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Abstract

In this article, we study the Schrodinger operator for a large class of periodic po-
tentials with the symmetry of a hexagonal tiling of the plane. The potentials we
consider are superpositions of localized potential wells, centered on the vertices
of a regular honeycomb structure corresponding to the single electron model of
graphene and its artificial analogues. We consider this Schrodinger operator in
the regime of strong binding, where the depth of the potential wells is large. Our
main result is that for sufficiently deep potentials, the lowest two Floquet-Bloch
dispersion surfaces, when appropriately rescaled, converge uniformly to those of
the two-band tight-binding model (Wallace, 1947 [56]). Furthermore, we estab-
lish as corollaries, in the regime of strong binding, results on (a) the existence
of spectral gaps for honeycomb potentials that break &7 symmetry and (b) the
existence of topologically protected edge states—states that propagate parallel
to and are localized transverse to a line defect or “edge”—for a large class of
rational edges, and that are robust to a class of large transverse-localized pertur-
bations of the edge. We believe that the ideas of this article may be applicable in
other settings for which a tight-binding model emerges in an extreme parameter
limit. © 2017 Wiley Periodicals, Inc.

1 Introduction

In this article, we study the Schrodinger operator, —A + V, for a large class
of periodic potentials with the symmetry of a hexagonal tiling of the plane. The
potentials we consider are superpositions of “atomic” localized potential wells, Vj,
supported in discs centered on the vertices of a regular honeycomb structure corre-
sponding to the single electron model of graphene and to its artificial analogues.

We consider this Schrodinger operator in the regime of strong binding, where
the depth of the potential is large. Our main result is that for sufficiently deep
potentials, the lowest two Floquet-Bloch dispersion surfaces, when appropriately
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rescaled, converge uniformly to those of the two-band tight-binding model, intro-
duced by P. R. Wallace in 1947 in his pioneering study of graphite [56]. Further-
more, our main results, together with previous results in [16, 18], yield:

(a) results on the existence of spectral gaps for Schrodinger operators with
honeycomb potentials, perturbed in such a way as to break &7 symmetry
(the composition of parity-inversion and time-reversal symmetries), and

(b) results on the existence of topologically protected edge states for Schro-
dinger operators with honeycomb potentials perturbed by a class of line
defects or edges, assumed to be parallel to vectors in the underlying period
lattice.

Spectral gaps play a central role in energy transport properties of crystalline me-
dia. Edge states are time-harmonic solutions that are plane-wave-like (propagating)
parallel to the edge and localized transverse to the edge. Topologically protected
edge states, due to their immunity against strong perturbations, have potential as a
highly robust means of energy transport.

We comment briefly on terminology. An edge is frequently understood to mean
an abrupt termination of bulk structure. The terms edge for a line defect across
which there is a change in a key characteristic of the structure and edge state are
also used in the physics literature; see, for example, [29,36,46]. The edge states we
discuss are of the latter type. In particular, our edge states in structures with a do-
main wall defect are localized transverse to a line in the direction of a period lattice
vector, a rational “edge.” In this paper, fopological protection refers to the stability
of bifurcations of edge states from Dirac points (a bifurcation from the intersection
of continuous spectral bands) against a class of transverse-localized (even large)
perturbations of the Hamiltonian. Although there is evidence from tight-binding
models and numerical simulations of continuum PDE models of stability against
fully localized perturbations, a precise mathematical theory is an open problem.

Finally, we believe that the ideas of this article may be applicable in other set-
tings for which a tight-binding model emerges in an extreme parameter limit.

1.1 Graphene and Its Artificial Analogues—Physical Motivation

Graphene is a two-dimensional material consisting of a single atomic layer of
carbon atoms arranged in a regular honeycomb structure. It has been a subject
of intense interest and exploration by the fundamental and applied scientific, and
engineering communities since its experimental fabrication and study in the mid-
2000s [22,33,61]. Many of graphene’s novel electronic properties are related to
conical intersections of its dispersion surfaces (Dirac points) and the corresponding
effective Dirac (massless Fermionic) dynamics of wave packets. These properties
can be understood by considering the band structure near the Fermi level for a
Hamiltonian that only incorporates the w-electrons [19,22,33,43]. In this approxi-
mate model, the band structure is that of the two-dimensional Schrodinger operator
with a honeycomb lattice potential.
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Since many of graphene’s properties are related to quantum mechanical prob-
lems governed by a class of energy-conserving wave equations in a medium with
special symmetries, wave systems of this general type, in other physical settings,
e.g., electronic, optical, and acoustic, have received a great deal of recent attention
by theorists and experimentalists. These have been dubbed artificial graphene and
have been explored, for example, in electronic physics [52], photonics [5,45,47],
and acoustics [35].

One such property is the existence of topologically protected edge states. Edge
states are modes that are (i) pseudoperiodic (plane-wave-like or propagating) paral-
lel to a line defect, and (ii) localized transverse to the line defect; see the schematic
in Figure 6.2. Topological protection refers to the persistence of these modes and
their properties, even when the line defect is subjected to strong local perturba-
tions. In applications, edge states are of great interest due to their potential as
robust vehicles for channeling energy.

The extensive physics literature on topologically robust edge states goes back
to investigations of the quantum Hall effect; see, for example, [30,31,55, 58] and
the rigorous mathematical articles [12, 13,41, 54]. In [29,46] a proposal for real-
izing photonic edge states in periodic electromagnetic structures that exhibit the
magneto-optic effect was made. In this case, the edge is realized via a domain wall
across which the Faraday axis is reversed. Since the magneto-optic effect breaks
time-reversal symmetry, as does the magnetic field in the Hall effect, the resulting
edge states are unidirectional.

Other realizations of edges in photonic and electromagnetic systems, e.g., be-
tween periodic dielectric and conducting structures and between periodic structures
and free space, have been explored through experiment and numerical simulation;
see, for example [36,40,48,57,60].

The prevalent approaches to the theoretical study of these systems are: the
tight-binding (discrete) approximation (see, for example, [42,43]), the nearly free-
electron (or free-photon) approximation (see, for example, [29, 46]), or direct nu-
merical simulation (see, for example, [4]). In the tight-binding approximation,
wave functions (Floquet-Bloch modes) are approximated by superpositions of lo-
cal ground states of deep (high-contrast) potential wells, each of whose amplitudes
interacts weakly with its nearest neighbors. In the nearly free-electron approxima-
tion, the potential in the Schrodinger operator is treated as a small (low-contrast)
perturbation of the Laplacian; see, for example, [2]. See also [10, 39] for an ex-
tensive discussion of Dirac points and edge states for nanotube structures in the
context of quantum graphs.

Analytical results on the behavior of dispersion surfaces of Schrédinger opera-
tors with generic honeycomb lattice potentials, which are not limited to these ap-
proximations in that there are no assumptions on the size of the potential, were ob-
tained in [17, 18] using bifurcation theory from the nearly free-electron limit, com-
bined with methods of complex analysis to extend the analysis globally in the con-
trast (coupling) parameter. The results of the present article concern Schrodinger
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FIGURE 1.1. Left panel: 4 = (0,0), B = (1/+/3,0). Honeycomb
structure, H, is the union of two sublattices A4 = A + A (blue) and
Ap = B + Ay (red); several hexagons shown. The lattice vectors
{v1, vz} generate Aj. Right panel: Brillouin zone, %}, and dual ba-
sis {k1,Kk>}. K and K’ are labeled.

equations in the strong binding regime (deep or high-contrast potentials / strong
coupling) and its relation to the tight-binding (discrete) limit. Before outlining
our results, we discuss the celebrated two-band tight-binding model of Wallace
(1947) [56].

1.2 Wallace’s Two-Band Tight-Binding Model of Graphite

The (regular) honeycomb structure, H, is the union of two interpenetrating equi-
lateral triangular lattices, A4 and Ap, where Ay = v4+ Ay, Ap =vp+ Ay, and
Ay = Zv1 @ Zvy; see Figure 1.1. Figure 1.2 displays the honeycomb structure and
several shaded cells of a tiling of R? by diamond-shaped fundamental period cells.
In each fundamental period cell, there are two atomic sites (A-type and B-type).
Let

(W™ (1), 05" (1)) (. myeze € 1225 C?)

denote the time-dependent amplitudes of the ground states centered at the A and B
sites of the cell with label (r, m), i.e., the period cell containing v4 +nvy +mv; and
vp +nvy +mv;. Recall that modes of the full honeycomb structure are assumed to
be superpositions of interacting lattice translates of ground states, concentrated on
the support of deep potential wells. Each A site amplitude interacts with its three
nearest-neighbor B site amplitudes, and analogously for each B site amplitude.
The discrete equations are:

Y |:w;11,mj| B |:wg,m+wg,m—l +wlr;—1,m:|
1ar =1

n.m n,m n+1,m n,m+1
’WB WA + WA + ’WA

1 ik-(nvi+mv @ (k)
1.1 = — k(mvitmv2), o (k) | 24 dk
(b %l ), € TB()[WB(k)}
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FIGURE 1.2. Four (shaded) tiles of a tiling of R2. These contain the

lattice points, whose amplitudes couple to 1///(1"”") and wg"m) according
to the tight-binding model (1.1).

where ¢ denotes a nonzero coupling (“hopping”) coefficient,

(12)  Hrp(k) = (_Vo(k) AT

(1.3) y(K) D0 etkeny = eReni(] 4 MV 4 eTY2)  (see (5.6)),
v=1,2,3

and
Wa ). Pp ()" = (e~ CB1/Dy (k). —e' /Dy ()T,

where the discrete Fourier transform of (&A (T), 1}3(T))T is denoted by (1714 (k),
JB (k))". The vectors ep,, v = 1,2,3, are the three vectors directed from any
point in A p to its three nearest neighbors in A 4, and analogously for eq ,,v =
1,2, 3; see Figure 3.1 below.

Large but finite-time validity of such discrete approximations to time-dependent
continuum Schrodinger equations, for certain initial data, was studied in [1,44].

The system (1.1) has two dispersion surfaces. To derive these explicitly, let
Wy g™t = (aq,0p) e 16T i(vi+mva)k where oy and ap are constants
and k varies over the Brillouin zone, %},; see Figure 1.1 and Section 1.5. Sub-
stitution into (1.1) yields the dispersion relation for the two spectral bands of the
tight-binding model:

& (k) = = [t Wrp(k), k€ Hy, where
(1.4) Wrs(k) = |y(k)| = |1+ elkvi eik-v2|;
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FIGURE 1.3. Dispersion surfaces of Wallace’s two-band tight-binding
model. Dispersion relation displayed in (1.4).

&4 (k) are the two eigenvalue branches of Hrg(K). A plot of the two dispersion
surfaces k € R? — &4(k) and k € 2, is shown in Figure 1.3. We note that
the two dispersion surfaces are A ;-periodic with respect to k, and touch conically
(Wrs (k) = 0) at the six vertices of %y, and their translates by the dual lattice, A}
see Lemma 5.2. The energy / quasi-momentum pairs at these conical intersection
points are so-called Dirac points; see Section 7.

1.3 Summary of Results

We study the continuous Schrodinger operator, —A + A2V (x), with honeycomb
lattice potential, V(x), defined on R and A > A, sufficiently large. Our particular
model is one where V is a superposition of “atomic” potential wells, Vp(x), sup-
ported within the union of discs, centered on points of the honeycomb structure H;
see Figure 1.4. The detailed assumptions on Vp(x) (Section 4) ensure that V' (x) is
a honeycomb lattice potential in the sense of [18], i.e., real-valued, periodic with
respect to the equilateral triangular lattice, inversion symmetric, and rotationally
invariant by 120°.

For k varying over the Brillouin zone, %y, let E{L(k) < E%(k) < ... <
E I/} (k) < --- (listed with multiplicity) denote the Floquet-Bloch spectrum of —(V +
ik)? + A2V(x), considered with A ;,-periodic boundary conditions. The graphs of
the mappings: k — E 2 (k) are the dispersion surfaces. We study the following:

Problem. Describe the behavior of the dispersion surfaces of —A 4+ A2V(x), ob-

tained from the low-lying (two lowest) eigenvalues of —(V + ik)Z 4+ A2V (x),
ki> Ef(k) = E*(k) and k> ES(k) = EZ(K),

for all A > A, sufficiently large. This is called the regime of strong binding. We

refer to the rescaled, A — oo, limiting behavior as the tight-binding limit.
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FIGURE 1.4. Lightly shaded discs of radius rog < %|eA,1 |, centered at
eachve H= Ay UAp. A copy of the atomic potential Vj, satisfy-
ing hypotheses (PW)—(PW,), (GS), and (EG) in Section 4, is supported
within each disc. The 60° degree rotationally invariant support of Vj is
darkly shaded.

A condensed version of our main result (Theorem 6.1) is as follows:

THEOREM 1.1 (Condensed version of main theorem). For A > A, sufficiently
large, the rescaled low-lying dispersion surfaces, k — E :’}: (K), converge uniformly
to Wallace’s (1947) two-band tight-binding model defined on a honeycomb struc-
ture. Specifically, for a suitable energy E g and py, > 0, we have

(15) (EX(0)—E})/pr — —Wrs(k) and (EL(&)—Ep)/pi — +Wrp(K),
as A — oo, uniformly in k € %y, the Brillouin zone.

We also prove estimates and convergence of the derivatives of E i (k) on ap-
propriate domains. Furthermore, in Theorem 6.2 we establish the scaled norm-
convergence of the resolvent of —A + A2V to that of the tight-binding Hamiltonian,
Hyp.

The first and second dispersion surfaces intersect precisely at the quasi-momenta
located at the six vertices of %}, at the energy level E IA)' The parameter p), dis-
played in (4.7), is given by an exponentially small overlap integral involving the
atomic potential Vg, the ground state of —A + A2V}, and the ground state translated
to a nearest-neighbor site of H; see Proposition 4.1.

Theorem 6.1 implies that, in the strong binding regime (all A sufficiently large),
the only intersections of the lowest two dispersion surfaces occur at Dirac points,
situated at the vertices, K,, of %,. Moreover, (1.5) and the Taylor expansion of
Wrs (k) (Lemma 5.2) near vertices K, gives:

(1.6) EL (k) = Ef, £ [v} |k — K|+ O(pp [k — K, |?),
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where

V3 -
(1.7) vlﬂ = |:7 + O(e C)L)]/o;L
is the Fermi velocity (see Definition 7.3 and [18]), the velocity of “quasi-particles”
(wave packets) that are spectrally concentrated near Dirac points; see, for example,
[19,43].
Theorem 6.1, together with results in [16, 18], imply the following corollaries:

(A) Corollary 6.3: Spectral gaps when breaking &2 7 symmetry. Honeycomb
lattice potentials, V', have the property that the associated Schroédinger
Hamiltonian, —A + A%V, commutes with the composition of inversion
with respect to an appropriate center, and complex conjugation, ¢ o .#.
This is also known as 2.7 symmetry. For A large, a consequence of The-
orem 6.1 and the results in [18] is the existence of spectral gaps about Dirac
points (see Section 7) of —A + A2V when the Hamiltonian is perturbed in
such a way as to break &7 symmetry.

A review of other mechanisms for construction spectral gaps, also in the
high-contrast regime, appears in [32]; see also [20, 21].

(B) Corollary 6.4: Protected edge states in honeycomb structures with line
defects. Edge states are time-harmonic solutions of the Schrodinger equa-
tion, which are propagating parallel to a line defect (edge) and are localized
transverse to it; see Figure 6.2. In [16] (see also [15]), we develop a theory
of protected edge states for honeycomb structures, perturbed by a class of
line defects (domain walls) in the direction of an element of A (rational
edges). The key hypothesis is a spectral no-fold condition. Our main re-
sult, Theorem 6.1, implies the validity of the spectral no-fold condition,
and hence the existence of edge states for a large class of rational edges, in
the strong binding regime.

Previous analytical work on topologically protected edge states in peri-
odic structures with line defects has focused on approximate tight-binding
models; see, for example, [9,27,43].

Finally, we remark that the effect of interacting electrons in graphene,
in the tight-binding limit, have been studied in [25,26].

1.4 Outline

In Section 2 we review basic Floquet-Bloch theory of Schrédinger operators
with periodic potentials. Section 3 introduces the honeycomb structure, H, which
is the union of the two sublattices A4 and A p. Section 4 discusses hypotheses
on the atomic potential well, Vp, and Section 5 treats its Aj-periodization, V/,
obtained via summation over translates by vectors v € H. The atomic potential,
Vo, is assumed to have compact support, |[X| < rg, where ro < Feritical and Feritical
(which is less than half the distance to the nearest neighbor lattice points in H) is
determined by a geometric lemma presented in Section 15. The assertions of this
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lemma are easily seen to hold for rg positive and sufficiently small. A nontrivial
lower bound for r.car 1S Of interest in applications, and for this we require the
geometric lemma.

In Section 6 we state our main result, Theorem 6.1, on the low-lying dispersion
surfaces of —A + A2V for A > A, sufficiently large. We also state and prove con-
sequences for Schrodinger operators on R? with perturbed honeycomb structures
in the regime of strong binding: Corollary 6.3 on spectral gaps and Corollary 6.4
on protected edge states.

Section 7 reviews the notion of Dirac points and results on the existence of Dirac
points for generic honeycomb lattice potentials [17, 18]; see also [6,7,28]. These
are energy / quasi-momentum pairs, which occur at quasi-momenta located at the
vertices of the Brillouin zone, %}, and at which neighboring dispersion surfaces
touch conically.

The proof of the main theorem, Theorem 6.1, on the large-A behavior of low-
lying dispersion surfaces is carried out in Sections 8 through 15. In Section 8 we
construct approximate Floquet-Bloch modes, pé, 4(x) and pé’ g (%) (associated with
the sublattices A 4 and A g), for the two lowest spectral bands of the Floquet-Bloch
Hamiltonian H*(k) = —(Vx + ik)? + A2V(x) — E} (k € R?) in terms of the
ground state eigenpair, (£ ())“, pé (x)), of the atomic Hamiltonian, —A + A2 Vj.

In Section 9 we first derive energy estimates for the family of Floquet-Bloch
Hamiltonians H*(k), k € R2, restricted to the L2(R2 /A p)-orthogonal comple-
ment of these approximate Floquet-Bloch modes. We then use these estimates to
prove resolvent bounds on this subspace.

In Sections 10 through 15 we use the resolvent bounds on H A (k), for large A,
to obtain a (Lyapunov-Schmidt) reduction of the periodic eigenvalue problems for
H*(K) to the two-dimensional subspace span{ pé 4(X), pl’} g (X)}. The main steps
in the proof of Theorem 6.1 are (i) a proof of key’propertiés of Dirac points at the
vertices of the Brillouin zone, %}, (Theorem 10.1), and (ii) a study of uniform con-
vergence of the (rescaled) low-lying dispersion maps k — E i (k) to the dispersion
surfaces of Wallace’s tight-binding model (Propositions 14.1 and 14.3).

In Section 11 we characterize the low-lying dispersion surfaces as the locus of
points (€2,k) € R x R? satisfying det.#Z*(2,k) = 0. For each A sufficiently
large, (2,Kk) — M (Q,K) is an analytic map from a subset U C C x C?2 into the
space of 2 x 2 matrices, where .# A(£2, k) is Hermitian for real Q and k. In Section
12 we expand .#*($2, k) for large A, and in Sections 13 and 14 we introduce and
analyze a rescaling of det.#?(S2,k) to complete the proof of our main result,
Theorem 6.1.

Section 15 contains estimates that facilitate our control of the large-A perturba-
tion theory in terms of an intrinsic (exponentially small) parameter pj. This param-
eter has the form of an integral of the product of the atomic potential well Vy(x),
the atomic ground state p(’} (x), and the translate of pé (x) to a nearest-neighbor lat-
tice site in H. An important tool is a lemma in euclidean geometry, used to bound
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the ground state of —A + Vp(x) and to quantify the maximum allowable size of the
support of the atomic potential well in our proofs.

In the remainder of this section we discuss some definitions, notation, and con-
ventions used throughout the paper.

1.5 Notation and Conventions

We denote by Ay, = Zv; @ Zv, the equilateral triangular lattice generated by
the basis vectors:

V3 V3
1. =\ 2 =| 2
(1.8) A4 L \p) B
2 2

The dual lattice Aj; = Zk; @ Zk; is spanned by the dual basis vectors:

V3 V3
(1.9) k1:2n(3), k2:2n<3).
1 —1

Note that k;-vy, = 276844,. The Brillouin zone, %}, is the hexagon in Rﬁ consisting
of all points that are closer to the origin than to any other point in A; see Figure
1.1.

Denote by K and K’ the vertices of %, given by

0
(kl—k2)= (47[), K/E— .
3

All six vertices of %), can be generated from K and K’ by applying the rotation
matrix R, which rotates a vector in R? clockwise by 277/3 about the origin. The
matrix R is given by

(1.10) K =

W | =

_1 3
2 2
1.11 R =
(L.1D) 5
2 2
Note the relations
R*Vl = —Vjo, R*Vz = V] — V).

In Section 3 we make the choice of a diamond-shaped fundamental cell for the
honeycomb structure D shown in Figure 3.1. D contains two base points,

0 1
(1.12) Vi = ( ) vp = (ﬁ)
0 0

of the sublattices, A4 and A g, which comprise the honeycomb structure. The
location

1 (5
— _ 3
(1.13) xe =5 (_1)

marks the center of a hexagon and is a vertex of D.
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Additional frequently used notations and conventions are:

(1) Form = (my,m») € Z2, mk = mk; + msky and mv = myvy + mova.

) k= (KW, k@),

3) K will be used to denote a generic quasi-momentum.

(4) K, will be used to denote for a generic element of Ag U Af, = (K +
A7) U (K" + A}). These are the vertices of the Brillouin zone, %y, and
their translates by the dual lattice.

O E g or Ep denotes the energy of a Dirac point.

(6) x < y if and only if there exists C > 0 such that x < Cy. And x ~ y if
and only if x < y and y < x. We shall discuss below the dependencies of
constants C.

(7) (f, g) is an inner product, which is linear in g for fixed f, and conjugate
linear in f for fixed g.

(8) Let A denote an arbitrary lattice in the plane R%. For s € R, the space
H*(R?/A) consists of complex-valued and A-periodic functions (or dis-
tributions if s is negative) f on R? whose Fourier coefficients { f (m)},,e72

satisfy
1 egayn = 3 (1 + mP)| F@m)P < oo.
meZ?2
(9) ForF = (F1,..., Fy), witheach F; € % anormed linear space, we write

IFlly =372y 1 Fjllo

We study —A 4+ A2V (x) and its A j,-periodic variants. Here, A > 0 is a coupling
constant, assumed to satisfy A > A, for a large enough A,, and Vj(x) is a given
potential defined on R2. We write ¢, C, C’, etc., to denote constants that depend
on Vp. A discussion of the precise dependencies of constants is given in Section 17.
These symbols may denote different constants in different occurrences. As a result
of the above conventions, it is correct to assert, for example, A 10,—cA < p=ch

Finally, for relations involving norms and inner products in which we do not

explicitly indicate the relevant function space, it is to be understood that these are
taken in LZ(R?/Ap).

2 Floquet-Bloch Theory and Honeycomb Lattice Potentials

We begin with a review of Floquet-Bloch theory. See, for example, [11,37, 38,
49] and [3, 23,24, 34,53].

2.1 Fourier Analysis on L2(R/A)
Let {01, b5} be a linearly independent set in R?, and introduce the following:
Lattice: A = Zv| & Zvy = {m101 + mpvy : my,my € 1};
Dual lattice: A* = Z&, & ZRy = {m& = m1 8y + m2fs : m1,my € L},
Ki-v; =2n85, 1 <i,j <2
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Fundamental period cell: Q C Rz;
Brillouin zone: %, a choice of fundamental dual cell.

DEFINITION 2.1 (The spaces L?(R?/A) and L}).

(a) L?(R?/A) denotes the space of leoc functions that are A-periodic: f €
L?(R?/A) if and only if f(x + v) = f(x) for almostall x € R%, b € A,
and f € L?(RQ).

