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Modeling Electroelastic Nonlinearities in Ultrasound
Acoustic Energy Transfer Systems

Vamsi C. Meesala, Muhammad R. Hajj and Shima Shahab
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA

ABSTRACT

Ultrasound acoustic energy transfer systems are receiving growing attention in the area of contactless energy
transfer for its advantages over other approaches, such as inductive coupling method. To date, most research
on this approach has been on modeling and proof-of-concept experiments in the linear regime where nonlinear
effects associated with high excitation levels are not significant. We present an acoustic-electroelastic model
of a piezoelectric receiver in water by considering its nonlinear constitutive relations. The theory is based on
ideal spherical sound wave propagation in conjunction with the electroelastic distributed-parameter governing
equations for the receiver’s vibration and the electrical circuit.

Keywords: Ultrasound acoustic energy transfer, Contactless energy transfer, Smart materials, Method of Mul-
tiple Scales, Nonlinear strains, Softening nonlinearity, Optimum Resistance

1. INTRODUCTION

Ultrasound Acoustic Energy Transfer (UAET) systems are receiving growing attention in the area of contactless
energy transfer for its advantages over otherwise familiar and well-studied methods, such as the inductive coupling
method. UAET can contribute to the development, use, and reliability of low-power sensors, control devices and
communication networks in applications where wired electrical contact is dangerous or impractical. A thorough
literature review on UAET and its advantages over inductive, microwave, capacitive, and optical energy transfer
methods is presented by Roes et al.! The limited research till now has been on modeling and proof-of-concept
experiments in the linear regime, suggesting that the amount of energy transferred will increase proportionally
to the increase in excitation amplitude. Shahab et al.,? Shahab and Erturk® pioneered the early efforts on
developing a fully-coupled mathematical model for the multi-physics problem. They considered an incident
acoustic wave, originating from a source of known strength and developed a model to analyze the electrical
power output extracted by a free-free piezoelectric (PZT) receiver and validated with FEM simulations. Shahab
et al.**® later experimentally validated the theoretical framework.

The linear analysis will fail as the amplitude of elastic strains in the receiver induced by the acoustic waves
becomes significant and when those strains couple nonlinearly with the electric field generated by the receiver.
Under these conditions, there is a need to solve the coupled problem by accounting for both acoustic nonlinearities
of the medium and the nonlinear electroelastic response of the PZT receiver. As a first step to tackle this
challenge, we present an acoustic-electroelastic model of a PZT receiver that takes its nonlinear constitutive
relations into consideration. Since the goal is to study the effect of nonlinear strains, we consider the enthalpy
proposed by Wagner and Hagedorn,® which is developed by approximating Young’s modulus and piezoelectric
coupling coefficients with higher order strains. We neglect the attenuation and transfer of energy to higher
frequencies in sound signal due to its propagation in the fluid medium. Assuming an acoustic excitation from
an ideal spherical source, we develop distributed-parameter governing equations of the receiver’s vibration and
the electrical circuit. The mathematical framework can be used for optimized design fabrication and testing of
UAET prototypes over a broad range of scales targeting different industrial and biomedical applications.
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2. MATHEMATICAL MODELING

A piezoelectric disk of thickness [ and radius r is chosen as the receiver and is subjected to an acoustic excitation
from a spherical source, as shown in figure 1. We derive the governing equations of the PZT disk using extended
Hamilton’s principle for electronic transducer written asé=? :

t2 to
ST —H+W,+W)dt= [ T —A+W)dt=0 (1)

t1 ty

Acoustic
Q 4{ source
Fluid /7,1
medium
(pmco) d’

Piezoelectric
receiver

s

Figure 1. Schematic of the piezoelectric receiver.

We define a co-ordinate, s along the axis of the disk (Oz3) and identify the flat surfaces as s = 0 and s =1 as
shown in figure 1. Defining u(s,t) as the displacement at any time ¢ of the material located at s, we write the
kinetic energy as,

l
- % /0 mi(s, £)? ds @)

where m is mass per unit length of the receiver.

