This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Development of a Real-Time Software-Defined
GPS Receiver in a LabVIEW-Based
Instrumentation Environment

Erick Schmidt™, Student Member, IEEE, David Akopian, Senior Member, IEEE,
and Daniel J. Pack, Senior Member, IEEE

Abstract— The ubiquitousness of location-based services has
proven effective for many applications such as commercial, mil-
itary, and emergency responders. Software-defined radio (SDR)
has emerged as an adequate framework for the development and
testing of global navigational satellite systems such as the global
position system (GPS). SDR receivers are constantly developing in
terms of acceleration factors and accurate algorithms for precise
user navigation. However, many SDR options for GPS receivers
currently lack real-time operation or could be costly. This paper
presents a LabVIEW (LV) and C/C++-based GPS L1 receiver
platform with real-time capabilities. The system relies on LV
acceleration factors as well as other C/C++ techniques such as
dynamic link library integration into LV and parallelizable loop
structures, and single instruction, multiple data methods, which
leverage host PC multipurpose processors. A hardware testbed
is presented for compactness and mobility, as well as software
functionality and data flow handling inherent in LV environment.
Benchmarks and other real-time results are presented as well
as compared with the other state-of-the-art open-source GPS
receivers.

Index Terms— Global navigation satellite systems (GNSS),
acceleration factors, global positioning systems (GPS), real-time
receiver, software-defined radio (SDR).

I. INTRODUCTION

HE success of U.S. global positioning system (GPS)
in enabling various location-based services triggered
extensive studies in related positioning methods, baseband
technologies, mitigation of errors and interference. Other
similar systems referred to as global navigation satellite sys-
tems (GNSS) have also been deployed using similar signaling
methods and infrastructure solutions [1], [2]. The availability
of accurate source of user position, velocity, and time (PVT)
significantly impacted other technologies such as wireless
communication, military equipment, and transportation.
Conventional GPS receivers operate in open-sky envi-
ronments, and are challenged by signal blockages inside

Manuscript received October 31, 2017; revised January 9, 2018; accepted
February 6, 2018. The Associate Editor coordinating the review process was
Dr. Jests Ureda. (Corresponding author: Erick Schmidt).

E. Schmidt and D. Akopian are with the Department of Electrical and
Computer Engineering, The University of Texas at San Antonio, San Antonio,
TX 78249 USA (e-mail: erickschmidtt@gmail.com; david.akopian@utsa.edu).

D. J. Pack is with the Department of Electrical Engineering, The Uni-
versity of Tennessee at Chattanooga, Chattanooga, TN 37403 USA (e-mail:
daniel-pack @utc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2018.2811446

buildings, urban canyons, and underground. Also signal inter-
ferences and spoofing may deny GPS availability and dis-
rupt the operation of other systems which rely on GPS
data. Extensive engineering effort is directed in addressing
these challenges to achieve more robust operation of the
receivers and expand their coverage to as many denied areas as
possible.

Serious advances are achieved in increasing sensitivities of
the receivers which have access to terrestrial signaling chan-
nels. Using communication links, one can retrieve orbital data
of satellites, and receiver coarse position and time estimates
from wireless networks, which significantly help in enhancing
the operation of GPS receivers. This approach is called assisted
GPS (A-GPS) [1]-[3] and is estimated to improve startup
sensitivity by as much as 20 dB when used in combination
with advanced parallel correlators. The A-GPS is standardized
for telecommunication networks in terms of defining logistics
of communicating various assistance data, and computing-
delivering PVT information. It is also recommended by FCC
E911 mandate as a solution that will assist emergency services.
Many advances are also made for the better immunity of GPS
receivers against interferences and spoofing [4]-[7].

Despite this progress, GPS operation is still denied in
many indoor and other weak signal environments. Also,
despite many reported spoofing mitigation methods, these
interference techniques also evolve and bring new challenges
for GPS equipment. The researchers thrive to improve the
performance of the receivers, address continuously evolving
spoofing threats, and explore new transformative concepts,
and they need proper instrumentation and software to support
their efforts. As such, software-defined radio (SDR) solutions
become popular because of providing full control of receiver
operations, so the researchers can integrate and test their
methods without redesigning all receiver chains.

SDR solutions provide extended capabilities for tightly
coupled integrations. In this context, SDR integrations pro-
vide research capabilities for many purposes such as indoor
and vehicular navigation in GPS-denied areas. The proposed
integrations include GPS and magnetic positioning systems [8]
tight coupling via an SDR system. Other SDR solutions
provide access to tracking correlators for multipath studies in
urban canyons on vehicular applications [9]. Ranging GPS-like
radios have been explored as well for indoor positioning
applications involving time-of-arrival measurements combined

0018-9456 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7343-0031

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

with receiver signal strength wireless local area network-type
measurements [10]. In this context, SDR solutions perfectly
fit and can be used for such systems. The inertial navigation
system (INS) integrations with ranging sensors and GPS-
like radios become attractive for SDR fusion applications as
well [11]-[14].

SDRs receive sampled data from peripheral RF front ends
and apply signal processing using general-purpose computing
resources such as computer processors and general-purpose
accelerators such as DSPs and FPGAs. The GPS SDRs are
currently available in various formats. Proprietary commercial
solutions are common and some of them provide application
programming interface (API) access to selected modules for
third party revisions of these modules [15]. They are typically
implemented as C/C++ solutions to provide high quality
and robust performance. The drawback of these solutions
is in constraining access to limited functionalities of the
receiver. Standalone open-source or open-reported C/C++
solutions are also common [16] and provide full receiver
control. The operation quality is not typically guaranteed,
the user interfaces are basic, and front-end compatibility is
limited. Another interesting SDR category exploits rich library
support of dedicated frameworks such as GNU radio [17].
This concept provides essential modular support of integrating
available SDR components for fast prototyping, supports many
front ends including popular Universal Software Radio Periph-
eral (USRP) front ends [18]. Its excellent development envi-
ronment but requires somewhat longer environment learning
period compared to other concepts. MATLAB/Simulink-based
solutions reduce development cycle and are convenient for
research studies, but they are typically not real time [2] or lim-
ited to basic receiver grades. Recently basic-grade academic
GPS SDR solutions exploiting hybrid development environ-
ments, such as C/C++- libraries integrated into LabVIEW (LV)
are reported in [19] and [21]. The SDR computing platforms
and accelerators such as FPGAs and DSPs combined with
multipurpose processors have also gained attention [20]-[23].
Other solutions exploiting graphical processing unit on host
PCs for massive parallel processing operations were reported
[24] in addition to C/C++ features reported in [9].

This paper presents a new generation of LV-based GPS
receivers that achieves high-performance operation exploiting
multiple strengths of LV environment. The described GPS
SDR platform is using advanced graphical user interface (GUI)
and visualization LV libraries. LV supports dataflow environ-
ment and peripheral interfacing for real-time operation. The
LV facilitates application of multithreading, parallelization,
and dedicated loop structures. It allows for C/C++ code
fragments integration for higher performance. It also exploits
C/C++ optimization techniques for single instruction, mul-
tiple data (SIMD) capable processors in software correlators
for the real-time operation of GNSS tracking loops, among
other acceleration factors. With all these features LV allows
for fast prototyping of SDRs, which is the main motivation of
the proposed solution. While LV-based SDRs are not suitable
for high-end industrial grade applications, they are a viable
real-time alternative for research and development. One should
take into account that the proposed SDR relies on LV platform

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

availability which constrains access to its kernel for highly
specific customizations and optimizations.

This paper will explain the proposed GPS L1 SDR receiver
testbed and its implementation in detail in Section III. This
paper also discusses performance comparison metrics to assess
general capabilities and robustness of the receiver. It is com-
pared with GNU-Radio-based popular representative open-
source C/C++ solution GNSS-SDR [25]. It is demonstrated
by simulations and experiments that LV-based features enable
competitive real-time operation.

This paper is organized as follows. Section II will describe
conventional GPS functionality modules. Section III will
explain the overall system architecture such as hardware and
software components that were used and chosen based on
compactness and mobility. Section IV will focus on accel-
eration factors as well as SDR configurability options for
real-time receiver operation. Section V will discuss receiver
performance metrics with respect to acquisition, tracking, and
navigation modules, as well as comparisons with open-source
solutions such as fast-gps [16] and GNSS-SDR [25]. Section VI
will present conclusion remarks.

II. CONVENTIONAL GPS BASEBAND MODULES

The main communication system focus on this paper is on
the conventional L1 civilian GPS signal: a direct sequence
spread-spectrum signal consisting of a main binary phase
shift keying (BPSK) navigation payload signal operating at
50 Hz, spread by a faster rate BPSK pseudorandom code
signal (PRN) at 1.023 Mchips/s. The spreading sequence is
called the coarse acquisition (C/A) code. Finally, the signal is
mixed to a sinusoidal carrier at 1.57542 GHz corresponding
to the L1 band, forming a bandpass signal transmitted by GPS
satellites orbiting the earth, for civilian positioning.

To successfully demodulate GPS L1 signals and receive
navigation data, the receiver synchronizes to the incoming
signal by correlating to incoming PRN code and wiping off the
L1 carrier. To do this, the receiver generates local replicas of
the code (time) and carrier (frequency), and mixes them with
the received signal. Therefore, synchronization is achieved in
both frequency and time domains, by estimating the Doppler
modulation called carrier phase, and by aligning the signal
and PRN replica to estimate their relative shift, called code-
phase, respectively. The synchronization is typically performed
in two phases: acquisition (coarse) and tracking (fine). After
fine synchronization, navigation data are simply obtained after
sinusoidal carrier and PRN code wipe-off. Also, to estimate
user position, synchronization should be very precise to com-
pute distance traveled from incoming signal. The receiver
structure is modular consisting of three modules, acquisition,
tracking, and navigation.