(b) le( denotes the space of Lﬁ)c functions that satisfy the pseudoperiodic
boundary condition f(x + v) = ¢k f(x) for all b € A and almost all
x € R?;ie., e kX f(x) € L2(R%/A).

For f and g in L2, f gisin L?(R?/A), and we define the inner product
by

(f.8)r2 =/ng(x)dx.

2.2 Floquet-Bloch Theory

Let Q(x) denote a real-valued potential that is periodic with respect to A. We
shall assume throughout this paper that 0 € C>(R?/A), although we expect
that this condition can be relaxed significantly without much extra work; see Sec-
tion 4.1. Introduce the Schrodinger Hamiltonian H = —A + Q(x). For each
k € R?, we study the Floguet-Bloch eigenvalue problem on le(:

H®(x:k) = E(k)®(x;k), x e R?,
O(x + v:k) = X" D(x;k), b€ A.

An LZ-solution of (2.1) is called a Floguet-Bloch state.

Since the k-pseudo-periodic boundary condition in (2.1) is invariant under trans-
lations in the dual period lattice A*, it suffices to restrict our attention to k € 4,
where 2, the Brillouin zone, is a fundamental cell in k-space.

An equivalent formulation to (2.1) is obtained by setting ®(x; k) = ¢’**p(x; k):

2.1) HEpxk)=EKpxk), xeR?* p(x+b)=pxk), veA,

where H(k) = —(V + ik)? 4+ Q(x) is a self-adjoint operator on L?(R?/A). The
eigenvalue problem (2.1) has a discrete set of eigenvalues E(k) < Ex(k) <--- <
Ep(k) < ---, with L2(R?/A)-eigenfunctions pp(x;k), b = 1,2,.... The maps
k € # — Ej;(k) are, in general, Lipschitz-continuous functions; for example,
see [3,37,38] and appendix A of [19]. For each k € 4, the set {p; (x;K)};>1 can
be taken to be a complete orthonormal basis for LZ(R?/A).

As k varies over &, Ej(k) sweeps out a closed interval in R. The union over
b > 1 of these closed intervals is exactly the L?(R?)-spectrum of —A + Q(x):
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spec (H) = (e spec (H(K)) . Furthermore, the set {®p,(x: K)}p>1 ke is com-
plete in L2 (IR?). For a suitable normalization of ®(x; k), we have

f(x) = (@p(-:K). () 22y Pp(x:K)dk = Jp )@y (x; K)dk,

where the sum converges in the L2-norm.

3 Honeycomb Structure

Denote by A;, C R? the equilateral triangular lattice specified in Section 1.5.
Recall the base points v4 and vp defined in (1.12).

Sublattices A4 and Ap and the honeycomb structure H: Generate the A-
sublattice A 4 and the B-sublattice Apg:

Ar=vi+A,CR? [I=A4B.
The honeycomb structure is defined to be
H=A4UAp CR?%
D, the fundamental domain for R?/Aj: Let D C R? denote the diamond-
shaped fundamental domain for the torus R% /A, shown in Figure 3.1. Choose D

so that vq4, vp € D. The point X, is the center of a hexagon (not a point in H) and
a vertex of the parallelogram D. For any F € L!(R?) we have

/xeRZ F(x)dx=/x€D Z F(x—v)dx.

veA

Nearest neighbors in H: For any fixed v € A4, the points in H \ {v} that are
nearest to v are the three points in the lattice A g given by

3.1 V+eq1, V+eqo, and v+ ey 3.

Here e4,,, v = 1,2, 3, are shown in Figure 3.1. Thus,
1

(3.2) esy = R"leq = RV! (ﬁ) ., v=123,
0

where R is the 120° clockwise rotation matrix; see (1.11).
Similarly, for any w € A p, the points in H \ {w} that are nearest to w are the
three points in A 4,

3.3) w+eg1, W+epo, andw + ep 3,

where eg ,, v = 1,2, 3, are shown in Figure 3.1. Note that e4,,, = —ep .
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o1

FIGURE 3.1. Diamond-shaped (shaded) fundamental domain D, con-
taining two base points of the honeycomb H: v4 = (0,0) and vg =
(1/+/3,0). Hexagon center X, is a point relative to which the honey-
comb potential V' is 120° rotationally invariant and inversion symmetric.
Indicated are: vectors eq,,, v = 1,2, 3, from a typical site in A4 point-
ing to its three nearest neighbors in A, and ep, = —e4,,, v =1,2,3,
from a typical site A p pointing to its three nearest neighbors in A 4.

4 Atomic Potential Well, Vj(x), and the Ground State: ( pé x), E (;l)

Fix a smooth potential well V(x) on R? with the following properties:

(PW1): —1 < Vp(x) <0, x € R?.
(PW>): support Vo C {x € R? : |x| < ro}, where r¢ < Feitical. Here,

0.33eq,1| = reritical < 0.5eq,1],

as determined in the geometric lemma, Lemma 15.1, and |e4 1| = 1/ V3
is the distance between nearest-neighbor vertices.
(PW3): Vy(x) is invariant under a ZT” (120°) rotation about the origin, x = 0.
(PWy): Vp(x) is inversion-symmetric with respect to the origin, Vo(—x) = Vp(x).

Consider the “atomic” Schrodinger operator —A + A2V, (x) in L?(R?). Let
p(’} (x), E}, respectively, be the ground state eigenfunction and strictly negative
ground state eigenvalue of —A + A2Vp(x). This eigenpair is simple and, by the
symmetries of Vj, pé (x) is invariant under a 60° rotation about the origin.

In addition to hypotheses (PW)—(PW4) on V(x), we assume the following two
properties of the Hamiltonian —A + A2V (x):
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(GS) Ground state energy upper bound: For A large, Eé, the ground state energy
of —A + A2V (x), satisfies the upper bound

“.1) E} < —cgA2.

Here, cg; is a strictly positive constant depending on Vp. A simple consequence of

the variational characterization of Eé is the lower bound E(’} > —|[VollLoA? =
—)2. However, the upper bound (4.1) requires further restrictions on Vj.

(EG) Energy gap property: For large A there exists cgyp > 0, a constant indepen-
dent of A, such that if ¥ € H?(R?) and (p}, V)22 = 0, then

4.2) (A +22VOV, ¥) r2m2) = (E§ + ca) 1V 117 2m2)-

We normalize p(’} (x) so that p(’} (x) > 0 for all x € R?, and

/ !p(}(x)!zdx = 1.
R2

Note that since Vo € L®(R?), pé € H?(R?). The ground state p())L satisfies the
following pointwise bound:
Cre= X x| > rg + co,

43 Ax) <
43 Po(x) = CaA, x| < ro + co.

Here, supp(Vo) C B(0,rp), and the ground state energy is assumed to satisfy
(GS). The positive constants cg, ¢1, C1, and C; depend on Vp, ro, co, and cg; see
Corollary 15.5.

4.1 Examples of the Energy Gap Property (EG)

(1) Let Vp(x) be a smooth potential well. For simplicity, assume that Vp has a
single nondegenerate minimum at x = 0: minycg2 Vo(x) = V5(0) = —1,
D2V(©0) = I, —1 < Vo(x) < 0, and Vy(x) — 0 sufficiently rapidly
as |x| — oco. Then, a simple argument based on the scaling y = A1/2x
indicates that for fixed N > 1 and A > Ay sufficiently large, the first N
eigenvalues of —A, + A2V (x) satisfy, to leading order,

(4.4) E} ==A*+Ah;, 1<j <N,

where h; is the j™ eigenvalue of the harmonic oscillator Hamiltonian
—Ay + %|y|2. Rigorous results are presented in [8,51]. In this case we
have that cg,, may be taken to be of order 1.

(2) Consider a piecewise constant cylindrical well defined by the potential
—1 for|x| < R,

45 V X) =
(43) o) 0 for x| > R.

(Strictly speaking, this choice of Vj does not satisfy the above smoothness
hypotheses, but it is not difficult to extend our conclusions concerning ¢g,p
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to the case where the discontinuity of Vj is smoothed out.) Solutions that
are regular at |x| = 0 and are decaying as |[x| — oo are of the form

™0y (r), where

w(r) = {aofm(w —IE[|x) for x| < R,

al,(|E|2|x]) for |x| > R.

Here, J,,,(r) and I,,,(r) are, respectively, the Bessel and modified Bessel
functions of order m > 0; Jp,,(r) is regular at r = 0, and /,,(r) decays
exponentially as r — oo. The eigenvalues E are given by solutions of

2 (gl Ry = YA ZIELLLAEM) oo
(4.6) Im(\/A2—|E|R) = T Im(|E|1/2)J’”( A2 —|E|R).

Consider the first two eigenvalues of —A + A2Vp(x). For A sufficiently
large, these eigenvalues are given, to leading order, by E = —A2+(p/R)?,
where p is either of the first two roots of J,,(p) = 0. Therefore, in this
Case Cgyp is of order 1.

4.2 Bounds on the Derived (Intrinsic) Small Parameter p )
Let

4.7 o = /kleo(y)lpé(y)pé(y +eq,1)dy.

PROPOSITION 4.1. There exist positive constants Ay, c1, and c¢3, all depending on
Vo, such that for all A > A,

(4.8) e~ <y S et
The proof is given in Section 15.

Remark 4.2. By hypotheses (PW{)—-(PW4) on V), the expression
[ RVwlrs@pbs+ ey
is independent of / € {A, B} and v = 1,2, 3, and is equal to p;.

5 H-Periodization of V, and the Bloch-Hamiltonian H* (k)

We construct a honeycomb potential by summing translates of Vj(x) over the
honeycomb structure:

(5.1 V(x):ZVo(x—v), H=A4UAgp.
veH

Since supp(Vp) C B(0, rp) (hypothesis (PW>)) we have that

5.2) if dist(z, A4 U Ap) > ro, then V(z) = 0.

We next remark on the symmetries of V(x), defined by (5.1). Let x. denote the
center of the fundamental hexagon, depicted in Figure 3.1.
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120° rotation with respect to x.: Given a point x € R?, its 27” counterclockwise
rotation about X, denoted X, satisfies

Xz —Xe = R*(x —x¢).
Inversion with respect to x.: Given a point x € R?, its inversion with respect
to X, denoted X ~, satisfies

Xy —Xe = —(X—X¢).

The following proposition on the symmetries of V(x), defined in (5.1), can be
easily verified.

PROPOSITION 5.1. V(x), defined in (5.1), is a honeycomb lattice potential in the
sense of [18]. That is, V is real-valued, smooth, Ay-periodic, and, with respect
to X, rotationally invariant by 120° and inversion symmetric: for all x € R?,

V(Xz) = V(xc + R*(X —Xc)) = V(x),

(53) V(Xs) = V(2xe —x) = V(x).
Let
(5.4) VAx) =A%) Vo(x—v) — E} forxeR?

veH

V*(x) is a Ap-periodic function on R2, and consequently it may be regarded as
a function on R2/A,,. By Proposition 5.1 (see also [18]), V*(x) is a honeycomb
lattice potential.

We next study the family of Floquet-Bloch eigenvalue problems:

H*y = Ey, ¥(x+v)=e*y(x), veAy
where H* = —A + V’l(x) =—-A+ 12V (x) - Eé,

where k varies over the Brillouin zone, %},. Equivalently, we may study, for k €
By,

5.5

H*(K)p = Ep, p(x+V)=p(x). vEAy,
where H* (k) = —(Vx + ik)? + A2V (x) — E¢.

An important role in the spectral properties of H A for large A, is played by the
function y (k), defined for k € C?2 by

(5.6) y(k) = Z eikeny — eik'eB’l(l + kv + eik~v2)_
v=1,2,3
Here, eg ,,, v = 1,2, 3, are defined in Section 3 and indicated in Figure 3.1.

LEMMA 5.2.
(i) Fork € R?, y(k) = 0 ifand only ifk € K+ A} ork € =K + A}.
(i) 120° rotational invariance: y(RK) = y(K), where R is the clockwise 120°
rotation matrix about k = 0; see (1.11).
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(iii) Recall that Wrg(k) = |y(K)| = |1 4+ e'*V1 + e'*V2| for k € R2. For
K, € (K+ Aj) U (=K + A}), we have the expansion

3
| Wrp (Ko + 1) = ZIICI2 + Y €™ Fom(k)

|m|=3
fork € R? and |k| < ¢, where Fo y are smooth functions.

PROOF.

(i) For k € RZ2, the three points 1, e!*V1, and ¢?*V2 lie on the unit circle, and
1 + e'*V1 4 ¢iKV2 = () if and only if their center of mass is 0. Hence, either
(a) e’*V1 = ¢ and €’¥Y2 = T or (b) ¢’*V' = T and ¢’¥V2 = 1, where T =
e2mi/3 = —% +1i \/g ,T = e~ 27/3 gre the nontrivial cube roots of unity. Consider
case (a); case (b) is handled similarly.

For case (a): k = (k(l),k(z)) satisfies kK - vi = ZT” mod 27 and kK - v, =
—ZT” mod 2. That is,

LOY3 ol _ 2w

— 4+ 2mqm, —T+2m2ﬂ,

2 3 2 2
where m and m, are integers. Therefore, KM = 2 (my + m»)/+/3 and K@ =
47” + 2w (my —my) or equivalently k = K + m1k; + msk;, where kq, kp, and K
are displayed in (1.9) and (1.10).

(ii) Let R denote clockwise rotation by 120°. Then, since the action of R* on
the eg ,, v = 1,2, 3, merely permutes their ordering, we have y(Rk) = y(k).

(iii) Taylor-expanding e ?K¢B.1y(k) = 1 4 e'kV1 4 ¢'kV2 (see (5.6)) about K,
we find at leading order

o1 (K+)ep YK +k) =i[tlk-vi) +T(k-v2)] + O(k)?)

(Y3 ol 2
2

_ _g (k1 —ik2) + Ok P).

Therefore, for k € R? with || small, | Wrs(K + k)|? = |[y(K + «)|? = %|lc|2 +
O(|k|?). This completes the proof of the Lemma 5.2. O

6 Main Results

In this section we state our main theorem on —A + A2V/(x) in the regime of
strong binding (A > 1). We also state two corollaries on spectral gaps and pro-
tected edge states for perturbed honeycomb structures. Throughout, we assume
hypotheses (PW)-(PW,) on Vy(x) and hypotheses (GS) and (EG) on the ground
state energy and spectral gap for —A + A2V (x). These were delineated in Sec-
tion 4.

THEOREM 6.1 (Low-lying dispersion surfaces in the strong binding regime). Let
E(’} denote the ground state eigenvalue of the atomic Hamiltonian, —A + A*Vj.
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Let V(X) denote the Ay -periodic potential obtained by summing translates of Vi (X)
over the honeycomb structure, H = (v4 + Ap) U (Vv + Ap); see (5.1). We con-
sider the family of Floquet-Bloch eigenvalue problems for the periodic Schrodinger
operator —A + A2V (x), depending on the quasi-momentum k € R?; see (2.1).
Fix Bmax, a nonnegative integer. There exist positive constants A. > 0 (suffi-
ciently large), C >0, and c,cxx > 0, depending only on Vy(x) and Bmax, such
that for all A > A the following hold.:
(1) For each k € R2, there are precisely two eigenvalues E of the operator
—(V +ik)? + A2V(x) on L*(R?/Ay,) satisfying

E} —Cpy < E < E} + Cpy.

Here, (Eé, pé) is the ground state eigenpair of —A + AV and

pr = A2 / Vo) Pt P (y + ea)dy

satisfies the bounds e='* < p; < e~2*, provided in Proposition 4.1.

(2) For each k € R2, we denote the two eigenvalues in part (1) by E*(k) <
E _)f_ (K). These are equal to E1 (k) and E»(K), the first two band dispersion
functions of —A + A%V,

(3) For k € BBy, the graphs of kK — Ei(k) intersect precisely at the six
vertices of the regular hexagon %y, at the shared energy level E IA)’ The
pairs (K, E f)), where K, varies over the vertices of %y, are called Dirac
points of —A + A2V

In particular, for each vertex K, of By, the operator —(V + iK,)? +
A2V (x), with periodic boundary conditions, has a double eigenvalue

Eﬁ = Eé + pxhl, ‘hé} < e,

(4) Convergence of dispersion surfaces: Let Wrg(k) = |1 4 e'kV1 4 eikv2|;
see (1.4) and Lemma 5.2.
(a) Low-lying dispersion surfaces away from Dirac points: For all k €
R2 such that Wrg (k) > 1_1/4,

61 [PUEL®) — ER)/ps — [ Wrs®]}| < e, 1Bl < B

(b) Low-lying dispersion surfaces near Dirac points: For any vertex K,
of Py, and all Kk satisfying 0 < |k — Ku| < Cox:

08 {(EL (&) — EB)/ps — [£ Wi )]} < e H k=K' 1 8] < Bunan.

Theorem 6.1 is a consequence of Proposition 14.1 and Proposition 14.3.
We furthermore establish convergence of the scaled resolvent of —A + A2 V/(x)
to that of the tight-binding Hamiltonian.
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THEOREM 6.2 (Scaled convergence of the resolvent). Let H A= A+ A2V(x) —
El’x) and introduce the scaled operator H* = HA/,OA. Further, let H* = H* }Lzz
k

Hlf(Rz/Ah) — Lﬁ(Rz/Ah). Define the mapping gllﬁ: C? - Lﬁ:
(471 A %A A A
(6.2) (,BB) = I [aBi| =g PL(X) + ap Pg (%),

where PIAk, 1 = A, B, defined in (8.3), denote approximate Floguet-Bloch modes,
defined b’y a weighted sum of translates in A 4 (respectively, Ap) of the ground
state <p())L of Vo.

Then, for any fixed z € C \ R,

63)  [(H =) = (Hin®) D7 () oz S e
uniformly ink € %y, for A > A .

Theorem 6.2 is proved in Section 16. In the following two subsections we dis-
cuss consequences of Theorem 6.1.

6.1 Spectral Gaps for 2.7 -Breaking Perturbations
COROLLARY 6.3. Let V(x) be in the class of honeycomb potentials studied in
Theorem 6.1. Consider the perturbed honeycomb Schrodinger operator

(6.4) HM = —A 4+ 22V(x) + W (x),

where A% > 0, 1 is a real parameter and W is such that the following hold:

(1) W(X) is real-valued and Ay, periodic.
(2) W(x) breaks inversion symmetry. In particular, we take W(X) to be odd
with respect to X;:

(6.5) WEy) = -W(x),
where X s is defined in Section 5.
(3) We have
(6.6) o} = (ot wot) £ 0,

where <I>)1L is defined in Definition 7.3 in Section 7.

Then there exists a large constant A > 0 such that for all A > A the following
holds: there is a constant 1, > 0, where 1y is sufficiently small and depends on A,
V, and W such that if 0 < || < 1, then the spectrum of H*" has a gap with
energy E é in its interior.

PROOF. As shown in Corollary 10.2, Dirac points (K., E I%) exist at the vertices

K. of %, for all A sufficiently large. For n small, let k — E :(S’")(k) denote the

dispersion maps that are small perturbations of the maps k — E g -0) (k) =FE i (k).
The proof of Corollary 6.3 is based on the following two steps.
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(1) Claim: There exists a constant A, such that for all A > A, the following

6.7)

holds: There exist small constants ¢; > 0 and n; > 0 such that for all
0 < |n| < n1 and all k € B satisfying |k — K,| < ¢1A~!, where K,
varies over the vertices of %y,

A'y
ESTK) = Ef + /| Pk — K. 2 + (041202 + ()
x (1 4+ O0(k—Ki| + |n]).

The proof of this claim is via a Lyapunov-Schmidt reduction strategy
very similar to that in appendix F of [17]. The essential difference is
the need to separately treat quasi-momenta within and outside a small A-
dependent neighborhood of vertices K, of #},. Expand solutions of the
Floquet-Bloch eigenvalue problem for H**" in the form ¥ = o1 +
ardy + 17] where ¢;(x) = e_"K'XCD;-l, j = 1,2 are Aj-periodic, and
Y L span{¢1, ¢2}. A coupled system for (o1, a2, 1) is obtained by pro-
jecting the eigenvalue problem onto span{¢i, ¢»} and its orthogonal com-
plement. The projection onto span{¢i, ¢} gives a system of two equa-
tions for a1 and o3, which depends on J To construct the mapping
(o1, 00) J[al,az] requires smallness of

|k — K| ” Vx(—(V + iK*)z + A%V - El)g)_l Py HLZ(Rz/Ah)—>L2(R2/Ah)’

where P is the orthogonal projection onto span{¢;, ¢»}+. The energy
estimates of Section 9 and in particular (9.49) in Proposition 9.11 below
imply that this quantity is bounded by C |k — K,|A for some C > 0. It
follows that there exist small positive constants c¢; and 17 and a large con-
stant A, such that for A > A,, |k — K, | < ¢;A~!, and |5| < 11, we obtain
a reduction to a two-dimensional problem, which yields (6.7).

By (6.7), we can choose 0 < ¢» < ¢; and 0 < 12 < 17 such that for
all K, varying over the set of vertices of %}, and all 0 < |n| < 1, and all
k € %), such that |k — K,| < c,A7!, the energies indicated by the maps
k — Eg’")(k) lie outside the interval about Eﬁ: (Eg — %ﬁkr), Eg +

f
300n).

(2) Consider now quasi-momenta k in the compact set

€l M) ={ke By |k—Ki| > cd™!

where K, varies over the vertices of %’h}.
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First let n = 0. Theorem 6.1 implies that for such quasi-momenta, the
rescaled dispersion maps k ,ui k) = (E:(é’o) k) — E g) /pj are uni-
formly close to the Wallace dispersion relation & Wrg(K) for A > A, suf-
ficiently large; see (6.1). In particular, for k € €(cz, 1),
A,0 —
[ELD M) = (Ep + pa Wra()| < pre™?,

and therefore, for A > A, (if necessary, take A, to be larger than our earlier

choices),
(2.0) Ao L :
6.8 E k)— Ef| > = min  Wrg(kK) > Cp; /A > 0,
(6.8) ‘ + (k) D} = Zpkke‘é’(cz,)L) B(K) > Cp;/

since within %}, the Wallace dispersion relation yields energy 0 only at
the vertices of %, (Lemma 5.2).

Finally, we turn to the perturbed dispersion maps k +— E g’")(k) on
the compact quasi-momentum set €(cz, A). By perturbation theory, about
the eigenvalues Eg’o) (k) (k € €(cz,4)), there is a small and positive
constant g such that for 7. (1) = gopy > 0, with A > A, large enough,

1
6.9) [ESP M) — EB| = S Cpa/

forall 0 < |n]| < n«(A) and all k € €(cz, A).
By (6.8) and (6.9) we have for allk € %, all L > A,,and all 0 < n < 1, (A):

1 1
(6.10) !Eg’")(k) — Eg! > cx(A, 1) = min {ECpA, Eﬁw} > 0.

Under the above conditions on A and 7, the energies indicated by the maps k +—
Eg’n) (k), where k varies over the full Brillouin zone %y, lie outside the open
interval about Eﬁ: (El'g — Cxs El'g + Cx).

The proof of Corollary 6.3 is now complete. O

6.2 Protected Edge States for Rational Edges

Edge states are time-harmonic solutions of the Schrédinger equation, which are
propagating parallel to a line defect (edge) and are localized transversely to it; see
the schematic in Figure 6.2. In [16] (see also [15]), we develop a theory of pro-
tected edge states for honeycomb structures, perturbed by a class of line defects
(domain walls) in the direction of an element of Aj;. We first present a terse sum-
mary.

Recall the spanning vectors of the equilateral triangular lattice, vi and v;; see
(1.8). Given a pair of nonnegative integers a; and b; that are relatively prime,
let vy = aivy + b1va. We call the line Ro; the vi-edge. Since a; and by are
relatively prime, there exists a second pair of relatively prime integers, a and b,
such that a1b5 — azb; = 1. Set by = asvq + bavs.