To account for the effects of large (nonlinear) strains, we use the electric enthalpy derived by Wagner and
Hagedorn® as:

l
1 1 1 1 1 1
A= / A <§ 335:233 — 633833E3 — 5&3E38§3 — §€§3E§ + 6&1833 — 60[25%3E3 + §a4€§3> ds (3)
0

where Y33, ess, 5§3 and A are respectively the elastic modulus (thickness mode Young’s modulus), piezoelectric
coupling co-efficient, dielectric (or piezoelectric permittivity) constant and cross-sectional area of the disk,and
a1, as, ag and a4 are parameters that govern the nonlinearity in the system. The induced electric field due to

the strain generated inside the cylinder in 3—direction is denoted by FEs(s,t) and can be related to generated

electric potential by,
VH (37 t)

E3(Sat) = - (4)

where
Vi(s,t) =V (t)[H(s) — H(s — 1)], (5a)
Vi (s, t)" = V()" [H(s) — H(s — )] (5b)
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and H(s) is the heaviside function.

Assuming that the acoustic excitation is generated by a point (spherical) source (kasource << 1), such as
NHO0040 needle hydrophone by precision acoustics, the pressure on the top surface of the disk is given by

. Q1 jwt—td ’ Lt

t) ~ ¢ kifej(wt ) _ (.dffej(wt kdy) 6
pi(t) = jpoco ir d, JPo Ar d, (6)

where pg, co, w, @ and d; are respectively the density of the medium, velocity of sound in medium, excitation

frequency, source strength and distance from source to the top surface of the disk.

By placing the disk in a dense medium, the vibrations of its surfaces generate their own pressure fields that
would interfere with the excitation. We account for this effect by introducing a radiation impedance, Z,., that
represents the reaction forces induced in the medium as a result of the motion of the disk’s surfaces. For a
circular disk with infinite baffle, this impedance is defined as.!?

F.o 1
u u
S

where R, and X, represent respectively the self radiation resistance and reactance. The average value of of Z,
for a circular piston in an infinite baffle was derived by Butler and Sherman'® and is given by

J1 (2k‘a) 4 Sl (2ka)]

b
ka J ka (7b)

ZT = poCOA |:1 -

where J; and S represent respectively the first order Bessel and Struve functions, and py and ¢y represent
respectively the density and velocity of the sound in medium.

The variational work by non conservative forces - structural damping, acoustic excitation and radiation
impedance - is given by

1
SW = Fu (1500, ) — ot — 7)0u(l, ) — /O caii(s, )ou(s, t) ds
— Z,0(0,8)5u(0,8) — Zya(l, )5u(l,t) — Q5V  (8)

where
fit) ®prA=pmaZ, it — 7) ~ ppmal, (8b)
. 1 o d k(dy — d
po(t) = Jpocok%d—be”“t ) = ypee 9T, x = CTZ’ and 7= % (8¢)

Here ¢, is structural damping, a, is the radius of receiver and p; and p; are respectively the acoustic pressures
on the top and bottom surfaces of the disk which are assumed to be uniformly distributed over its cross-sectional
area. The negative sign for the force is the consequence of direction of f;, being in the negative s direction.
Substituting equations. 2, 3 and 8a into equation 1, the full nonlinear governing equations are derived as:

! I 1 /
— mii + Yaz Au” + 633AVT + aszA <‘l/UH + ‘;u') + o Au'u” + 504214 <u'2‘; + 2u’u”‘l/>

+ ga4Au/2u” —cstu+ fid[s] — fodls — 1] — Ryud[s] — Ryud[s — 1] =0 (9)

l
1 1 1 vV 1 2l
/0 {20¢3Alu’2 - 633Au’7 + 6531472 - 6012Au'31} ds—Q=0 (10)

with the boundary conditions,

=0 (11)

14 1% 1 1 Vv 1
—mii + Yas Au' + 633147 +oasA—u + §a1Au’2 + iagAu’z— + §a4Au’3
s=0

l l
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Vv Vv 1 1 vV 1
—m,ii — Ya3Au' — 633A7 — agATu’ — ioun’2 2a2Au’2 7 §a4Au’3 =0 (12)

s=l

where m,. is the radiation mass and is given by m = X, /w.

