FOUND GRAPH DATA AND PLANTED VERTEX COVERS

AUSTIN R. BENSON

Cornell University

JON KLEINBERG
Cornell University

ABSTRACT. A typical way in which network data is recorded is to measure all the interactions
among a specified set of core nodes; this produces a graph containing this core together with a
potentially larger set of fringe nodes that have links to the core. Interactions between pairs of nodes
in the fringe, however, are not recorded by this process, and hence not present in the resulting graph
data. For example, a phone service provider may only have records of calls in which at least one of
the participants is a customer; this can include calls between a customer and a non-customer, but not
between pairs of non-customers.

Knowledge of which nodes belong to the core is an important piece of metadata that is crucial for
interpreting the network dataset. But in many cases, this metadata is not available, either because it
has been lost due to difficulties in data provenance, or because the network consists of “found data”
obtained in settings such as counter-surveillance. This leads to a natural algorithmic problem, namely
the recovery of the core set. Since the core set forms a vertex cover of the graph, we essentially have
a planted vertex cover problem, but with an arbitrary underlying graph. We develop a theoretical
framework for analyzing this planted vertex cover problem, based on results in the theory of fixed-
parameter tractability, together with algorithms for recovering the core. Our algorithms are fast,
simple to implement, and out-perform several methods based on network core-periphery structure on
various real-world datasets.

1. PARTIALLY MEASURED GRAPHS, DATA PROVENANCE, AND PLANTED STRUCTURE

Datasets that take the form of graphs are ubiquitous throughout the sciences [4, 27, 54], but the
graph data that we work with is generally incomplete in certain systematic ways [33, 38, 39, 41, 44].
Perhaps the most ubiquitous type of incompleteness comes from the way in which graph data
is generally measured: we observe a set of nodes C' and record all the interactions that they are
involved in. The result is a measured graph G consisting of this core set C' together with a a
potentially larger set of additional fringe nodes — the nodes outside of C' that some node in C'
interacts with. For example, in constructing a social network dataset, we might study the employees
of a company and record all of their friendships [59]; from this information, we now have a graph
that contains all the employees together with all of their friends, including friends who do not work
for the company. This latter group constitutes the set of fringe nodes in the graph. The edge set of
the graph G reflects this construction process: we can see all the edges that involve a core node, but

E-mail addresses: arb@cs.cornell.edu, kleinber@cs.cornell.edu.

1



2 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

if two nodes that both belong to the additional fringe set have interacted, it is invisible to us and
hence not recorded in the data.

E-mail and other communication datasets typically look like this; for example, the widely-studied
Enron email graph [28, 42, 48, 60] contains tens of thousands of nodes'; however, this graph was
constructed from the email inboxes of fewer than 150 employees [40]. The vast majority of the
nodes in the graph, therefore, belong to the fringe, and their direct communications are not part of
the data. The issue comes up in much larger network datasets as well. For example, a telephone
service provider has data on calls and messages that its customers make both to each other and
to non-customers; but it does not have data on communication between pairs of non-customers.
A massive social network may get some information about the contacts of its users with a fringe
set consisting of people who are not on the system — often including entire countries that do not
participate in the platform — but generally not about the interactions taking place in this fringe set.
And Internet measurements at the IP-layer of service providers provide only a partial view of the
Internet for similar reasons [64].

This then is the form that much of our graph data takes (depicted schematically in Figure 1(a)):
the nodes are divided into a core set and a fringe set, and we only see the edges that involve a
member of the core set. This means, in particular, that the core set is a vertex cover of the underlying
graph — since a vertex cover, by definition, is a set that is incident to all the edges.

In many cases, a graph dataset comes annotated with metadata about which nodes belong to the
core, and this is crucial for correctly interpreting the data. But there are a number of important
contexts where this metadata is not available, and we simply do not know which nodes constitute
the core. In other words, at some point, we have “found data” that we know has a core, but
the labels are missing. One reason for this scenario is that over time, metadata becomes lost
for a wide range of reasons; this is a central underlying theme in data provenance, lineage, and
preservation [12, 49, 61, 63], and an issue that has become especially challenging with modern
efforts in digitization [43] and the increasing size of data management efforts [37]. For example,
data is repeatedly shared and manipulated, URLs become defunct, managers of datasets change
jobs, and hard drives are decommissioned. Natural scenarios embodying these forces proliferate;
consider for example an anonymized research dataset of telephone call records, shared between
a telecommunications company and a university, which did not include metadata on which nodes
were the customers and which were the fringe set of non-customers. By the time the graduate
student doing research on the dataset comes to know that this metadata is missing and important for
analysis, the researchers at the company who originally assembled the dataset have left, and there is
no easy way to reconstruct the metadata.

