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Abstract— DNA sequencing has a vast number of applications
in a multitude of applied fields including, but not limited
to, medical diagnosis and biotechnology. In this paper, we
propose HDNA to apply the concepts of hyperdimensional (HD)
computing (computing with hypervectors) to DNA sequencing.
HDNA first assigns holographic and (pseudo)random hyper-
vectors to DNA bases. Using an encoder, it then exploits the
orthogonality of these hypervectors to represent a DNA se-
quence by generating a class hypervector. The class hypervector
keeps the information of combined individual hypervectors (i.e.,
the DNA bases) with high probability. HDNA uses the same
encoding to map a DNA sequence with unknown labels to
a query hypervectors and performs the classification task by
checking the similarity of the query hypervector against all class
hypervectors. Our experimental evaluation shows that HDNA
can achieve 99.7% classification accuracy for Empirical dataset
which is 5.2% higher than state-of-the-art techniques for the
same dataset. Moreover, our HDNA can improve the execution
time and energy consumption of classification by 4.32x and
2.05x respectively, when compared against prior techniques.

I. INTRODUCTION

The process of determining the order of nucleotides present
in a DNA molecule is called DNA sequencing; there are four
bases in strand DNA: adenine (A), guanine (G), cytosine (C),
and thymine (T). The goal of DNA sequencing is to determine
the physical order of these bases in a molecule of DNA. On
the application level, DNA sequencing can be used to determine
the sequences of individual genes, clusters of genes, and entire
genomes of any organism [1]. In molecular biology sequencing
allows researcher to study genomes and proteins and use this
information to detect and identify any possible changes within
genes [2]. In medicine, sequencing can help extract and identify
the sequence of genes from patients to determine if there may be
a risk of any number of genetic diseases [3].

One important focus of many researchers in the field of molec-
ular biology is to develop an algorithm which would operate
with high accuracy when working with long DNA sequences.
Additionally, it is essential to get these algorithms operating as
close as possible to real time operations. This will ensure users
do not need to wait hours or days to get the results of the sequenc-
ing. Designing an algorithm which can achieve high accuracy
and rapid operations would be a significant boon to numerous
biological fields. Nowadays, there exist several DNA sequencing
and classification techniques such as k-Nearest Neighbor (K-
NN) and Support Vector Machine (SVM). However, these tech-
niques show poor accuracy when working with long sequences
of DNAs [4]. They are also computationally slow and expensive,
and are unable to run on light weight devices.

In this paper, we propose the idea of Hyperdimensional (HD)
DNA sequencing, called HDNA, which significantly improves
the accuracy and efficiency of DNA classification. Brain-inspired
HDNA algorithm emulates cognitive tasks by computing with
hypervectors as opposed to computing with numbers [5], [6].
Instead of the traditional use of numerical representations, HD
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computations are defined by patterns that mimick the activity
of neurons. HDNA assigns holographic and (pseudo)random
hypervectors with i.i.d. components to DNA bases, then exploits
the orthogonality of these hypervectors in order to generate
hypervectors corresponding to DNA sequences, while keeping
the information of the combined individual vectors with high
probability. After training class hypervectors, our design uses
the same encoding to map an unknown DNA sequence to a new
hypervector, called a query hypervector. The inference is then
made by checking for the similarity of these query hypervectors
against all available class hypervectors, and returning the class
with the highest Hamming distance similarity. Our experimen-
tal evaluations over well-known datasets show that HDNA can
achieve 99.7% accuracy classifying Empirical dataset which is
5.2% higher than state-of-the-art techniques classifying the same
task. Moreover, our HDNA can improve the execution time
and energy consumption of classification by 4.32x and 2.05x
respectively, when compared against prior techniques.

II. HYPERDIMENSIONAL DNA SEQUENCING
A. Hyperdimensional Computing

Hyperdimensional (HD) computing captures and imitates the
idea of pattern recognition implemented with massive circuits in
the form of hypervectors, which are vectors with dimensionality
in the thousands. HD computing is built on a well-defined set
of operations and offers a complete computational paradigm
that can be applied to a vast number of learning problems.
Examples include analogy-based reasoning, sequence memory,
language recognition, biosignal processing, and predictions from
multimodal sensor fusion [7], [8], [9]. These applications use HD
computing to encode temporal analog signals. In contrast, in this
paper we focus on mapping DNA sequences into HD space for
classification/recognition task.