A. Conventional and Advanced Acquisition Baseband Module

The first stage of baseband signal processing is the acquisi-
tion (coarse synchronization) of GPS satellites. Conventional
receivers achieve acquisition by searching over a 2-D time-
frequency discrete zone for each satellite. The receiver repli-
cates candidate PRN code and residual carrier modulation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 3
> S Active Host PC
— Correlator » Discriminator Antenna
npu -l
sigl;al A IZ line e Front-end LabVIEW-
1 A H mp H T i based SDR
Residual Code replica : : :
carrier P Tallysman 4 GPS Source : . :
ine-off TW2010 ! ! USRP |
wipe-o ! All i B200 ! Intel
4 : i i NUCS5i5RYK
C . SMA SMA USB 3.0
orrection conn. conn.
Fig. 1. Simplified tracking feedback loop for a single channel. Fig. 2. Hardware architecture for the proposed SDR.

pairs, attempting to match those of the received signal. Several
signal replica candidates are locally generated and correlated
with incoming signal to find a match and thus to identify input
parameters. The correlation operation assumes an element-
wise multiplication of the received samples with the samples of
each replica. Then, resulting products are added over coherent
integration lengths, by exploiting periodicity of GPS PRN
codes. Typically, a threshold is applied to the correlation
and integration result, to determine if a signal acquisition
has been reached. If a certain PRN is acquired, then this
coarse synchronization is terminated, and the receiver starts
the tracking (fine synchronization) stage for that satellite;
if not, the search continues and moves to the next code-phase/
frequency option for each satellite PRN.

Conventional GPS baseband algorithms such as C/A could
be computationally costly for real-time operation due to its
nature of typically 3-D search space: code-phase, Doppler
frequency, and satellite number. At the same time several
optimizations can be achieved by means of fast Fourier
transform (FFT) implementations and other joint algorithm
computations [16]. An extended parallel code-phase (PCS)
search algorithm which leverages its modular structure for
concurrent joint search space in code-phase and frequency is
used in the proposed SDR [26]. The algorithm implements
a massive correlator by concurrently combining code-phase
and Doppler frequency search bins while sharing computations
even for different satellites as the received signal forward
FFT output is reused for all iterations. The algorithm is
effectively implemented in C/C++ language and improves
massively on speed when compared to conventional FFT-based
PCS methods [20]. Comparative results showing algorithmic
acceleration factors will be discussed in Section V.

B. Tracking Loops

Once a channel has been acquired, a fine synchronization to
keep track of the candidate channel is desired. Fig. 1 shows a
common tracking feedback loop used for GPS signals. Similar
to acquisition, but now in a finer search grid, tracking loops use
closed loops to continuously follow the PRN code and carrier
parameters of current channel. To determine code and carrier
changes of incoming signal, conventional feedback loops, such
as delay lock loops for code-phase estimation, phase lock
loops, and frequency lock loops for Doppler modulations,
are implemented [2]. Once these loops obtain correction
measurements, the discriminator processes correlator outputs
to provide measurable quantities which are used as feedback

for the next iteration, therefore achieving a continuous lock to
the incoming signal (see Fig. 7).

C. Navigation Module

Well-known navigation algorithms discussed in [2] and [16],
are implemented in the receiver such as least-squares (LS)
methods and position averaging.

III. SYSTEM ARCHITECTURE

The development and testbed platform is implemented at
the Software Communications and Navigation Systems Labo-
ratory at The University of Texas at San Antonio, San Antonio,
TX, USA. This paper provides the detailed description of a
real-time LV-based SDR receiver with various applied con-
cepts to enable high-performance computing. The testbed also
includes a GPS simulator which acts as a generator/transmitter
of GPS signals. Current implementation is using National
Instruments GNSS simulation toolkit [27] that can simulate
different satellites, signals strengths, Doppler effects, user
movement, among other features.

The SDR is a novel LV-based GPS receiver which imple-
ments GPS L1 baseband processing functionalities into
C/C++ software components that have been compiled as
dynamic link libraries (DLLs). It exploits several fast algo-
rithms, LV-based acceleration factors, C/C++ parallel algo-
rithms such as SIMD matching on multipurpose host CPUs,
and external C/C++-based application program interface
optimized libraries, among other features. This section will
describe the overall development hardware and software test-
bed components used in this SDR system and their specifi-
cations as well as the overall receiver architecture and LV
functionalities.

A. Hardware Components

The hardware used in the system was chosen with an effort
to achieve portability and mobility for the SDR receiver. Fig. 2
shows exemplified hardware components and their connec-
tivity. The hardware of choice is an Ettus USRP B200 [18]
front end along with an Intel NUC 5i5RYK [28] serving as
the host PC where the baseband software resides. Table I
shows specifications for the host PC. The host PC is a small
form-factor device. The processor is a low-power multipur-
pose CPU (it consumes 15 W). An active antenna, Talisman
TW2010 [29], which is power driven by an in-line amplifier,
model A1l from GPS Source [30], are the RF components

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
INTEL NUC HOST PC DEVICE SPECIFICATIONS

Host PC Intel NUCS5i5RYK
CPU Intel Core i5-5250U @ 1.6-2.7 GHz, dual-core,
3 MB cache, 15 W
RAM 16 GB RAM DDR3L @ 1600 MHz
Storage 240 GB M.2 SSD
Operating Windows 7 Ultimate (64-bit)
System
Dimensions 115 mm x 111 mm % 32 mm
Weight ~400 g
TABLE II

RF FRONT-END TECHNICAL SPECIFICATIONS

RF Front-End Ettus USRP B200

RF Coverage 70 MHz to 6 GHz

Bandwidth 200 KHz to 56 MHz

ADC Resolution 12-bit

Oscillator GPSDO (OCXO), frequency stability: +£25 ppb
Interface SuperSpeed USB 3.0

Dimensions 97 mm x 155 mm X 15 mm (board only)
Weight 350 g (board only)

connected to the front end. The front end is fed via an
USB 3.0 for power as well as interface with the host PC.
(A USB Y-cable is used to pull extra power.) The front-end
RF coverage is broad and can process various GNSS signals
including GPS L1 band (1575.42 MHz) that is used for the
performance evaluation of the platform. The internal analog-
to-digital (ADC) sampling rate from the front end can achieve
speeds up to 56 Ms/s. Since the GPS SDR system is tested
for 5-MHz sampling rate in /—Q interleaved format, the total
throughput through the USB cable can reach up to 10 MB/s
for INT8 data format, well suitable for USB 3.0 capabilities
and with enough resolution for GPS samples.

Table II shows specifications for the front end. Both front
end and host PC of choice weight around 400-500 g each, thus
achieving small dimension and weight. Common internal RF
components of the front end are a low-noise amplifier, local
oscillator (LO), low-pass filter, and an ADC. Specifications
for these components can be seen here [18], [31].

Budget SDR front ends (including USRP B200) typically
come with an internal temperature-controlled crystal oscil-
lator (TCXO), which has limited frequency accuracy. For
GNSS satellite signals, a low-frequency accuracy oscillator
can introduce uncertainties due to phase discontinuities caused
by imperfect oscillator frequency accuracy, therefore affect-
ing position accuracy. These phenomena are called cycle-
slips [32]. The observed phenomena can cause abrupt channel
loss of lock from satellites. To avoid these phase jumps and
for better calibration on the front-end oscillator, many SDR
solutions in the literature propose a 10-MHz reference signal
which is used as an external frequency source to replace or aid
the LO on the front end, which is not convenient for mobility.
Other SDR solutions propose advanced frequency-disciplined
systems based on neural model predictive filters to compensate
the LO [33] which aim for ultrahigh accuracy on timing
applications but require additional software and hardware that

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Data signal
------------ Control signal
€S While-loop

Host PC ey
Frond-End > NI,' USRP
...................... p: driver
L= USB 3.0
3
NI LabVIEW :
Producer loop V v
NI-USRP
Rx Fetch.vi
S
Consumer loop
Acquisition __1: Visualizations
DI, 4 R W
/ 4
Tracking ,L’ Navigation
DLL DLL
S
Fig. 3. Front end and LV interface via NI-USRP driver. Samples delivered

in chunks to DLL baseband modules for postprocessing.

lacks portability. Instead, for our approach, a relatively low-
cost and accurate oven-controlled crystal oscillator (OCXO)
module from Ettus [34] is added to the front end as a compact
board-mounted kit, compatible with the B200 board. This is
also called a GPS-disciplined oscillator (GPSDO) clock due to
an additional built-in GPS unit that can meet even higher and
more accurate frequency and stability requirements than the
OCXO by itself if needed due to synchronization with GNSS
signals. The proposed GPSDO can lock to satellites in 1 min
and provide stability to the OCXO. The GPSDO mechanism
works like a PLL by compensating phase and frequency
changes in the LO with respect to GPS satellite signals, as well
as adapting to environmental parameters such as temperature
and aging [35]. This board-mounted kit OCXO replaces the
internal TCXO on the B200 board, therefore three distinct
types of time references are available for experimentation:
TCXO (built-in), OCXO (board-mounted kit), and OCXO
with disciplining (OCXO + GPSDO). Experimental testing
is conducted in Section V-D to assess the board-mounted kit
precision with and without disciplining.