These issues arise in very similar forms in current research on the process of counter-surveillance
[34]. Intelligence agencies may intercept data from adversaries conducting surveillance and build
a graph to determine which communications the adversaries were recording. In different settings,
activist groups may petition for the release of surveillance data by governments, or infer it from
other sources [52]. In all these cases, the “found data” consists of a communication graph in which
an unknown core subset of the nodes was observed, and the remainder of the nodes in the graph
(the fringe) are there simply because they communicated with someone in the core. But there may
generally not be any annotation in such situations to distinguish the core from the fringe. In this
case, the core nodes are the compromised ones, and identifying the core from the data can help to
warn the vulnerable parties, hide future communications, or even disseminate misinformation.

lhttp://snap.stanford.edu/data/email—Enron.html
2http://konect.unifkoblenz.de/networks/enron



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 3

Planted Vertex Covers. Here we study the problem of recovering the set of core nodes in found
graph data, motivated by this range of settings in which reconstructing an unknown core is a central
question. Algorithmically, the problem can be stated simply as a planted vertex cover problem: we
are given a graph G in which an adversary knows a specific vertex cover C'; we do not know the
identity of C', but our goal is to output a set that is as close to C' as possible. Here, the property
of being “close” to C' corresponds to a performance guarantee that we will formulate in several
different ways: we may, for example, want to output a set not much larger than C' that is guaranteed
to completely contain it; or we may want to output a small set that is guaranteed to have significant
overlap with C'. A simple instance of the task is depicted in Figure 1(b), after the explicit labeling
of the core nodes has been removed from Figure 1(a).

Planted problems have become an active topic of study in recent years. Generically they cor-
respond to a style of problem in which some hidden structure (like the vertex cover in our case)
has been “planted” in a larger input, and the goal is to find the structure in the given input. Planted
problems tend to be based on formal frameworks in which the input is generated by a highly
structured probabilistic model. Perhaps the two most heavily-studied instances are the planted

(a) Graph data built from a small core (b) The dataset without the core labeled

FIGURE 1. (a) Graph datasets are often constructed by recording all the interactions
involving a set of measured core nodes; the resulting data contains these core nodes
together with a potentially much larger fringe, consisting of all other nodes that had
an interaction with some member of the core. We can see the links between members
of the fringe and members of the core, but links between pairs of nodes in the fringe
are not recorded and hence not visible in the data. (b) It is important for interpreting
the dataset that the metadata describing which nodes belong to the core be preserved.
But in many cases, this metadata is not available — either because of challenges in
data provenance that lead to the loss of the metadata, or because the graph is “found
data” obtained in a context such as counter-surveillance. The challenge is then to
determine how accurately we can recover the core, despite limited information about
how the dataset was constructed. Algorithmically, this leads to a planted vertex cover
problem, in which we are given a graph and are tasked with identifying a hidden
vertex cover (the core).



4 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

clique problem [5, 24, 29, 51], in which a large clique is added to an Erds-Rényi random graph;
and the recovery problem for stochastic block models [1, 2, 3, 7, 23, 53], in which a graph’s edges
are generated independently at random, but with higher density inside communities than between.

It might seem essentially inevitable that planted problems should require such strong probabilistic
assumptions — after all, how else could an algorithm possibly guess which part of the graph
corresponds to the planted structure, if there are no assumptions on what the “non-planted” part of
the graph looks like?

But the vertex cover problem turns out to be different, and it makes it possible to solve what,
surprisingly, can be described as a kind of “worst-case” planted problem — with extremely limited
assumptions, it is possible to design algorithms capable of finding sets that are close to unknown
vertex covers in arbitrary graphs. Specifically, we make only two assumptions about the input (both
of them necessary in some form, though relaxable): that the planted vertex cover is inclusionwise
minimal, and that its size is upper-bounded by a known quantity k. It is natural to think of k& as
relatively small compared to the total number of nodes n, in keeping with the fact that in much of
the measured graph data, the core is small relative to the fringe. We draw on results from the theory
of fixed-parameter tractability to show that there is an algorithm operating on arbitrary graphs that
can output a set of f(k) nodes (independent of the size of the graph) that is guaranteed to contain
the planted vertex cover. We obtain further results as well, including stronger bounds when the
size of the planted vertex cover is close to minimum; when we can partially overlap the planted
vertex cover without fully containing it; and when the graph is generated from a natural probabilistic
model.

