band, 10 samples

navigation averaging window, 5-Hz navigation sampling out-

put rate, among others. For a second and third scenario, real

GPS signals were used, which were recorded in an exact the

same location in Colorado Springs, CO, USA, during a static

test. These two scenarios were recorded with OCXO, and with

OCXO + GPSDO. These tests address receiver performance

with real signals, and at the same time with and without GPS

disciplining (GPSDO). The second and third tests do not have

true mean error, since a true geolocation was not available.

Table XV shows both rms error and true mean error results

for the proposed receiver and GNSS-SDR. For the true mean

error, GNSS-SDR showed a bias error in a height of 12 m on

average. For rms error, both receivers performed well, with

a slight advantage on the proposed SDR. As for second and

third tests, the proposed SDR shows a precision improvement

of more than 50% when using GPS disciplining from the

board-mounted kit, as opposed to only OCXO performance,

as discussed in Section III-A. As for GNSS-SDR, the receiver

TABLE XV

RECEIVER NAVIGATION PVT PRECISION COMPARISON ON HOST PC

Fig. 8. Preliminary results for dynamic test in Colorado Springs, CO, USA,
with OCXO + GPSDO mode.

showed an rms error of 19.34 m for the disciplined scenario,

and for the OCXO only, the receiver was not able to acquire

the signal properly. The comparison of both receiver perfor-

mances with real GPS signals and GPSDO enabled showed

a gain of more than four times in precision on the reference

receiver.

VI. FUTURE WORK

The discussed acceleration factors generate computational

budget for possible addition of advanced features. In particular,

the proposed solution is able to run advanced interference

mitigation techniques such as in [41]. The future work will

address LV-based real-time implementations of multifrequency

and multiconstellation operation. It is also planned to con-

duct more thorough testing in diverse environments including

dynamic scenarios, both real and simulated, simulation under

different signal strengths, and Doppler effects. Preliminary

navigation results already show visually stable operation as

illustrated in Fig. 8, where a 7-min drive test in Colorado

Springs, CO, USA, was conducted.

VII. CONCLUSION

This paper proposed and demonstrated a new generation

state-of-the-art GPS receiver based on LV and C/C++ inte-

grations as DLL modules. Several acceleration factors for SDR

were discussed and leveraged in the proposed SDR for real-

time operation. Conventional baseband modules for acquisi-

tion, tracking, and navigation were used as DLL modules



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

integrated into LV, as well as a USRP B200 front end paired

with an Intel NUC5i5RYK as the receiver hardware testbed

were evaluated.

An extensive comparative analysis was made with existing

open-source SDR solutions in both offline and online mode of

operation. For all three baseband modules: acquisition, track-

ing, and navigation, several comparisons were made against

acceleration factors, and other receivers such as fast-gps and

GNSS-SDR. Four versions of the proposed receiver were

considered based on the acceleration factors discussed: Google

Maps, multiproducer–consumer loop, Parallelizable loops, and

SIMD features. This paper also presented an approach to

develop an advanced receiver to address various receiver tasks

including multipath measurements as reported in [9]. Different

from [9], the real-time receiver functionality is achieved by

using built-in features of the selected environment. This paper

studied the impact of various acceleration features and their

practical implementation intricacies.

For acquisition, an advanced joint-search FFT acquisi-

tion algorithm [26] was tested in the proposed receiver

against the conventional PCS acquisition algorithm. Optimiza-

tion libraries for FFT operations were also compared. Both

LV-based receiver and CLI-only receiver were compared to

assess any overhead by former receiver. For tracking, several

online and offline tests were evaluated. Tests involving quan-

tization carrier wave performance and relative loss, receiver

versions performance gains, and against GNSS-SDR were

compared. Metrics such as CPU load and memory occupancy

were assessed for online operation of receivers. A maximum

of eight real-time channel tracking at 25-MHz sampling rate

was achieved on latest version of the proposed receiver. For

navigation, PVT solution precision was assessed for the pro-

posed SDR and GNSS-SDR.

It is demonstrated that the fast prototyping on LV platform

allows achieving superior performance comparable or exceed-

ing open-source C/C++ solutions such as [25] by exploiting

inherent accelerating features. The proposed work for the first

time quantifies LV-based acceleration options and presents

the enabling receiver architecture. It is not claimed that the

proposed solution is better than all other SDR options, as LV

constraints low-layer access for high-end optimization and

customization options. Nevertheless, the proposed solution is

a competitive fast prototyping alternative for research and

development.
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