B. HDNA Design Overview

In this paper we propose a hyperdimensional DNA classifier,
which encodes DNA sequences to hypervectors, and applies the
inference task over incoming query hypervectors. On the higher
level, HDNA consists of two main blocks: encoder and associa-
tive memory. The encoder maps DNA sequences to hypervectors
and combines them together in order to generate a single model
representing each output class. These class models are then stored
in the associative memory. In test mode, unknown input data
is mapped onto high-dimensional space using the same encod-
ing, and associative memory performs the classification task by
searching for a class model which has the largest similarity to the
input hypervector.

For simplicity, we will explain the functionality of the pro-
posed design using an implementation of classification over an
Empirical dataset [10]. This dataset consists of eight classes of
species within the animal, fungi and plant kingdoms, each con-
tains several DNA sequences corresponding to their respective
class. The goal of DNA sequencing is to learn the patterns of



the DNAs in each class, such that if a new DNA sequence was
introduced, our design can recognize the class which it belongs
to. Traditionally, researchers use supervised machine learning
algorithms for classification tasks such as K-NN and SVM,
however, these algorithms do not provide good enough accuracy
for classifying longer sequences of DNA.

C. DNA in High-Dimensional Space

In this work, we propose a novel hyperdimensional DNA
sequencing technique, called HDNA, consisting of encoder and
associative memory. The encoder module learns the patterns of
all DNA sequences that exist within a class and encodes them
into a single hypervector with D dimensions. Each class is then
associated with a hypevector which is encoded using all the
information from that class. When considering a single sequence
of DNA with length m, our goal is to map this sequence to a
hypervector which not only allows us to save the bases stored on
the sequence, but also allows us to store some information about
the position of each base in the sequence. To this end, HDNA
assigns holographic and (pseudo)random hypervector with i.i.d.
components and D dimensions to DNA bases (L4, L¢c, Lg, Lr).
Each element within a hypervector is assigned a 0 or 1 value
randomly. This along with long dimensionality makes these
hypervectors semi-orthogonal such that:

where 8 measures the similarity between the hypervectors.

We will propose two encoding schemes for HDNA to map and
classify data to high-dimensional spaces: (i) Encoder I, a Ngram-
based encoding which uses permutation and addition to encode
the DNA sequences to hypervectors and (ii) Encoder II, a record-
based encoding which maps DNA sequences to high-dimensional
space using multiplication and addition. Through this section, we
will first explain the functionality of these two encoding schemes.
In section IV, we explore the accuracy, efficiency and robustness
which these two encoding schemes can provide.

D. Encoder I: Ngram-based encoding

Encoding Module: HDNA combines base hypervectors in
order to generate a hypervector representing a DNA sequence.
The goal of DNA sequencing is to find the sequence patterns by
determining the exact position of bases in a sequence. HDNA
considers the impact of positions in generating the sequence
hypervector by applying a unique number of permutations for
bases in each position. Each permutation generates a hypervector
which is unrelated to the given hypervector 8(p(Ls), La) =
D/2. This operation is commonly used for storing a sequence
of tokens in a single hypervector. In the geometrical sense, the
permutation rotates the hypervector in the space. To encode DNA
sequences of length m, HDNA looks at the the sequence in an n-
gram windows (n = 2,3,...). The hypervectors in an n-gram is
combined as follows:

S1=[Li+p(L2) +pp(L3) +---+p..p (L)]
{Ly, Ly,...,In} € {L4, Lc, Lg, Lt}

Using this encoding, the first element in n-gram takes no per-
mutation. The second element gets a single permutation and in
general #" position in n-gram is permuted by n — 1 position.
This technique differentiates the impact of bits, as well as their
physical position on the final sequence hypervector. Next, an n-
gram window shifts by a single position over DNA sequence and
encodes the new sequence in n-gram windows to a binarized
hypervector(S;). This process continues until n-gram windows
cover all elements in DNA sequence and generate the last n-gram
hypervector (S;;—n+t1)-
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All generated n-gram hypervectors are added together
(element-wise) in order to generate a new hypervector repre-
senting the DNA sequence. The generated sequence hypervector
can have integer elements. Hypervectors with integer elements
increase the cost of HDNA computation. Hence, HDNA bina-
rizes such hypervector by applying majority function over each
dimension of Sy.