Implementing the Galerkin’s discretization, u(s,t) = > ., ¢:(s)q;(t) and using the weighted residual method,
we determine the governing equations of the temporal modes, g;. To this end, we substitute the discretization
and multiply equation 9 by the linear mode shape, ¢;(s) and integrate it over the thickness of structure. Using
the normalization and nonlinear boundary conditions, we obtain the governing equation of k** mode or actuation
equation as

n 1 l

. ) Vi

G + wiqr + E 4 / CsOrdids + Redidr|,_o + Rrditr|,_, +/ ¢2633ATH ds
i=1 0

+Zqz-/ asAd | L ds + 1 ZZ%/ a1 AGL 88, ds + = ZZqzq]/ a2 A1 2 ds
i=1

=1 j=1 =1 j=1

+ ZZ 3" Gitsim / s AG DB 0, ds = 6u(0)fs — k(D) fs (13)

zl]lml

By differentiating equation 10 with respect to time and using Ohm’s law to represent the electrical damping

as Q = %' we obtain

ZQﬂSB gf)z( )] + 633 OZQAZZ Z %%%n + Qm%% + 4mqiqm / d) ¢ ¢ ds

i=1 j=1m=1

770‘31422 %QJ +Q1QJ / ¢¢ d5+7: (14)
1=1 j=1
3. LINEAR ANALYSIS

In this section, we investigate the response of the disk to a low excitation near the vibration frequency of the first
thickness mode of disk. Because the excitation levels are relatively low, the corresponding strains in the body
are not impacted by any nonlinearity in the system. When the modes are widely spaced, then the contribution
of neighboring modes on the response of a particular mode is very low and hence, can be neglected. Removing
the nonlinear parameters and considering only one mode, the governing equations of the first mode are given by

G+ wig+[61(0) = p1(DIOV + ¢ (2¢wr + Redi| o+ Redi| ) = fedulsg + folt = T)é1l,o, =0 (15a)

where ( is damping ratio, and

. cacr V.
—0[61(0) =1 (D)4 + GV + 5 =0 (15b)
where N S
(& e €5-
0=— 37 , and Gl = —3‘; (15¢)

and the subscripts are dropped for the sake of convenience.
It is noted that the above equations are exactly same as those used by Shahab and Erturk® and Shahab et
al.* Since the model is linear and the excitation is harmonic, the response is given by

V = Vpelvt q = qoe’*t (16)
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From equations 15a, 15b and 16, we determine the analytical expressions for voltage and modal displacement

as: ,
jwipima; (¢1l,g — xe 71| ) [¢1(0) — ¢1(1)]

V= 17
ot o (2 + Ry + R (Gt 1) 4 ol (0 @)

v o 1
1= Sl ) = 61 0] [C”q”’ * R} (18)

By following a similar procedure as Shahab et al.,* the expression for electrical impedance is obtained as:

y 02 [61(L) — 61 (0)]2 -
O 25 er(l)?]] } "

w% — w2 + jw [2(&)1 + RT¢1 (0)

Z(w) = {jw

4. NON-LINEAR ANALYSIS - PRIMARY THICKNESS RESONANCE

To study the effects of the system’s nonlinearities as modeled above, we neglect the effect of the higher modes
and write the nonlinear governing equations of first thickness mode as:

. . Vo[ v o
G+ wiq+q 20w + Bet| o+ Reot| ] +essAT / ¢ ds + azA—q / @2 ds
0 0
1 2 : 13 1 2 V ! 13 1 3 : 14
+ 504114(] / o7 ds + 50[2(] AT/ o1 ds + iq a4A/ &1 ,ds = 01(0) fr — d1(D) fp  (20a)
0 0 0
and