B. Host PC Software Architecture

The SDR receiver is shown in Fig. 3. The outermost layer
of the software part in the host PC is LV based, which
acts as a data flow handling and visualization environment,
interfacing the front end with the internal C/C++ DLL
baseband processing modules. The main functionality of the
LV interface is in collecting raw digitized samples from the
front end and processing them in real time to find PVT solution
via the baseband modules. The contribution of this paper is
demonstrating and characterizing various acceleration tech-
niques for real-time operation in SDR mode for cost-effective
research platform purposes. Most of the implemented GPS

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 5

&S While-loop

Initial Setup & Variables

Main Loop

Finalize Setup

Main Producer Loop
(Highest priority)

Main Consumer
Loop (Baseband

processing)
A Clear
Initial C({l}lsﬁlg;l)re Channel Health [(Jjé(;:; I\]}qufers,
configuration . Loop (Visualization emory,
& SEESIen P () Session File

Sessions

Tracking Display
oop (Visualization)

Loop

Navigation Display

(Visualization)

Fig. 4.

SDR main VI block diagram architecture consisting of three main stages: initial setup and variables, main loop, and finalize setup. The main loop

runs infinitely and consists of while-loops running in parallel for different processes, until user halts receiver operation.

algorithms are similar to common receiver implementations
such as in [2] and [16].

1) LabVIEW Development Environment: LV is a software
development environment based on programs called virtual
instruments (VIs) which can be visually programmed indepen-
dently and attached to work either as main or sub VIs. There
is always a main VI where all the upper layer functionality
is held such as data flow and main execution of loops.
LV has a front panel, which acts as a GUI editor where
built-in visualizations and controls are available, and a block
diagram, where actual visual flow programming is done by
wiring built-in and customized function blocks (sub VIs) and
loops to achieve visual programming requirements. The flow
programming occurs logically from left to right, thus allowing
pipelining parallelism.

LV interfaces with native (NI-USRP) drivers to commu-
nicate with the front end. As shown in Fig. 3, this driver
sends control signals to the front end and fetches data in a
preconfigured size of blocks (or chunks) and sends them to
the main LV VI, which eventually passes these samples to the
DLL baseband modules. This interface is easily handled by
LV with built-in NI-USRP configuration and sample fetching
VI blocks which configure the front end and requests blocks
of samples. The block NI-USRP Rx Fetch.vi fetches samples
from the front end on every iteration (see Fig. 3).

2) Main Producer—Consumer Loop: The way LV controls
the data flow between the front-end interface, and the baseband
processing is by a common application design architecture
called the producer—consumer loop (see Fig. 3). Based on this
design pattern, LV can handle a real-time continuous operation
by acquiring data on the producer loop in a nonrestrictive and
high priority way and sending it to a data queue which allows
the raw data to be collected in memory as it is acquired.
Then, the consumer loop dequeues the data from memory
in a first-input-first-output (FIFO) order and sends it to the

baseband blocks, i.e., DLL modules, for further processing.
Both producer and consumer loops are a while-loop structure
each running indefinitely and in parallel. These loops operate
continuously until the user halts the receiver execution.

The producer loop should be the highest priority of the loop
pair, since it interfaces with the front end by commanding it to
collect raw data chunks (NI-USRP Rx Fetch.vi) in real time;
this, to avoid discontinuities on the incoming GPS signal. Also,
if there would be more tasks involved in each loop iteration
of the producer loop, overflows and underflows could easily
be triggered since the front end is expected to collect data
without interruptions and typically lacks an internal buffer.
The internal queue or buffer utilized between this loop pair is
automatically handled by LV in terms of memory allocation,
thus occurring in the background. The consumer loop should
also be capable of processing incoming data in real time so
that it outputs up-to-date user location.

3) DLL Integration: Conventional GPS baseband function-
ality can be divided into three main modules: acquisition,
tracking, and navigation. Each GPS baseband module includes
numerous relevant C/C++4 functions which are compiled into
DLLs for further integration in LV environment. Full opti-
mization is done at compilation by, e.g., Visual Studio C/C++
64-bit compiler. Once generated, these DLLs can be accessed
by LV’s built-in Call library function node. When called
upon, LV sends relevant input arguments to these functions
such as clusters of data types, which are compatible with
C/C++ data type structures. The input arguments can be
passed by reference, therefore omitting duplicates of the input
data structures on every function call.

4) Main VI Block Diagram Data Flow: Fig. 4 illus-
trates the contents of the main VI block diagram. The flow
inside the main VI consists of three stages: Initialization of
data structures and variables, the main loop (multiproducer—
consumer loop), and the finalize setup and close session.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

The initialization part oversees allocating and initializing
memory on two main data structures (clusters in LV) which
act as pipe flows that connect to relevant function blocks as
input arguments: the system configuration which is a structure
of shared global configuration parameters relevant to GPS
L1 parameters and current receiver session (e.g., sampling
rate and receiver gain), and the channel structure containing
specific variables linked to a locked channel. Each chan-
nel structure contains a structure of variables which keeps
track of the channel status, health, tracking loops, Doppler,
Ephemeris and other essential information associated with a
satellite lock. Eventually, all the channels are gathered into
an array and therefore flow in a single line or wire. After
these two main variable pipe flows are initialized, the USRP
session is configured. This involves communicating to the front
end via the USB port to properly initialize and setup the
receiver gain, sampling rate, data block fetch size, data format
(e.g., INT8), reference clock, and other relevant settings for
current session. Once initial configuration is done, the main
producer—consumer loop is where the receiver operates in real
time until the stop button is toggled. When stopped, the VI
goes to the finalize setup stage where it closes current USRP
session, frees previously allocated memory on buffers and
structures, and closes input and output file sessions for log
files if configured.

5) Multiproducer—Consumer Loop for Multithreading:
As shown in Fig. 4, multiple producer and consumer loop
pairs are being used. A multiproducer—consumer loop mech-
anism was added to increase multithreading which relieves
overhead computational loads for concurrent tasks such as
real-time visualizations. Now independent rate configuration is
possible for each visualization. Multithreading is accomplished
by creating several lower priority producer—consumer loops
generated in the main consumer loop, therefore acting as the
producer. Otherwise the main consumer loop should process
the incoming GPS signal and generate output visualizations
sequentially on each iteration. This sequential processing
affected every iteration of consumer loop processing time
and ultimately created bottleneck effects. With multiproducer—
consumer loops added, the main consumer loop is now respon-
sible to send (produce) output data to other three loop-pair
queues: the tracking display loop, the channel health loop
and the navigation display loop, and its tasks are therefore
lightened. Then, these low-priority consumer loops can now
postprocess, or in this case, display output visualizations at an
independent rate which can be configured.

Fig. 5 shows the interaction of these loop pairs. Each loop
pair is a thread in LV and can have a different priority
and rate. Also, each loop pair is assigned a buffer that
inputs data blocks into memory (producer) and then process
this data (consumer) at different rates. Therefore, these rates
can be independently configured based on user requirements.
LV uses built-in Queue/Dequeue function blocks that are
used for sending data to buffers automatically allocated to
each producer—consumer loop pair so independent tasks can
handle data from these buffers in an automatic multithreading
setting. Therefore, inside the main consumer loop, there are
three Queue blocks (three producer loops inside the main

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

~
Main Producer ‘(Main Consumer
Loop » Loop
(Rx Fetch) (DLLs)
(A
Channel Health Channel Health
Enqueue Dequeue
(Display rate)
(A\
Tracking Plot Tracking Plot
Enqueue > Dequeue
_J (Display rate)
Navigation Plots
Navigation R Dequeue
Plots Enqueue ” (Gmaps display
\— rate)
S y

Fig. 5. Multiproducer—consumer loops interaction for multithreading and
independent data flow rates.

consumer loop) that are sending data to each of these three
categories, but the visualization does not execute until these
lower priority consumer loops are activated. These loops are
activated with a delay timer to control the rate.

6) Main Consumer Loop and Baseband Modules: Fig. 6
shows a detailed view on the main consumer loop where all
baseband processing occurs. This is the core of the SDR GPS
receiver where most computation processing occurs. This flow
occurs on every while-loop iteration, and quasi-sequentially
because of LV’s multithreading and parallelism. The Dequeue
block collects a fixed-size of samples from the FIFO buffer
coming from the producer loop and sends it to the acquisition
and tracking blocks. The two main flow pipes: the system
configuration and channel parameters are updated accordingly
on each loop iteration by setting them as shift registers (SR),
as shown in Fig. 6. This means, only one iteration is done, both
pipe flows are recirculated to the initial left side of the structure
retaining modified value output from the block modules, ready
for the next iteration.

As for the baseband modules, first the Acquisition module
checks whether the receiver is lost (i.e., no channels are being
tracked) and/or if a set of quality metrics are held, for it
to run fast acquisition algorithms. The acquisition/continuous
acquisition (ACQ/CACQ) block runs through a set of quality-
of-service metrics when deciding to run acquisition algorithms,
all of them having the same priority.

1) The number of tracking channels is less than four
(minimum required for PVT solution).

2) The percentage number of tracking channels drop rate
(for instance, if 30% of initial number of acquired
channels drops in a short period of time, denoting a
blockage or so).

3) At least < min_num_chans > with <min_cn0>
(i.e., at least five channels with 40 dB-Hz).

