


Published as a conference paper at ICLR 2018

devices. This begs the question: why do we choose between either wasting computational resources
by applying an unnecessarily computationally expensive model to easy images, or making mistakes
by using an efficient model that fails to recognize difficult images? Ideally, our systems should
automatically use small networks when test images are easy or computational resources limited, and
use big networks when test images are hard or computation is abundant.

Such systems would be beneficial in at least two settings with computational constraints at test-
time: anytime prediction, where the network can be forced to output a prediction at any given point
in time; and budgeted batch classification, where a fixed computational budget is shared across a
large set of examples which can be spent unevenly across “easy” and “hard” examples. A prac-
tical use-case of anytime prediction is in mobile apps on Android devices: in 2015, there existed
24, 093 distinct Android devices2, each with its own distinct computational limitations. It is infea-
sible to train a different network that processes video frame-by-frame at a fixed framerate for each
of these devices. Instead, you would like to train a single network that maximizes accuracy on all
these devices, within the computational constraints of that device. The budget batch classification
setting is ubiquitous in large-scale machine learning applications. Search engines, social media
companies, on-line advertising agencies, all must process large volumes of data on limited hardware
resources. For example, as of 2010, Google Image Search had over 10 Billion images indexed3,
which has likely grown to over 1 Trillion since. Even if a new model to process these images is
only 1/10s slower per image, this additional cost would add 3170 years of CPU time. In the budget
batch classification setting, companies can improve the average accuracy by reducing the amount of
computation spent on “easy” cases to save up computation for “hard” cases.

Motivated by prior work in computer vision on resource-efficient recognition (Viola & Jones, 2001),
we aim to develop CNNs that “slice” the computation and process these slices one-by-one, stopping
the evaluation once the CPU time is depleted or the classification sufficiently certain (through “early
exits”). Unfortunately, the architecture of CNNs is inherently at odds with the introduction of early
exits. CNNs learn the data representation and the classifier jointly, which leads to two problems
with early exits: 1. The features in the last layer are extracted directly to be used by the classifier,
whereas earlier features are not. The inherent dilemma is that different kinds of features need to be
extracted depending on how many layers are left until the classification. 2. The features in different
layers of the network may have different scale. Typically, the first layers of a deep nets operate on a
fine scale (to extract low-level features), whereas later layers transition (through pooling or strided
convolution) to coarse scales that allow global context to enter the classifier. Both scales are needed
but happen at different places in the network.

We propose a novel network architecture that addresses both of these problems through careful
design changes, allowing for resource-efficient image classification. Our network uses a cascade of
intermediate classifiers throughout the network. The first problem, of classifiers altering the internal
representation, is addressed through the introduction of dense connectivity (Huang et al., 2017). By
connecting all layers to all classifiers, features are no longer dominated by the most imminent early-
exit and the trade-off between early or later classification can be performed elegantly as part of the
loss function. The second problem, the lack of coarse-scale features in early layers, is addressed by
adopting a multi-scale network structure. At each layer we produce features of all scales (fine-to-
coarse), which facilitates good classification early on but also extracts low-level features that only
become useful after several more layers of processing. Our network architecture is illustrated in
Figure 2, and we refer to it as Multi-Scale DenseNet (MSDNet).

We evaluate MSDNets on three image-classification datasets. In the anytime classification setting,
we show that it is possible to provide the ability to output a prediction at any time while maintain
high accuracies throughout. In the budget batch classification setting we show that MSDNets can be
effectively used to adapt the amount of computation to the difficulty of the example to be classified,
which allows us to reduce the computational requirements of our models drastically whilst perform-
ing on par with state-of-the-art CNNs in terms of overall classification accuracy. To our knowledge
this is the first deep learning architecture of its kind that allows dynamic resource adaptation with a
single model and obtains competitive results throughout.

2Source: https://opensignal.com/reports/2015/08/android-fragmentation/
3https://en.wikipedia.org/wiki/Google_Images

2







Published as a conference paper at ICLR 2018

the test sample with sufficient confidence. When the resources are so limited that the execution is
terminated after the first network, this approach is optimal because the first network is trained for
exactly this computational budget without compromises. However, in both settings, this scenario is
rare. In the more common scenario where some test samples can require more processing time than
others the approach is far from optimal because previously learned features are never re-used across
the different networks.