: 1 1
e [610) = 0]+ AT — 502APG [ o ds—asdad [ 6 ds+ 4 =0 (20)
Next, we use the Method of Multiple Scales™® to determine the approximate solution of these equations and
study the steady-state characteristics of the response. In physical systems, nonlinear terms are much smaller
then the linear terms and hence are negligible at low excitations. In the present case, the quadratic and cubic
terms in equations 20a and 20b are much smaller than linear acceleration term. So, we scale them to simulate
the effects of the different terms and write

. L1 . .
41 +wiq + 2e2 11 + eBqa + €01q1qo + €b2q? + 6253q%q2 + 6254qf = Sew (Fej“’lt + Feﬂ“)t) (21a)
—0d1 + CLo — 03¢7d1 — edrq1dh + 62% =0 (21b)
where
_ _ _ 1 2 2 _ 2 @ —jd, —jwLt
n=q @@=V, p= 3 [2Cw1 + R6Y| _, + Redl| )], F =jpoa 1,° " $1(0) — xp1(l)e " <o |,
N A : /2 1 ! 13 1A : /3
9 = [(bl(l) — ¢1(0)] 9, (51 = — Q3 qb dS, 52 = *AOél (b dS, 53 = —— Q9 ¢ dS7
3 l
8y = §Aa4/ ¢'*ds and, (21c)
0

€ is a bookkeeping parameter that signifies the level to which the different terms in governing equations affect
the response.1?13

To study the behavior of disk at primary resonance, we represent the excitation frequency as:

w=wi + €0
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where o is a detuning parameter. Introducing three independent fast and slow time scales Ty, T7 and 75 defined
by
T, = €'t n=20,1,2

The solution of modal displacement ¢(= ¢1) and voltage V(= ¢2) can be then expressed as a series in € of the
form
a1 (t,€) = qo(To, Ty, To) + equi(To, Ty, To) + € qua(To, T1, To) + ... (22a)

@2(t,€) = q20(To, T1, T2) + €qo1(To, T1, ) + €2 qoz(To, T1, To) + ... (22b)

Substituting the series expansions described in equations 22a and 22b into the governing equations 21a and 21b,
and equating terms with equal power of €, we obtain q19, g11, 12 and ¢o0, g21 and g2 depending on the extent
of expansion. Elimination of the secular terms at highest expansion yields D1 A and D3 A. From the expressions
for D1 A and D> A, the modulation equations can be obtained from the chain rule as:

A = 6D1A+62D2A (23)

By representing of the complex amplitude in the polar form as, A = %aeﬂﬁ and separating real, imaginary parts,
we obtain the amplitude and phase modulation equations as:

a:fl(@,’Y,(A},Wl,F7é,Cp7(b1,Oé1,C¥27Otg,Ol4) (243‘)

"Y:fQ(CL,’}/,(U,Wl,F,é7cp,¢170[1,042,a37014) (24b)
where 7 = 8 — eot.

The steady-state amplitude and phase modulation equations are found by setting @ = 0 and 4 = 0 in equations
24a and 24b which are then used to find out steady-state amplitude ag and phase vy for a given excitation. From
the steady-state amplitude and phase of the modal displacement, we determine the voltage using the approximate
solution.

5. RESULTS AND DISCUSSION

Next, we apply the above analysis to a PZT disk (PRYY+0547) that is made of a ferroelectric hard piezoelectric
material, manufactured by Physik Instrumente (PI) GmbH & Co. KG.

5.1 Impedance Validation

The material properties of the disk - Young’s modulus, Y33, damping ratio, {, electromechanical coupling, €, and
equivalent capacitance, Cp, - can be identified by matching the impedance measurements in air provided by the
manufacturer and are tabulated in Table 1. The plot in Fig. 2 show that electric impedance evaluated using
identified parameters into equation (19) is in agreement with the impedance plot provided by the manufacturer.
It is worth mentioning that the radiation resistance and reactance are very negligible in air, due to lower density
and velocity of sound in the medium.