It follows that Zv{ @ Zv, = 7Zvy & Zv, = Ay. Since arby — ab; = 1,
we have dual lattice vectors K1, KRy € AZ, given by K1 = byk; — azk; and
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Zigzag edge

FIGURE 6.1. Bulk honeycomb structure, H = (A + Aj) U (B + Ap).
Top panel: Zigzag edge, v; = vy, K = ky, Rvy = {x : k, - x = 0}
(blue line). Shaded region is the fundamental domain of cylinder X7z
corresponding to the zigzag edge. Bottom panel: Armchair edge, v; =
Vi + Vo, K = ky — ky, R(Vl +V2) = {X : (k1 —kz) X = 0}
(blue line). Fundamental domain of cylinder X 4¢ corresponding to the
armchair edge is shaded.

FIGURE 6.2. Edge state propagating (plane-wave-like) parallel to a
zigzag edge (Rvy) and localized transversely to the edge.

Ry = —b1k1 + aiky, which satisfy Ky - vy = 218y ¢, 1 < £,¢' < 2. Note that
7R ® 2Ry = ZKky & Zky = AZ. The choice v = v; (or equivalently v5)
generates a zigzag edge and the choice b1 = v + v, generates the armchair edge;
see Figure 6.1.

Introduce the family of Hamiltonians, depending on the real parameters A and 4:

HXD = _A 4 A2V(xX) + 8k (8K - X)W (X).

H®*0 = _A 4+ A2V(x) is the Hamiltonian for the unperturbed (bulk) honeycomb
structure, studied in Theorem 6.1. Here, § will be taken to be sufficiently small,
and W(x) is Ay-periodic and odd with respect to the center, X, i.e., W(2x, —X) =
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—W(x). Thus, W breaks inversion symmetry. See Corollary 6.3. The function
k(¢) defines a domain wall. We choose k to be sufficiently smooth and to satisfy
k(0) = 0and k() — *koo # 0as & - +o0, e.g., k({) = tanh({). Without loss
of generality, we assume koo > 0.

Note that H*%) is invariant under translations parallel to the v;-edge, X >
X + vy, and hence there is a well-defined parallel quasi-momentum, denoted k.
Furthermore, H *+%) transitions adiabatically between the asymptotic Hamiltonian
H*®) = g@.0 _ s W(x) as K5 - X — —oo to the asymptotic Hamiltonian
H_ﬁ_’l’s) = HAO 4 e W(x) as K, - x — oo. The domain wall modulation of
W(x) realizes a phase defect across the edge Rv;. A variant of this construction
was used in [14, 17] to interpolate between different asymptotic one-dimensional
dimer periodic potentials.

We seek v1-edge states of H*%) which are spectrally localized near the Dirac
point, (K, E lk))’ where K, is a vertex of %;. These are nontrivial solutions W,

with energies £ ~ E ﬁ of the k|-edge state eigenvalue problem (EVP):

(6.11) H*)v = Ev,
(6.12) W(x + 0;1) = e FIP(x),
(6.13) [U(x)] - 0 as|RKy-x| — oo,

for k| ~ K, - v1. The boundary conditions (6.12) and (6.13) imply, respectively,
propagation parallel to, and localization transverse to, the edge Ru;.

The edge state eigenvalue problem (6.11)—(6.13) may be formulated in an appro-
priate Hilbert space. Introduce the cylinder ¥ = R?/Zuv;. Denote by H*(Z), s >
0, the Sobolev spaces of functions defined on X. The pseudo-periodicity and decay
conditions (6.12)—(6.13) are encoded by requiring ¥ € H ;:” X)=H /in for some
s > 0, where

k
Hku = {f : f(X)e_l%ﬁl'X € HS(E)}-
We then formulate the k-edge state EVP (6.11)—(6.13) as
(6.14) H*DW = Ew, e H (D).

Theorem 7.3 and corollary 7.4 in [16] (see also theorem 4.1 of [15]) formu-
late general hypotheses on the bulk honeycomb structure, V(x), the domain-wall
function, k(¢), and the asymptotic perturbation of the bulk structure, W(x), which
imply the existence of topologically protected v;-edge states, constructed as non-
trivial eigenpairs § > (W3, E¥) (6.14) with ky = K, - vy, defined for all [§] suffi-
ciently small. This branch of solutions bifurcates, for § # 0, from the intersection
of spectral bands at Ep.

The key hypothesis is a spectral no-fold condition associated with v-edge.
In [16], this condition was verified for the zigzag edge, for general honeycomb
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Schrodinger operators, —A + eV, with low contrast; in particular, where
eVig = 8/ e_i(k1+k2)'XV(x)dx >0
D

with |e| sufficiently small.

The main result of the present article, Theorem 6.1, immediately implies the
validity of the spectral no-fold condition for all A > A, sufficiently large, and
hence the following:

COROLLARY 6.4 (Protected edge states for rational edges). In the strong binding
regime, there exist topologically protected edge states for the large class of rational
edges presented in Remark 6.5 below.

We next present a brief explanation of the spectral no-fold condition. Given an
edge in the direction of b; € Ay, there is an associated dual slice of the band
structure, which passes through a chosen Dirac point (K., Ep). The dual slice is
the set of curves & € [—%, %) — Ep(Kie + £R2), b > 1, where K - b = 0.
The significance of the dual slice is that the edge states constructed in [16], which
are propagating parallel to and localized transversely to v, are superpositions of
Floquet-Bloch modes with the quasi-momenta of the dual slice. In the current
setting, we verify the spectral no-fold condition for the two lowest spectral bands
of —A + A2V(x) for A > A, sufficiently large. The spectral no-fold condition
states that the line £ = Ep intersects the pair of dispersion curves & € [—%, %) —
E1(Ki + £R2), E2(K, + £R»), only at Dirac points.

Figure 6.3 illustrates such pairs of dispersion curves, associated with several
edges: zigzag, armchair, and (2, 1) and two choices of the coupling constant, A:
A = 1l and 5. For A = 1, the no-fold condition holds only for the zigzag edge, but
it holds for all three types of edges if A = 5.

Remark 6.5.

(1) At present, the results in [16] are stated for edges, Rv, for which & +—
K, + £R,, |§]| < %, passes through only one independent Dirac point.
There are edges for which the dual slice passes through two independent
Dirac points, i.e., where £ — K, + £R5, [§] < % intersects both lattices
K. +AZ and K/, +AZ. We are currently working on extending the methods
of [16] to this case. See [15] for a discussion and numerical simulations of
the multibranch bifurcation from the intersection of bands in this case.

(2) Our results imply that for a large class of edge directions Ugm,n) =mv] +
nvy, where m and n are relatively prime integers, there is a threshold
Ax(m,n) such that, for all A > A, (m,n), the spectral no-fold condition
holds and there exist edge states [15].

(3) As discussed above, in [16] we prove the existence of zigzag edge states
(ngm,n) = Ugl,o)) for a class of line defect perturbations of Schrodinger
operators with weak honeycomb potentials: —A + eV} (x), |¢| < 1, satis-
fying the additional condition V1,1 > 0. This analysis also suggests that
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Zigzag Armchair (2,1)

40
30

@20}
10

FIGURE 6.3. Band dispersion slices of —A + A2V along the quasi-

momentum segments: K + £R,, [§] < % for K, = k, (zigzag),
K = —k; + Kk, (armchair), and K, = —k; + 2k, ((2,1)) for
A = 1 (top row) and A = 5 (bottom row). Numerical computa-

tions presented are for the simple trigonometric polynomial potential
V(x) = cos(k; -x) 4+ cos(kz - x) 4+ cos((k; + k) - x) satisfying V1,1 > 0,
which is not of the form of the potentials introduced in Section 5. Red
dashed lines denote the Dirac point energy Eg. Top row: A = 1.
Spectral no-fold condition holds for the zigzag edge but not the arm-
chair and (2, 1)-edge. Bottom row: A = 5. Spectral no-fold condition
holds for all three edges. Insets between dispersion slice plots indicate
zigzag, armchair, and (2, 1)-(green) quasi-momentum segments (one-
dimensional Brillouin zones) parametrized by & for 0 < & < 1.

if eV1,1 < 0, then there are edge quasi-modes, whose energy slowly leaks
into the bulk. By appropriate choice of atomic potential well Vp(x) we may
arrange for V(x) such that €V1,; < 0; see appendix A of [16]. For honey-
comb potentials V' arising from such atomic potentials, Corollary 6.4 sug-
gests that there is necessarily a transition from a “leaky” resonance mode
to a truly localized mode along the edge for A above some finite 2.

7 Dirac Points

In this section we summarize results of [18] on Dirac points of Schrodinger
Hamiltonians, Hy = —A + V, where V is a honeycomb lattice potential. In the
current context our Hamiltonian is H* = —A + A2V(x) — E(’}, with V' defined in
(5.1).
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Introduce the rotation and inversion operators, acting on functions:
Z1f1(x) = f(xc + R*(x = xc)),
IfIx) = f(xe = (x—%¢)) = (2% —x).

Let K, denote any vertex of the Brillouin zone %y, and let f be a K, -pseudo-
periodic function. Since R* maps A, to itself and RK, € K, + AZ, we have

ALNx+V) = (e + R*(x=xc) + R*v) = KV f(xe + R*(x = %)
(72) = "R f(xe + R*(x —x.)) = "™V f(xe + R*(x — X))
= "7 f1(%).
In analogy with proposition 2.2 of [18], we have the following:

(7.1)

PROPOSITION 7.1. Let Ky be any of the six vertices of the Brillouin zone, %y,
Then, H* and # map a dense subspace of Lﬁ* to itself. Furthermore, restricted
to this dense subspace, the commutator [H*, Z] = H* % — % H* vanishes. In
particular, if ¢ (x, K,) is a solution of the K -pseudo-periodic eigenvalue problem
(5.5), then Z[p (-, K»)|(X) is also a solution of (5.5).

Since Z has eigenvalues 1, t, and T, it is natural to split L2 . the space of K-
pseudo-periodic functions, into the direct sum

(7.3) Ly, =Lg, 1®Lg, . ®Lg, 7

Here L12<*, o»Whereo = 1,7, 7and 7 = exp(zT’”), denote the invariant eigenspaces
of %#:

(7.4) le(*,a = {g € L%(* CHg = ag}.

We also introduce Hg , s > 0, the subspace of functions f € Lz*, such that
e KX £(x) € H?(R?/Ap). The spaces Hf&*’g, fors > 0ando = 1,1,7,
subspaces of L%(” o are defined analogously.

Proposition 7.1 and the decomposition (7.3) imply that the L%*-Floquet-Bloch

eigenvalue problem may be reduced to the following three independent LIZQ, =
eigenvalue problems:

(—A+ V)W =EV, Velg ,.0=11T7
PROPOSITION 7.2. Let f € Lg_ . Then,

(€0 A [fIx) = f(2xe —x) € Lig, =,

where € denotes complex-conjugation and . is the inversion with respect to Xc,

defined in (7.1).
PROOF. Let S = % o .# and suppose f € L%(* - Then, forany v € Ay,

[S1x+ V) = f(2xe —x—V) = (2% — x)e KV = KV [§ f](x).
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Hence, Sf € Lf(*. Furthermore,
Z[Sf1(x) = (Sf)(xc + R*(X —Xc)) = f(2xc — [Xc + R*(x —x¢)])

= f(Xe + R*[2xc —x —xc])]) = ©/(2xc —x) =T S[f](x).
which completes the proof. U

We next give a precise definition of a Dirac point of a honeycomb Schrddinger
operator; see [18].
DEFINITION 7.3 (Dirac point). Let V(x) be smooth, real-valued, and A ;-periodic
on R2. Assume, in addition, that V is inversion symmetric with respect to X,
and rotationally invariant by 120°; see (5.3)." That is, V is a honeycomb lattice
potential in the sense of [18]. Consider the Schrodinger operator Hy = —A + V.
Denote by %), the Brillouin zone. Let K, € %}, be one of the vertices of the
Brillouin zone. The energy / quasi-momentum pair (K, Ep) € %) x R is called
a Dirac point if there exists b, > 1 such that:
(1) Ep isan L%* -eigenvalue of Hy of multiplicity 2.
(2) The eigenspace for the eigenvalue Ep, Nullspace(Hy — Epl), is equal
to span{®, ®,}, where ®; € L%(* ; 1s a solution of the Li* .-Floquet-
Bloch eigenvalue problem and ’ ’

G2(x) = (¢ 0.7) [®1](x) = ®1(2xc — %) € L, 7

T
is a solution of the LIZ(* ’?—Floquet—Bloch eigenvalue problem. We may take
(®a’¢b>L12( :Sab,a,b: 1,2.
(3) There exist constants v,. € C, v,. # 0, and {o > 0, Floquet-Bloch eigen-
pairs
k> (©p, 11 (k). Ep, 11 (k) and K> (P, (x:K), Ep, (k).

and Lipschitz-continuous functions e; (k), j = b4, by + 1, where e; (K)
= 0, defined for |k — K, | < o, such that

Ep,+1(k) — Ep = +|v, |k — Ki|(1 + ep, +1(K)),
Ep, (k) — Ep = —|v; |k — K,[(1 + e5, (K)).
In particular, |ej (K)| < |k —Ki|, j = bu. by + 1.

Remark 7.4.

(1) The quantity |v,.| is known as the Fermi velocity; see, for example, [43].

(2) In [18] we prove that parts (1) and (2) of Definition 7.3 imply part (3),
although v, may be 0. We then show that for generic honeycomb lattice
potentials, v,. # 0. No assumptions are made on the size (contrast/depth)
of the potential.

T [18] we implicitly assume that x, = 0 but, with obvious changes, the discussion of [18]
applies here with x. given by (1.13).
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(3) Note, from proposition 4.1 of [18], that v is given in terms of the Floquet-
Bloch modes ®; and ®, by the expression

1
(1.5) vy = 2<<1>2, Tax]c1>1>.
1

(4) Suppose (K, Ep) is a Dirac point that has a corresponding eigenspace
span{®1, ®,}, where ®; € Li,r and ®, € L% . Then, since % com-

mutes with —A + A2V, and since the quasi-momenta RK and R?K yield
equivalent pseudo-periodicity to K, we have that (K, Ep), (RK, Ep), and
(R?K, Ep) are all Dirac points. Moreover, since V is real-valued, com-
plex conjugation yields that (K, Ep), (RK', Ep), and (R?K’, Ep) are all
Dirac points. So to establish that there are Dirac points located at the six
vertices of %y, it suffices to prove this for a single vertex of %j,.

8 Approximation of Low-Lying Floquet-Bloch Modes for Large A

In this section and in Section 9 we assume that supp(Vy) C B(0, r¢), where
0<rg< %|eA,1| x (1 — &g) for some small given §¢9 > 0. The stricter constraint
(PW3) on the size of supp(Vp) in the statement of Theorem 6.1 is used in the
analysis starting in Section 10.

Starting with the ground state eigenfunction pé (x), we define

phx) = e **pt(x), keC? xeR2

For now, assume |Jk| < Cj, where Cj is a fixed positive number. (We shall later
further constrain k by |Sk| < A71.) Since pé (x) satisfies the exponential decay
bound (see Corollary 15.5) pé (x) < e Ml x| > Ry, for A larger than some
constant depending on Cy, and pl’} (x) is also exponentially decaying.

For fixed k € R? we have

[~ (Vs + ik)? + A2 Vo(x) — E¢|pi(x) = 0

and
@D (Y + iR+ AV ¥ 2@2) = (Ed + ca) 1V 117

. ) R2) = 0 gap L2(R2)
for ¥ € H2(R?) such that {p;*, )22y = 0 by property (EG) in Section 4.

Introduce the recentering of pé atve H= A4 UAB,

Prs®) = pr(x—9),
and define the A j-periodic approximate Floquet-Bloch amplitudes:
82 ply= Y P =D e OVpix—9), =48,
veAy veA;

and the k-pseudo-periodic approximate Floquet-Bloch modes:

(8.3) PliA(X) = eik'xpl’(l,A(x), PliB (x) = eik'xpé’B(x).
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Remark 8.1. In Theorem 10.1 we construct eigenstates of —A + A2V, A large:
dD’l1 (x) near Pé’A(x) = eiK'pr)é’A(x) € LIZ(’r
and

<1>éL (x) near Pé’ p(x) = eiK'XPﬁ, p(x) € LIZ(,?'

We find it useful to let the mapping k +— pé’ ; depend on a complex quasi-
momentum k, varying in an appropriate domain in C2. Corollary 15.5, to be
proved later, shows that pé (x) satisfies the exponential decay bound pé (x) <
e~ x| > rg 4+ co. The function pé’l(x) is Ap-periodic on R?, so it may
be regarded as a function on R%/Ay,.

Furthermore, by the exponential decay of pé (x), for all A larger than a constant
that depends on Ci, the series (8.2) converges uniformly (for bounded x) to an
analytic function:

k — p; from {k € C? : |3k| < Cy} to H*(R?/Ap).

This property is used in Section 14.2, where we obtain derivative bounds on
the rescaled dispersion maps near Dirac points via Cauchy estimates for quasi-
momenta k in a narrow strip, {k € C? : |Jk| < ¢A~1}, where ¢ is a small constant.

We state further consequences of exponential decay of pé. For |Jk| < Cq,

@ sl 2@eya, — 1 < I =A4.B,

835 pis Phr)a@eja, — 01| S ¢4 T =AB,
86 | pi;—rili2z, SN veAs, I =AB.
Here, Z,, for v € Ay, is the set of points in R? that are at least as close to v as to
any other pointin Aj.
For |Jk| < C1, we claim that
A A _ .1 N\2 A A
HH (k) pi 1 ” = H [-(Vx +iK)" + V*®)]pi ; ”LZ(RZ/Ah)

(8.7)
<e“* I =AB.

Here, VA*(x) = A2V (x) — Ef) = A2Y g Vo(x —v) — El)“); see (5.4). The
bound (8.7) follows from exponential decay of pl'}, a consequence of Corollary
15.5 (exponential decay of pé (x)), and the observation

H*(K) pl5(x)

= [~(Vy +iK)? + V@) pfo(x) =
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- [—(vx +ik2 + AVox—9) — Ef + Y APVox— V)]pé(x ~9)
veH\{v}

88) = > AVp(x—v)pi(x—9).
veH\{¥}

Let K € R denote a generic, real quasi-momentum and assume |k — K| <AL
Then, using the exponential decay of pé, we obtain

(8.9) Ipks—pk I 527"

The following lemma facilitates our working with a nearly orthogonal decom-
position of L2(R?/A},) in terms of span{p{}l : 1 = A, B} and span{p% I 1 =

A, B} provided the difference |k — K| is sufficiently small.
LEMMA 8.2. Introduce the orthogonal projection
Myp : L2(R%?/Ay) — Hap onto
Hap = {V € L2(R?/Ay) : (p%il, ¥)=0forI = A, B},

the orthogonal complement ofspan{p% I I = A, B} in L>(R?/Ay,).
Assume K € R2 and |k — K| <AL
(1) Then, for F € L?(R?/A},), we have that
F=0 < TMupF=0 and (p}, F)=0. [=AB
(2) Any ¥ € H*(R?/A},) may be expressed in the form
(8.10) v= > oapl+V,
I=A,B

where € ijB and oy, ap € C.

PROOF. To prove part (1), assume T4 F = 0 and (p%l, F)=0,1=A4,B.
Then F =) ;_ A.BOI p%’ I Taking the inner product with pé’ 4 and pé’ B yields
the equations

3 (ki s =0 for 7 = 4.5
I=A,B ’
The latter may be rewritten as
A A A A A
CAVIDS Rpk,]’pi,l) +{[rg, - pK,J]’pKI)]O” =0, /=48
I1=A,B

By (8.5), the first inner product within the square brackets is equal to 8;7 +
O(e~c*), and by (8.9), the second inner product is @'(A~1). It follows that oy = 0,
I = A, B. Hence, F = 0.
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To prove part (2), note that (8.10) holds if and only if

<p%,J’w)= Z (P%,J’Pé,z)al for J = A, B.
I=A,B

By (8.5), (p% ; Py ar = 8;.1 + O(e=*), and we may solve for a4 and ap
for A sufﬁcien’tly large. This completes the proof of Lemma 8.2. U
9 Energy Estimates

Throughout this section, we follow the convention (see Section 1.5) that in rela-
tions involving norms and inner products for which the relevant function space is
not explicitly indicated, it is to be understood that these are taken in L2(R?/Ap).

The following result is the point of departure for our energy estimates and resol-
vent bounds.

LEMMA 9.1. Fix I = A or B. Assume that supp(Vy) C B(0, rg), where 0 < ro <
%|eA,1| X (1 = &¢) for §o > 0 and fixed.

Suppose ¥ € H*>(R?/Ay) and k € R2. Assume that supp ¥ C {x € R2/Ay, :
dist(x, Ay) < ro} and that

(P 1. V)ia@e/a, =0
Then,
([=(Vx + K + VA V) 2@eyag = IV 72@2)a,):
PROOF. Fix I = A or B and let Y*(x) = ¥/ (x)1{jx—y, |<ro}- Then,
wﬂ e H*(R?), supp wﬁ Cci{xeR?:|x—vy| <rol,
v =) V-,

veEAy

since the discs {x € R? : |x — v| < ro}, where v € A; are disjoint subsets of R?;
see Figure 1.4. Using the A j,-periodicity of V*(x) we have

([~(Vx + iK)? + VA@W. V) 2®2)a,) =
([~(Vx + iK)? + V2@ H v 2wy,

We shall make use of the following consequence of (8.1): Let n € H?(R?)
satisfy (pé,w M r2m®2) = 0. Then,

.1) ((_(Vx + ik)2 =+ AZVO(X — V) — E(/})’?» n)LZ(Rz) = Cgap”’?”iZ(Rz)-
Recall that by hypothesis on i and the A j-periodicity of pé 1T

(pé,l’ wﬁ>L2(R2) = (plﬁl’ 1/I)LZ(JR%Z/A;,) =0

To make use of (9.1), we should compare (pl'},w , Wﬁ>L2(R2) with (pé I wﬁ)Lz(Rz).
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By (8.6) and the Cauchy-Schwarz inequality

(Pt - Vfﬁ)m(uv) —(pie s, w#)L2(R2)‘ < e MYt we).

Hence,

(9.2) Py, V) 2@y S €MV F 2Ry
Recall that IIp{},v, Iz2@®2) = I1p¢ 12 ®2) = 1. We may write
93) vE=apiy, + 95 (pky, VH) gy = 0.

where y# ¢ H2(R2) and « € C. From (9.2) we have || < e_CA||1ﬁ#||L2(R2) and
therefore

9.4) 1™l 2@y = (1= e~ M [V 2@2)-
Since (pjt, . V™) 12®2) = 0, (9.1) and (9.4) imply

([=(Vx +iK)? + A2Vo(x — v1) — EGJy ™ %), o >

V1 = ScasplVF 12 g
However, using (9.3) and the fact that
[—(Vx + k)% + A2 Vo (x — V1) — E¢]pit,, = 0.
we have
([=(Vx +iK)? + X2Vo(x = vp) — Eg v ™, v ™), o) =
([=(Vx + iK% + 22Vo(x = vi) = E§JYF v%) o oy
Hence,
([~ + 1K) + 32V~ v1) — EL0E )2y = 5 ol 1y

Moreover, on supp ¥# C B(vy, ro), we have A2Vy(x — v7) — Eé = V*(x) and
therefore

1
©5) (= + i+ VAW V) @) 2 5 V172 @2y

Finally, using that supp * C B(vy, ro) and that ¥ (x) = > e, Y¥(x —v) for
x € R2, we conclude that

9.6) ([—(Vx + iK)? + VA@I. ¥) 2 ®eya,) = CéapWHiz(Rz/Ah)

for any ¥ € H?(R?/A}) such that (pél, V)r2@r2/A,) = 0and suppyy C {x €
R2/Ap : dist(x, A7) < ro}. This completes the proof of Lemma 9.1. U
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9.1 Localization and Integration by Parts
Let ® € C®(R?/A},) be real-valued and ¢ € H?(R?/A},). Then, for k € R?,

[—(Vx + k) + V(%)) (Og)
= [-Ax — 2ik - Vi + [k]? + VA ()] (O9)
= O[—(Vx + iK)? + VA(x)]p — 2V4O - Vyp — (2ik - VxO)g — (A O)g.
Taking the L2(IR?/A},) inner product with ®¢, we obtain, using self-adjointness,
([=(Vx + iK)* + V()] (09), (O9)) 12R2/4,)
= R(O2[~(Vx + k) + VA X)le. 0) 2 @2/a,)
— 2R(VxO - Vxp, O9) 12(R2/4,)
—M{(2ik - VxO)g, O¢)12R2/p,) — N ((AxO)9. O@)12R2/7,) -

There are simplifications. First note that
R(Q2ik- VxO)p, O¢)12R2/7,) = m/—zi(k - Vx0)0|p|? dx = 0.