S=[S1+82+"+Sm_n+1

In this equation, Majority is denoted as [+] and it checks each
dimension of all hypervectors combined together. If there exists
more 1s than Os on that dimension, the binarized hypervector sets
to 1 on that dimension, otherwise it assigns to . The result of the
majority function preserves similarity to its component hyper-
vectors i.e., 6([Ls +Lc +Lr], La) < D/2. Hence, the majority
function is well suited for representing sets. Since each class can
have multiple DNA sequence within it, our design generates a
DNA hypervector using the same encoding and then adds these
hypervectors to generate a unique hypervector representing each
class. HDNA generate all class hypervectors in the same way.

Associative Memory: In training, HDNA generates the class
hypervectors and then stores them in an associative memory
module. During test/inference, HDNA uses the same encoding
scheme to encode an unknown DNA sequence to a query hyper-
vector. To perform classification task, associative memory mea-
sures the similarity of query hypervector to all class hypervectors
and selects a class with the maximum similarity. This similarity
is defined as Hamming distance between the query and class
hypervectors.

E. Encoder II:Record-based encoding

Encoding Module: Although HDNA using Encoder 1
achieves classification accuracy of 96%, this accuracy can be fur-
ther improved using a unique signature for each base that exists
within the DNA sequence. The Encoder I saves the sequence
of the bases within each n-gram using permutation, however,
it cannot store the order of the n-grams in the final sequence
hypervector. This is important in DNA sequencing as DNAs can
often span over long lengths. In order to consider the order of n-
grams in the encoded DNA hypervector, we propose another en-
coding scheme which considers a unique identifier for each DNA
position within the sequence. This encoding assigns a unique
identification (/D) hypervector to each base position. These 1D
hypervectors are generated randomly such that each base position
in sequence will get a unique hypervector {IDy, ID>,...,IDp}.
These hypervectors are semi-orthogonal as they are generated in
fully random manner.

8(ID;, IDj) <D/J2, 1<i,j & i#j

The m is defined by the length of the longest DNA sequence
in the training dataset. Using these positional hypervectors, the
DNA sequence can be generated in a single step using the
following equations:

S= (ID{ #Li 4 ID3 %L 1 IDs % L4 1-=++ 4 IDp % (Lm)]
{Ll:‘ LZ:---:Lm} = {LA: LC: LG: LT}

Encoder II requires element-wise multiplication of the posi-
tion hypervectors with the base associated hypervectors. This
technique differentiates the impact of each base on the final
sequence hypervector depending on the position of such base
in the sequence. Similar to Encoder I, the sequence hypervector
is binarized using majority function over each dimension. This
encoder uses the same associative memory explained above.
Our evaluation shows that using this encoding improves the
classification accuracy of HDNA to 99%. In terms of hardware
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efficiency, this encoding would have higher memory requirement
and energy cost compare to scheme. We will explain the details
on section IIL

ITI. HARDWARE IMPLEMENTATION

In this section, we describe the digital hardware implemen-
tation of the HDNA accelerator and the trade-off of HDNA
using Encoder I and Encoder II. Figure 1 shows the overview
architecture of proposed HDNA consisting of encoder (Encoder I
or Encoder II) and associative memory.

1) Encoder I: Figure 1a shows the structure of the Encoder L
Encoder I works based on permutation and addition. Encoders
use an item memory block to store four pre-generated base
hypervectors ({Lsa, Lc, Lg, Lr}). During the test/inference,
Encoder I reads the DNA sequences and accordingly fetches a
base hypervector from the item memory. The encoder applies a
permutation to each vector in n-gram depending on their physical
positions. Next, all permuted hypervectors within the n-gram add
together element-wise in order to generate a unique sequence
hypervector. Finally, a DNA hypervectors are binarized using
comaprator block, which compares each hypervector element
with half of the maximum possible value that elements can get
(THR = n*(m—n+1)/2). In each dimension, if the sequence
value is less than THR, the value in that dimension will go to 0,
otherwise it will be assigned to 1 bit.