An alternative solution is to build a deep network with a cascade of classifiers operating on the
features of internal layers: in such a network features computed for an earlier classifier can be
re-used by later classifiers. However, naı̈vely attaching intermediate early-exit classifiers to a state-
of-the-art deep network leads to poor performance.

There are two reasons why intermediate early-exit classifiers hurt the performance of deep neural
networks: early classifiers lack coarse-level features and classifiers throughout interfere with the
feature generation process. In this section we investigate these effects empirically (see Figure 3)
and, in response to our findings, propose the MSDNet architecture illustrated in Figure 2.

Problem: The lack of coarse-level features. Traditional neural networks learn features of fine
scale in early layers and coarse scale in later layers (through repeated convolution, pooling, and
strided convolution). Coarse scale features in the final layers are important to classify the content
of the whole image into a single class. Early layers lack coarse-level features and early-exit clas-
sifiers attached to these layers will likely yield unsatisfactory high error rates. To illustrate this
point, we attached4 intermediate classifiers to varying layers of a ResNet (He et al., 2016) and a
DenseNet (Huang et al., 2017) on the CIFAR-100 dataset (Krizhevsky & Hinton, 2009). The blue
and red dashed lines in the left plot of Figure 3 show the relative accuracies of these classifiers.
All three plots gives rise to a clear trend: the accuracy of a classifier is highly correlated with its
position within the network. Particularly in the case of the ResNet (blue line), one can observe a
visible “staircase” pattern, with big improvements after the 2nd and 4th classifiers — located right
after pooling layers.

Solution: Multi-scale feature maps. To address this issue, MSDNets maintain a feature repre-
sentation at multiple scales throughout the network, and all the classifiers only use the coarse-level
features. The feature maps at a particular layer5 and scale are computed by concatenating the re-
sults of one or two convolutions: 1. the result of a regular convolution applied on the same-scale
features from the previous layer (horizontal connections) and, if possible, 2. the result of a strided
convolution applied on the finer-scale feature map from the previous layer (diagonal connections).
The horizontal connections preserve and progress high-resolution information, which facilitates the
construction of high-quality coarse features in later layers. The vertical connections produce coarse
features throughout that are amenable to classification. The dashed black line in Figure 3 shows that
MSDNets substantially increase the accuracy of early classifiers.

Problem: Early classifiers interfere with later classifiers. The right plot of Figure 3 shows the
accuracies of the final classifier as a function of the location of a single intermediate classifier,
relative to the accuracy of a network without intermediate classifiers. The results show that the
introduction of an intermediate classifier harms the final ResNet classifier (blue line), reducing its
accuracy by up to 7%. We postulate that this accuracy degradation in the ResNet may be caused by
the intermediate classifier influencing the early features to be optimized for the short-term and not
for the final layers. This improves the accuracy of the immediate classifier but collapses information
required to generate high quality features in later layers. This effect becomes more pronounced
when the first classifier is attached to an earlier layer.

Solution: Dense connectivity. By contrast, the DenseNet (red line) suffers much less from this
effect. Dense connectivity (Huang et al., 2017) connects each layer with all subsequent layers and
allows later layers to bypass features optimized for the short-term, to maintain the high accuracy
of the final classifier. If an earlier layer collapses information to generate short-term features, the
lost information can be recovered through the direct connection to its preceding layer. The final
classifier’s performance becomes (more or less) independent of the location of the intermediate

4We select six evenly spaced locations for each of the networks to introduce the intermediate classifier.
Both the ResNet and DenseNet have three resolution blocks; each block offers two tentative locations for the
intermediate classifier. The loss of the intermediate and final classifiers are equally weighted.

5Here, we use the term “layer” to refer to a column in Figure 2.