Furthermore,

— 2R (V4O - Vyg, Op)

= —2/ (OVx0) - R(pVip)dx
R2/Ap

1 1
- _2/ —Vi(®?) - = Vi|o|? dx
]RZ/A;, 2 2

1 1
= 5/ Ax(©)|p|* dx = <§Ax(®2)w,<p> :
R2/A, L2(R2/Ap)

In view of the above computations we have the following:

LEMMA 9.2 (Integration by parts). Let @ € C®(R?/A}p) be real-valued, ¥ €
H?(R2/A}), and k € R?. Then,

([~(Vx + k) + V*(0)](O9), (B¢)) =
RO [—(Vx + k)2 + V)]0, @) + (160, ¢)
where Yo = 5 Ax(0%) — OALO = |V0|%

9.2 Localized Energy Estimate

Assume that supp(Vo) C B(0, rg), where 0 < rg < %|eA,1| x(1=389),0 < §g <
1. Suppose 1 < §’ < §” is such that

1
(97) 0< ro < 8/7'0 < 5”1"0 < §|6A31| X (1 — 80)
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PROPOSITION 9.3 (Main localized energy estimate). Fix I € {A, B} and k € R?.
Assume ¥ € H*(R2/Ap) and (pl ;. ¥)12m2/a,) = 0. Let © € C(R2/Ay)
be real-valued and suppose that

1 ifdist(x, A7) < &8'ro,

O(x) =
=10 rdistix, Ag) > 8ro.

Thus,
supp © C {x € R%Z/Ay, : dist(x, A7) < 8"ro}.
Then,
cllOV22gasn,) < ([H(Vx +iK)? + VA®IOV). (OV))r2®2/a,)
+ e MY 2 @ayn,)
Here, the constants ¢ are determined by ®, Vy, 8¢, 8', and §".

PROOF. Let k € R2. Suppose ¥ € L%(R?/A}) is such that (p]’}l,w) = 0.
We localize ¥ near A, while maintaining orthogonality, by defining ¢ = ® (¢ —
ay pl)(L ;) with ay € C chosen so that ( pé 7.®) = 0. Hence, we require

O‘I(pé,l’ ®Pé,1) = (pé,l’ ®‘/f) = _((1 - ®)P1/},1’ W)-

Using (8.4), one sees that |(pl'}1, @pél) — 1] and ||(1 — @)pél || are < e~¢*, and
we conclude that |ee7| < e~¢*||y]|. Since

supp O (y —oqpéil) C {x e R?/Ay, s dist(x, A7) < 8"ro}

and <pé,1’ OW —ay p]'}’l)) = 0, by Lemma 9.1 we have the lower bound

([=(Vx + i) + VA®]O - (y —arpi;). 0 (¥ —arpy ;)
9.8) >cl|o- (v —arpl))|?
= S10vI —clor®pl ;|* 2 S10vI7 — ey,

where the last inequality follows from the bound |a7| < e ™4 |||
On the other hand, also using the above bound on |of|, we see that

(Vs + ik + V2O - (y —arpi ). © - (¥ — s pi )
= ([~(Vx + ik)> + VA(®)](©Y). (Oy))
— 20([—(Vx + iK)* + V)] (asOpf ;). (O9))
+ ([~ (Vx + 1K) + VA*®)] (s 0p ;). (e O 1))
9.9) S (= (Vs + k) + VA @0)O), (O9)) + e[y |,
Putting together (9.8) and (9.9) completes the proof of Proposition 9.3. O
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9.3 Global Energy Estimates

PROPOSITION 9.4 (Main global energy estimate). Let Knax > 0 be given. There

exist constants ¢ and A, depending on K., such that for all A > A, the following
holds: Letk € R? and |k| < Kpyax. Let y € H>(R?/A}p,) be such that

(pt4v)=0 and (p}z.v)=0.
Then,

9.10)  eA2[[(Vx + iKY + eyl < ([—(Vx + iK)2 + VA)Y, ¥).

Before turning to the proof of Proposition 9.4, we first give three immediate
corollaries.

COROLLARY 9.5. Under the conditions of Proposition 9.4, for all A > A, the
operator —(Vx + ik)? 4+ A2V has at most two eigenvalues in the range E <
E(} + %c, where c is the constant in (9.10).

Corollary 9.5 follows from the variational characterization of eigenvalues of
self-adjoint operators.

COROLLARY 9.6. Let Kiax > 0 be given. There exist constants ¢ and Ay, de-
pending on Ky, such that for all . > A the following holds: Letk € R? and
K| < Kpax. Let v € H*>(R?/A},) be such that

(phav)=0 and (pig.y)=0.
Then,

clly | 4+ A2 (Ve + iKY )% < [I[=(V +ik)? + VA @]y >

To prove Corollary 9.6, note that for w > 0 we have

1

(SO + K2 + VA Y) < ==V + k)2 + VE@IW I + @2y ).

For small enough w, the term w? ||y ||]242 ®R2/A,) MY be absorbed back into the

left-hand side of (9.10). Corollary 9.6 now follows.
Next, since || Vi ||? < 2(||(Vx + ik)¥||? + |k|?||¥||?), Corollary 9.6 implies
the following:

COROLLARY 9.7. Let Kpax > 0 be given. Let k € R? with |k| < Kuyax. There
exist constants ¢ and A, depending on Kpax, such that for all A > A the following
holds: Let ¥ € H*(R?/A},) be such that

(Pka-¥)=0 and (pfp.¥)=0.
Then,
eIV IP + A2 Vey ? < 1=V + iR + VAl |
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PROOF OF PROPOSITION 9.4. Take 80 € (0, 1) and constants 81, &2, 81, and 8,
such that §; < 82 < 81 < 6,
1
0< ro < 81]’0 < 821’0 < §|eA,1|(1 —50),
and

~ ~ 1
0< ro < 817‘0 < 82}’0 < §|6A51|(1 —80).

On R? /Ay, we introduce two partitions of unity:
(9.11) 1=02+0%3+02 1=03%+0%+062,
where ®; and ®) 1,1 = A, B, 0, are nonnegative and C°°, and where ®4 and Op
have dlSJOll’lt support and are localized, respectively, near A4 and Ap. Similarly,

©4 and O have disjoint support and are localized, respectively, near A4 and Ap.
In particular, for I = A, B:

V1, dist(x, Ay) < 8170,
T=00, dist(x, Ay) = 8oro,
and O is defined via the first relation in (9.11). Also,
5 — 1, dist(x, A7) < 8;ro,
=00, dist(x, A7) > 8o,

and @0 is defined via the second relation in (9.11).

We assume k € R2. Note that the local energy estimate gives the following:
If y € H2(R?/Ap) is such that (p} ,,¥) = 0and (p} 5, ¥) = 0, then for
I = A, B:

9.12) c|Oryl* < (H*®)(Or1v). (Orv)) + e “Hly %,
9.13) Oyl < (H*®)(Orv). (Brv)) + e My |2,
where H*(k) = —(V + ik)? + VA(x).

Next consider ®¢yr. For x € supp ®¢, we have dist(x, Ag U Ag) > 8119 > rp.
On this set V(x) = 0 (see (5.2)) and hence, by hypothesis (GS), (4.1), V)‘(X) =
—E} > ¢A2. Tt follows that, for all Y € H2(R2/Ay),
©.14)  cA?[Oo¥ | < (VA X)(O0y). (Oo¥)) < (HA(K)(Oo). (Og¥)).
Similarly, for all v € H2(R%/Ap),

9.15) A2 [[Bov |1 < (HAK) (o). (Boy)).
Summing (9.12) over I = A, B with (9.14), and recalling (9.11), we obtain

0.16) c|y|? + 22Oy [* = D> (H*K)(Orv). (O1y)) + e My |

I=A,B,0
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Furthermore, summing (9.13) over I = A, B with (9.15) we obtain
I+ Aoy |? = D (H*(K)(O1v). (Orv))
9.17) I=A,B,0
+e Py,
Estimates (9.16) and (9.17) hold for v € H?(R?/A},) such that (pl’},J, YY) = 0 for
J € {A, B}.

Next, we apply the integration-by-parts Lemma 9.2 and again recall (9.11) to
conclude that

©.18) > (H*®)(Ory), (Ory)) =

1=A,B,0

AR )+ Y xe, 0 |vv)

I1=A,B,0

where yo, = 3Ax(07)? — ©7 AO; = |VxO;|? for I = A, B,0. An analogous
formula to (9.18) holds for the @i + @% + @% = 1 partition of unity, where yg,
is replaced by yg, = |Vx®r|2 for I = A, B, 0.

Substituting (9.18) and its @—analogue into (9.16) and (9.17), respectively, yields

I + 200y 12 < (H* Ry, v +( D 1o, () v ¥)
9.19) I=A,B,0

+e M2,

and similarly

I+ eA?1Bov |2 = (H* Ry v) +( Y. e, (0¥ )
(9.20) I=A,B,0

+e M2

From the definitions of ®y, y@,, ® 1, and X, We see that

9.21) | Z X0, (X)‘ < Clixdistx,H)=8,r0}» H=AgUAB.
I=4,B,0

Moreover, (:)0 = 1 for x such that dist(x, H) > gzro and

(9.22) | 3 X@I(x)( <C, xeR2/A,.
I=A,B,0

By (9.19) and (9.21), and since ®p = 1 on supp(ZI=A,B,0 X©;), we have

(9.23) vl < (HA®)y, ¢) + C1||@oy||> + Cae™* |y ||>.
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By (9.20) and (9.22),
(9.24) W) + cA?|@oy | < (H* Ry, v) + C v >

Let A be sufficiently large and ¢ be a small enough constant such that ¢ + Cre™* <
c1/2. We consider two cases. If C1||@ov/ ||? < &]|y||?, then (9.23) implies

SIvI? < (H (v ).

On the other hand, if instead C1 ||®¢||2 > &]|y||2, then (9.24) implies
A2 < (H* (Y. ¥).

Therefore, in either case H* (k) = —(Vy + ik)? + VA (x) satisfies

(9:25) eIV I? < ([=(Vx +iK)* + VA, ).

To bound ||(Vx + ik)v/||? we observe that
(=Y + iKY ¥) = ([=(Vy + 1K) + VA 9) — (VA @) 9)

< =V + iR + V@I ) + C22 [y |2,

since |V (x)| < C A2 everywhere. Therefore, by (9.25)

920)  [[(Vx +iIRV[? < CA[=(Vx + K> + VA®IY. ).
Estimates (9.25) and (9.26) imply the main global energy estimate and complete
the proof of Proposition 9.4. U

9.4 Global Energy Estimate on a Fixed Hilbert Space

We continue with the convention that norms and inner products are taken in
L?(R?/Ay,) if not otherwise specified.

Proposition 9.4 (see also Corollaries 9.6 and 9.7) provides a lower bound on
H*(K) = —(Vx + ik)? + V*(x) subject to the k-dependent orthogonality condi-
tions:

(9.27) (P4 ¥)=0 and (p}pz.v)=0.

For our Lyapunov-Schmidt reduction strategy of Section 11, we require bounds
on H*(k) and invertibility on a fixed subspace of the Hilbert space L?(R?/A},),
defined in terms of the conditions (9.27) for fixed quasi-momentum, k = K.

COROLLARY 9.8. Fix Kyax > 0. There exist positive constants ¢, which decreases
with increasing Kuax, and Ay, depending on Vo and K .x, such that the following
holds: Suppose A > Ay. Let K € R? with |K| < Kmax. Let v € H?(R?/A},) with

(9.28) (pg W) =0 and (p} ,.v)=0.
Then, for allk € C? such that |k — K| < A7 we have
vl + A IVl < l=(Vx + k)% + VA .
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PROOF. Fix Kpax > 0 and let
(9.29) KeR? K| <Kmx keC2n{k—K|<ér ™},

where ¢ is to be chosen small enough below. Let ¥ € H?(R?/A}) be such that
orthogonality conditions (9.28) hold. By Corollary 9.7, with K in place of k, we
have

(9:30) v l? + A2V P < [-(Vx + i K)? + VA%

To conclude the proof, it suffices to bound the right-hand side of estimate (9.30) by
the same expression, but with K replaced by k. Using (9.29), we have

I[=(Vx + iK)2 + VAx)]y|
< I=(Vx + iK)? + V2@ || + 12 (k — K) - (Vs + i)y |
+1k—K) - k—K)|- [y
< I[=(Vx + iK)2 + V2@ |
LA VeV | + 4K mae |1 + XYW ]).

By (9.30), the latter three terms are controlled by ¢||[—(Vx + iﬁ)2 + VA@)]v].
Therefore, by choosing ¢ sufficiently small, we find

I=(Vx +iK)? + VA1 || < Il=(Vx + iR + VALY .
Substituting this bound into (9.30) completes the proof of Corollary 9.8. U

9.5 The Resolvent

The following result is required to control the resolvent of H A(Kk) on the sub-
space defined by the orthogonality conditions (9.28); see Lemma 9.10 and Propo-
sition 9.11 below.

COROLLARY 9.9. Fix Kmax > 0 and let K € R? with |K| < Kumax. Let ¥ €
H2(R2?/Ap,) with (p% I ¥) = 0for I = A and B. Suppose that  satisfies

(9.31) H*K)WY =9+ Y k.
I=A,B |
with uy € C, and (p%l,go) =0forl = A and B.
Then, ,
(9.32) cllyll + A Vx|l < lell.

PROOF OF COROLLARY 9.9. By Corollary 9.7, with k = K,
llv ]l + AT V|| < [=(Vx +iK)2 + VA®)]y ||

©.33) Slel+ Y lwl.
I=A,B
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Taking the inner product of p% ; with (9.31), and using self-adjointness and the
assumed orthogonality to ¢, we obtain ZMP% ;7 p% I)/L] = (HA(K)p% ;7 V).
By the near-orthogonality relation (8.5) and the Cauchy-Schwarz inequality, we
have for I = A, B that
url < A+ 0t Yo |[HEpg v
J=A,B

Next, the bound (8.7) implies 7| < e ¢*||¥||. Therefore, > 7 lpr| can be ab-
sorbed into the left-hand side of (9.33) for A large and the estimate (9.32) follows.
This completes the proof of Corollary 9.9. U

Fix Kmax > 0 and let K ¢ R2 with |K| < Kmax. We now introduce the Hilbert
space #4pB,

(9.34) Jap = [span{pk 1 =A.B}]" in L2R?/Ap).

and the associated orthogonal projection, IT4p : L>(R%?/A}) — H4p. The space
H4p depends on the choice of K € R?. Also, introduce the subspace ij B =
Hap N HZ(RZ/A;,). The norms and inner products on #4p and Jr’ij are those

inherited from L2(R%/Ay) and H?(R?/A},), respectively. Recall that H A(K) =
—(Vx +iK)? + VA(x) : H2(R?/Ay) — L2(R?/Ap).

Forp € #H4p and ¢ € 5‘633, consider the solvability in ‘%jB of HABHA(ﬁ)w =
¢ (Lemma 9.10) and then T4 g (H* (k)—Q)y = ¢ for k near K (Proposition 9.11).

LEMMA 9.10. For any ¢ € Hap, there exists one and only one ¥ € ‘%jB such
that

(9.35) n,, H Ky = ¢.
Moreover, that  satisfies the bounds
(9.36) eIV lgens + A VeV lL2@2/a,) < 10l 54s-

PROOF OF LEMMA 9.10. We first prove that (9.35) admits a solution { € Jr’ij
for a dense subset of ¢ € H4p. Indeed, if not, then there would exist a nontrivial
©o € #4p such that

(9.37) (00, Tap H*K)Y) 3o, , =0 forall y € #H3p.
Since ¢ € #4p,(9.37) is equivalent to
(9.38) (o, H*K)¥) e, , =0 forally € #3p.

We shall show that g9 = 0, yielding a contradiction. To do so, we first show that
@Yo € Rj g 50 that we may write (9.38) as an orthogonality condition on H A (K)go.
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Now, given any ¥ € H2(R?/A},), we may write
(9.39) V=Y apk, +v withy e Hip.
I=A,B ’
In particular,
(p%J,W) = Z O‘I(p%,ypﬁ,l) forJ = A, B.
I1=A,B

—cA

By (8.5), (p% ;7 pi ) differs from § 77 by at most order e Therefore, oy =

" yIJ p% ;7 V) for a matrix ()/I ), which is independent of .
Substituting (9.39) into (9.38), we have
(po, H*®yp) = (0o, H*®) | 3 arpl  +7])
I=A,B
A pA ~A
(9.40) Z vi pg ; Wlleo HA®)pg )= D (5. v).
1,J J=A,B
where

By = ) vileo H*®)pL )pg , € H*R?/Ap)
I=A,B ’
is independent of 1. Rewriting (9.40) we have

(0. —(Va+iK2Y) = (-VEgo + 3 v
J=A,B

for arbitrary ¥ € H2(R2/Ay). Thus, —(Vx+iK)2po = —V*@o+ Y. J=A.B ﬁ’} €
LZ(RZ) in the sense of distributions, which implies that ¢ € H?(R?/A}). Also,
since ( p~ ,<p0) = 0for I = A, B, we have ¢g € ij p asclaimed. Therefore, set-
ting ¥ = goo in (9.38) gives (H A(K)(po @o) = 0. Applying Proposition 9.4 we
have c|¢oll®> < (H A(K)(po o) = 0. Hence, oo = 0. This proves that equa-
tion (9.35), T4 HA(K)w = ¢, has a solution ¥ € Jé’jB for a dense subset of
¢ € Hqp. Moreover, the bound (9.36) holds, thanks to Corollary 9.9. Standard
arguments using (9.36) extend these assertions to all ¢ € #H4p.

Finally, uniqueness holds since the difference of two solutions of (9.35), de-
noted Y, satisfies the homogeneous equation IT4p H A(K)T = 0. Therefore, T

satisfies (9.31) with ¢ = 0. Applying (9.32) yields that T = 0. This completes
the proof of Lemma 9.10. g

Our next step is to extend results on the invertibility of T14p H A (iZ) on #4p to
results on the invertibility of I14p(H ’l(k) — Q) on Hyp for k € C? sufficiently
near K € R2 and sufficiently small.

For ¢ € #4p and ¢ € Jé’j - consider the equation

(9.41) Map H*(K)y = o.
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Via Lemma 9.10, we define the mapping A : H4p — ‘%ZB’

(9.42) ¢ > Ap =V € Hip,
which gives the unique solution of (9.41).
We then set

Bjgp = Typdx; Ap = llgpix, ¥, j =1,2.
Lemma 9.10 tells us that A, By, and B are bounded operators on #4p with norm
bounds:
”A”J@\,ig—)]ﬂ,‘gb@ 5 L, ||B]||J€A£—>J€A£ 5 A" .] =1,2.

For ¢ € #4p, we now try to solve the equation
(9:43) Map(H*(K) Q)Y = ¢
for y € H% 5. Here,k € C?and Q € C.

For Y € #3p5, set I4p H*(K)y = §. Then, § € Hap, ¥ = AF and (9.43)
is equivalent to the equation

§—2i Yy (kj—K)B;ig+ (k—K)- (k—K) - Q)47 = ¢.
j=1,2

Therefore, the solution to (9.43) (under conditions on k and €2 to be spelled out
below) is given by

(9.44) Y = Ap where § € JH4p solves
(9.45) { 1-20 Y (ki —K)Bj + (k-K) - (k—K) - Q)A}fﬁ = 0.
j=1,2

The operator in curly brackets in (9.45) can be inverted, via a Neumann series,
provided the following three quantities,

|k_K|'”B||<'r'€AB—>J€AB §|k_K|k’ |k_K|’ and |Q|'”A”]€AB—>J€AB’

are all less than a small constant ¢. Thus, (9.45) has a unique solution @ € H4p
with || @|lze,5 < ll@llge, - By (9.44) and (9.42) , v = A@ solves (9.43). Further-
more, by (9.36) ¥ satisfies the bound

1V llge.s + A~ IVe¥ 22 0,) = 14505 + A I VxADl 22/ A,,)
S lellsess-

Introducing the solution mapping ¢ +— ¥ = Resk’ﬁ(k, Q)¢ for equation (9.43),
we have the following:

PROPOSITION 9.11 (Bound on the resolvent Resk’ﬁ(k, Q)). Fix K € R2 with
K| < Kmax. Let

(9.46) U={kQ)eC>xC:|k-K|<er™l, |Q| <é).

For a small enough constant ¢ and A > A sufficiently large, we have the following:
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(1) Let ¢ € H 4p and (K, 2) € U. Then the equation
(9.47) Map(H* (&) — Q)Y = ¢

. . 2
has a unique solution € H5 p.

(2) Let Resk’ﬁ(k, Q)@ denote the solution  of equation (9.47). Then the
mapping

(9.48) ¢ > RestK(k, Q)p, RestK(k, Q) : Hup — H2 5.

depends analytically on (k, Q) € U and satisfies the estimates

Cj 1K _ e
(9.49) 7” Res? ™ (k. Q)04 5945 A |VxRes (k. Q) g0, , 12 < C.
for j > 0and (k,Q) € U, where

(9.50) Res™K(k, Q) = 87, Res* K (k, @),

and we adopt the convention Resé’K = ResMK, Here, the constants C, Ay,
¢, and C may depend on K .

(3) For (k, Q) € (R x R) N U, the mapping Res* K (k, Q) : Hap — Hap
is self-adjoint.

PROOF. Assertions (1) and (2) follow from the discussion just before the pro-
position. Assertion (3) on self-adjointness is proved as follows. Let ¢; € H4p,
j =1, 2. Then, by construction

Map(H*(K) — Q)T pRes* R (K, Q)p; = Map(H* (k) — Q)Res* K (k, 2)¢;
=¢j.
By self-adjointness of Hl(k) — Q for (k, Q) € (]R{2 x R) N U, we have
(o1, Res* K(k, Q)¢2) 2.,
— (M4p(H* (k) — Q) T4 ResHK(k, @)¢1, Res™ K (k, Q)¢2) 2., 5
= (Res™® (k. Q)¢1, TLap(H* (k) — ) TLsp Res™ K (k, Q)¢2) ¢,
= (Res*K(k, )1, 92) .1,

This proves assertion (3) of Proposition 9.11. g

To obtain a bound on the norm of Res*K(k, Q) : Hqp — H 31 p» We now
bootstrap the above arguments.

COROLLARY 9.12. For all (k, Q) € U, defined in (9.46), we have the additional
bound for Res* ¥ (k, Q),

IRes™ (k. )l e, , 32, < C(A.K).
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PROOF OF COROLLARY 9.12. Recall the mapping 4 : ¢ € Hyap — ¥ =
Agp € *%313’ which solves TT4g H*(K)y = ¢. We claim that this mapping is
bounded, i.e., ||A”J€AB_>J€%B < C, with C a constant depending on A and K.