If acquisition is toggled to run (which is always the case at
initial receiver execution), it then first requires filling its buffer
depending on the coherent integration length setting (i.e., 4 ms
of data), before algorithm execution. The N found satellites are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 7
&S While-loop
Main consumer loop (detailed)
LabVIEW parallelizable loop feature* Engq Enq Enqueue
(process all tracking channels in parallel) Tracking Channel Navigation
H Plots Health Plots
Dequeue v
Raw Data
N for-loop structure T

4 /éng 4 -< Tracking tr::gls{:;ng Navigation
p—— T —| - DLL DLL

Plot ACQ

* LabVIEW parallelizable loop feature allows concurrent execution of DLL library on each channel if channel cluster variables are independent

to each other (see Fig. 7).

Fig. 6. Main consumer loop detailed showing all three main pipe flows: data samples, system configuration, and channels, passing through baseband modules.

assigned to one out of 12 total tracking channels and the sys-
tem configuration modifies the state to Tracking. If continuous
acquisition is triggered later, the system returns to ACQ/CACQ
block for a parallel acquisition not affecting current tracking
channels and assigns new channels accordingly (see Fig. 6).
When ACQ/CACQ algorithm is executed, visualization table
is updated with results.

For Tracking and Navigation, on each consumer loop iter-
ation, data sample chunks (an array of raw samples) obtained
from the data queue are sent in parallel to the tracking base-
band module (as well as acquisition). There should be N active
tracking channels processed with the current data samples.
This is the most computationally intense part of the SDR
receiver as it should process data in real time since GPS signals
are continuously being received and a missed data sample
chunk could signify a loss of lock in most channels. The
post-tracking block collects relevant data from all channels
and translates it into channel health statistics, as well as real-
time tracking plots for Doppler frequency in Hz, navigation
bits versus time, and in-phase versus quadrature (/ versus Q)
graph also known as constellation diagram. Finally, navigation
module extracts relevant information from all N tracking
channels and computes a PVT solution if available. Position
solution is enqueued and should be displayed in a latitude
versus longitude graph, as well as an integrated Google Maps
visualization which uses a web Google Maps API. For Google
Maps display, an active internet connection is required in the
host PC to download display actual maps from Google servers.

7) LabVIEW and C/C++ Memory Compatibility: Since
there is an interchange of variables, clusters, and other data
structures between two programming environments, i.e., LV
and C/C++, when exchanging data between both environ-
ments via DLLs which are typically passed as reference, three
concepts should be considered: 1) memory alignment; 2) data
type compatibility; and 3) the order of data types in a structure.

Memory alignment between data types should be fully
compatible to avoid fatal errors such as data corruption and

TABLE III
LV AND C/C++ DATA TYPES COMPATIBILITY

C/C++ LabVIEW Size in bytes
char 18 8

uchar U8 8

char * (64-bit 164 (64-bit pointer) 64

pointer)

int 132 32

unsigned int u32 32

double DBL 64

char[4] Cluster of four I8 32

struct Cluster variable

memory access violations. LV 64 bit and Visual C++ 64 bit
are both compatible with the same memory alignment method
called “natural alignment.” This type of memory alignment
takes the biggest data type in the structure, typically 8 B
(64 bit) for a complex data type, and uses it as a base to line
up with other data types. This means, all data types smaller
than 8 B (i.e., char data type which is 1 B) will still take 8 B
of space in memory by adding padding or dummy bytes, thus
making each memory address a multiple of 8 B, for a given
data structure.

Another important consideration is the data types used
interchangeably between both programming environments. LV
has its own data type names that are compatible with C/C++
data types. Table III shows data type compatibility between
both environments.

Finally, the order of the variables inside a generated data
structure is also relevant between both platforms, as they
should match on both environments to avoid data corruption.
As an example, if a cluster (struct in C/C++4) is created in
LV with two I8 and then a DBL variable types, this the same
order should be reflected in C/C++ as two char variables,
then a double variable sequentially.

8) LabVIEW Parallelizable Loops: Parallelizable loops are
an LV feature that is similar to the inherent parallel scheduling

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

&S While-loop

Main consumer loop (zoom-in) Main consumer loop (zoom-in)
N for-loop structure (parallelizable loop*)
Tracking DLL Calling Node (all channels) . . .

channell F= == = = = = = = = == === o channel Tracking DLL Calling Node (single channel) channel
cluster ! tracking_function_call(channel ch] |, int active_chans) cluster 8 -7 ="=="=====-= cluster
array in I array in : tracking_function_call(channel *ch) array out

: for (ch_idx = 0; ch_idx < active_chans; ch_idx++) 1 4

| { correlator(ch); I

1 , correlator(ch[ch_idx]); single : } single

:) channel channel

L cluster cluster

in out
S S
(a) (b)

Fig. 7.

LV parallelizable loops feature applied to tracking baseband DLL module for individual channel processing and overall computational acceleration.

(a) Sequential implementation of tracking channels on C/C++ for-loop. (b) Parallelization loops applied to built-in LV for-loop.

mentioned before, but should be assigned manually onto for-
loop structures. Parallelizable loop candidates can be assessed
by LV based on the block diagrams and dependence between
input and output variables, but ultimately are assigned man-
ually by the developer. A very useful parallelization loop is
in the tracking channels, since each satellite channel can run
independently and accomplish speed gains to compete for real-
time operation. There are ways to parallelize code in C/C++
coding but requires high programming skills to do so, as
opposed to LV’s Parallelizable Loops feature which can be
assessed and configured within LV’s block diagram. There
should be no resource dependence between each tracking
channel, when applying this feature to avoid fatal program-
ming errors such as memory access violations.

Fig. 7 shows the adjustments to the receiver to incorporate
the parallelizable loops accelerator feature. Initially, the base-
band tracking DLL call function was processing all tracking
channels by using an internal C/C++ for-loop structure,
therefore, the input and output variables from LV to the
DLL were an array of channel structures. The DLL tracking
call function code was internally modified so that it would
process only one channel structure, thus leaving the for-loop
structure previously found in the C/C++ code, to LV, as shown
in Fig. 7. This LV for-loop structure takes as input the same
array of channel structures with size N and extracts one by
one to send it to the DLL call function node, then regroups
them at the end of the structure. Of course, all channels
are now processed concurrently with the Parallelizable Loops
feature, therefore accelerating each consumer loop iteration
when dealing with tracking loops.

IV. ACCELERATION FACTORS AND CONFIGURABILITY

Table IV shows a summary of acceleration factors that
leverage the proposed SDR receiver’s computational power
for real-time operation. Most of the implemented features
are exploited from LV platform built-in features. Many
SDRs use a combination of acceleration factors as found
in Table IV, so a brief description of the proposed SDR features
follows.

TABLE IV
PROPOSED SDR ACCELERATION FACTORS

Source
Software-based
C/C++ and Intel processors

Acceleration factor
Algorithmic accelerator

Single instruction, multiple data
(SIMD)

Optimized libraries
Parallel/multi-core scheduling
DLL integration

Inherited multithreading

Data acquisition, data flow

C/C++ libraries

LabVIEW-based
LabVIEW-based
LabVIEW-based
LabVIEW-based

control

Real-time advanced LabVIEW-based
visualizations

FPGA and DSP Hardware-based

Algorithm accelerators include the advanced acquisition
module [26] implemented in C/C++ as a replacement to PCS
algorithms, which shows dramatic gains in joint computations.

SIMD processing is also implemented in the DLL func-
tions and resulted in dramatic computational gains in the
tracking loops. SIMD are specialized, built-in machine lan-
guage instructions (or opcodes), mostly found on modern Intel
64-bit processors. These assembly coded functions can be
implemented directly by using Intel Intrinsics [36] which are
function calls in C++ language. The benefit of SIMD is the
direct usage of multipurpose processors’ dedicated registers
capable of parallel complex arithmetic operations such as
table mapping, dot products, accumulators, and other parallel
operations resulting in speed increase. The receiver’s latest
version v5.0 leverages from SIMD features since its baseband
algorithms are developed in C/C++ language.

Optimized C/C++ libraries feature matching internal archi-
tecture for specific resource utilization based on target host
PC. As much as threefold acceleration was achieved on the
proposed SDR receiver for FFT routines by implementing
optimization libraries such as FFTW [37] when compared
to other libraries such as kissFFT [38]. Eigen [39] was
another library used which specializes in matrix operations
for LS computation relevant to conventional PVT solutions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 9

TABLE V
PROPOSED SDR CONFIGURATION OPTIONS

TABLE VI
L1ST OF SDR INSTRUMENT MEASUREMENTS AND VISUALIZATIONS

Configuration Units Options Measurement/Visualization Details

Sampling rate MHz 2,4,5,10, 20,25 Acquisition table PRN, Doppler frequency, code-phase,
Receiver gain dB 0-30 detection ratio.

Satellites to search integer 1-32 Tracking display Navigation bits v. time chart,

No. tracking channels integer 1-12 constellation diagram, Doppler
Acquisition search band KHz 10, 12, 14, 16, 18, 20 frequency v. time chart.

Acquisition coherent milliseconds 1,2,4,8,16,32
integration length

PVT update rate Hz 1,2,5,10,20
PVT averaging depth samples 0, 10, 20, 50, 100

These optimized libraries have internal functions that try to
exploit as much as possible the host PCs architecture and
processor capabilities. These libraries can, for instance, apply
built-in SIMD functions to the FFT routines, or schedule
computations for multithreading execution based on number
of cores in the processor.

LV has characteristic functionalities that effortlessly assign
parallel tasks to multicore processors by taking advantage of
the visual block diagram programming style. Program par-
allelism achieves performance gains by concurrently running
several independent block diagram paths which occur trans-
parently to the developer since LV’s compiler takes care of
scheduling these processes. The compiler also recognizes the
host PCs’ capabilities in terms of cores and threads available.
The SDR receiver is strongly tied to LV’s visual programming
for real-time processing and parallelization due to this feature.
In addition, the Parallelizable loops feature was used in the
SDR tracking loops as mentioned in Section III-B8.