2) Encoder II: Figure 1b shows the overview of Encoder II
architecture. This encoder has two memory blocks: item memory
and position memory. Similar to Encoder I, item memory stores
the base hypervectors while position memory stores a unique
hypervector corresponding to each position in a sequence. In
comparison to item memory, the size of required position mem-
ory is very large and is determined by the maximum length of
DNA sequence in the dataset. This memory increases the cost of
Encoder II. In Encoder II, the encoding happens by multiplying
the position and base hypervectors over the whole DNA se-
quence. This multiplication in hardware is implemented using an
XOR array. Then, the m generated hypervectors are accumulated
element-wise using a counter block. Finally, comparator blocks
binarizes the vector by comparing each element with half of a
maximum value each element can get (THR = m/2). In any
dimension, if the value is larger than m/2, it will be assigned
to 1, otherwise it will be set to 0.

3) Associative Memory: As Figure 1c shows, both proposed
encoding schemes use the same associative memory architecture
for classification. In hardware, Hamming distance similarity im-
plements using an XOR array. XOR gates compare bit similarity of
the query and class hypervectors. An adder block counts the num-
ber of 1s at the output of XORs comparing two vectors. Finally,
a comparator block in tree structure compares the Hamming

D hypervector

Overview of HDNA architecture consisting of: (a) Encoder I architecture, (b) Encoder II architecture and (c) associative memory.

distance similarities and selects a class which has the minimum
distance with a query hypervector.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We describe the functionality of the proposed HDNA using
a Python implementation. We compare the power consumption
and execution time of the HDNA architectures running on
traditional CPU cores. We used an Intel core i7 7600 processor
with 16 GB memory (4-core, 2.8GHz) to test different designs.
Power consumption is measured by Hioki 3334 power meter.
To estimate the cost of digital design, we also use a standard
cell-based flow to design dedicated hardware for HDNA. We
describe the proposed designs using RTL System-Verilog.
For the synthesis, we use Synopsys Design Compiler with the
TSMC 45 nm technology library, the general purpose process
with high Vrgy cells. We measured the power consumption of
HD designs using Synopsys PrimeTime at (1 V, 25°C, TT) corner.

To assess the efficiency of proposed design, we apply the
application of HDNA over two popular DNA classification
datasets, Empirical [10] and Molecular Biology [11] datasets.
Both datasets are split into two parts: 80% per species for training
and 20% for testing.

B. HDNA Accuracy

We compare the classification accuracy of of HDNA and
the state-of-the-art classification techniques over Empirical and
Molecular biology dataset [4], listed in Table I and Table II
respectively. HDNA using Encoder I ad Encoder II can achieve
at least 5.21% and 4.87% higher classification accuracy as
compared to prior techniques. For molecular biology dataset,
our evaluation shows that HDNA using Encoder I can achieve
comparable accuracy as other classification techniques while En-
coder II can provide 100% classification accuracy. This accuracy
is 5.87% higher than other classification algorithms.

In addition, we compare the efficiency of HDNA designs with
SVM and K-NN designs. We run all algorithms implemented
in python code on CPU over Empirical and Molecular biology
datasets. Table 1 and Table II show the average energy
consumption and execution times of different designs when a
query runs on CPU cores. All algorithms are written to provide
the maximum parallelism. Comparing HDNA design with prior
work shows that HDNA using Encoder I (Encoder II) can
achieve at least 2.98x (4.32x) speedup and 3.26x (2.05x)
energy efficiency improvement over empirical dataset. Similarly,
over molecular biology dataset, Encoder I (Encoder II) provides
at least 4.38x (5.44%) speedup and 4.34x (2.47x) energy
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Encoder II over Empirical dataset.
TABLE I
AccurACY AND EFFICIENCY OF SVM, BAYES AND THE PROPOSED
HDNA oOVER EMPIRICAL DATASET (ENCODER I WITH n = 12).