Let us first prove Corollary 9.12, assuming this claim. Assume ¢ € H4p.
As was shown in the discussion leading up to the assertion of Proposition 9.11,

Resk’ﬁ(k, Q)p = A@, where ¢ € J 4p is the unique solution of (9.45). Moreover,
||(5||J€AB 5 ”go”JfAB Therefore,
K ~
IRes™ ™ (k, )¢l ge2 - = CllAll go, s 02, 1PNl 545
< C'lAll e,z 0005
We now prove the above claim. By definition, ¥ satisfies
Map[—Ax = 2iK- Vs + K> + VA ®)ly = o,
and therefore

9.51) [~Ax—2iK- Vi + [KP + V0ly =9 = Y arpk,
I1=A,B

for complex scalars oy and ag. By Corollary 9.9, ||l #,, < Cll¢ls,,, and
hence

Il=Ax = 2iK- Vi + K> + VAWl g-2®2/a,) < Cllollses-

So,llo = 1—aB oqp%J la—2®2/a,) < Cll®lls, s, and consequently

A
” 2. PRI ”H—Z(RZ/A,,) = Cliehseas-
I1=4,B

Since any two norms on a two-dimensional vector space are equivalent, we have

dor—aplar| <CQ, K)||<p||,;gAB, where we make no attempt to see how C (1, K)
depends on A and K. Returning now to (9.51), we have

1A < 2[K[Vxy || + (KI? + CA) ¥ || + CA. K)ol e, 5-
All of the terms on the right-hand side are dominated by C’(1,K)||¢| s up> DY

Lemma 9.10. Therefore, ||¢||L2(]1§3/Ah)’ IAY | L2R2/A,) = C(k,ﬁ)llwllgeig.
Consequently, ||1p||J€/le < CA K)o,z ie., ”A”JfAB—’J(iB < C(},K).

This completes the proof of the claim and therewith Corollary 9.12. g
10 Dirac Points of H* in the Strong Binding Regime

Let K, be any vertex of %;,. We study the eigenvalue problem (H* —Q)y = 0,
Ve HZ*, where H* = —A + VA = —A + A2V — E(}. Recall (see Section 7):

(1) H* and Z map a dense subspace of L%(* to itself.
(2) The commutator vanishes: [H*, Z] = 0.
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3) Lf(* = Lf(*’l &) LIZ(hr & Lﬁ* =, Where L%*,a is the subspace of Lz*,
which is also the eigenspace of & with eigenvalue o = 1, 7, 7.
Since [H*, %] = 0, we may decouple the eigenvalue problem for H* into the

three independent eigenvalue problems. For 0 = 1, 7,7, we define the LIZ(* o"
eigenvalue problem
(10.1) (H* - Q)W =0, ¥eHZ ,.

To establish the existence of Dirac points at all vertices of %, by part (4) of
Remark 7.4, it suffices to consider K, = K.

THEOREM 10.1. There exists A > 0, depending on Vy, such that the following
holds: Forall A > A,

(1) The LIZ(,t eigenvalue problem (10.1) with 0 = t has a simple eigenvalue
Q* that satisfies the bound |Q*| < p;e~C*, with corresponding eigen-
function UZ CD%. Here, p, is displayed in (4.7) and satisfies the upper
and lower bounds (4.8).

2) Q*isa simple le( —-eigenvalue of the eigenvalue problem (10.1) with
o = T with corresponding eigenfunction CI%L = (¢ o f)[q))lt](x) =
@f (2% — X).

3) The L%(,l eigenvalue problem, (10.1), with 0 = 1, has no nontrivial so-
lution in a neighborhood of 0. Therefore, the eigenspace of H* for the
eigenvalue Q* is two-dimensional and has a basis {®?, @% }

4) Ifin (1) we consider instead the eigenvalue problem with K'-pseudo-peri-

odic boundary conditions (K’ instead of K), then all assertions of parts
(1)—(3) hold with (K, t) interchanged with (K',T). See Remark 8.1.

Theorem 10.1 is proved below in Section 10.1.

COROLLARY 10.2 (Dirac points). Let K, be any vertex of the hexagonal Brillouin
zone PBy. There exists Ay, depending on Vy, such that for all A > A., —A +
A2V(x) = H* + E())L has a multiplicity-two L%i—eigenvalue Eﬁ = E(’} + Q4
where E(’} denotes the ground state eigenvalue of —A + A?Vy(x) acting in L*(R?)
and |Q*| < pre~*. Furthermore, (K., E*) is a Dirac point in the sense of
Definition 7.3 with Fermi velocity, |v} |, given by (1.7).

To prove Corollary 10.2 it is necessary to show that (F é, K,) is a Dirac point
in the sense of Definition 7.3. The properties that need to be checked are a conse-
quence of Theorem 10.1 and part (2) of Remark 7.4 and the main theorem, Theo-
rem 6.1. In particular, the nonvanishing of the Fermi velocity,

(10.2) vﬁ # 0 forall A > A, sufficiently large
is a consequence of the uniform convergence
(EL(K) — Ep)/ps — £Wrp(K), A — oo.

stated in Theorem 1.5. See Theorem 1.1 and the discussion in the introduction.
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Remark 10.3. We wish to emphasize the dependencies of various assertions. The
main theorem, Theorem 6.1, requires Theorem 10.1. The property of Dirac points,
that vﬁ is nonzero, (10.2), follows from Theorem 6.1; see the discussion around
(1.7). Corollary 10.2 follows from Theorem 10.1 and Theorem 6.1 .

10.1 Proof of Theorem 10.1
We first show the following:

Some Q*, with |24 < pse <%, is an eigenvalue of
(10.3) H* = —A + A2V (x) — Eé with corresponding eigen-
function CI>;1L € L12< o

This implies that part (1) holds; that is, such an eigenvalue Q4 is necessarily a sim-
ple L%,T-eigenvalue, and furthermore that parts (2) and (3) of the theorem hold.
The assertion (10.3) will be proved below. Verification of part (4) is straightfor-
ward.

Assuming (10.3), since € o .# is an isomorphism of L%J and LIZ( =, and com-
mutes with —A + A2V/(x), it follows that Q* is an L%( s-eigenvalue of —A +

A2V(x) — E(’} with corresponding eigenfunction CIDéL =(¢os )[CDf]. Note that
H* — Q" = —A + 22V(x) — Ef — Q" = ' **(HA(K) — Q1) /K™,

Thus, the L2-kernel of H* — Q*, and hence the L2(R?/Aj)-kernel of H*(K) —

QA, are at least two-dimensional. Furthermore, the resolvent bounds of Section 9.5
(Proposition 9.11) imply, for A sufficiently large, that H* — Q* is invertible on the
le(—orthogonal complement of

Span{PIé,A’ Pé,B} = Span{eiK'xPé,A»eiK'xPé,B}-

It follows that the L%( kernel of H* — Q* is exactly two-dimensional. Moreover,
since CID)IL and <I>% lie in orthogonal subspaces of L2, Qtisa simple eigenvalue in
the spaces L%(’ . and L% -, respectively. Furthermore, since the kernel of H A _Qr
is two-dimensional, Q% cannot be a LIZ( -¢€igenvalue. This completes the proof
that assertion (10.3) implies parts (2) and (3).

We now turn to the proof of assertion (10.3), from which Theorem 10.1 will then
follow. Consider Plé 4(x) and Pé p(x), defined in (8.2).

LEMMA 104. P} ((x) = /®*pt (x) € LZ _and P} 5(x) = ¢/K¥pl o (x) €
le( =+ In particular, %’[Plé 4l = fPé 4 and %’[PI’(l gl=7 Pé g If Kis replaced
by K' = —K, then the same relations hold with t and T interchanged.

We shall see below that for large A these are, respectively, approximate LIZ( .
and LIZ( - eigenstates.
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PROOF OF LEMMA 10.4. Recall that v4 = 0 and therefore Ay = Ay. From

(8.2) we have
P[é’A(X) Z elKV A )
veEA 4
Therefore, using that X, = v, — vp and Rx, = —vp, we also have
Z| P Ié,A](X)

(ke + R*(x— X))
= Y e + R*(x—%c) )

veAq4=Ay
= Z e’KV A o (Rxc +x—X. — Rv) (V) is rotationally invariant, (PW3))
VEAh
= > Kl (x— (Rv+v2))
veAy
e—iRK~vz x Z eiRK~(Rv+vz)p())L (X _ (RV + Vz))
veA,
ot (Ktka)va o Z eiRK.wp(/} (X—w) = o—iKv2 pé’A(X) — TPIé,A(X)'

weAy,

The proof that %[Pé’ gl = TP} & p is similar. For this, one uses that Ap =
vB + Ay, and that Rvg = v — vy. The proof for quasi-momentum K’ = —K is
similar. This completes the proof of Lemma 10.4.

Continuing with the proof of part (1) of Theorem 10.1, we consider the eigen-
value problem in L%g - Using Lemma 10.4, the L2 + 7 eigenvalue problem is treated
analogously.

We seek a solution of the L%J eigenvalue problem for the operator H* =

—A+ A%V — Eé, (H* — Q)W = 0, with nonzero ¥ € L%(J in the form

(10.4) W= P (0 +U(x), (Pg,0)=0 UeH,.

where g € C and €2 is near 0. Substitution of (10.4) into (10.1) with o = ¢
implies that (W, 2) solves the L%,r eigenvalue problem for the operator H A if we

can finday € C and ¥ € HI% . with (PléA, f@) = 0 such that
(10.5) (H* — Q)W = —a (H* — Q) P¢ .

For ¥, we set U = ¢! K'X% and note that the condition [E] = 7V transforms
as Zx Y (x) = 1y, where Zx = e K% 0 % o ¢'®X is explicitly given by

Hxlg)(x) = M) g(x + R*(x — X))
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We therefore obtain the following problem for (J, Q):
(H(K) — Q)Y = —ou(H*(K) — Q) pk 4.
AP () =1, ¥ € H2R?/Ap).

where H*(K) = e KX Ao Kx — _(V, 4+ iK)2 + A2V (x) — Eé.
Define the orthogonal projection T4, : L2(R?/Aj) — H 4, onto the Hilbert
space

Hae = {¥ € L2(R?/Ap) : (p 4. ¥) =0,
¥ (xe + R*(x — X)) = ek Gx)y )L,

We introduce %i .» the subspace of J4 consisting of H 2(R2%/A},) functions, in
the natural way, and similarly # g z and Jflzg =, Where

Hpz={V € L*(R*/Ap) : (pk 5. ¥) =0,
¥ (Xe + R*(x — X)) = Te k62 yix)L.

Applying I —I1 4, and I14 ; to equation (10.5) yields the equivalent system of
two equations foray € C, ¥ € #2,and Q € C:

10.6)  aa x (pg 4. [H*(K) — Q1pg 4) + ([H*(K) — Qpge 4. ¥) =0,
(10.7) M4 [H*(K) — QY = —aqTl4,. H*(K) pge 4.

Ha,r and Hp 7 are subspaces of 4 and Hp, respectively. Moreover, Zk
(whose eigenvalues are 1, 7, and T) commutes with H(K) and leaves #4 ; and

Hp 7 invariant. Furthermore, the range of II 4 ; is orthogonal to pé 4 by defini-
tion, and is also orthogonal to pﬁ’ p since

(HA,tf» pé,B) = (ﬂnA,rﬁ%pé,B)
= (M TPk ) = @XM f. P 5)-

Therefore, by Proposition 9.11, the resolvent Res* K (K, Q)T 4.¢ 1s well-defined as
a mapping from ¢, _ to J(’i .- and the solution of (10.7) is given by

(10.8) ¥ = —ay x Res" (K, Q) Ty . H*(K) pie_4.
Substitution of (10.8) into (10.6) gives the scalar equation
MK K, Q) xag =0,
where ///jAK(K, Q) is defined by (all inner products in L2(R?/Ap))
A, —
My (K, Q) = (pic g [HH(K) — Q] pic_4)

(10.9)
— (H*(K) ity Res* (K, Q) T4 . H* (K) pie_y).
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Here, we have used that the range of
Res*K(K, )T, . = M, . Res*®(K, )11, .

is orthogonal to span{ pﬁ 4+ To obtain a nontrivial solution we may set g = 1.
Thus, we obtain the following result:

PROPOSITION 10.5. For A > A, a nontrivial solution of the L%(,t-eigenvalue
problem, (10.1) with 0 = t, exists if and only UC//ZJAK(K, Q) =0.

The equation ///jAK (K, 2) = 0 may be rewritten as

A A
(pK,A’ PK,A) Y
(10.10) = (pi_4. H*(K) pgs_4)
— (HA(K)pé’A, ResA’K(K, Q)HA,rHA(K)PI)E,A)-

We now solve (10.10) for A — Q% for A sufficiently large. We shall make use of:

(a) the analyticity and bounds on the mapping of Q +— Res)“K(K, Q) of
Proposition 9.11 and

(b) bounds of Proposition 12.2 in Section 12, proved in Section 15, on expres-
sions of the type appearing on the right-hand side of (10.10), for general
quasi-momentum k in an appropriate domain in C? and small energy .

We may rewrite (10.10) as
(10.11) 5(2,1) =Q,

where

Q1) = Qb+ QR 1),
Qb = [(ph 4 H*(K)pi:_)
— (H*(K) pie_4 Res* K (K, 0) T4, H* (K) pis_4)]

(10.12) <[(Pk.a- P.all”

1
R(Q:A) = — o ds(H*(K) p 4. Resy ™ (K, s2) H* (K) p 4)
A R it
X[(PK,A’pK,A)] ’

where the operator Res’ll’K is defined in (9.50). We proceed to solve (10.11)
for @ = Q% for A sufficiently large. Note that by (8.5) for I = J = A,
(pﬁ,A, pﬁ’A) =(1+ ﬁ’(e‘”)). Note also that F(€2, A) is real-valued for €2 real
by self-adjointness of Res’ll’K(K, Q).

We first claim that |Qé| < Coy x py, x e~* for some Cy > 0. This bound for

Qé is a consequence of parts (2) and (3) of Proposition 12.2 for the special case
k =K
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Let go(A) = Co x p; x e~¢*. For all || < 2go(1), we have

IB(2. 1) < go(A) + 2g0(1) x e < 2g0(R),

provided A is sufficiently large. Here we use (9.49) and the exponential smallness
of | H*(K) pg; , |1: see (8.7).

We also claim, for all A sufficiently large, that the mapping Q2 +— F(2,A) is
a strict contraction on the set |2| < 2go(A). Indeed, let 2; and 2, be such that
12| <2g0(A), j = 1,2, and note that
(21, 4) = (822, 4) = (21 — Q22)R(21, 1)

+ Q2(R(21, 1) — R(22,4)).

The first term on the right-hand side of (10.13) is < e ch |21 — Q2] by (9.49) (for
j = 1) and the bound (8.7), || H*(K)p} ;|| < e~¢*.

To obtain a similar upper bound on the second term on the right-hand side of
(10.13) we proceed as follows. Note that

(10.13)

1

(10.14) R(Q1,A) — R(Q2,4) = (21 — Q) / I R(2(s), A)ds,
0

where ﬁ(s) =521 4+ (1 —5)Q>. From (10.12), we obtain

1
IoR(Q(s), 1) = — /O s ds(H*(K) p_ 4. Resy ™ (K, Q(s)) H* (K) pit )

(10.15)
-1
*[{p 4 Pic.all ™

where Resét’K is defined in (9.50). Combining (10.14) and (10.15) with (9.49) (for
j = 2) and the bound (8.7), we obtain that the second term on the right-hand side
of (10.13)is < e~* |1 — Q>

It follows that for |21] and |23| < 2g¢(A), we have

[§(Q1.1) = F( Q2. M) £ e [Q1 — Qal.

Therefore, for A sufficiently large, Q2 — §(2, A) is a strict contraction mapping of
[—2g0(}), 2g0()] to itself, and therefore has a unique real fixed point *. There-
fore, (10.11), and thus .///jAK(K, QA) = 0, has a unique real solution Q* that
satisfies |2*] < 2Cy x py x e,

We have therefore found, for A > A, sufficiently large, Q* € R near 0 and
J’l € H*(R?/Ap), given by
(10.16) U = —ReshK(K, QM) 4, HH(K)p}

(4 = 1) such that the pair (Q*, JA) solves (10.6). Therefore, U+ = eiK'XJA €
HI% and satisfies (10.5) with gy = 1.
We claim that U* € HI%,T. To see this, we rewrite (10.16) as

~

Tt = — (e Res* K (K, Q1) e 7K%) 0 ("®¥T1 4 e 7K 0 HAPY .
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Next, recall that P} , € HZ _ (Lemma 10.4); thatis, P} , € HZ and Z[P¢ 4] =

2
K,r°

rPé’ 4- By 120° rotational invariance of H A we have H* Pé’ 4 €L
HA,te—iK.xHAPIé’A c JgA’r,

and eiK'XHA,te_iK'XHAPéA € &, the subspace of L%(J defined by 8§ = {f €
2 . A
Lot/ LPEL
inally, to prove that € , we need to show that
Finally, to prove that W € H2 d to show th
G > ¢'Kx ResA’K(K, Qk)e_iK'XG
is a mapping from § to HI%J. Let G € 8. Then, e7'K*G € 4. and, by
Proposition 9.11, Rest K (K, Q%) e~ KxG ¢ Jt,”/zl’r. Finally,
K- A, Ay —iK-
KX Res* K (K, Q) e ' KXG € HI%’T.

This completes the proof of (10.3) and hence the proof Theorem 10.1. O

11 Low-Lying Dispersion Surfaces via Lyapunov-Schmidt Reduction
Fix Kmax > 0 and let K € R2 with [K| < Kpayx. Let
U={Kk Q) eC>xC:k—K|<rA™, |Q] <

where ¢ is less than the constant appearing in Corollary 9.8, chosen so that ¢ Kpax
is small enough. Recall, from Section 9.5, the orthogonal projection

Map : L*(R?*/Ap) — Hap

onto
Hap =V € L*(R*/Ap) : {p} ;. ) =0 for I = A, B}

and ]6/213 = JHap N H?>(R?/Ay,). For (k, Q) € U, we look for solutions of

(1.1) [H*(K) = Qly =0, v € HX(R?/Ap).
By part (2) of Lemma 8.2, any ¥ € H?(R?/A}) may be written in the form
(11.2) V= api +V. U eHip
I1=A,B

oq,ap € C. Note that Jfle is defined in terms of the modes: p%l, I = A, B,

and is independent of k.
Substitution of (11.2) into (11.1) yields the equation

(11.3) Y alH &) - Qlpg; + [H (k) - QY = 0.
I=A,B
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By part (1) of Lemma 8.2, equation (11.3) is equivalent to the system of equations

obtained by applying IT 4 p to (11.3) and by taking the inner product of (11.3) with
L J=AB:

Pyt = A0

(114 TaplH*®) -QY + Y erTaplH* k) —Qpl, = 0.
I=A,B
as)  (pt, > arlH a0 —Qlpl,) + (H @ - QpE . T) =0.
I=A,B

We next solve (11.4) for {; IS4 31 p in the form

(1.6  J=— Y aRes*K(k QTLap[H (&) - QIp} ;.
I=A,B

where Res*K (k, 2) is the resolvent defined and bounded in Proposition 9.11. Sub-
stituting (11.6) into (11.5) gives the equivalent system .# A Ky = 0:

S Rk Qe =0, J =48,

1=A,B
where
M35k, Q)
(11.7) = (p} ;. [H*(&) - Q]p{ ;)

—([H*(0) - Q1py ; Res™ (k) ILap[H (W) - Q1p} ;).
Remark 11.1. We note the following:
(a) The mapping (k, 2) — ///fl’K(k, 2) is analytic on the domain:
(11.8) U={kQ)eC>xC:|k—K| <A™l |9 <él.
(b) For real k and €2, the matrix .# A’ﬁ(k, ) is Hermitian:
(11.9) [2}F0 )] = #]%k Q), keR% QeR.

Relation (11.9) follows from self-adjointness of H A (k)—$2 and ResA’K(k, D) I4p
for real (k, 2) € U; see Proposition 9.11.

From the above the discussion we have the following:

PROPOSITION 11.2. A given (k,2) € U, defined in (11.8), admits a nonzero
solution, ¥ € H*(R2/A},), of [H*(k) — Qv = 0 if and only if

det(./*K(k, Q) = 0,

where ///A’K(k, Q) is the 2 X 2 matrix with entries displayed in (11.7).
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12 Expansion of .7Z*¥(k, Q)
We next prove:

PROPOSITION 12.1. Fix Kyax. There exists A such that for all A > A the follow-

ing holds: Let # A’ﬁ(k, Q) be given by (11.7), which is defined and analytic on
the domain U; see Remark 11.1. Introduce the rescaled eigenvalue parameter |
via the relation

Q= prpu.
Let

(12.1) %K) ={(k,p) e C2xC:|k—K| <A™\, |u| < C},
where C is a constant chosen in Section 13.2 to satisfy (13.1). Then, the mapping
(k, ) — KK, py ) is analytic for (k, 1) € %), and satisfies the expansion

(12.2) MK, py 1) = —p), [(Vﬁ() V(;k)) + Error* (k, u)}

where (see also (5.6))
pr =2 [ Vo) p6 M po (v + ea)dy  (see (4.7),

(12.3) yk)y= Y ekerr = Y mikelr (e (5.6)

v=1,2,3 1<v=<3
— ezk~e3,1(1 T elk~v1 + elk'vz)
and

sup |Error*(k, )| < e~
(k, W) EU

12.1 Proof of Proposition 12.1
We expand the matrix entries ///}I’ﬁ(k, Q) forA > A, and (k,Q2) € U.
PROPOSITION 12.2. Under the hypotheses of Proposition 12.1, we have
(1
(pE 5o H* (0Pl 4) = —pa x y(K) + Tpa(h),
(pg 4 H*Mpie ) = —pa x y(—k) + Jap(b),

where |Ipal, |3ap| < pi x e, and

2
(Pf 4 H* W) pig 4)| < pax e,
and similarly with B in place of A.
3)
(124) [([H*(k) - Q]pf ;. Res™ (k, Q)TLap[H* (k) — Qpic )| < pa x e,

where J and I vary over the set {A, B}.
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We first prove Proposition 12.2 (modulo several assertions to be proven in Sec-
tion 15) and then return to the proof of Proposition 12.1.
We begin with some brief review and preliminary observations. Recall the fol-
lowing:
1) pé (x) denotes the ground state of —A + A2V;(x), with corresponding
eigenvalue Eé; [—A + A%Vp(x) — E(’}]p())L (x) = 0. Thus,

Pr(x) = e % pl(x)
satisfies
[~ (Vx + ik)? + A2Vo(x) — E¢ ] pir(x) = 0.