We pair these theoretical guarantees with computational experiments in which we show the
effectiveness of these methods on graph datasets exhibiting this structure in practice. Using the
ingredients from our theoretical results, we develop a natural heuristic based on unions of minimal
vertex covers, each obtained via pruning a 2-approximate maximal matching algorithm for minimum
vertex covers with random initialization. The entire algorithm is implemented in just 30 lines of
Julia code (see Fig. 3 for the complete implementation). Our algorithm provides superior empirical
performance and superior running time across a range of real datasets compared to a number of
competitive baseline algorithms. Among these, we show improvements over a line of well-developed
heuristics for detecting core-periphery structure in graphs [17, 36, 58, 67] — a sociological notion
related to our concerns here, in which a graph has a dense core and a sparser periphery, generally
for reasons of differential status rather than measurement effects.’

2. THEORETICAL METHODOLOGY FOR PARTIAL RECOVERY OR TIGHT CONTAINMENT

We begin by formalizing the recovery problem. Suppose there is a large universe of nodes U that
interact via communication, friendship, or some other mechanism. We choose a core subset C' C U
of these nodes and measure all the pairwise interactions that involve at least one node in C'. We
represent our measurement on C' by a graph G = (V, E), where V' C U is all nodes that belong
to C' or participate in a pairwise link with at least one node in C', and FE is the set of all such links.
The set of nodes in V' — C' will be called the fringe of the graph. We will ignore directionality and
self-loops so that GG is a simple, undirected graph. Note that under this construction, C' is a vertex
cover of G.

3In the terminology of core-periphery models, our fringe set with no internal edges corresponds to a “zero block,”
in which the periphery nodes only connect via paths through the core [8, 11, 13]. The methods associated with this
concept in earlier work, however, do not yield our theoretical guarantees nor the practical performance of the heuristics
we develop.



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 5

2.1. Finding a planted vertex cover. Now, suppose we are shown the graph G and are tasked
with finding the core C'. Can we say anything non-trivial in answer to this question? In the absence
of any other information, it could be that C' = V', so we first make the assumption that we are given
a bound k on the size of C, where we think of & as small relative to the size of V. With this extra
piece of information, we can ask if it is possible to obtain a small set that is guaranteed to contain C'.
We state this formally as follows.

Question 1. For some function f, can we find a set D of size at most f(k) (independent of the size
of V') that is guaranteed to contain the planted vertex cover C'?

The answer to this question is “no”. For example, let £ = 2 and let G be a star graph with n > 3
nodes vy, ..., v, and edges (vy, v;) for each i > 1. The two endpoints of any edge in the graph form
a vertex cover of size k = 2, but C' could conceivably be any edge. Thus, under these constraints,
the only set guaranteed to contain (' is the entire node set V.

This negative example uses the fact that once we put v; into a 2-node vertex cover for the star
graph, the other node can be arbitrary, since it is superfluous. The example thus suggests that a
much more reasonable version of the question is to ask about minimal vertex covers; formally, C'
is a minimal vertex cover if for all v € C, the set C' — {v} is not a vertex cover. (We contrast this
with the notion of a minimum vertex cover — a definition we also use below — which is a vertex
cover whose size is minimum among all vertex covers for the given graph.) Minimality is a natural
definition with respect to our original motivating application as well, where it would be reasonable
to assume that the set of measured nodes was non-redundant, in the sense that omitting a node
from C' would cause at least one edge to be lost from the measured communication pattern. This
would imply that C' is a minimal vertex cover. With this in mind, we ask the following adaptation of
Question 1:

Question 2. If C' is a minimal planted vertex cover, can we find a set D of size at most f(k)
(independent of |V'|) that is guaranteed to contain C'?

Interestingly, the answer to this question is “yes,” for arbitrary graphs. We derive this as a
consequence of a result due to Damaschke [19, 20] in the theory of fixed-parameter tractability.
While this theory is generally motivated by the design of fast algorithms, it is also a source of
important structural results about graphs. The structural result we use here is the following.