Based on DLL integration into LV, the proposed SDR
uses baseband modules that were successfully implemented
in C/C++ with their respective data type compatibilities.

LV uses inherent multithreading which applies also to data
acquisition and data flow. All these concepts are integrated
when using the previously described producer—consumer loop
pairs. Also, visualizations are included in this integration.

Many real-time SDR GPS receivers use FPGA accelera-
tors [21] for common functions such as FFT-based acquisition
routines. For simplicity in hardware components, this SDR
was chosen to have all functionality in software and exploit
host PC architecture as mentioned in Section III-B.

A. Software Configuration and Instrumentation
Measurement Output

The proposed SDR has several configuration options that
are compatible with the USRP B200 front end as well as the
host PC capabilities. Table V lists the available configuration
options which can be used in online (real time) operation
mode as well as in offline mode with a prerecorded file. The
receiver operates only in INT8 mode, and for offline mode
can chose between two types of sample inputs: in-phase (/)
only, and in-phase and quadrature (/—Q) interleaved samples.
The former is used for when an intermediate frequency (IF)
is used in the front end such as in [40]. This IF can be
specified (in hertz) when running in offline mode, and all
visualizations can be utilized the same was as in online mode.

Channel health display PRN, carrier-to-noise ratio (CNR),
carrier lock ratio, lock failure count,
channel state, valid for PVT flag.
Latitude v. longitude chart, GDOP,
RMS error (meters).

Zoom level, map type.

Output .log file for debugging

Output .log file for debugging, output
.kml file compatible with Google Earth
software.

Navigation chart

Google Maps

Tracking logging output file
Navigation logging output
file

Since the proposed front end (USRP B200) uses a direct down-
conversion system, there is no IF involved and captured sam-
ples are /—-Q interleaved as follows: sé, SOQ, sll s le, sé s szQ, .
which are already in baseband level. The receiver has a
maximum of 12 tracking channels; however, this could be
expanded in the future releases. The PVT update rate defines
the number of position samples outputted per second, and the
PVT averaging depth uses an averaging sliding window on
PVT output samples, thus smoothening final user position. The
rest of the configurations are conventional on a GPS receiver.

Table VI shows common GPS receiver instrumentation
measurement outputs as well as visualization outputs included
in the proposed SDR. Most outputs are well-known measure-
ments for real-time visualization and monitoring of GPS health
channels, as well as other statistics. Measurements such as
carrier-to-noise ratio, carrier-lock ratio, and channel state, are
found in the channel health display and their refresh rate for
each visualization and/or instrument can be independently con-
figured. Logging outputs for tracking channels and navigation
outputs such as .kml file for Google Earth can be configured
for output when session finalizes.

V. COMPARATIVE RESULTS

This paper discusses several comparative results of the
proposed SDR against other open-source receivers such as
fast-gps [16] and GNSS-SDR [25], to assess overall per-
formance of the receiver. It also compares against several
acceleration factors of the receiver. Table VII summarizes
the most important acceleration factors taken into account for
comparison results, which differentiate cumulative upgrades
between the proposed receiver concepts (i.e., each newer
version contains previous features). The results will be roughly
divided into the three baseband modules: acquisition, tracking,
and navigation. In most cases, the receiver was used in the
following configuration parameters: sampling rate of 5 MHz,
acquisition coherent integration of 4 ms, acquisition search
radius of 10 kHz, among other settings. Also, since DLL func-
tions are C/C++ based, certain tests were made in command
line interface (CLI) only, as well as in the complete LV-based
receiver, since no front-end interface is required for offline

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE VII

SUMMARY LIST OF SDR VERSIONS BASED ON
CHARACTERISTIC ACCELERATION FACTORS

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

TABLE VIII

PERFORMANCE ACQUISITION IMPLEMENTATION ON
THE HOST PC WITH LV-BASED RECEIVER

Characteristic acceleration factor or feature
Google Maps

Multiple-producer/consumer loops

LabVIEW Parallelizable loops

SIMD feature

Version

First version
Second version
Third version
Fourth version

test and benchmarking can be computed for certain tracking
loops and acquisition algorithms. This final testing scenario
(offline mode) is desired to assess possible LV overhead when
compared to CLI-only receiver (DLLs and executable).

A. Open-Source GPS Receiver Alternatives

The open-source receiver, GNSS-SDR, was selected for
comparative results against the proposed SDR. The GNSS-SDR
version used for this open-source receiver was 0.0.6.
GNSS-SDR works in Linux environment and it is heavily
dependent on GNU-radio framework [17] as well as other
dependencies for installation. This receiver alternative was
chosen since it is one of few real-time open-source receivers
available for online comparisons against the proposed SDR.
Although GNSS-SDR is a CLI only therefore lacking advanced
real-time visualization aspects, it allows for output logging
of several channel parameters. GNSS-SDR is also compatible
with the same host PC and front end (NUC and B200);
therefore, the same computational resources, sampling rates,
receiver gain, and other similar parameters can be used as
a direct comparison. Several tests to assess performance,
robustness, precision, among others are desired. The other
alternative, fast-gps, was chosen and used as a reference
receiver for the development of the proposed SDR. Since
fast-gps works only in offline mode, this receiver was used
on similar comparisons for benchmarking and other features.

B. Acquisition Comparative Results

Significant comparisons in acquisition are made in this
section. One can summarize them into four categories:
1) platform performance; 2) optimized libraries performance;
3) advanced algorithm performance; and 4) LV overhead
performance. All said comparison dimensions are integrated
into acquisition comparison tables.

With respect to platform performance, acquisition algo-
rithms are developed in C/C++ compiled and optimized
versions as well as with LV-based blocks such as FFTs. This
to assess comparisons in timing when algorithms are built
and compiled with either platform. For optimized libraries
comparisons, kissFFT [38] and FFTW [37] libraries are com-
pared as a second dimension. For a third dimension, refer-
ence receiver fast-gps uses a conventional PCS acquisition
algorithm, and since an advanced acquisition [26] is used
in place, a comparison is made in this respect. Finally, for
a possible LV overhead performance, a C/C++ only (CLI)
version is ran to compare optimized libraries and algorithms.
For all tests, 4 ms of integration length were used, as well

Acquisition PCS Advanced Advanced
timing (msec) acquisition (4 acquisition (4 acquisition (8

msec) msec) msec)
LV-based 27,5443 504.1 1,038.8
blocks
kissFFT (DLL ~ 7,982.6 331.4 674.4
function)
FFTW (DLL 3,493.6 166.3 348.3
function)

TABLE IX

PERFORMANCE ACQUISITION IMPLEMENTATION ON
THE HOST PC WITH CLI-ONLY RECEIVER

C++ CLI PCS Advanced Advanced
acquisition acquisition (4 acquisition (4 acquisition (8
timing (msec) msec) msec) msec)
kissFFT 7,850.8 347.2 692.7

FFTW 3,466.8 181.9 355.5

as 10-kHz acquisition search band. Also, an offline recording
file was used with 12 visible satellites. Only the acquisition
algorithm along with data fetching was benchmarked for a fair
comparison, thus avoiding variable initializations, and other
steps in the programs. Data fetching was included specially
for LV overhead comparisons.

Table VIII shows comparisons between platforms, algo-
rithms, and optimized libraries. With respect to platform,
C/C++ optimized functions can be as much as 7.8 times
faster than built-in LV blocks when using fastest optimization
library. Also, between the optimized libraries kissFFT and
FFTW, the latter is more than twice as fast as the former, for
all cases. For the advanced algorithms, as much as 54 times
faster can be seen when comparing algorithms developed in
LV-based blocks, and around 22 times faster when C/C++
DLLs are used in LV receiver. Finally, an 8-ms acquisition
integration length was compared, which show twofold slower
in timing for all dimensions (this is expected) when compared
against 4-ms integration length, but at the same time, still
maintaining drastic improvements of up to 26 times faster than
PCS algorithm with 4 ms, for LV-based algorithms, and up
to 11 times faster with C/C++ DLLs.

Table IX shows the comparison of acquisition algorithms
and optimized libraries, and at the same time, compare against
Table VIII for possible LV overheads, since tests in Table IX
were made in CLI only. In average, numbers seem very similar,
thus showing little to no computation overhead when using
LV with DLL integration against CLI only offline receiver for
acquisition algorithms.

C. Tracking Comparative Results

Since tracking is considered the highest computational cost
and most time-critical operation for GPS receivers, relevant
comparisons are made in this section. Important comparisons
were divided into two categories: online and offline tests. Tests
aim to assess the proposed receiver performance, robustness,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 11

TABLE X

OFFLINE REPLICA CARRIER WAVE QUANTIZATION
PERFORMANCE ON HOST PC

TABLE XI

OFFLINE TRACKING EPOCH PERFORMANCE ON HOST PC FOR
DIFFERENT ACCELERATION FACTORS

SDR dB Loss Avg. time per No. real-
Tracking (relative to epoch per time
Quantized base) * channel (nsec) tracking
Carrier Loss channels*
(dB)

sin() function 0.00 167,906.67 5.96
(base)

Exponential 0.00 87,833.67 11.39
series

approximation

16 levels LUT 0.05 76,105.12 13.14

8 levels LUT 0.53 75,920.97 13.17

2 levels LUT 1.15 67,968.07 14.71

* Always at 5 MHz sampling rate (NUC + B200 + NI simulator)
* dB Loss relative to built-in C++ floating-point sin() function

precision, real-time operation, among others. For offline test-
ing, three important comparisons were made to demonstrate
robustness and configurability of the receiver. For online mode,
two comparisons were made to assess CPU load, memory, and
other metrics. In total, five comparison tests were evaluated.