(ii) péﬁ(x) = pé (x—V)and VA(x) = A2 Y ey Vo(x — V) — Eé.
(iii) For I = A, B, we have the Ap-periodic approximate Floquet-Bloch am-
plitudes:

(12.5) pé,I(X) = Z pl’}ﬁ(x) = Z e_ik'(x_ﬂp(’}(x—?).
veA; veA;

For |Jk| < Cj and A sufficiently large, the series (12.5) is uniformly con-

vergent. pé’ 7 (X) is Ajp-periodic on R? and is regarded as a function on

R2/Ap,.
Summing the expression for H* (k) péﬁ(x), displayed in (8.8), over vV € Ay, we
obtain

(V% + i+ V@I, 0 = Y Y A2Vex—v)pp(x—9).
veA; veH\{v}

For x € D, the fundamental domain, we have Vy(x — v) = 0 for all v € A except
v = v4,vp. This follows since the support of Vp is contained in B(0, rg) and
ro < |e4,1|/2; see Figure 3.1. Therefore, the inner sum over v € H \ {V} can only
have contributions from v = v4, vg; hence

H*K)pl (x) = 22Vo(x—va) > pi(x—v)
veAr\{va}
+ A2Vo(x — vB) Z pl’}(x—v), xe D.
veA\{vp}
Therefore, for all x € D, we have
0 ifxe D\ (B(v4,r0) U B(vp,rp)),

L A2Vo(X = Va) Dven \fva} Pr(x—v)
(12.6) H (k)pk,A(X) = if x € B(vg,ro),

A2Vo(Xx —VB) Y yen, PE(X—V)
if x € B(vp,ro),

and similarly for H* (k) pé 5 (X).
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12.2 Matrix Element ( pé’ e H* (k) pﬁ" 4
Using (12.5) and (12.6), we have

(P g H*®)pi )

/ PE O H () pl s ()X
B(va,ro)UB(vp,ro)

Z Z A2tk (W) / Vo(x — VA)p())L (x— w)p(’} (x —v)dx
B(va4,r0)

weAp veA \{va}

+ Z Z )tzeik'(v_w)/ Vo(x—vB)p(/}(x—W)pé(x—v)dx
B(vp.ro)

weAp veAy
=I1+1L

(12.7)

Consider the first double sum in (12.7) overw € Ap and v € Ay \ {v4}, which
is integrated over B(v4, o). To study this integral, it is convenient to express the
integrand in coordinates centered at v4. Note that since Vo(x — v4) is supported in
B(v4,ro) and pé is exponentially decaying, we expect that the dominant contribu-
tion to the summation over w € A g comes from the three vertices of A g that are
closest to v4. These are

W=vVqg+eq,, v=123
The non-nearest neighbors to v4 in A p are
w=VA+eA,1 +n§, n# (an)a(oa_l)a(_170)
We therefore write
> r-(x+ T )X
wEAB veA \{v4} wW=v4+eq W=v4+eq 1+0V v=v4+mv
V=123 0n#(0,0),(0,—1),(=1,0)  m#0

Therefore, the first double sum in (12.7) may be expressed as

I= Z ZAZeik(mV—eA,v)

1<v<3 ﬁ#a

% / Vo(X — ) pl (% — V4 — e4) Pl (x = v4 — m¥)dx
B(va,ro)

+ Z Z 22tk (Im—n]v—eq,1)

n#(0,0),(0,—1),(—1,0) m#0

(12.8)

x/ VO(X—VA)pé(X—VA—eA,l—nV)pé(x—vA—mV)dx.
B(va,ro)
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Hence, because |Jk| < A ™1, the first double sum in (12.7) is bounded by

Tpa) = 0 A2 CATm

1<v<3
m#0

x / V(X = va) |l (X = ¥4 — e4.) PR (X — V4 — m¥)dx

(12.9)
+C Z AZ eC}flIm—n\
n#0,(0,—1),(—1,0)
m=£0

x / Vo(x = va) | p (X — V4 — e4.1 —n¥) pl(x — v4 — mV)dx.

We now turn to the second double sum in (12.7) over w € Ap and v € Ay,
which is integrated over B(vp,ro). Here, we express the integrand in coordinates
relative to a center at vg. The dominant contributions come from summands with
w = vp and v € Ay varying over the three nearest neighbors to vp. Those
neighbors are given by

v=vg+ep,, v=1273

(For real k, these contributions to the sum are equal in magnitude by symmetry.)
The points of A4 that are not among the nearest neighbors to vp are

v=vg +eg1+nv, nz#(00),(1,0),(0,1).
We therefore write:

Cr-(z+ ) v+ T )

weEAp VEAY W=VB  w=vp+mv' V=VB+ten, v=vp+tep 1 +nv
m#0 1=v=3 n#(0,0),(1,0),(0,1)
Therefore, the second double sum in (12.7) may be expressed as
= Z A2eikes.y f Vo(x — vB)p(’}(x - vB)p(’}(x —vVp —ep,)dx

1<v<3

+ Z Azeik‘(eBJ*’“W/VO(X—VB)p{}(x—VB)pé(x—VB —ep,1 —nv)dx
n£(0,0),(1,0),(0,1)

+ AZetkleny=mV) [y (x — vp) pf(x — vp —mv) p(x — Vg — €p,,)dx
(12.10)
' 1 3
mil(J(fO)
+ Z A2eikv[e3,1+(n—m)\7]

m#(0,0)
n#(0,0),(1,0),(0,1)

X f VO(X—VB)[)(’}(X—VB —mV)pé(x—vB —ep,] —NV)dx.

The first term in (12.10) may be simplified by symmetry. Indeed,

/ Vo(x — vB)pA(x — vB)ph (X — v —epr)dx, v =123,
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is independent of v. Therefore, the first term in (12.10) becomes

(D efler)a f Vo(x —v5) Py (X —VB) Py (x — V5 — ep,1)dx =

1<v<3
( Z eik'eBs”)AZ/ Vo) ps () o (v + ea,)dy = y(K) x (—pp).
1<v<3

where y(K) is defined in (12.3) and

P = 12/ Vo)1 Py () P (v — ep,1))dy = 12/ Vo)1 pd M) p6 (v + ea,)dy.
Thus, the second double sum in (12.7) may be written as
—y(K) x pz
plus an expression that is bounded by C - 353231 (A), where
A

= > A2eCA7 In [ [Vo(x = vB)|p§ (x — VB) ps (X — vB — g1 — nV)dx
n#(0,0),(1,0),(0,1)
b Y a2 [ VoG v (x - va - m9)p(x — vi — e )dx

(12.11) Sz

+ Z AZeC)»_l |n—m|

meZ2\{0}
n#(0,0),(1,0),(0,1)

x [ 1Vatx = vl = v = m9) = v = e — 0.
We next use the above expansions to obtain the following:

PROPOSITION 12.3. Let y(K) be as defined in (12.3). Under the conditions of
Proposition 12.1, we have

(P 5 HA®)pi4) = —pa x y(K) + IG5 (0) + IG5 ().

where jgj (A), j = 1,2, are bounded by the expressions displayed in (12.9) and
(12.11) and satisfy the bounds

(12.12) 3D ) +IE ) < pax et

Similarly, (péA, H’l(k)pl)(L g) = —Ppr X V(=K) +JaB(A), where J4p satisfies an
estimate analégous to (12.12).

To complete the proof of Proposition 12.3, we need to establish the estimate
(12.12). This is deferred to Section 15.
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12.3 Matrix Element ( pﬁ It H* (k) pﬁ" 4)
Thanks to (12.6) we have
(pE 4 H W) pig 4)

/ P () HK)pl ()X
B(va,ro)UB(vp.,ro)

(12.13)  _ T Y aekew /B - Vo(X — v4) pl(x — W) pit (x — v)dx

weA 4 veA 4 \{va}
+ Z Z Aze“"(v_w)/ Vo(x—VB)pé(x—w)p(}(x— v)dx.
weEA  VEA 4 B(VB’rO)
We now bound both double sums in (12.13). For the first double sum, express

weAgaw=vi+mvandv € Ay \{vqlasv =vq +nv,n # 0. The first
double sum is bounded by

,31(4121 = /\2 Z Z €C|m—n|)L_1
(12.14) ™ n70
x / Vo(x = )l pi(x — v — m¥) p(x — v4 — n¥)dx.

For the second double sum, express w € A4 asw = vp +ep 1 + mv,andv € Ay

asv =vp +ep;+nv,ne Z2. The second double sum is bounded C - 315121‘)1,

where
~2) _ 42 C|n—m|A~!
=YY
m n

(12.15)
x / [Vo(x — vB)| pl(x — Vg —ep —m¥) pl(x — vp —ep; —nV)dx.

PROPOSITION 12.4. Under the conditions of Proposition 12.1, we have

~(1 ~(2 —
(12.16) (P} 4 H* 00 pf )| < 3N + TEAR) S pa x ™2,
where the expressions for 31(4]2, j = 1,2, are displayed in (12.14) and (12.15).

We defer the proof of Proposition 12.4, along with that of Proposition 12.3, to
Section 15.

12.4 Bounds on the Higher-Order Matrix Elements
PROPOSITION 12.5. Assume A > A, and |2] < 6pA for some constant C. Then,

(1217) [{(H*®) - Q1p} ;. Res* Kk, ) Tag[H* () — Q1pf ;)| < o2 €7

The proof of Proposition 12.5 is given in Section 15.

Once Propositions 12.3, 12.4, and 12.5 are established, Proposition 12.2 follows.
Furthermore, Proposition 12.1 follows at once from Proposition 12.2 and the near-
orthonormality (8.5) of the pl’}, Iz
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13 Dispersion Surfaces

By Proposition 12.1,

K —k) A
MK (K, = — ( A ) + Error” (k, ,
(k, papt) = —pa [ yK) (k, 1)
yk) = D123 ekes.v and |Error* (k, )| < e ¢* on the domain %A(K),
given in (12.1). Therefore,

P52 det( K (k, pypn) = 42 — y(R)y(—k) + f(K, ),

where f(k, 1) is analytic on the domain %, defined in (12.1), and | f(k, p)| <
e~*. Although f(k, W) depends on A, we suppress this dependence.

Recall also that .#Z*K(k, ) depends analytically on (k, §2) and hence also on
(k, ;). Thus, we obtain the following result.

PROPOSITION 13.1. Fix K € R2 with |K| < Kumax. Suppose A > Ay, where A is
a large enough constant depending only on V and K. Let

%K) = {(k,p) € C2x C : [k—K| <A™l |u| < C},

where ¢ is a small enough constant, dependent on K,.x, and C is a large enough
constant, chosen below to satisfy (13.1).

Then, there exists an analytic function f(Kk, i) defined on %) (K), with the fol-
lowing properties:
(1) For real (k,u) € gZ/,l(ﬁ), the quantity Q = p) X W is an eigenvalue of
H*(K); i.e., there exists (2, ) with  # 0 such that

(—(Vx + K2+ VAx) - Qv =0, v e HX(R2/Ay),

if and only if | is a root of the equation
Py det( ™K (K, pa) = p? = y(K) - y(k) + f(k, ) = 0.

i) | f(k, )| S e~ for all (k, p) € %, (K).

DEFINITION 13.2. If p; x p is an eigenvalue of H*(K), then we say that (K, i)
belongs to the rescaled dispersion surface and that u is a rescaled eigenvalue of
H*(K).

13.1 Rescaled Dispersion Surfaces

We show that the locus of quasi-momentum / energy pairs that comprise a rescal-
ing of the two lowest-dispersion surfaces of H = —A + A?V/(x) is uniformly
approximated for large A and on any prescribed compact quasi-momentum set by
the zero set of an analytic perturbation of Wallace’s dispersion relation of the two-
band, tight-binding model.
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13.2 Complex Analysis

We pick C large enough, depending on Ky, to guarantee that for (k, u) €
%.(K)

~

C
(13.1) =~ = 1> — y(K)y(—k)| > 2.

Denote by F(u, k) the function

F(u,k) = pu? =y (&) y(=k) + f(1. k).
We suppress the dependence of F (i, k) on A, inherited from f(u, k).
The function i — pu? — y(k) y(—k) has two zeros (multiplicity counted) for
fixed k € C? such that |k — K| < ¢A~1. These zeros lie in the disc {x € C :

| < 6/2}, and moreover |12 — y(k) y(—=k)| > 2 and | f(i. k)| < e~°* on the
boundary of that disc. Hence, by Rouché’s theorem, the function u — F(u,Kk)

has two zeros (multiplicities counted) in the disc {u € C : |u| < C /2%,
The two zeros of F'(u, k) we call 4+ (K) and pu—(K).
If Kk € R?, then w4 (k) and p—(k) are the two real rescaled eigenvalues of
H*(K) in the interval [-C /2, C/2]. The dependence of 4 (k) and ;1 (K) on A

has been suppressed.
Standard residue calculations give

1 I F (. k)
13.2 k) + (u_(k)} = — P22 0 g, 1 =1,2.
(13.2)  (u+(k)" + (u—(k)) 2t Buese j FLK) 2

~

Since |f(LL,k)| < e~ for |u| < C and |k — K| < A1, we have for |u| = %C

and |k — K| < ¢A~! the estimates

90 F (k) =20] < e [F(uk) = [ =y 0y (k)| < e,
u? =y &)y (k)| > 2.

From (13.2) and (13.3) we obtain that p4 (k) + pu—(k) and (u—(k))? + (u—(k))?

are analytic functions of k. Furthermore,

OuF (k) Iulp? —yWyR1| _ —ca

F(p. k) p? —y®y(=k) |~
for |u| = %6 Ik — K| < &A™, Therefore, for | = 1,2:

(13.3)

o/ ) — 2!t dit + O(e—C*
(k)" + (n-(k)" = —— =i 12— 0y (K) pn+ 0 ")
O(e=*), [ =1,
2y(K)y(-k) + O(e™t), 1 =2,

(13.4)

for |k — K| < AL,
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Note that
1 2 1 2 2
ot ) u—(K) = 2 (4 (K) + p—(K))™ — = (14 (k)7 + p—(K)%).
It follows that w4 (K)u—(K) is analytic for |k — ﬁ| < ¢A~ ! and satisfies the bound

(13.5) @ p—k) + y®y(-k)| S et |k—K|<ér ™l

From (13.4) and (13.5), we obtain the following results regarding the quadratic
equation (1« — i1 () x (1 — p—(k)) = 0.

LEMMA 13.3. Fork € C?, |k — k| < ¢A7L, the roots of F(iu.k) = 0 in the disc
|| < C /2 are the roots of a quadratic equation:

1% + by (k) + bo(k) = 0,
where b1 (K), bo(K) are analytic functions on
(13.6) DEK)=1{keC?:|k—K|<er™!}
and |b1(K)|, |bo(K) + y(K)y(=K)| < e=* for all such k.

Therefore, after possibly interchanging - (k) and p—(k) for each k, we find
the following:

LEMMA 13.4. Fork € D(K), defined in (13.6), the roots of F (i, k) = 0 are given
by

(13.7) e (8) = hg(K) % [y Ry (k) + g (k)

where hg and gg are analytic functions on D(ﬁ) and
hg®)]. |sg®)| S e ke D(K).

When k € R% N D(K), u+(K) are real and therefore hg and gg are real for
k € R2n D(K).
LEl\gMA 13.5. Let El,ﬁz e R2 with |K1|, |ﬁ2| < Kmax. Suppose D(Kl) N
D(K,) is nonempty. Let hﬁl -8R, and hﬁz’ 8%, be analytic functions arising from
K and K5, respectively, in Lemma 13.4. Then, hﬁ1 = hﬁz and gx, = 8k, on
D(Ky) N D(Ky).

PROOF. Fork € RZ N [D(Kl) N D(ﬁz)] we know that 4 (k) are the rescaled
eigenvalues of H*(K) in the interval [—%6 , %6 ]. Since these u+ (k) are given by
the formulae (13.7) in D(ﬁl) NR? and in D(Kz) NRR2, it follows that hﬁl = hﬁz
and g = gg, on D(Kl) N D(Kz) N R2. The lemma now follows by analytic
continuation. U



1240 C. L. FEFFERMAN, J. P. LEE-THORP, AND M. I. WEINSTEIN

Thanks to Lemma 13.5, we can put together all i into a single analytic function
defined on
Dk,

max

={k € C?: |MK| < Kmax. |Sk| <A1},
and similarly for gg. Thus, we obtain the following result.

LEMMA 13.6. There exist analytic functions g and h, defined on Px.__, with the

following properties:
() lg®)|, [hE)| < e* for all k € Ik,
(2) g(k) and h(k) are real for real k € Pk__, and for eachk € Pk, N R?,

max’ max

max’

the rescaled eigenvalues of H*(K) in the interval [—%6 , %6 | are given by

pt (k) = h(k) £ v/y(K)y(—k) + g(k).

The following result is a consequence of Corollary 9.5.

COROLLARY 13.7. The maps k + E’ (k), where

(13.8)  EL(k) = Eg + paps () = Eg + pa(h(K) £ vy 0y (=K) + g(K)).
define the two lowest dispersion surfaces of —A + A2V (x).

Recall, by Theorem 10.1 and Corollary 10.2, the operator —A + A2V(x) has a
Dirac point at (K,, E é), where k = K,, any vertex of %y,. Therefore, E4 (K,) =
E_(K,) = Eé. By Lemma 5.2, y(K,)y(—K,) = 0, and therefore it follows that

El’\) = E('} + 05 (h(Ky) = +/g(K))), and since Eg is a double eigenvalue, we have
g(Ky) = 0;i.e., g(k) vanishes at the vertices of %;,. Thus,

E} = E}(K.) = EX(K,) = E§ + py h(K,).
Note p+(K,) = h(K,). By Corollary 13.7
EL(K) — Efy = p3 (n+(K) — £ (K,))
= p (h(K) — h(Ky)) = pp vy(K)y(—K) + g(K).

Dividing by p, gives

(13.9)  (EL() — Ep)/pz = (h(k) = h(K.) £ Vy Ry (k) + g(k).
The expression (13.9) is an expression for the rescaled low-lying dispersion sur-
faces, which we now study for A large.

14 Expansion of x4 (k) and Rescaled Dispersion Surfaces
for A Large

Introduce the rescaled low-lying dispersion maps
(14.1) pe(k) = (EL(K) — EB)/pz-
Also, recall (Lemma 5.2) that for k € R?

(14.2) Wig(k) = |y(K)| = vy(K)y(-k).



HONEYCOMB OPERATORS AND STRONG BINDING 1241

14.1 Rescaled Dispersion Surfaces Away from Dirac Points

Assume k € R2, [K| < Kpmax, and |y(K)y(—K)| > A~1/2. (Note that for k € R2,
we have y(K)y(—k) = Wrg(k).) Then, using (13.9) we write

nek) = (EX (&) — EB)/pa

_ - _ s
= EVrlorh [1 T 0y (k)

= £/ Ry (K[l + fi.+®)].

Thanks to our estimates for |g(k)| and |A#(K)|, and the assumed lower bound for
y(K)y(—K), we have the following:

1/2
] + h(kK) — h(Ky)

PROPOSITION 14.1 (Rescaled dispersion surfaces away from Dirac points). On
the set {k € R2 : K| < Kmax, |y (K)y(=K)| > A~Y2, the rescaled eigenvalues of
H*(K) in the interval [—%C, %C] are given by

(14.3) pae (k) = /Yy (—K)[1 + f1,+(K)].

Equivalently, for the rescaled eigenvalues of —(V + ik)? + A2V(x), we have
(14.4) (EL() = Ep)/pa = £V/yWQy(=R)[1 + /5,4 (k)]

Here, the corrections f;,i(k), j = 1,2,in (14.3) and (14.4) are real-valued and
satisfy |0f, fx.j (K)| < C(Bmax) €=* for |B] < Brax.

14.2 Rescaled Dispersion Surfaces in a Neighborhood of Dirac Points

We shall use Lemma 13.6 to study the rescaled dispersion surfaces in a neighbor-
hood of Dirac points (k, E), withk € Pk, andrescaled energy within [— % C. % C ].
We begin by noting that rotational symmetry of the Hamiltonian —A + A2V
implies rotational symmetry of the maps k — w4 (k) with respect to Dirac points.

LEMMA 14.2. Consider the pair (K., Eé), where K, is a vertex of By, and Eé

is a double eigenvalue of —A + A?V, guaranteed, for A sufficiently large, by The-
orem 10.1 and Corollary 10.2. Thus , E}, = E}(K.) = EX(K,). Then, for all
k € R2 with 0 < |k| < kg sufficiently small, we have

{+(Ks + Ric), pi— (K + Rie)} = {1+ (Ks + 1), - (K + 1)}

Here, R denotes the 120° clockwise rotation matrix. The analogous assertion holds
with w4 (-) replaced by E i (). Here, k¢ is independent of A.

PROOF. Consider 0 < |k| < ko sufficiently small. Let £, € [—%6 , %6 ] be an
eigenvalue of —A + A2V acting in the space L%(*_HC. Thus, E, = E*(K, + k)
or B, = E _’}r (K4 + k). Denote the corresponding eigenfunction by ¥ (x); (—A +
A2V = E¢. Now consider = (Z¥)(X) = ¥ (Xe + R*(x—X¢)). Recall that
Z# commutes with —A + A2V (Proposition 5.1), and therefore (—A + A2V)yr =
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E, J By (7.2), we have J(x +v) = e"(K*"‘R")'VJ(X) for v € Ay. Therefore,
¥ (x) and ¥ (x) are, respectively, K, + « and K, + Rk pseudo-periodic eigenstates
of —A + A%V with the same eigenvalue, E,. Thus,

{EL (K + 1), EL(K,y + k) C {E} (K, + Ri), EA(K, + Ri)}.

To prove the reverse inclusion, we start with an L%( 4R -eigenvalue, Eg,, with

corresponding eigenstate (Z € L%(* 4 R Then, (%25) x) € Li* 1 1s an eigen-

function with eigenvalue E g, and therefore
{EX (K, + Rie), EX(K. + Ri)} C {EX (K, + k), EA(K, + 1))
By (13.8), this result transfers to w4 (k), completing the proof of Lemma 14.2. [J

By a careful study of the Taylor expansions of the analytic functions % (k) and
g(K) in a neighborhood of K, we will prove the following characterization of the
local behavior of the low-lying dispersion surfaces near the vertices of %y,.

PROPOSITION 14.3 (Rescaled dispersion surfaces near Dirac points). Let Cx« de-
note a small constant and C denote a sufficiently large constant, both determined
by Vo. For A > A.(Vo, Bmax) sufficiently large,
(1) the rescaled eigenvalues of H*(K) in the interval [—%6, %6] are given by
u+(K) for |k — Ki| < cxx, where

[0 s () = [A(K) £ vy (07 (K]} < ek — K. |74,
for 0 < |B| < Bmax. Here, u+(K,) = h(K,) (see Lemma 13.6) satisfies
h(K,)| S et
(2) Egquivalently, E i (K), the low-lying eigenvalues of —(V + ik)? + A2V (x),
when rescaled, satisfy

00 {(EL00) — EB) /3 — [y ®)y(—K)]}| < e Ak — K, |7,

We now embark on the proof of Proposition 14.3, which will occupy the remain-
der of Section 14.

We Taylor-expand % (k) and g (k) using the symmetry lemma, Lemma 14.2, and
the results of Section 13.2. Fork € R? and |k—K,| < Kpax we write k = K, +«,
and we have

. 1
gKi+x)=g0+81-k+ EKTgZK + Y gnliox™,
In|=3

- 1
WKy + k) = ho+ hy -k + EKThzlc + |Z3 T (10)KC™,
n=

where g0 = g(K,),ho = h(K,) are numbers, §1,l;1 € R? are vectors, g2, h»
are symmetric 2 x 2 matrices, and gy, #n (Jn| = 3) are scalar and single-valued
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functions that depend on multi-indices n. Moreover, because of the analyticity and
bounds given for g and 4 in Lemma 13.6, we have the norm bounds

(14.5) g0l kol S e ™%, |G 1l S e, |gal. ha| S e,
and
(14.6) 168 gn ()|, |08 ha(ic)| < =%,

for k € R?, |k| < %Kmax, |B] < Pmax» In| = 3. Note: The derivative bounds
follow from Cauchy estimates for derivatives of analytic functions. The small
thickness |Sk| < éA~1 of Dk, in the imaginary directions in Lemma 13.6 is
overwhelmed by the tiny upper bound e~¢* in that lemma.

As noted above, by part (1) of Lemma 14.2 and the vanishing of y (K, )y (—Ky),
we have gog = 0. By part (2) of Lemma 14.2, we have Rg; = g1, Ri_il = El.
Since 1 is not an eigenvalue of R, g = 0 and l; 1 = 0. Furthermore, RngR = g5
and RTho R = h,. Therefore, by symmetry of g, and ho, g5 = ggl and iy = hgl
for scalars g3, h9. Our estimates for |g2|, |h2] yield |g3], |h9] < e~¢*. Thus, we
obtain the following result.

LEMMA 14.4. Fork = K, + k, k € R, || < %Kmax, the rescaled eigenvalues
of H*(K) in the interval [—%6, %6] are given by

nt(k) = hk) £ y&y(k) + gk),

where
1
7Ky + 1) = ho + S h3Jic|* + > haie)r™,
[n|=3
1
(Kt 1) = Zg8lk* + ) gali)e™,
[n|=3

Here,

lhol. 1hS).1g3] < e™* and |9 gu(k)|. |8E hu(e)] < e,
fork € R?, |k| < 1 Kinax, |B| < Bmax, and |n| = 3.