Lemma 1 ([19, 20]). Consider a graph G with a minimum vertex cover size k*. Let U (k) be the
union of all minimal vertex covers of size at most k. Then

(a) |U(k)| < (k+1)*/4+ k and is asymptotically tight [19, Theorem 3]

(b) |U(k)| < (k — k* 4+ 2)k* and is tight [20, Theorem 12]

For part (a) of this lemma, there is an appealingly direct proof that gives the O(k?) asymptotic
bound, using the following kernalization technique from the theory of fixed-parameter tractabil-
ity [14, 25]. The proof begins from the following observation:

Observation 1. Any node with degree strictly greater than |C| must be in C.

The observation follows simply from the fact that if a node is omitted from C, then all of its
neighbors must belong to C'. Thus, if S is the set of all nodes in GG with degree greater than %, then
S is contained in every vertex cover of size at most k; hence Observation 1 implies that if U (k) is
non-empty, we must have |S| < kand S C U(k). Now G — S is a graph with maximum degree k
and a vertex cover of size < k, so it has at most O(k:Q) edges; let T' be the set of all nodes incident



6 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

to at least one of these edges. Any node not in S U T is isolated in G — S and hence not part of any
minimal vertex cover of size < k; therefore U(k) C S UT, and so |U (k)| = O(k?).

The following theorem, giving a positive answer to Question 2, is thus a corollary of Lemma 1(a)
obtained by setting D = U (k).

Theorem 1. If C is a minimal planted vertex cover with |C| < k, then we can find a set D of size
O(k?) that is guaranteed to contain C.

To see why O(k?) is a tight bound, consider a graph G consisting of the disjoint union of /2
stars each with 1 + k/2 leaves. Any set consisting of the centers of all but one of the stars, and the
leaves of the remaining star, is a minimal vertex cover of size k. But this means that every node in
G could potentially belong to the planted vertex cover C', and so the only acceptable answer is to
output the full node set V. Since V has size Q(k?), the bound follows.

There are algorithms to compute U (k) that run in time exponential in & but polynomial in the
number of nodes for fixed £ [20]. For the datasets we consider in this paper, these algorithms are
impractical, despite the polynomial dependence on the number of nodes. However, we will use the
results in this section as the basic ingredients for an algorithm, developed in Section 3, that works
extremely well in practice.

2.2. Non-minimal vertex covers. A natural next question is whether we can say anything positive
when the planted vertex cover C' is not minimal. In particular, if C' is not minimal, can we still
ensure that some parts of it must be contained in U (|C)? The following propositions show that if
anode v € C links to a node v that is outside C, or that is deeply contained in C' (with v and its
neighbors all in C'), then « must belong to U (|C/).

Proposition 1. Ifu € C and there is an edge (u,v) to a fringe node v ¢ C, then u € U(|C]).

Proof. Consider the following iterative procedure for “pruning” the set C': we repeatedly check
whether there is a node w such that C' — {w} is still a vertex cover; and if so, we choose such a w
and delete it from C. When this process terminates, we have a minimal vertex cover C' C C; and
since |C’| < |C|, we must have C’ C U(|C|). But in this iterative process we cannot delete u, since
(u,v) is an edge and v € C. Thus v € C’, and hence u € U(|C). O

Next, let us say that a node v belongs to the interior of the vertex cover C' if v and all the
neighbors of v belong to C'. We now have the following result.

Proposition 2. Ifu € C and there is an edge (u, v) to a node v in the interior of C, then u € U(|C|).

Proof. Let u and v be nodes as described in the statement of the proposition. Since all of v’s
neighbors are in C, it follows that Cy = C' — {v} is a vertex cover. We now proceed as in the
previous proof: we iteratively delete nodes from Cj as long as we can preserve the vertex cover
property. When this process terminates, we have a minimal vertex cover C’ C Cj, and since
|C"| < |C|, we must have C" C U(|C|). Now, u could not have been deleted during this process,
because (u, v) is an edge and v ¢ Cj. Thus u € C’, and hence u € U(|C]). O

Even with these results, we can find instances where an arbitrarily small fraction of the nodes
in a non-minimal planted vertex cover C' may be contained in U (|C'|). To see this, consider a star
with center node u and k + 1 leaves; and let C consist of u together with any £ — 1 of the leaves.
We observe that the single-node set {u} is the only minimal vertex cover of size at most k, and
hence |U(|C])|/|C| = 1/k. Note how in this example, all the other nodes of C fail to satisfy the
hypotheses of Proposition 1 or 2. However, we will see in Section 3 that in all of the real-world



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 7

network settings we consider, these three propositions can be used to show that most of C'is indeed
contained in U (|C]).