Parameter [units] Value
Thickness, 1 [mm] 3.908
Radius, a [mm] 5
Young’s modulus, Y33 [Gpa] 131.38
Capacitance, C;? [pF] 119.77
Electromechanical Coupling, § = —0.7e33A4/1 [Cm™!] | -0.2039
Damping ratio, ¢ = 1/(2Q.,) 1/2000

Table 1. Material and geometric properties of the disk used in the model.
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The plots also show that the short and open circuit natural frequencies of the disk in air are 525.1 kHz and
552.4 kHz respectively. A slight deviation away from the resonant frequencies is noted. This is due to influence
of a radial mode vibration harmonics near the first thickness mode natural frequency, which is not accounted for
in the analysis.

—Model
o Manufacturer data

Impedance |Z| [Ohm]

450 500 550 600
Frequency [kHz]

Figure 2. Comparison of electric impedance in air determined from the model with parameters listed in Table 1 to
impedance measurements provided by the manufacturer.

5.2 Linear Response

The linear response, voltage and corresponding average power over a cycle generated by the disk when it is
suspended in water is studied in this section. Using the material properties of the disk listed in Table 1, the
linear response and corresponding voltage generated for an acoustic excitation for source strength @ = 1um3/s
is determined using equations 16 - 18. Figures 3(a) and 3(b) respectively present the steady-state amplitudes
of displacement of the top surface, u(s = 0) and voltage generated by the disk as a function of the excitation
frequency for load resistance values between 5002 and 10MS2. Because the electrical load is purely resistive,
average power in a cycle can be calculated using P = ﬁmeplimde . Figure 3(c) shows the variation of average
power for different load resistances. From Figs. 3(a) - 3(c), it is evident that the peak of the response gradually
shifts from closed to open circuit natural frequency with the increase in load resistance, which is a typical
characteristic of piezoelectric systems. From Fig. 3(c), it can also be concluded that the optimum load resistance
for this particular disk is = 1k{2.

The linear response also shows an interesting unsymmetrical peak which can be explained by examining the
amplitude of effective modal forcing on the disk. Figure 3(d) shows that the modal forcing amplitude gradually
decreases from 420kHz to 570kHz which is why we have unsymmetrical peaks in figures 3(a) - 3(c). From
the definition of modal forcing amplitude, this phenomenon can be accounted for the modal interaction, wave
attenuation () and phase difference between acoustic waves on the top and bottom surfaces of the disk.

5.3 Nonlinear Analysis

In this section, the nonlinear response of the disk when placed in water is discussed. Firstly, we validate the MMS
by comparing the solution from steady-state amplitude and phase modulation equations for a low excitation,
Q = 1um?/s with the analytical expression for voltage and displacement in equations 17 and 18. Based on the
plots presented in Fig. 4(a), we note that MMS accurately predicts the linear response for moderately low and
very high load resistance.
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Figure 3. Figures showing (a) top surface displacement, (b) voltage generated by the disk, (¢) Average power generated
in a cycle and (d) modal forcing amplitude as a function of excitation frequency when po = 1000 kg/m®, ¢o = 1500 m/s,
R=10" Ohm, a1 =0 Pa, aa =0 Cm ™', a3 = 0 Cm™ !, ay = 0 Pa and source strength, Q = 1 m?®/s.