In the next sections we use Lemma 14.4 to write 4 (k) = +/y(K)y(—K) plus
an error term, which we estimate explicitly.

14.3 Bookkeeping

Suppose F (k) and G(k) are functions, defined on an open subset of R?, satis-
fying at some point k¢ the estimates

08 F(o)| < 4-671, 18] < B,
108G (ko) < B-571P1 18] < Bunax.
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Because 85 (FG)(k) is a sum of terms 8,’?1 F(lco)asz(lco) with |B1|+1B2| = |B].
we have
9% (FG)(ico)| < CAB - [min(8. )], 1] < B,
where C is a constant depending only on Buax.
Next, suppose H (k) is a function defined in a neighborhood of k¢ in R?, and
suppose H satisfies |8£ H(ko)| < A5™1Bl for |B] < Bmax and 1071 < H (o) < 10.
Because 8,’? (1/H) (k) is a sum of terms

(H(ic0)) ™"~ 98 H(ko) - - 85" H (1c0)
with |B1] + -+ + | Bv| = ||, we find that

o8 (%) (ko)

with C determined by 4 and Bax.

< C87BL 1B < Buaxs

LEMMA 14.5 (Bookkeeping lemma). Fix a positive integer Bmax. Let F (k) and
Fo(k) be complex-valued functions defined in an open subset of C2. Assume that
there exist positive constants A and n such that the following estimates hold:

(14.7) F), o)l = oo

(14.8) |68 F ()| |98 Fo(ic)| < A5 for |B] < Bumax.
(14.9) |02 (F i) — Fo))| < 0581 for [B] < Bumax.
Then,

0% ((1+ F)' 2 = (1 + Fo)/2)| < Cns B! for |B] < B
where C is determined by A and Bmax.

PROOF. Set / /
1 X 1/2 1 Y 1/2
A y)= UFOT A+ )T
X-Y
Then, A(X,Y) is analytic as a function of (X,Y) in D x D, where D is the
disc of radius 1/10 about 0 in C. Thus, (1 + F(k))/%2 — (1 + Fo(k))V/? =
A (F(k), Foke)) - [F (k) — Fo(k)].
Now 8,’? [A (F(k), F(ko))] is a sum of terms

Vmax Vmax

(14.10) [8}’(,Y¢A(X, Y)( X:F(:c)] T 88 Faoy - [ 687 Foto,
Y=Fo(k)~ v=1 =1

where |[B1] + -+ + [Buge| + lO1] 4+ -+ + |og,, | = |B]. Using the hypothesized
bounds (14.7) and (14.8), we see that each term (14.10) has absolute value at most
C - 8711 where the constant C is determined by A and Bax. Thus,

|08 A(F (), Fo(tc))| < C871BL ] < Brnas
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where C is determined by A and Bax.
We next use the assumed bound (14.9). Because

(1 + F()? = (1 + Fole))'/? = A (F(k), Folie)) - [F(k) — Fo()],
it follows that
08101+ F(0)' /2 = (1 4+ Fote))/?]| < Cns™18L 18] < Bunax,

with C determined by A and Bax. This completes the proof of the lemma. O

Recall that Lemma 14.4 gives py(k) = h(k) £ /y(k)y(-k) + g(k) and
specifies the form of the Taylor expansions of g(K, + k) and h(K, + k) for

lk| = |k — K, | small and & real. We next compare the functions
(14.11) Fe) = Vy®y(-k) + g(k), k=K, +«,
and

(14.12) Fo(e) = /y(K)y(-k), k=K, +«,

for |k| < cu, a small constant to be chosen below. Note that since here k is
real, y(k)y(—k) and y(k)y(—K) + g(k) are nonnegative; therefore we may use the
nonnegative square root. Consequently, I and Fy are well-defined.

By Lemma 5.2 and Taylor expansion (k = K, + k real), we have

(14.13) y(K)y(=k) = ady K[> + Y k™ Fom(k) for || < Cax,

Im|=3

with ago = v 3/4, |a£F0,m(K)| < C, for [m| = 3, [B] < Bmax, and k| < Cux-
Therefore, Lemma 14.4 yields (k = K, + k)

y(K)y(—k) + g(k) = (a%o + %g‘z’) ke |2

+ > k™(Fom(K) + gm(K)).

|m|=3

(14.14)

We rewrite (14.11) and (14.12) using (14.13) and (14.14) in the form

o) €™ Fom() + gm() ]
P = (o +58) Ielx |14 3 . Fome HEnl) |
lm|=3 lie| ago + 3282

k™ Fom(k 1/2
Fo(k) = agolkc| x [14+ > = ,nzl() _
|| a
|m|=3 00
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Therefore,
F(x) — Fo(x)
1 1/2 ™ Fom(k) + gm(x 1/2
=[(aﬁo+2g3) —6100]|’C|'(1+ Z W-—O’ i ) + g ))

1,0
Im|=3 doo T 282

Z Lm . Fo,m(k) + gm(’c))l/2
2 1
2 ag eIl

(14.15) +a00|lc|[(l +‘

k™ Fom(k) 1z
—\It Z WE 2
( ml=3 k| o0

= Term 1 + Term 2.

Estimation of Term 1

We apply 8£ to Term 1 and estimate. Consider the first factor in Term 1: (a(z)o +
%gg) 1/2—a00, which is independent of «. From Lemma 5.2 we have agg = \/3/_4
Also, | ggl < e~¢*. Therefore, the first factor is < e~°*. Concerning the second
factor, |k |, we have 8E|IC| < k|18l for k| > 0, 18] < Bmax.

We turn to the third factor. Here we apply our bookkeeping lemma with the
choices

m  F
Fe)y= ) . 5 ( O’mgk) +1gn(;(’c)) and Fo(k) = 0.
mims ¥ oo T 282

Recall that |8£F0,m(lc)| < C (Lemma 5.2), |8,€gm(lc)| < e for |k < Cuns
1B < Bmax, Im| = 3 (by (14.6)), and that aZ, + g3/2 > 3/8 (Lemma 5.2 and

(14.5)). Therefore, for the same range of k, B, and m,

" [Fo,m(m + gm(k)

(14.16) >

1.0
ago + 328>

Jl=c .
Also, for |m| = 3, |B| < Bmax, and any k, we have

Km
B =
0
because ™/ |k |? is homogeneous of degree 1 and smooth away from 0. Therefore,

m Fo,m(k) + gm(x) _
Bl (2 < 1|18l

Im|=3 o0

(14.17) < |k|11B

(14.18)  [0E F(o)| =

and of course |8£ Fo(k)| < |k|*~!8l. In particular, the case B = 0 implies that
|F(k)|,|Fo(k)] < 1/10 on the set where || < cux provided we take C.. small
enough.
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Applying the bookkeeping lemma, Lemma 14.5, with F given by the expression
within square brackets in (14.18) and Fy = 0, we conclude that

m 1/2
al;‘g[(l_i_ Z (;C?_(Fo,m(’f)‘i‘gm(’c))) _(1+0)1/2]

2 1.0
lm|=3 doo T 282

(14.19) < [k |18

for all |k| < cux and |B| < Bmax. Finally, using (14.17) and (14.19) we obtain

|3£ (Term 1)} < e k|11l

Estimation of Term 2
Our strategy is again to apply the bookkeeping lemma, this time with the choices

Fotty= Y CC? Fomt)  piy= 3 |"|2 Fom(e) + gme),

1.0
o0 ago + 282

|m|=3 m|=3

From (14.16) we have, for |B| < Bmax, |[k| < Cxx, and jm| = 3,

F F
(1420 |9f [ O’mi'c)ﬂg‘g('c)} <C andsimiladly |97 [ O’Q(K)]'sc.
ago + 282 200
Moreover,

FO,m(K) + gm(k) _ FO,m(K) _

2 1.0 2
ago t 282 )

1 -1
(0 588)  — 2] (Fom(e) + gm) + i mto

Recalling that agg = v/3/2, |gg| < e~°* we have
2 1 o - 2
(aoo + Egz) —dgg

for |B] < Bmax, M| = 3, and |k| < Cyx, & € R?. Also,

<e™* and |9F (Fom(c) + gm(x))| < C

9% gm(ie)| 5 e
for |B] < %,Bmax, m| = 3, and |k | < c««. Consequently,

BE[FO’m(K) + 8gm(x) Fo,m(K)] < o=h < o=Ch | IB

~

2 10 2
ago T 282 o0

for |B| < Bmax> 0 < || < cxx, and [m| = 3. Also,

m
0 R
‘ (IKIZ)

< Ji !
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for the same range of 8, k, and m. Therefore,

|08 (F (1) — Folic)))|

F0m(lc)+gm(lc) K™ Fom(x)
B P |

||
Im|=3 apo + Egz ag

S e i Je| P

~

(14.21)

fork € R%,0 < || < Cxx, and |B| < Bmax. Moreover, if cx4 is sufficiently small,
then for 0 < |k| < cxx We have |F(k)|, | Fo(k)| < % because [™/|k|?| < |k|.
From (14.20) we have

"™ Fom(k) + gm(k) _
3B F )| = aﬂ[ } <1kl e[ 8
Phrel =i 32 e+ 1
and
|9 Foi)| = Bﬂ[z ZFO‘Q('C)} < Jie| - ie| A1,
|m|= 3| | aOO

Thus we have verified all hypotheses of the bookkeeping lemma. That lemma
implies that the expression in square brackets in Term 2 satisfies the bound

1/2
aﬂ[(H > |2F0m§'c)+gm(x))

Im|=3 a00+§g2
K™ FOm('C) < ,—CAy,11-IBI
2 <]
| |=3 00

for 0 < |k| < cxx and |B| < Bmax. Because also |8£(a00|lc|)| < |18l for
0 < |k| < cxx and |B| < Bmax, it now follows that

|8£[Term2]|
=9 |:aoo|lc %(1+ Z —Fom(x)+gm(lc)) (1+ > ’CmFO’m(’C))I/Z}]
“ 5 K 2 a2y + 1g? s €2 ago
<e Cl|,c|2 1Bl

Recall that IF (k) — Fo(k) = Term 1 + Term 2, where FF (k) and [F¢ (k) are given
by expressions that are displayed in (14.11) and (14.12). Combining our estimates
for the derivatives of Term 1 and Term 2, we find that

108 (F (k) — Fo (k)| = |92 (v 1)y (k) + g(k) — vy ) y(—K))|

S e P!

fork € R2,0 < |k| < Cex, and |B] < Bmax.
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Recall from Lemma 14.4 that the rescaled eigenvalues of H A(k), with k =
K, + k in the interval [—%C, %C], are
pa (Ko + i) = h(ic) £ F(ic) = h(ic) £ Fo(ic) + (F (i) — Fo (),
where
1
he) = ho + 3 WSkl + ||Z3K“‘hm(x>,
m|=

with [hol. k9] S e ¢* and |05 hum(ic)| S e™¢* for |B] < Bumax and || < Cyx.
Combining the above with our estimate for the derivatives of ' — [Fg, we obtain

(1422) [0 {x (Ko + ) = [ho % v/y (K. + 1)y (—Ka =) ]}| <

e—cl|lc|l—|ﬂ|
for | B| < Bmax and 0 < |k | < cxy. Here, |ho| < e~
This completes the proof of Proposition 14.3.

15 Controlling the Perturbation Theory
and Completion of the Proof of Theorem 6.1

In this section we complete the proof of Theorem 6.1. To do this, we must
complete the proofs of Propositions 12.3, 12.4, and 12.5 by establishing the fol-
lowing estimates on corrections to the leading-order behavior of the entries of

MR(K, py ) (see (12.2)):

I + I S paxe ™t 3N +ITN) S pax e
and

([H &) — Q1pf , Res K (k. @) Myp[H*(K) - Q1p )| < pre™e
for some ¢ > 0; see (12.12), (12.16), and (12.17). Here,

Py = A2 f Vo) pE (¥ — ean) pt 9y,

which, by Proposition 4.1, satisfies the upper and lower bounds
e-C]). < ,OA < e—CzA.'

These bounds are proved in Section 15.3. In previous sections, we required that
supp Vo C B(0,rg), where 0 < rg < %|eA,1|. To prove the above bounds, we
impose a stricter constraint on rg, namely rg < Fcritical, Where Feritical arises in the
following geometric lemma. We note that the assertions of this lemma are easily
seen to hold for rg positive and sufficiently small. A nontrivial lower bound for
Teritical 18 Of interest in applications.
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LEMMA 15.1 (Geometric lemma). Recall the vectors e4,,,ep ,, v = 1,2, 3; see
(3.1), (3.3), and Figure 3.1. Let Rgo denote the matrix that rotates a vector in the
plane by 60° clockwise. There exists a positive universal constant reigical Satisfying

(15.1) 0.33]e4,1| < Feritical < 0.5l€4,1],

and small positive constants ¢', ¢”, ¢'", and ¢""”, for which the following assertions
holdfor I = A,Bandv = 1,2,3, and all ro < Teritical and all 2,y € B(0, rg):

(1) There exists Iy € {0, 1, ..., 5} such that

(15.2) z+ery—yl— |z— R9y| = c'ler|.
(2) Foranym € 72 there exists Iy € {0,1,...,5} such that
(15.3) lz—my—y|—|z— RSy| > ¢’ |m|.

(3) Let Nypaa(ey,y) denote the set of allm € 72 such that ler,y + mv| = |ef |
for w =1,2,3. Foranym € Z?\ Nyaa(ery) there exists I € {0, 1,...,5}
such that

(15.4) |2+ (e, +mV) —y| — |z + e, — REGY| = ¢”’|m].
(4) Foranyn € 72 \ {(0,0)}, there exists lp € {0, 1,...,5} such that
(15.5) lz+ 0V —y| —|z+er, — R9y| > ¢""[n].

PROOF. Fix § = % x 1072 and let T's denote the grid of points with rational
coordinates of the form x* = (x{,x}) = (p1, p2)§ with (p1, p2) € 772 satisfying

(15.6) x*| = |(x7,x3)| = /p? + p38 < ro +8/V2.

Our strategy to prove assertions (1) and (4) of Lemma 15.1 is to reduce the con-
tinuum assertions (15.2) and (15.5) to a finite computation on the grid I's. This
finite computation is then verified on a computer that performs arithmetic with
sufficiently high precision. We prove assertions (2) and (3) of the lemma without
resorting to computer simulations.

Our reduction of the continuum assertions to finite computations relies on the
following observation:

Remark 15.2. Let ro > 0 and x be any point in the disc B(0, r¢): || < ro. Then,
there exists x* € I's such that |x — x*| < §/+/2.

PROOF OF REMARK 15.2. Every point of R? lies within a distance 1/+/2 of
some lattice point (p1, p2) € Z?, the worst case being points of the form (p; + %,
p2 + %). Therefore, x € B(0, rg) lies within a distance §/+/2 of a point x* =
(p1. p2)8, which belongs to I's because |x*| < [x| + |x — x*| < ro 4 8/+/2; see
(15.6). O
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Continuing the proof of Lemma 15.1, note that by symmetry (eg,, = —e4,, and
€4,y = R‘l’z_oleA,l, v = 1,2,3; see (3.2)), it suffices to prove the lemma for the
case where / = Aandv = 1, we have ey, = e4 1.

In what follows, we fix ro = 0.33]e4,1|, ¢ = 1078, and § = % x 1072 as above.

Assertion (1). For each y*, z* € I's, we confirm by computer that the following
inequality is true: There exists /o € {0, 1,..., 5} such that, for some (tiny) positive
constant ¢/, we have

2" +eq1 —y'| - |2" — Ré%y*‘ > j/—(; + cleq 1].
Let |z[, |y| < ro, and let z*,y* € I's be as in Remark 15.2 above, i.e., |z — z
ly — y*| < 8/+/2. Then |z* + e4,; — y*| differs from |z + e4,; — y| by at most
28/+/2, and |z* — Ré%y*| differs from |z — Ré%y| by at most 28/+/2. Therefore,
|z* +eq1 —y*| —|z* — Ré%y*| differs from |z + e4,1 —y| — |z — Ré%y| by at

*
’

most 48/ /2. Therefore, |z +e4.1 —y| — |z — Ré%y| > ¢’|e4,1], proving inequality
(15.2) and assertion (1) of the lemma.

Assertion (2). We prove assertion (2) without a computer. First, observe that
if m = (0,0), then we may satisfy inequality (15.3) by choosing [y = 0. Next,
let 0 < |m| < 10°. Recall that z,y € B(0,ro): |z|,|y| < ro. We can pick y so
that z and R1600y lie in the same 60° sector in the disc of radius r¢ about the origin.

Therefore, |z — Rlé%yl =19, 8O
- /!
lz—mvV—y|—|z— RQy]|
5 I
> |m¥| - 2] - ly| - |2 - Repy|

> |m‘7| —3rp

> /3leq.1| — 3ro (because [mv| > 1 = v/3|eq; )
> %|eA,1| (because 3rg < |e4,1| and V3i-1> %)
z C//|m|,

where we may take ¢’ = %|eA’1|10_6 because |m| < 10°. Finally, if jm| > 10°,
it is obvious that inequality (15.3) holds. So assertion (2) of the lemma holds.
Assertion (3). We prove assertion (3) without a computer. We claim that

(15.7) form € Z?, if m ¢ Npua(e4.1), then |eq ; +mv| > |eq 1| + 3ro + &.
We verify (15.7) below, but first show how we use it to prove assertion (3). By
picking /¢ so that |z — Ré%y| < rg, we have
|z + (ea1 +mV) —y| — |2+ eq1 — REGY|
!
> (lea,r +mv| = 2] = y]) — (leas| + [z — Repy|)

l//l

> leq,1 +mv| —leq 1| —3r9 > &> ¢ |m],
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provided |m| is bounded, by say |m| < 10, in which case we may take ¢”’ =
€105, Finally, if |m| > 10°, then inequality (15.4) clearly holds. Thus, asser-
tion (3) holds provided (15.7) is true.

We proceed to verify (15.7). Because ro = 0.33]e4,1| and & = 1078, the right-
hand side of (15.7) satisfies |e4,1|+3ro +¢& = 1.99]e4,1| +¢ < 2|eq,1|. Therefore,
if we can show that the set {m € Z? : m ¢ Nyu(e4,1) and |e4,; + mv| < 2|eq 1]}
is empty, we will have verified (15.7). Refer now to Figure 3.1. For simplicity,
consider centering the coordinates in the figure about the blue lattice point v4. It
follows that, for any m € Z2, e4,1 + mv is a red lattice point. The only red lattice
points that satisfy |e4,1 + mv| < 2|eq 1| are the three red lattice points closest
to the origin (at v4), which satisfy |e4,; + mv| = |eq | for © = 1,2,3. But
this is exactly the condition defining the set Npaq(e4,1), and therefore, because
m ¢ Npaa(eq,1), these three red lattice points are excluded. This completes the
proof of the claim (15.7) and assertion (3).

Assertion (4). To prove assertion (4), we confirm by computer that the following
is true: For each y*,z* € T's and each nonzero n € Z? such that [nv| < |eq 1| +

3ro + &, we check that there exists /o € {0, 1, ..., 5} such that
(15.8) |z*+nV—y*|—‘z*+eA1—Rl°y*‘>4—8+8
s 60 ﬁ

It is the verification of (15.8) by computer that imposes the strongest constraint
on ro, and forces us to choose ro equal to or very slightly larger than 0.33|e4,1].
For each z,y € R? with |z|, |y| < ro, and for each nonzero n € Z? satisfying
Inv| < |e4,1| + 3ro + ¢ (as in the computer run), we pick z*,y* € I's such that
lz* —z|,|y* —y| < §/+/2. Because |z* 4+ nv — y*| — !z* +eq1— Ré%y*! differs
from|z+nv—y|—|z+e4s; — Ré%y| by at most 48/+/2, we have (for some Io):

lz+nv—y|—|z+e4q1 — Ré%y‘ > ¢ > c"|n|;
the last inequality holds because the family of n € Z? arising in the computer run
is bounded.

On the other hand, let |z, |y| < ro, and suppose [nv| > |e4 1| + 3r¢ + € but

In| < 10%. Then we pick /g such that |z — Ré%y| < ro, and we have

Z+ 0V —y| — |2+ eq1 — RSy| > (Inv| — |z] — |y]) — (leas| + |z — Ry))

////|

> |nv| — |eq,1| —3ro = & > ¢"”|n|,

the last inequality holding because we assumed that [n| < 10%. Here we may take
" =¢g1076.
Finally, if |n| > 10°, then obviously (for any /g € {0, 1,...,5}),

- I -
|z +nV—y| - |z +eq1 — Repy| = (InvV| — |z] - |y]) — (lea,] + [zl + [y])

////|

> [nv| — leq,1| — 4ro = ¢"|nl;
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the last inequality holds because |eq,1| + 4rp < %|n?’| for [n| > 10%. This com-
pletes the proof of assertion (4) and therewith Lemma 15.1. (|

Consider the eigenvalue problem satisfied by the ground state eigenfunction
pé (x), with corresponding simple eigenvalue £ é:

(—Ax + A2Vo(x) — E})pb(x) =0, pd € L2(R?).

This may be rewritten as (—Ay + |E(’}|)pé(x) = /\2|V0(X)|pé(x), x € R?, and
therefore,

159 phx) = [ A~ D2 Vo®ph(y)dy. xR,

where ) (x) = Z (1/|E é |x). Here, .Z (x) is the fundamental solution for —Ay + 1

satisfying (—Ax + 1).#(x) = 8(x), x € R?, §(x) is the Dirac delta function,
and 2 = Ko(|x]) is the modified Bessel function of order 0, which decays to 0
exponentially as x| — oo [59].

An alternative representation to (15.9) for p(’} (x), which we find useful, is ob-

tained as follows. Note from (15.9) that p())L is a convolution with 2| V| p(’}, a func-
tion that is nonnegative, supported in a disc of radius ro about 0, and is invariant
under a 60° rotation about 0. (The latter is a consequence of the 120° rotational
symmetry and inversion symmetry of V4.) Thus, in addition to (15.9) we have

1 5
as10 phe = | [52%@—Réoy)]xzwo(ynpé(y)dy, Ze R,
[=0

where Rg is the rotation by 60°.

LEMMA 15.3 (Properties of .# (x)). Forx € R?,

(1) JZ(x) = # (|x|) is positive and strictly decreasing for |x| > 0.
(2) There exist entire functions [ and g and constants Cy, Cy such that

H(x) = f(x[)log [x] + g(|x]).

where f(0) = —% and | f(s)], |g(s)| < C1e=C25 forall s € [0, c0).
(3) #(x) < |x|7Y2e ™ for |x| large.
(4) Forx',x" € R? such that |x'| > |x"|, we have

(15.11) A (x) < e IXIEN oy (x7.
Remark 15.4 (¢ and J%)). Since, for large A, |Eé| ~ A2, by (15.11) we have
H(x) < e MNP o (xy for |X] > |X).

PROOF OF LEMMA 15.3. Recall that (47|z|)~! exp(—|z|) is the fundamental
solution for —A, + 1 on R3, ie., (—A, + 1)(4n|z]) ' exp(—|z|) = 8(z). Let
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z = (x,t) = (x1,x2,1). Integrating against d¢ over R, we obtain that the funda-
mental solution of —Ay + 1 on R? is given by

H(X) = — dt, xeR2

1 /oo o—(x2412)3
47 Joo (2 +12)2

Next, introduce the change of variables (|x| + ¢)? = |x|? + 2. Then,
1 [ et
(15.12) H(X) = — S I
2 Jo g2 Ux| +9)2
Part (1) of the lemma follows since the expression in (15.12) is clearly positive and
decreasing as a function of [x|. Part (2) of the lemma was proved in [50, lemma
3.1]. Parts (3) and (4) are immediate consequences of (15.12). [

dixe ™,

A consequence of Lemma 15.3 is the following exponential decay bound on
Py (x).
COROLLARY 15.5. Assume supp(Vp) C B(0, ro) with ro > 0 and condition (GS)
on the ground state energy of —A + A?Vy(X); see (4.2). Let co > 0 denote any

positive constant. There exist positive constants C1, Ca, and c1, which depend on
Vo, ro, and cg, such that pé (x) satisfies the bound

Cre™ L Ix| > rg + o,

A
X) <
Po(®) = CaA, x| < ro + co.