5





Published as a conference paper at ICLR 2018

the last layer of the network. One simple strategy to reduce the size of the network is by splitting it
into S blocks along the depth dimension, and only keeping the coarsest (S − i+ 1) scales in the ith

block (a schematic layout of this structure is shown in Figure 9). This reduces computational cost for
both training and testing. Every time a scale is removed from the network, we add a transition layer
between the two blocks that merges the concatenated features using a 1×1 convolution and cuts the
number of channels in half before feeding the fine-scale features into the coarser scale via a strided
convolution (this is similar to the DenseNet-BC architecture of Huang et al. (2017)). Second, since
a classifier at layer ℓ only uses features from the coarsest scale, the finer feature maps in layer ℓ (and
some of the finer feature maps in the previous S−2 layers) do not influence the prediction of that
classifier. Therefore, we group the computation in “diagonal blocks” such that we only propagate
the example along paths that are required for the evaluation of the next classifier. This minimizes
unnecessary computations when we need to stop because the computational budget is exhausted.
We call this strategy lazy evaluation.

5 EXPERIMENTS

We evaluate the effectiveness of our approach on three image classification datasets, i.e., the CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009) and ILSVRC 2012 (ImageNet; Deng et al. (2009))
datasets. Code to reproduce all results is available at https://anonymous-url. Details on
architectural configurations of MSDNets are described in Appendix A.

Datasets. The two CIFAR datasets contain 50, 000 training and 10, 000 test images of 32×32 pixels;
we hold out 5, 000 training images as a validation set. The datasets comprise 10 and 100 classes,
respectively. We follow He et al. (2016) and apply standard data-augmentation techniques to the
training images: images are zero-padded with 4 pixels on each side, and then randomly cropped
to produce 32×32 images. Images are flipped horizontally with probability 0.5, and normalized
by subtracting channel means and dividing by channel standard deviations. The ImageNet dataset
comprises 1, 000 classes, with a total of 1.2 million training images and 50,000 validation images.
We hold out 50,000 images from the training set to estimate the confidence threshold for classifiers
in MSDNet. We adopt the data augmentation scheme of He et al. (2016) at training time; at test
time, we classify a 224×224 center crop of images that were resized to 256×256 pixels.

Training Details. We train all models using the framework of Gross & Wilber (2016). On the two
CIFAR datasets, all models (including all baselines) are trained using stochastic gradient descent
(SGD) with mini-batch size 64. We use Nesterov momentum with a momentum weight of 0.9
without dampening, and a weight decay of 10−4. All models are trained for 300 epochs, with an
initial learning rate of 0.1, which is divided by a factor 10 after 150 and 225 epochs. We apply the
same optimization scheme to the ImageNet dataset, except that we increase the mini-batch size to
256, and all the models are trained for 90 epochs with learning rate drops after 30 and 60 epochs.

5.1 ANYTIME PREDICTION

In the anytime prediction setting, the model maintains a progressively updated distribution over
classes, and it can be forced to output its most up-to-date prediction at an arbitrary time.

Baselines. There exist several baseline approaches for anytime prediction: FractalNets (Larsson
et al., 2017), deeply supervised networks (Lee et al., 2015), and ensembles of deep networks of
varying or identical sizes. FractalNets allow for multiple evaluation paths during inference time,
which vary in computation time. In the anytime setting, paths are evaluated in order of increasing
computation. In our result figures, we replicate the FractalNet results reported in the original paper
(Larsson et al., 2017) for reference. Deeply supervised networks introduce multiple early-exit classi-
fiers throughout a network, which are applied on the features of the particular layer they are attached
to. Instead of using the original model proposed in Lee et al. (2015), we use the more competitive
ResNet and DenseNet architectures (referred to as DenseNet-BC in Huang et al. (2017)) as the base
networks in our experiments with deeply supervised networks. We refer to these as ResNetMC and
DenseNetMC, where MC stands for multiple classifiers. Both networks require about 1.3 × 108

FLOPs when fully evaluated; the detailed network configurations are presented in the supplemen-
tary material. In addition, we include ensembles of ResNets and DenseNets of varying or identical
sizes. At test time, the networks are evaluated sequentially (in ascending order of network size) to
obtain predictions for the test data. All predictions are averaged over the evaluated classifiers. On

7









Published as a conference paper at ICLR 2018

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for fast test-time prediction. arXiv preprint arXiv:1702.07811, 2017.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In ACM
SIGKDD, pp. 535–541. ACM, 2006.

Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In ICML, pp. 2285–2294, 2015.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255, 2009.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and
Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. arXiv preprint
arXiv:1612.02297, 2016.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Sam Gross and Michael Wilber. Training and investigating residual nets. 2016. URL http:

//torch.ch/blog/2016/02/04/resnets.html.

Alexander Grubb and Drew Bagnell. Speedboost: Anytime prediction with uniform near-optimality.
In AISTATS, volume 15, pp. 458–466, 2012.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IJCNN, pp. 293–299, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning Workshop, 2014.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, pp. 646–661. Springer, 2016.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In CVPR, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In NIPS, pp. 4107–4115, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 770–778, 2015.

Jörn-Henrik Jacobsen, Edouard Oyallon, Stéphane Mallat, and Arnold WM Smeulders. Multiscale
hierarchical convolutional networks. arXiv preprint arXiv:1703.04140, 2017.

Sergey Karayev, Mario Fritz, and Trevor Darrell. Anytime recognition of objects and scenes. In
CVPR, pp. 572–579, 2014.

11



Published as a conference paper at ICLR 2018

Tsung-Wei Ke, Michael Maire, and Stella X. Yu. Neural multigrid. CoRR, abs/1611.07661, 2016.
URL http://arxiv.org/abs/1611.07661.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech
Report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, pp. 1097–1105, 2012.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural net-
works without residuals. In ICLR, 2017.

Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel. Optimal
brain damage. In NIPS, volume 2, pp. 598–605, 1989.

Chen-Yu Lee, Saining Xie, Patrick W Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In AISTATS, volume 2, pp. 5, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pp.
740–755. Springer, 2014.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, pp. 3431–3440, 2015.

Feng Nan, Joseph Wang, and Venkatesh Saligrama. Feature-budgeted random forest. In ICML, pp.
1983–1991, 2015.

Augustus Odena, Dieterich Lawson, and Christopher Olah. Changing model behavior at test-time
using reinforcement learning. arXiv preprint arXiv:1702.07780, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, pp. 525–542. Springer, 2016.

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In NIPS, pp. 4053–4061, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, pp. 1–9, 2015.

Kirill Trapeznikov and Venkatesh Saligrama. Supervised sequential classification under budget
constraints. In AI-STATS, pp. 581–589, 2013.

Paul Viola and Michael Jones. Robust real-time object detection. International Journal of Computer
Vision, 4(34–47), 2001.

Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong Zhang, and
Jintao Li. Deep learning for content-based image retrieval: A comprehensive study. In ACM
Multimedia, pp. 157–166, 2014.

Joseph Wang, Kirill Trapeznikov, and Venkatesh Saligrama. Efficient learning by directed acyclic
graph for resource constrained prediction. In NIPS, pp. 2152–2160. 2015.

Zhixiang Xu, Olivier Chapelle, and Kilian Q. Weinberger. The greedy miser: Learning under test-
time budgets. In ICML, pp. 1175–1182, 2012.

Zhixiang Xu, Matt Kusner, Minmin Chen, and Kilian Q. Weinberger. Cost-sensitive tree of classi-
fiers. In ICML, volume 28, pp. 133–141, 2013.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

A. R. Zamir, T.-L. Wu, L. Sun, W. Shen, B. E. Shi, J. Malik, and S. Savarese. Feedback Networks.
ArXiv e-prints, December 2016.

Yisu Zhou, Xiaolin Hu, and Bo Zhang. Interlinked convolutional neural networks for face parsing.
In International Symposium on Neural Networks, pp. 222–231. Springer, 2015.

12






	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Multi-scale Dense Convolutional Networks
	4.1 the msdnet architecture

	5 Experiments
	5.1 Anytime Prediction
	5.2 Budgeted batch classification
	5.3 More Computationally Efficient DenseNets

	6 Conclusion
	A Details of MSDNet Architecture and Baseline Networks
	B Additional Results
	B.1 Ablation study
	B.2 Results on CIFAR-10