1) OFFLINE: Local Replica Carrier Wave Configurability:
Tracking correlators continuously generate local replicas for
carrier and code phases for synchronization, based on discrim-
inator output parameters. Since these local replicas should be
generated continuously and in real time, computation efforts
for host PC can be high. Typically, quantization of carrier
waves stored in generated lookup tables (LUTSs), are used for
faster computations, while at the same time sacrificing channel
quality. In addition, the proposed SDR tracking correlators
not only use integer arithmetic (INT8 for input samples)
for faster computations, but also can choose different carrier
wave generation methods. Comparative results between several
carrier wave generation methods, beginning from conven-
tional C/C++ floating-point sin() function, are evaluated. The
second option is a floating-point exponential series approxima-
tion of the sin() function, which uses only the first two terms of
the sine and cosine Taylor expansions. The next three options
are related to 16, 8, and 2 value LUTs.

For carrier wave quantization tests, the tracking integration
lengths were 1 ms (epoch). Relative loss in decibels (dB)
metric compares against floating-point sin() function to assess
performance and robustness. An offline recording (the same as
used in acquisition tests section) was used, running 300 s and
averaging dB loss for 12 channels when comparing relative
loss in carrier wave generation methods and timing to obtain
an experimental evaluation of the complexity of computations
for each method.

Table X shows the results for carrier wave configurability in
the proposed receiver in offline mode. Performance times are
in nanoseconds. The average time per epoch is 1 ms, and it is
normalized per channel, since recording file showed 12 track-
ing channels during all times. The number of real-time track-
ing channels shows tracking-only complexity of computations,
but lacks a possible online overhead such as LV front-end
interface, data acquisition, among others. The number of real-
time channels was found by dividing average time per epoch

SDR Tracking Avg. time per No. of real-time

Time (nsec) epoch per channel tracking channels*
(nsec)

Google Maps 75,920.97 13.17

version

Multiple- 75,7817.05 13.19

producer/consumer

loop feature

Parallelizable loops 40,258.45 24.84

feature

SIMD feature 11,125.70 89.88

* Normalized number of tracking channels by dividing by total amount
per tracking channel by an epoch’s time, i.e. 1 millisecond.

TABLE XII

OFFLINE OVERALL RECEIVER PERFORMANCE COMPARISON ON
HosT PC FOR THE SAME LENGTH RECORDING FILE

Process OFFLINE file 300s recording. Time (sec)
This file is 12 channels all 300 seconds

Proposed SDR, LabVIEW-based 51.292
Proposed SDR, CLI only 49.868
GNSS-SDR 310.843
fast-gps 179.302

per channel to a single tracking integration length (1 ms),
which would show real-time operation. The exponential series
approximation is 1.91 faster and barely sees any relative loss
when compared to base sin() function. The 16 level LUT
shows the best performance gain (2.2 times faster) while at
the same time keeping relative loss to a minimum (0.05 dB).
Still, for all tracking tests, the eight-level LUT was used for
simplified debugging purposes, among others.

2) OFFLINE: Acceleration Factors on Tracking Loops:
As shown in Table VII, four acceleration factors were sum-
marized for comparison purposes. The acceleration factors test
aims to see performance gains in timing when comparing these
acceleration factors for different cumulative versions of the
receiver, i.e., each newer version contains previous features.
Using similar comparison metrics as shown in Table X, tests
were performed with eight-level LUT, 5-MHz sampling rate,
and the same offline recording file with 12 channels.

Table XI shows the results for cumulative receiver accel-
eration factors. Between first and second version, a small
gain is seen since the multiproducer—consumer loop factor
aims to increase multithreading and allow more visualizations
in LV receiver, and not to accelerate actual tracking loops.
Thus, similar performance is seen for both versions. For
the Parallelizable loops feature, the average time per epoch
per channel metric is 1.88 faster than first version, therefore
almost doubling the total number of real-time channels that the
receiver can support in real-time operation at present configu-
ration and host PC. Finally, the SIMD feature version performs
6.82 faster than first version, thus dramatically increasing
the number of possible real-time tracking channels to almost
90 when using 5-MHz sampling rate.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3) OFFLINE: Overall Receiver Performance Benchmarks:
This test compares overall receiver benchmark from the time
of execution to finalization for several receivers in offline
mode: the proposed receiver in LV with DLL integration,
proposed receiver in CLI only, GNSS-SDR, and fast-gps.
This way, all variable initializations, computations, and other
algorithms are measured in performance timings. For the test,
the same offline recording file was used, which broadcasts
12 satellites during recording, thus simulating a 5-min signal.
Also, the proposed SDR uses the latest acceleration features
and all tests were performed in host PC.

Table XII shows the results for overall receiver performance.
For offline mode, LV adds a small overhead of 2.9% increase
in time when comparing with proposed receiver in CLI
only mode. At the same time, both proposed SDR modal-
ities outperform fast-gps and GNSS-SDR receivers, running
3.5 and 6 times faster, respectively.

4) ONLINE: Overall Receiver Performance Metrics:
An overall assessment of receiver robustness and performance
was measured in the following tests in the online mode
of operation. The testing measurements were for CPU load
percentage, memory occupancy, number of threads, number
of real-time channels in a stable operating point at 5 MHz,
and maximum number of channels on maximum sampling
frequency.

For the number of channels, the aim is to find a stability
point in the receiver where it operates in real time with no
crucial delays, overflows, or lost packets. Although 12 chan-
nels are generated from NI GPS simulator, both receivers
can configure and limit the total number of actual tracking
channels. The tests were compared against latest version of
proposed receiver and GNSS-SDR, which also has online
operating capabilities. For the proposed SDR, a careful compu-
tation of whether producer and consumer loops were operating
at similar pace was assessed to decide how many real-time
channels the receiver was capable to handle. For GNSS-SDR,
numerous tests were assessed until a more-less stable point of
operation was observed, with minimal overflow occurrences:
this stability point differentiated between uncontrollable over-
flows rendering the receiver nonoperational, and a more-less
continuous operation of GNSS-SDR. For the maximum number
of channels at a given sampling frequency, no limit was set,
and the best performance was assessed for both number of
channels and sampling frequency (having 12 channels as a
limit for the proposed SDR).

For the online tests, a total of 10 executions of 5 min each
(total of 50 min of operation) was evaluated. Similar configura-
tion parameters were used throughout the tests such as NI GPS
simulator broadcasting 12 satellites signal, 5-MHz sampling
frequency, similar receiver gain, the same RF hardware and
antenna, 4-ms acquisition coherent integration lengths, 10-kHz
acquisition search band, among other parameters.

Table XIII shows the comparative performance results for
online operation for multiple acceleration factors, as well as
GNSS-SDR receiver.

From CPU load perspective, the proposed SDR began
gaining load as versions increased, but on the last version
with SIMD feature the load decreased by more than twofold.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

TABLE XIII

ONLINE OVERALL RECEIVER PERFORMANCE COMPARISON
ON HOST PC FOR SEVERAL METRICS

Online CPU Memory No. of No. of Max.
testing at 5 load (KB) threads channels no. of
MHz (%) in real- channels
time @ in real-
5 MHz time @
Fs
Google Maps 1599 167,864.88 34 11 1M@s
version MHz
Multiple- 1552 155,346.13 39 11 12@4
prod./cons. MHz
loop feature
Parallelizable 22.73 155,248.85 39 12 9@ 10
loops feature MHz
SIMD 9.85 155,613.47 39 12 8 @25
feature MHz
GNSS-SDR 4298 130,529.47 64 5 5@s
MHz**

* Online testing using NUC + B200 + NI simulator.

* Online testing performed at 5 MHz sampling rate for all receivers, as
well as 4 msec. coherent integration length for acquisition.

** Maximum number of channels with minimal overflow occurrences and
stable operation.

This is because tracking correlator arithmetic operations are
now handled by internal SIMD registers on host PC, making
multiple operations at a time while consuming less CPU
resources with high efficiency. For GNSS-SDR, a quick glance
at the high load is shown due to floating-point operations in
acquisition and tracking algorithms, as well as many config-
uration options and a strict dependence on GNU-Radio and
other numerous dependencies which require a high number of
threads to be instantiated when executed.

From memory occupancy, all receiver showed a similar
performance which is minimal compared to host PC’s total
memory of 16 GB. On threads’ perspective, the proposed SDR
gained five threads since the multiproducer—consumer loop
feature version. GNSS-SDR showed higher thread occupancy,
again, due to many instantiations when executed.

At 5-MHz sampling rate, the proposed SDR gained tracking
channel capacity as versions increased. If comparing online
tracking channel capacity against Table XI, one can analyze
an overhead cost from LV environment which includes data
acquisition, USRP interfacing, visualizations, among other
reasons. For the first and second versions, two real-time
tracking channels are traded for several LV-based receiver
benefits. For the maximum number of channels, since the
proposed receiver’s limit is 12 channels, sampling rate was
used as a variable for finding the maximum optimal operating
point of all versions. For the latest version of the proposed
SDR, a total of 8 channels at 25 MHz were able to operate in
real time for selected host PC and hardware.