PROOF OF COROLLARY 15.5. Take y € supp(Vp) and |x| > ro + co. Then,
|x —y| > co and hence A|x —y| > Aco. By part (3) of Lemma 15.3, there exists
A« > 0, which depends on cg, such that for all A > A, we have

H(x—y) = H(|ES|(x—y)) < (cAlx—y|)2e A
< (ccox\)_%e_")”x_y'.

Estimating | pé (x)| by making use of the integral equation (15.9), the above bound
on %) (x —y), the Cauchy-Schwarz inequality, and || pé |2 = 1, we obtain

1
2
P )| < 22| Voll Lo (ccot) ™2 [/| 6_2”"““613']
y

|<ro
Note that
|x| €o
X =yl = |x[ =yl = [x| =ro = X[ =10 = Ix].
ro + Co ro + Co

Therefore, for all x such that |x| > rg + co,

A 2 1 e 0 Qx| 213
!po(x)| < A%|[VollLee(ccor) 2e “rotco [JTVO] .
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For 0 < |x| < ro + ¢o, we use (15.9) and the Cauchy-Schwarz inequality to get
pé(x) < |VollLeeA?[|#3 | 2 = AllVollLee||-#1 ]l z2. This completes the proof of
Corollary 15.5. O

The following bounds on pé are used in completing the proofs of Propositions
12.3,12.4, and 12.5.

LEMMA 15.6. Recall that Nyaq(eg ) denotes the set of n € 7?2 such that ler,, +
nv| = le .| for n = 1,2, 3. There exists a constant ¢ such that fory € supp(Vp) C
B(0,rg), i.e., |y| < ro, we have, for | = A, B andv = 1,2,3,

(15.13) po(y —mv) < e~cImid pd(y),

(15.14) Po(y+ery +0V) S e P pl(y +ery). n ¢ Npaaler).
(15.15) PE(y +erv) S e P pg(y).

(15.16) pe(y—n¥) < e MM pd(y +er). m# (0.0).

PROOF OF LEMMA 15.6. We first prove the bound (15.13). Applying part (2) of
the geometric lemma, Lemma 15.1, we obtain, for all |z|, |y| < ro and allm € 72,
an /¢ such that

|z+mv—y|—|z— Ré%y} > ¢”|m|

for some /o. Therefore, by Remark 15.4, we have for all |z|, |y| < ro

Hi(lz—mv —y]) < e "Mz (|2 — RYy))

5
77 1
< ,—cc’m|A 2 o _ Rl
e 62 A(‘Z 60y|)‘
=0
Therefore, by (15.9) and (15.10),

Pl (z—mi) = / i@ —m¥ — Y22 Vo) ph 1)dy

A

5
e—cl“‘lA/éZ%/A(!Z—Réoy})12|V0(Y)|Pé(Y)dy

=M pi(@). | < ro.

Next we turn to the proof of the bound (15.14). In a manner similar to the proof
of part (15.13), we have by part (3) of the geometric lemma, Lemma 15.1, that for
all |z|,|y| < ro and all n € Z2 \ Nyua(er,,), there exists /o such that

5.17) Mz + (e +n¥) —y| — Alz+ e, — RGY| = Ac”[n].
By Remark 15.4 we have for all |z|, |y| < ro,

5
N o 1
Ho(z+ (ery +1V) —y) Se ¢ IHMEE %(Z‘f‘el,v_RéOY)-
=0
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By (15.9) and (15.10),

Po @+ (er,y +nv))
5
_ 1
S et [ ©3 Hafat+er — R Vo) )y
=0

=M plz+er). |2 <ro.

Thus, bound (15.14) holds.
To prove bound (15.15) we have by part (1) of Lemma 15.1 that, given |z|, |y| <
ro, there exists [y such that

(15.18) Az +ery —yl —Alz— Ry| = Ac'ler .
By Remark 15.4,

5
e 1
Aoz +ery—y) Se |e1")|A82%(Z_Réoy) for [zl [y = ro.
=0

By (15.9),

5
_ 1
Pt er) 5 el [ 257t - Rigy) 2 1Volpb )dy
=0

= e_c|e1’”|)tpé(z), |z| < ro.

Thus, bound (15.15) holds.
Finally, to prove (15.16) we have by part (4) of Lemma 15.1 that for |z|, |y| < ro,
there exists [y such that

Az —nv—y| = Alz+er, — RSy = Ac™ |, n # (0,0).
By Remark 15.4,
1 5
Hy—mV—y) 5 e~y A (2t e — REy) for [z].|y| < ro.

=0
and hence, by (15.9),

5
- _ 1
pi(z—nv) S e / ¢ 2 a2+ ery — Reoy) 22 Vo) pg ()dy
1=0

= e_clnl’lpé(z +ery), |z| <ro.

The proof of Lemma 15.6 is complete. U
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15.1 Completion of the Proofs of Proposition 12.3 and Proposition 12.4

To prove estimate (12.12) of Proposition 12.3, we bound the five sums in (12.9)
and (12.11), and to prove estimate (12.16) of Proposition 12.4, we bound the two
sums appearing in (12.14) and (12.15). The full list of seven expressions to be
bounded is as follows (recall v4 = 0, and note that all sums are over subsets
of Z?):

-1 .
Ji = Z e |m'/|V0()’)|1f?(’}(y—eA,u)p()}(y—mv)dy,

m##(0,0)
1<v<3
-1 _ R .
dy = Z eCA Im “/|VO(Y)|P3(Y—6A,1 — V) pl (y — mv)dy.
m#(0,0)
n#(oso)s(()’_l)s(_lso)
—1 .
= [l wpb s - ent — 1y,

n#(0,0),(1,0),(0,1)

—lim -
Ja= Y M '/IVo(y)Ipé(y—mv)pé(y—eB,v)dy,
m#(0,0)

1<v<3
1| . .
5= X T [ @by - miphy - e~ ni)ay.
m##(0,0)
n#(0,0),(1,0),(0,1)

ls= ), > e”1'“"“’/IVo(y)Ipé(y—mV)pé(y—nV)dy,

n#(0,0) m

—1n_ o o
J7 =) A n '“'/IVo(y)lpé(y—eB,1 —mV) p§(y — ep,1 — nV)dy.
n,m

In particular, we prove the following:

PROPOSITION 15.7. For all A > A, there exist positive constants ¢ and A such
that

(15.19) 9l Spaxe ™™ 1<j<7.

(Indj, 1 < j <7, we have dropped the factor of A* multiplying |Vo|, since this
can be absorbed by adjusting the constant ¢ in the exponential factor in (15.19).)

PROOF. We proceed to estimate J;, 1 < j < 7, using the bounds of Lemma
15.6 and the fact that Vp(y) and p(’} (y) are even functions.
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Estimation of |1 |

By estimate (15.13) of Lemma 15.6, we have that p())L (y—mv) < e_c|m|)‘p())L (y)
fory € supp Vp. Therefore, forv = 1,2, 3:

/ Vo) ph(y — ean) pl(y — m)dy <

¢clmiz / Vo)l ph (¥ — ean) ph )y < e~ x .

Next, multiplying by gcrlh“' and summing over m € Z?2 \ {(0,0)} gives the
bound |4;| < py x e,

Estimation of ||

The strategy is similar to that used to bound |4;]. By (15.13) and (15.14) we
have

/ Vo) p(y — €41 — n¥)pl(y — m¥)dy

< e=cmld o p—cimld o / Vo(y)| o (y —ea) pa(y)dy

< e—clnM x e—c|m|/l X py,

form # (0,0) and n ¢ Npaa(ea,1) = {(0.0),(=1,0),(0,—1)}. Multiplying by
eCAT Im=nl 44 summing over m # (0,0) and n ¢ Npq(eq,1), we obtain the
bound |d2| < e~ p;.

Estimation of |d3]
To bound |43]|, we apply the bound (15.14) to obtain, forn # (0, 0), (1,0), (0, 1),

/ Vo) g (¥) pg(y —ep,1 —nv)dy <

LI / Vo) ph ) ph(y —es.)dy < e x ;.

Multiplying by eCA7 Il ang summing over n ¢ {(0,0), (1,0), (0,1)} we obtain
that |43] < e~ p;.

Estimation of |d4]

Because e, = —e4,,, v = 1,2,3, and pé(—y) = pé(y), we have that J4 =

cdq for some constant c. Therefore, the bound for 44 follows: |d4] < e~ A Oh-
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Estimation of |d5]
To bound |d5| we apply (15.13) and (15.14) to obtain, for m # (0,0) and n #
(0,0), (1,0), (0, 1):

/ Vo) pi(y — m¥) pi(y — ep.1 — n¥)dy

< omekiml o el / Vo) pa(y — ez.1) pE(¥dy

< e—c)tlml % e—cilnl X pj.

Multiplying by e€4 ™" In=ml and summing over allm # (0,0) andn # (0,0). (1,0),
(0, 1), we obtain that |d5| < e=%* x p;.

Estimation of |d¢]|

To bound |d¢| we apply (15.13) and (15.16) to obtain, for n # (0,0) and m €
72

f Vo) p(y — m¥) ph(y — n¥)dy <

e~cHml ¢ p=cAlnl / VoW)lpo ¥)pg (v —ep.)dy.

Multiplying by eCA:lln_ml and summing over all n # (0,0) and m € Z2, we
obtain that |d¢| < e™* x pj.

Estimation of |d7|
Because (15.14) holds only for m ¢ Npa(er,,), we need to expand J7 out and
bound terms separately. Let

-1 _ o o
= €A m “'/IVo(y)Ipé(y—eB,l —mV) pl(y —ep.1 —nV)dy.

Then

d7 = Z 1;“’“

m,n€Z?

=(Z+Z+Z+Z)I;"’"

m,n¢Npg(ep.1)  mENwa(es,1) né¢Npalep,1) mneNyq(es. 1)
n€Nwa(es,1)  mENnales,1)

=d74+Jd7,8+d7,c +d7,p.

We estimate 47 4, d7,8, d7,c, and d7, p separately.
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Estimation of |47 4|
Form,n ¢ Npua(ep.1), we apply (15.14) and (15.15) to obtain

/ Vo) ph(y —ep.1 —m¥) pl(y — ep. —n¥)dy

< el el [ Va1pg Ity — endy
< e—ck|m| X e—ck|n| X Pa-

Multiplying by eCA7 In—ml 4pq summing over all m,n ¢ Npyq(ep,1), we find that
|47,4] S e x p.

Estimation of |47 p|

Suppose m ¢ Npad(ep,1), n € Npaa(ep,1), and |y| < ro. Then, by the definition
of Npad(ep,1), ep,1 +nv = ep,, for some v € {1,2,3}. By (15.14) and (15.15),
we have

/ Vo) ph(y — es.1 — m¥)pi(y — ep. — n¥V)dy
< emeAiml / Vo ()| pg (¥) P (y — ep.)dy

= el 12 o <o AIml

where in the final line we have used that p, is independent of v; see Remark
4.2. Multiplying by eCA7 In—ml gng summing over all m ¢ Nyyq(ep,1) and n €
Nyada(ep,1), we find that |d7 g| < e~ x O

Estimation of |47 c|

Note that J7,c and d7 g are equal (just interchange dummy indices m and n).
Therefore, |J7,c| < e~ x P
Estimation of |47 p |

Suppose m, n € Npyd(ep,1) and |y| < ro. Then, by the definition of Ny.a(ep,1),
ep1 +nv =-ep, and eg; + mv = ep - for some v,v" € {1,2,3}. By (15.15),
we have

/ Vo (y)| pl(y — ep.1 —mV) pl(y — ep.; — nv)dy
— A A
= / Vo) po(y —eB,v)pg (Y —epu)dy
S e x / Vo) PG () P3(y — epa)dy = ¢4 x 272 x py < ™ Hpy.

Multiplying by eCA7 In—ml nq summing over all m,n € Nyp,q(ep,1), we find that
47,01 S e x py.
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Combining our estimates for 7,4, 47,8, J7,c, and 7 p, we see that |d7] <

e~%* x p,, completing the estimation of J. The above bounds on J1,...,d7
together imply Proposition 15.7, from which Propositions 12.3 and 12.4 follow.
O

15.2 Completion of the Proof of Proposition 12.5

By the Cauchy-Schwarz inequality and the resolvent bound of Lemma 9.10, the
bound (12.17) will follow if we can prove

ICH* (k) — Q) pie s 1| < [(HA(K) — ) pi 1| S ey

for I,J = A, B. We prove that each factor on the left-hand side is bounded by
aC xe <4, /p,. Both factors are bounded in the same manner; we focus on the
second factor and prove the following:

I(H* (k) — Q) pr1]|> < e % p;.

By hypothesis we have || < C p;.. Also, by Proposition 4.1 we have p; < e %,
Therefore,

ICHA &) — ) pic 111> < IHHA®) pic s 1 + 1212 prz 11
S NHA®) picr|? + 02 < IHAK) p | + e py.
Hence, it suffices to prove
(15.20) IH*®) sl S et pr, 1 =A,B.

We consider the case I = A; the case I = B is treated similarly.
By (12.6) we have

IH*®) prall < 1V + Ja(A),

where

F1) = Y AUV —va) pE (X = Wl 12 (xeval<ro)-
weAs\{va}
F2V) = Y 22|Vox = vB) pi(x = W)l L2(1x—v ] <r0)-

weAy

We claim that $1(1) < e~ “* /py and go(A) < e‘”’l\/p_;t. We present the
details of the bound on g, (A) and then remark on the bound for g ().

Partition A 4 into those points in A 4 that are the nearest neighbors to vg: vp +
egy, v = 1,2,3, and those points in A4 that are not nearest neighbors of vp:
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W = Vg + ep 1 + nv, where n # (0,0), (1,0), (0, 1). Therefore,

F2(A) = Z A2 Vo(x —vB) pr(x = VB — €8Il 12 (x—vg | <ro)
v=1,2,3

+ > AVo(x—vB)pp(x— vB — et — V)| L2 (xvy]<ro)
n#(0,0),(1,0),(0,1)
= $24(A) + J25(2).
Bound on $24(A). By symmetry, all three terms in the sum are equal. Changing

variables and using the bound (15.15) we find

1

Soa(h) = 322 ( /| WP+ eA,1>)2dy)2
YI<ro

1
< ||Vo||goA2( / |Vo(y>|(pé(y+e,4,1>)2dy)
lyl<ro

1
1 _ 2 _
< IVollZ e 422 (/H IVo(y)Ipé(y+eA,1)pé(y)dy) < et pi.
YI<ro

Bound on $,p(L). Consider the general term in this infinite sum over points
in Z? except (0,0), (1,0), and (0, 1). Changing variables and estimating, using
Lemma 15.6, we obtain

1

) 2

A2 (/Il Vo) | pi(y — ep,1 —n¥)| dy)
yYI<ro

< e oz [
y

lyl<ro

- 1
< ¢=¢/Alnl yelnl2 1||V0||Zo/\2 (/
y

lyl<ro
< —clnl/l
< e Mt pa

Summing over admissible n yields the bound g,p(1) < e~¢* /px. The bound
191(A)| S et /py is proved in a manner similar to the bound on g,p (1), mak-
ing use of (15.13) and (15.16). This completes the proof of Proposition 12.5.

Vo) (p(y — e5.1 —n%))zdy)z

Vo)l po(y —es,1) pd (y)dy)

15.3 Proof of Proposition 4.1

We first prove the upper bound in (4.8). From (15.15) of Lemma 15.6 we have
Pé (y+eq1) < e_CApé (y) fory € supp Vp. Thus,

— 2 _ _
o1 < IVollooA2e™e / (pE))2dy = VollewA?e™* < Cre™e.
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To prove the lower bound in (4.8), we first use (15.9) to obtain

Phy +ear) = f (3 + eat — DA Vo@)| pt@)dz.

Substitution into (4.7) yields

(1521)  py = [ dy [ 224 Vo) || Vo (@) p 9) @) (¥ + ear — 2.

Recall that the support of Vj is contained in the B(0, r¢), the disc of radius rg
about the origin. Note that |y + e4,1 —z| < Cj for all |z] < rp and |y| < ro,
and therefore from (15.12) we have 7} (y + e4,1 —z) > e~C14 and therefore, by
(15.21), we have the lower bound

py = Comeh / dy / dz A VmIVe®@|pk ) pi @)
(15.22) lyl<ro |z|<ro
> CA%‘C*(A/ Vo) pé (y)dy)?.

lyl<ro

Note that by (15.9)
PEy) = 22 * Vol pd) (y).

By Proposition 15.3, .# € L2 and therefore ||.%3 2 = |7 |12 X |Eé|_1/2.
Taking the L2 (IR?) norm and estimating using Young’s inequality gives

L= P2l < 22140 2 / Vo)l pl ¥)dy

= (A2/|EEV2) )12 || 2 f Vo)l pg ()dy.

Recalling the lower bound on the ground state (4.1), Eé < —coA? for some posi-
tive constant cp, we have

1/2

C
(15.23) 0 < | [Vo)lpt(y)dy.
10 2 ORI

Substituting the lower bound (15.23) into (15.22), we find

CCO
1217 2

o4 > /\26—0/1 > C/e—c%‘

This completes the proof of Proposition 4.1 and therewith the last details of the
proof of the main theorem, Theorem 6.1.
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16 Scaled Convergence of the Resolvent

In this section we indicate how our analysis of the scaled convergence of disper-
sion surfaces of H* = —A + A2V(x) — E g can be used to obtain results on the
scaled convergence of the resolvent. Introduce the scaled operator

(16.1) H* = (oM 'H?,

whose two lowest energy dispersion surfaces are uniformly close to those of the
tight-binding model. Introduce the restriction of Hlf to k-pseudo-periodic func-
tions. Since H* commutes with lattice (Ap) translations,

A} = H| 12 Maps HZ2(R2%/Ap) into LZ(R%/Ap).

For each k € %, let (le Bk - Lﬁ — le( denote the orthogonal projection onto
the span of the two states, PlfL 4(x) and Plf g (x), defined in (8.3), and let JP/{‘B K=

I — (QﬁL Bk ' le( — Lﬁ denote the projection onto its orthogonal complement. By
Lemma 9.10, for fixed z € C \ R and any k € %},:

(16.2) ”ij,k(Hl? _pkzl)_lj)jB,kHLf—)Lﬁ S L

where e €14 < ox < e~ see (4.8).
Represent f € L2 by f(x) = ozAPlfA +oap PlfB + f1, where aq,ap € C and
f1 € Range(JPjB i) Define the map Jx : Lﬁ -CopCeo Range(?jB W) by

aalf] (PL [+ O I f1D)
(16.3) Do, | eslf]| = | (Plg. f) + O™ £
fJ_ fJ_
The equality in (16.3) holds since (P}, P};) = 817 + O(e™*) for I,J =

{A, B}.
We use the notation Oy _,y (a) to denote an operator from X — Y with norm
< a, and Ox(a) to denote a function whose X -norm is < a.

PROPOSITION 16.1. For fixed z € C \ R, k € %y, and A > A, sufficiently large,

_ oy _ _1 0 oy
FAE =) ad) | ap | = | PO m ) | g
L 0 O ' 0 L
(16.4) z ' S
(0%}
+ Ocecarz(€™) a5 |.
f1

where Hrg(K) is displayed in (1.2)—(1.3). The error term in (16.4) is uniform in
k e %h-
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Consequently, for A > A

0
—_ _ — -1,
16.5) (2 —z1)™ =y | Hmk —2la)™ g |
0 0 0

uniformly ink € Ay,

The assertions of Theorem 6.2 follow from this proposition.
To complete the proof of Theorem 6.2 we now prove Proposition 16.1. For

f=aaPl +apPly+ fL €Ly let

Ea " . L, |
(16.6) tp | = JE(HLY —21) " (JY)" |as
£ fL

We now calculate £4, £p, and &, in terms of aq, ap, and f| . By definition
(HY —z1)” ( > O‘JPkJ"'fJ_) Y &Pl +E
J=A,B J=A,B
or equivalently

167 Y asPly+ fi= ) Ej(HY—zI)Pl, + (H} —z1)éL.
J=A,B J=A,B

Next, apply the scaled orthogonal projection p X J O)“ p to obtain

prfi= Y EPigHEPL + Php(HE —p'2l)Php &1,
J=A.B

where we have used /o)‘HlfL = H)L and J OA PkkA = 0’1 PAB = 0.
Applying P (H)L —zI)™! OAB and rearranging, we get
1
(16.8) EL=— Y EPhp(H}—p 1) PhgHEPL,
J=A,B

A A ) A
+ p" Py (Hk —p zI) PipfL.
By the bound (16.2), we obtain

(169) &L= ) &5x ﬁ’Ll%_)L%(l)HlfPliJ + ot x Opap2(D) 1.
J=A,B

Furthermore, by the bound (15.20) || H Aph B|| < /pre ¢+ Therefore,

(16.10) £ = Z F ﬁL%(\/Ee_CA) + PA X ﬁL%%Lﬁ(l)fJ-'

J=A,B
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Next, take the inner product of (16.7) with Plf um> M = A, B, and obtain, using
that (PlfM, f1)y=0, ﬁlf = Hlf/,o’l, and self-adjointness of Hkxz

Yo an(Piy Pl = D0 Er(Play (HE —21)PLy)
(16.11) J=A,B J=A,B
+ (oM T HE Py EL).
Bounding the latter term in (16.11), we find
(M) HE PRy EL) < (6T HE P | gL
< ()7 x ke R (Voh e gl + Igs]) + o111 1)

< €2 (4] + Ieg]) + e H oLl

Thus, using the expansion of matrix elements in Proposition 12.2 we have

[I2x2 + ﬁ(e_d)] (Z}:)
B (T <))+ 00 (5)

(16.12) + 022 (e \/p7)[fﬂ

= [Hrs(&) — 2lax2 + O™ 13y ;_a 5 @2)

+ 012 ca ("M PP
where Htg(k) is displayed in (1.2)—(1.3). Proposition 16.1 now follows from
(16.10) and (16.12).

17 Remarks on Dependencies of Constants

By hypothesis (GS), (4.1), the one-atom ground state energy, E(’}, satisfies the
bounds

(17.1) — |Vollz=oA? < E} < —CA?

for some constant C = C(Vy) > 0.
By (EG), the assumed energy gap property, (4.2), we have that for € H?(R?)
orthogonal to the ground state of —A + A2V in L?(R?),

(172) ((_A + AzVO) W, w>L2(R2) 2 (Eé + Cgap)”WHiZ(]Rz)

for a positive constant Cgyp.

Moreover, we assumed that our atomic potential, Vj(x), is supported in a disc of
radius rg, where 0 < ro < Teritical, Where Teritical 1S @ universal constant satisfying
the bounds (15.1) of the geometric lemma, Lemma 15.1.
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Our main result, Theorem 6.1, and the proof of Corollaries 6.3 and 6.4, concern
the behavior of the rescaled dispersion functions p;l (E i (k) — E 1’3), or equiva-

lently, the behavior of ,u,j}c (k), and their derivatives up to order Buax, with Bmax as
large as we please.

By going carefully through the arguments in this paper, one can check that all
constants that appear, including those in Theorem 6.1, e.g., A, and ¢4, depend
only on Bax, on C in (17.1), on ¢gyp in (17.2), and on a lower bound for 7¢igicar—70-
The sole exception is in Theorem 6.2, where the constants depend on z € C \ R
as well. This allows us to treat atomic potentials 1 (x) not explicitly given in the

form A2Vo(x); we simply define A = || V1 |:4% and set Vo = A2V;.
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