+ MMS
0.45¢ Resistance, R = IMQ 1 102 £ Numerical Simulation|

0.4
035
031
025
02r
0.15
0.1r

| | —Analytical

Voltage [V]
Voltage [V]

777}

n N . . . . . 107! . . . . . . .
500 510 520 530 540 550 560 500 510 520 530 540 550 560
Frequency [kHz] Frequency [kHz]
(a) (b)

Figure 4. Figures showing (a) agreement between MMS and analytical solution for low source strength, @ = 1075 m3/s (b)
voltage generated by the disk as source strength is increased from 107° m® /s to 10™* m?® /s with R = 10" Ohm, a; = 5x10'%
Pa, az = 2 x 10" Cm ™', a3 = 2 x 10° Cm ™' and as = —2 x 10" Pa ; in water (po = 1000kg/m*, co = 1500m/s).
The direction of arrow indicates the increase in source strength.
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Depending on the coeflicients of cubic and quadratic nonlinearities in the governing equation, the frequency
response for a nonlinear excitation exhibits hardening or softening behavior.'? Based on the linear analysis and
Fig. 3(d), we note that the forcing amplitude significantly drops for frequencies higher than natural frequency
and hence a hardening behavior might not be appreciable to be noted. So, we choose a1, as, asz and ay such that
the system exhibits a softening type nonlinearity. Figure 4(b), presents the voltage generated as a function of
forcing frequency when the source strength is increased from Q = 1um?/s to Q = 100um? /s for a load resistance
R = 10MQ. It is observed that the peak gradually shifts from = 552.4 kHz to =~ 525.9 kHz as a consequence of
softening nonlinearity.

Top surface displacement [nm]

(1) M- . L . . L 0L . L . L . .
10
10 460 480 500 520 540 560 460 480 500 520 540 560

Frequency [kHz] Frequency [kHz]
(a) (b)

Z,
5
E > R=500
104 |4 R=lk —‘\‘\ A
o R=5k /
k1 = R=10k .,
R=100k k
« R=10M

L

6L . . . . .
10
460 480 500 520 540 560

Frequency [kHz]
(c)

Figure 5. Figures showing (a) displacement of top surface (b) voltage generated and (c) average power in one cycle for
source strength @ = 100um? /s as the load resistance is increased from 1009 to 10MS with a1 = 5x 10*® Pa, as = % x 101!
Cm_l, a3 = % x 10° Cm™! and oy = —% x 10*° Pa in water (po = 1000kg/m3, co = 1500m/s). The direction of arrow
indicates the increase in load resistance.

We further investigate the effect of nonlinear excitation on the response, voltage and average power generated
by prescribing the source strength @ = 100um? /s and changing the load resistance from 5000 to 10M(. The
results are presented in Figs. 5(a) - 5(c). From figure 5(a), the displacement of top surface near the short
circuit natural frequency shows a very strong nonlinear behavior at low load resistances. This effect is gradually
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reduced as load resistance is increased. On the contrary, near open circuit natural frequency, the nonlinear affect
gradually increases as the load resistance is increased. From figure 5(b), the nonlinearity in the response is
carried to the voltage generated as they are directly proportional for a given load resistance from equation ?7. It
is interesting to note that, although the voltage generated at low load resistance is the lowest, it has the highest
distortion in the peak and hence greater nonlinear influence. Figure 5(c) presents the average power generated
over a cycle for different load resistances. By comparing the qualitative conclusions from Figs. 5(c) and 3(c), it
is important to note that the optimum resistance which was =1k for a linear excitation is shifted to ~50012 for
a nonlinear excitation.

6. CONCLUSIONS

We tackled one of the major challenges in UAET, i.e., the nonlinear electro-elastic response of the receiver. We
considered the nonlinear electro-elastic enthalpy used by Wagner and Hagedorn® and performed a theoretical
analysis to assess the response of the PZT disk to acoustic excitation. For the particular dimensions and material
of the disk used in this study, we illustrated how a possible softening nonlinearity could affect the response.
Analytical results show that the optimum resistance in a nonlinear excitation is a function of forcing. They also
suggest that in high amplitude excitations, the optimum resistance found using linear analysis can give poor
energy transfer. In this study, we have neglected the attenuation of acoustic excitation and nonlinear effects due
to the medium. In future work, the authors plan to include these effects and extend the study to a nonlinear
electo-elastic receiver.
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