5) ONLINE: Data Interruptions and Overflows Statistics:
For this online test, the latest version of the proposed SDR
and GNSS-SDR were tested for overflows, with the same
parameters as previous test. A total of 10 runs of 5 min
each (totaling 50 min) in real-time operation, with NI GPS
simulator and 12 satellites. Using the results from Table XIII
to obtain stability point on both receivers, overflows and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 13

TABLE XIV
ONLINE RECEIVER OVERFLOW ROBUSTNESS COMPARISON ON HOST PC

Overflows No. of OVs Avg. OVs/sec Avg. time
(OV) in between OVs
50min run (sec)
(real-time)

Proposed 0.00 0.00 0.00

SDR

GNSS-SDR 40.00 0.01 70.10

data interruptions were evaluated. Table XIV shows statistics
for data interruptions on both receivers. The proposed SDR
showed no overflows. GNSS-SDR showed 40 overflows on
50 min of operation, which averages to 0.01 overflows per sec-
ond. Another statistic measured was the average time between
overflows, which was found to be 70 s. This means, when
running receiver, in average every 70 s it will overflow and
channels will be lost.

D. Navigation Comparative Results

For GPS receivers, navigation precision is an important
statistic that characterizes receiver performance. Two statistics
were evaluated for precision: root-mean square (rms) error
(in meters) and true mean error. PVT solutions usually output
user position in several coordinate systems. The x, y, and z
cartesian coordinates for user location were used to measure
both statistics. RMS error in this evaluation corresponds to
the standard deviation, or how much position measurement
samples change between one another. For the true mean
error, since the NI GPS simulator can be configured with an
exact geolocation, the actual receiver output was compared
against the true position, and the Euclidean rms distance error
was calculated. For one scenario, and since navigation does
not require online operation, the same offline recording file
used in acquisition and tracking results was used. It contains
12 satellites and a duration of 5 min. Both receivers were
set with similar parameters for acquisition, tracking, and
navigation, such as sampling rate of 5 MHz, 4-ms coherent
integration length, 10-kHz acquisition search band, 10 samples
navigation averaging window, 5-Hz navigation sampling out-
put rate, among others. For a second and third scenario, real
GPS signals were used, which were recorded in an exact the
same location in Colorado Springs, CO, USA, during a static
test. These two scenarios were recorded with OCXO, and with
OCXO + GPSDO. These tests address receiver performance
with real signals, and at the same time with and without GPS
disciplining (GPSDO). The second and third tests do not have
true mean error, since a true geolocation was not available.

Table XV shows both rms error and true mean error results
for the proposed receiver and GNSS-SDR. For the true mean
error, GNSS-SDR showed a bias error in a height of 12 m on
average. For rms error, both receivers performed well, with
a slight advantage on the proposed SDR. As for second and
third tests, the proposed SDR shows a precision improvement
of more than 50% when using GPS disciplining from the
board-mounted kit, as opposed to only OCXO performance,
as discussed in Section III-A. As for GNSS-SDR, the receiver

TABLE XV
RECEIVER NAVIGATION PVT PRECISION COMPARISON ON HoST PC

SDR PVT Scenario RMS Mean True Mean
Precision Error (m) Error (m)
Scenarios
Proposed SDR 1 (SIM) 0.62 1.33

2 (0OCXO0) 10.23 N/A

3 (GPSDO) 4.28 N/A
GNSS-SDR 1 (SIM) 1.14 11.99

2 (0CXO0) N/A N/A

3 (GPSDO) 19.34 N/A

* Scenario 1 comes from GPS simulator in a static environment and

known geolocation.

* Scenarios 2 and 3 are from a real GPS static location in Colorado
Springs, CO, using the OCXO with and without disciplining, i.e. OCXO,
and OCXO + GPSDO.

Fig. 8. Preliminary results for dynamic test in Colorado Springs, CO, USA,
with OCXO + GPSDO mode.

showed an rms error of 19.34 m for the disciplined scenario,
and for the OCXO only, the receiver was not able to acquire
the signal properly. The comparison of both receiver perfor-
mances with real GPS signals and GPSDO enabled showed
a gain of more than four times in precision on the reference
receiver.

VI. FUTURE WORK

The discussed acceleration factors generate computational
budget for possible addition of advanced features. In particular,
the proposed solution is able to run advanced interference
mitigation techniques such as in [41]. The future work will
address LV-based real-time implementations of multifrequency
and multiconstellation operation. It is also planned to con-
duct more thorough testing in diverse environments including
dynamic scenarios, both real and simulated, simulation under
different signal strengths, and Doppler effects. Preliminary
navigation results already show visually stable operation as
illustrated in Fig. 8, where a 7-min drive test in Colorado
Springs, CO, USA, was conducted.

VII. CONCLUSION

This paper proposed and demonstrated a new generation
state-of-the-art GPS receiver based on LV and C/C++ inte-
grations as DLL modules. Several acceleration factors for SDR
were discussed and leveraged in the proposed SDR for real-
time operation. Conventional baseband modules for acquisi-
tion, tracking, and navigation were used as DLL modules

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

integrated into LV, as well as a USRP B200 front end paired
with an Intel NUC5i5RYK as the receiver hardware testbed
were evaluated.

An extensive comparative analysis was made with existing
open-source SDR solutions in both offline and online mode of
operation. For all three baseband modules: acquisition, track-
ing, and navigation, several comparisons were made against
acceleration factors, and other receivers such as fast-gps and
GNSS-SDR. Four versions of the proposed receiver were
considered based on the acceleration factors discussed: Google
Maps, multiproducer—consumer loop, Parallelizable loops, and
SIMD features. This paper also presented an approach to
develop an advanced receiver to address various receiver tasks
including multipath measurements as reported in [9]. Different
from [9], the real-time receiver functionality is achieved by
using built-in features of the selected environment. This paper
studied the impact of various acceleration features and their
practical implementation intricacies.

For acquisition, an advanced joint-search FFT acquisi-
tion algorithm [26] was tested in the proposed receiver
against the conventional PCS acquisition algorithm. Optimiza-
tion libraries for FFT operations were also compared. Both
LV-based receiver and CLI-only receiver were compared to
assess any overhead by former receiver. For tracking, several
online and offline tests were evaluated. Tests involving quan-
tization carrier wave performance and relative loss, receiver
versions performance gains, and against GNSS-SDR were
compared. Metrics such as CPU load and memory occupancy
were assessed for online operation of receivers. A maximum
of eight real-time channel tracking at 25-MHz sampling rate
was achieved on latest version of the proposed receiver. For
navigation, PVT solution precision was assessed for the pro-
posed SDR and GNSS-SDR.

It is demonstrated that the fast prototyping on LV platform
allows achieving superior performance comparable or exceed-
ing open-source C/C++ solutions such as [25] by exploiting
inherent accelerating features. The proposed work for the first
time quantifies LV-based acceleration options and presents
the enabling receiver architecture. It is not claimed that the
proposed solution is better than all other SDR options, as LV
constraints low-layer access for high-end optimization and
customization options. Nevertheless, the proposed solution is
a competitive fast prototyping alternative for research and
development.

REFERENCES

[1] P. Misra and P. Enge, Global Positioning System: Signals, Measure-
ments, and Performance. Lincoln, MA, USA: Ganga-Jamuna Press,
2011.

[2] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen,
A Software-Defined GPS and Galileo Receiver: A Single-Frequency
Approach. Boston, MA, USA: Birkhduser Verlag, 2006.

[3] N. Agarwal et al., “Algorithms for GPS operation indoors and down-
town,” GPS Solutions, vol. 6, no. 3, pp. 149-160, 2002.

[4] F. Dovis, GNSS Interference Threats & Countermeasures. Norwood,
MA, USA: Artech House, 2015.

[5] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon,
and P. M. Kintner, Jr., “Assessing the spoofing threat: Development
of a portable GPS civilian spoofer,” in Proc. 21st Int. Tech. Meeting
Satellite Divis. Instit. Navigat. (ION GNSS), Savannah, GA, USA, 2008,
p 56.

[6]

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

D. M. Akos, “Who’s afraid of the spoofer? GPS/GNSS spoofing
detection via automatic gain control (AGC),” Navigat., vol. 59, no. 4,
pp. 281-290, 2012.

A. Jafarnia-Jahromi, T. Lin, A. Broumandan, J. Nielsen, and
G. Lachapelle, “Detection and mitigation of spoofing attacks on a vector
based tracking GPS receiver,” in Proc. Int. Tech. Meeting Inst. Navigat.,
Newport Beach, CA, USA, 2012, pp. 790-800.

G. De Angelis et al., “An indoor AC magnetic positioning system,” IEEE
Trans. Instrum. Meas., vol. 64, no. 5, pp. 1267-1275, May 2015.

P. Xie and M. G. Petovello, “Measuring GNSS multipath distributions
in urban canyon environments,” IEEE Trans. Instrum. Meas., vol. 64,
no. 2, pp. 366-377, Feb. 2015.

D. Macii, A. Colombo, P. Pivato, and D. Fontanelli, “A data fusion
technique for wireless ranging performance improvement,” IEEE Trans.
Instrum. Meas., vol. 62, no. 1, pp. 27-37, Jan. 2013.

L. Fang et al., “Design of a wireless assisted pedestrian dead reckon-
ing system—The NavMote experience,” IEEE Trans. Instrum. Meas.,
vol. 54, no. 6, pp. 23422358, Dec. 2005.

A. R. J. Ruiz, F. S. Granja, J. C. P. Honorato, and J. I. G. Rosas,
“Accurate pedestrian indoor navigation by tightly coupling foot-mounted
IMU and RFID measurements,” IEEE Trans. Instrum. Meas., vol. 61,
no. 1, pp. 178-189, Jan. 2012.