Classes SVM Bayes Encoder T | Encoder TI

Cypraeidae Od.3% 03.2% T00% T00%

Drosophila 98.3% 96.5% 100% 100%

Inga 89.8% 91.5% 100% 100%

Bats 100.0% 100.0 98.2% 100%

Accuracy Fishes 95.5% 97.3% 100% 95.2%
Birds 98.4% 94.3% 99.7% 100%

Fungi 80.0% 70.0% 100% 100%

Algae 100.0% | 100.0% 100% 100%

Average 94.53% | 92.85% 99.74% 99.40 %

Energy C p (mJ) 62.03 4751 14.53 23.16
Execution Time (ms) LTT 173 0.58 0.44

TABLE II

AccURACY AND EFFICIENCY OF K-NN, KBANN AnD HDNA 0OVER
MOLECULAR BIOLOGY DATASET (ENCODER I WiTH n = 10)

Classes K-NN KBANN | Encoder T | Encoder TI
Exon/Intron 94.3% 93.2% 100% U6.7%
Aceuracy Intron/Exon 98.3% 96.5% 100% 91.5%
Neither 89.8% 91.5% 100% 92.15%
Average 94.13% 93.7% 100% 93.4%
Energy Consumpfion (mJ) A6.60 AI356 g9 T7.21
Execuifion Time (ms} 207 1.36 0.31 0.5

efficiency improvement as compare to other classification
techniques. As traditional cores have not been designed to
work with long hypervectors, we expect HDNA provides much
more efficiency when it implements on digital RTL design. The
following sections show the efficiency of HDNA design over
digital implementation.

C. HDNA Digital Design

In the digital implementation, the proposed HDNA achieves
the same accuracy as CPU implementation. However, HDNA can
provide significantly higher classification efficiency as compared
to CPU. Here we explore the efficiency-accuracy trade-off in
HDNA design over digital RTL implementation.

The accuracy of the proposed HDNA depends on the dimen-
sionality of the hypervectors being used. One advantage of the
HD is its robustness and its ability to reduce the dimensions
of hypervectors. Figure 2 shows the robustness of the HDNA
using Encoder I and Encoder Il when dimension is changed from
10,000 to 1,000. The result shows that decreasing dimensionality
has lower impact on the accuracy of HDNA using Encoder II
compare to the Encoder I. This robustness comes from the
position hypervectors, which allow Encoder II to scale dimen-
sionality while keeping the bases in different positions distinct.
However, permutation used in Encoder I cannot guarantee this
dissimilarity between the original hypervector and permuted one,
when dimensionality scales below 8000.

Figure 2 shows the energy consumption and execution time
of HDNA using hypervectors with different dimensionality. Our
evaluation shows that reducing the hypervector dimensionality to
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Impact of dimension reduction on classification accuracy, Energy consumption and execution time of HDNA using Encoder I (n = 12) and

D = 1000 improves Encoder I energy consumption and execution
time by 10.8x and 2.18x, while reducing the accuracy over
Empirical dataset by only 1.85%. Accepting less than 2% quality
loss, HDNA using Encoder II can reduce dimensionaluty to 6000
and achieve 1.7x and 1.3x energy efficiency improvement and
speedup as compared to design with 10,000 dimensions. Our
evaluation also shows that by accepting 2% quality loss, En-
coder II (D=1000) can provide 1.6 and 3.2x energy efficiency
improvement and speedup as compared to Encoder I (D=6000)
design.

V. CONCLUSION

In this paper, we propose the idea of Hyperdimensional DNA
sequencing, or HDNA, which significantly improves the clas-
sification accuracy and efficiency of DNA sequencing. Brain-
inspired HDNA emulates cognitive tasks by computing with
hypervectors with high dimensionality as opposed to computing
with numbers. We propose two encoding schemes for low power
and high performance HDNA classifiers. Our experimental eval-
uation shows that HDNA can achieve 4.32x speedup and 2.05 %
energy efficiency improvement compared to state-of-the-art clas-
sification technique, while improving the classification accuracy
by 5.2%.
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