A. Colombo, D. Fontanelli, D. Macii, and L. Palopoli, “Flexible indoor
localization and tracking based on a wearable platform and sensor
data fusion,” IEEE Trans. Instrum. Meas., vol. 63, no. 4, pp. 864-876,
Apr. 2014.

P. Carbone, D. Petri, and A. Tsourdos, “I&M in navigation systems
[Framing 1&M Topics],” IEEE Instrum. Meas. Mag., vol. 18, no. 3,
pp. 36-39, Jun. 2015, doi: 10.1109/MIM.2015.7108397.

IFEN. Commercial Software Receiver Development Tools From iFEN.
Accessed: Jan. 12, 2017. [Online]. Available: http://www.ifen.com

S. Gleason, M. Quigley, and P. Abbeel, “Chapter 5 A GPS soft-
ware receiver,” in GNSS Applications and Methods, S. Gleason and
D. Gebre-Egziabher, Eds. Norwood, MA, USA: Artech House, 2009,
pp. 121-146.

The GNU Radio Foundation, Inc. GNU Radio. Accessed: Jan. 15, 2015.
[Online]. Available: www.gnuradio.org

Ettus Research, A National Instruments (NI) Company. Ettus Research—
The Leader in Software Defined Radio (SDR). Accessed: Jan. 2018.
[Online]. Available: https://www.ettus.com/ and https://www.ettus.
com/content/files/kb/b200-b210_spec_sheet.pdf

A. Soghoyan, G. Huang, J. Narisetty, and D. Akopian, “A labview-based
assisted gps receiver development, simulation and testing platform,” in
Proc. 24th Int. Tech. Meeting Satellite Divis. Inst. Navigat. (ION GNSS),
Portland, OR, USA, 2011, pp. 1982-1996.

A. Soghoyan and D. Akopian, “A LabVIEW-based GPS receiver devel-
opment and testing platform with DSP peripherals: Case study with
C6713 DSK,” J. Global Positioning Syst., vol. 11, no. 2, pp. 127-144,
2012.

A. Soghoyan, A. Suleiman, and D. Akopian, “A development and
testing instrumentation for GPS software defined radio with fast FPGA
prototyping support,” [EEE Trans. Instrum. Meas., vol. 63, no. 8,
pp- 2001-2012, Aug. 2014.

T. E. Humphreys, M. L. Psiaki, P. M. Kintner, and B. M. Ledvina,
“GNSS receiver implementation on a DSP: Status, challenges, and
prospects,” in Proc. 19th Int. Tech. Meeting Satellite Divis. Inst. Navgat.
(ION GNSS), Fort Worth, TX, USA, Sep. 2006, pp. 2370-2382.

T. E. Humphreys, J. A. Bhatti, T. Pany, B. M. Ledvina, and
B. W. O’Hanlon, “Exploiting multicore technology in software-defined
GNSS receivers,” in Proc. ION GNSS Conf., Savannah, GA, USA,
Sep. 2009, pp. 326-338.

M. G. Petovello, C. O’Driscoll, G. Lachapelle, D. Borio, and H. Murtaza,
“Architecture and benefits of an advanced GNSS software receiver,”
J. Global Positioning Syst., vol. 7, no. 2, pp. 156-168, 2008.

C. Fernandez-Prades, J. Arribas, P. Closas, C. Avilés, and L. Esteve,
“GNSS-SDR: An open source tool for researchers,” in Proc. 24th Int.
Tech. Meeting Satellite Divis. Inst. Navigat. (ION GNSS), Portland, OR,
USA, Sep. 2011, pp. 780-794.

D. Akopian, “Fast FFT based GPS satellite acquisition methods,” IEE
Proc.-Radar, Sonar Navigat., vol. 152, no. 4, pp. 277-286, Aug. 2005.
National Instruments. NI Global Navigation Satellite System Toolk-
its. Accessed: Jul. 2016. [Online]. Available: http://sine.ni.com/
nips/cds/view/p/lang/en/nid/204980

Intel Corporation. Intel NUC Kit NUC5i5RYK. Accessed: Apr. 2016.
[Online]. Available: https://www.intel.com/content/www/us/en/
products/boards-kits/nuc/kits/nuc5i5Sryk.html

http://dx.doi.org/10.1109/MIM.2015.7108397

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHMIDT et al.: DEVELOPMENT OF REAL-TIME SOFTWARE-DEFINED GPS RECEIVER 15

[29] Tallysman. TW2010-TW2012 GPS LI Bandwidth Antenna.
Accessed: 2016. [Online]. Available: http://www.tallysman.com/index.
php/gnss/products/antennas-gps-11/tw2010-tw2012/

GPS Source. GPS In-line 30dB Amplifier—All. Accessed: 2016.
[Online]. Available: https://www.gpssource.com/products/al 1-gps-in-
line-30db-amplifier

Analog Devices. (Jul. 1, 2014). AD9364. Accessed: Jan. 2018.
[Online]. Available: http://www.analog.com/media/en/technical-
documentation/data-sheets/AD9364.pdf

A. Lipp and X. Gu, “Cycle-slip detection and repair in integrated
navigation systems,” in Proc. IEEE Position Location Navigat. Symp.,
Las Vegas, NV, USA, Apr. 1994, pp. 681-688.

C.-L. Cheng, F-R. Chang, and K.-Y. Tu, “Highly accurate real-time
GPS carrier phase-disciplined oscillator,” IEEE Trans. Instrum. Meas.,
vol. 54, no. 2, pp. 819-824, Apr. 2005.

Ettus Research, A National Instruments (NI) Company. Board
Mounted GPSDO (OCXO) Recommended for USRP X300/X310.
Accessed: Jul. 2016. [Online]. Available: https://www.ettus.
com/product/details/GPSDO-MINI

[35] M. A. Lombardi, “The use of GPS disciplined oscillators as primary
frequency standards for calibration and metrology laboratories,” NCSLI
Meas., vol. 3, no. 3, pp. 56-65, 2008.

Intel Corporation. Intel(R) C++ Intrinsic Reference. Accessed:
Jun. 1, 2017. [Online]. Available: https://software.intel.com/
sites/default/files/a6/22/18072-347603.pdf

M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005.

M. Borgerding. (Jun. 2013). KissFFT. Accessed: Aug. 13, 2016.
[Online]. Available: https://sourceforge.net/projects/kissfft/

Eigen. Eigen—A C++ Template Library for Linear Algebra: Matrices,
Vectors, Numerical Solvers, and Related. Accessed: Aug. 13, 2016.
[Online]. Available: http://eigen.tuxfamily.org

GNSS. (May 2008). Colorado Center for Astrodynamics Research.
[Online]. Available: http://ccar.colorado.edu/gnss/

C. Lacatus, D. Akopian, and M. Shadaram, “Reduced complexity
crosscorrelation interference mitigation in GPS-enabled collaborative ad-
hoc wireless networks—Theory,” Comput. Elect. Eng. J., vol. 38, no. 3,
pp. 603-615, May 2012.

(30]

[31]

[32]

[33]

[34]

[36]

(371
(38]

[39]

[40]

[41]

Erick Schmidt (S°17) received the B.Sc. degree
(Hons.) in electronics and computer engineering
from the Monterrey Institute of Technology and
Higher Education, Monterrey, Mexico, in 2011, and
the M.Sc. degree from the University of Texas at San
Antonio, San Antonio, TX, USA, in 2015, where he
is currently pursuing the Ph.D. degree in electrical
engineering.

From 2011 to 2013, he was a Systems Engineer
with Qualcomm Incorporated, San Diego, CA, USA.
His current research interests include software-
defined radio, indoor navigation, global navigation satellite system, and
fast prototyping algorithms and accelerators for baseband communication
systems.

Dr. Schmidt is a Student Member of the Institute of Navigation.

David Akopian (M’02-SM’04) received the Ph.D.
degree from the Tampere University of Technology,
Tampere, Finland, in 1997.

From 1993 to 1999, he was a Researcher and an
Instructor at the Tampere University of Technology.
From 1999 to 2003, he was a Senior Research
Engineer and a Specialist with Nokia Corporation,
Espoo, Finland. He is currently a Professor with the
University of Texas at San Antonio, San Antonio,
TX, USA. He has authored or co-authored over
30 patents and 140 publications. His current research
interests include digital signal processing algorithms for communication
and navigation receivers, positioning, dedicated hardware architectures and
platforms for software-defined radio, and communication technologies for
healthcare applications.

Dr. Akopian was elected as fellow of the U.S. National Academy of
Inventors in 2016. He served in organizing and program committees of many
IEEE conferences and co-chairs an annual conference on multimedia and
mobile devices. His research has been supported by the National Science
Foundation, the National Institutes of Health, USAF, US Navy, and Texas
foundations.

Daniel J. Pack (S’91-M’95-SM’02) received the
B.Sc. degree in electrical engineering from Arizona
State University, Tempe, AZ, USA, in 1988, the
M.Sc. degree in engineering sciences from Harvard
University, Cambridge, MA, USA, in 1990, and the
Ph.D. degree in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 1995.

He was a Professor and the Mary Lou Clarke
Endowed Chair of the Electrical and Computer
Engineering Department, University of Texas at San
Antonio, San Antonio, TX, USA, and a Professor
(now Professor Emeritus) of electrical and computer engineering at the United
States Air Force Academy, CO, USA, where he was the Founding Director of
the Academy Center for Unmanned Aircraft Systems Research. He is currently
the Dean of the College of Engineering and Computer Science, University
of Tennessee at Chattanooga, Chattanooga, TN, USA. His current research
interests include unmanned aerial vehicles, intelligent control, automatic target
recognition, robotics, and engineering education.