Our bad example consisting of a star also has the property that the planted vertex C' is much
larger than the size of a minimum vertex cover. We next consider the case in which C' may be
non-minimal, but is within a constant multiplicative factor of this minimum size k*. In this case, we
will show how to find small sets guaranteed to intersect a constant fraction of the nodes in C'.

2.3. Maximal matching 2-approximation to minimum vertex cover and intersecting the core.

Algorithm 1: Maximal matching 2-approximation for minimum vertex cover
Input: Graph G = (V, E)
Output: Vertex cover M with |M| < 2k*
M+ o
for e = (u,v) € E do
| ifu¢ Mandv ¢ M then M < M U {u,v}

A basic building block for our theory in this section and the algorithms we develop later is
the classic maximal matching 2-approximation to minimum vertex cover (Algorithm 1, above).
The algorithm greedily builds a maximal matching M by processing each edge e = (u, v) of the
graph and adding v and v to M if neither endpoint is already in M. Upon termination, M is both
a maximal matching and a vertex cover: it is maximal because if we could add another edge e,
then it would have been added when we processed edge e; and it is a vertex cover because if both
endpoints of an edge e are not in the matching, then e would have been added to the matching when
it was processed. Since any vertex cover must contain at least one endpoint from each edge in the
matching, we have k* > |M|/2; or, equivalently, | M| < 2k*, where k* is the minimum vertex cover
size of GG. We note that the output M of Algorithm 1 may not be a minimal vertex cover. However,
we can iteratively prune nodes from M to make it minimal, which we will do for our recovery
algorithm described in Section 3. For the theory in this section, though, we assume no such pruning.

The following proposition shows that any vertex cover whose size is bounded by a constant
multiplicative factor of the minimum vertex cover size must intersect the output of Algorithm 1 in a
constant fraction of its nodes.

Lemma 2. Let B be any vertex cover of size |B| < bk* for some constant b. Then any set M
produced by Algorithm 1 satisfies |M N B| > | B|.

Proof. The maximal matching consists of i edges satisfying h = |M|/2 < k*. Since B is a vertex
cover, it must contain at least one endpoint of each of the h edges in M. Hence, |M N B| > h >
k*/2 > %]B| O

A corollary is that if our planted cover C'is relatively small in the sense that it is close to the
minimum vertex cover size, then Algorithm 1 must partially recover C'. We write this as follows.

Corollary 1. If the planted vertex cover C has size |C| < ck*, then Algorithm 1 produces a set M
of size < 2k* that intersects at least a 1/(2c) fraction of the nodes in C.

An important property of Algorithm 1 that will be useful for our algorithm design later in the
paper is that the algorithm’s guarantees hold regardless of the order in which the edges are processed.
Furthermore, two matchings produced by the algorithm using two different orderings of the edges
must share a constant fraction of nodes, as formalized in the following corollary.

Corollary 2. Any two sets S1 and Sy obtained from Algorithm 1 (with possible different orders in
the processing of the edges) satisfy | S1 N S| > 1 max (]S, [Sa|).



8 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

Thus far, everything has applied without any assumptions on the graph itself, other than the fact
that it contains a vertex cover of size at most k. In the following section, we show how different
ways of assuming structure on the graph can yield stronger guarantees.

2.4. Improving results with known graph structure. We now examine ways to strengthen our
theoretical guarantees by assuming some structure on C' and G. For a simple example, if C' induces
a clique in G, then the subgraph on C' has a minimum vertex cover of size |C| — 1; in this case the
second bound in Lemma 1 reduces to |U(|C])| < 3|C/|. Furthermore, in this case, Observation 1
would say that any node in C' that has an edge to a fringe node outside of C' is immediately
identifiable from its degree (if we knew the size of C'). Below, we consider how to make use of
random structure or bounds on the minimum vertex cover size k£* obtained through computation
with Algorithm 1 to strengthen our theoretical guarantees.

Stochastic block model. One common structural assumption is that edges are generated inde-
pendently at random. The stochastic block model (SBM) is a common generative model for this
idealized setting [35]. In our case, we use a 2-block SBM, where one block is the planted vertex
cover (' and the other block is the remaining fringe nodes F' = V' — (. The SBM provides a single
probability of an edge forming within a block and between blocks. For our purposes, C'is a vertex
cover, so we assume that the probability of an edge between nodes in F’ is 0. For notation, we will
say that the probability of an edge between nodes in C'is p and the probability of an edge between a
node in C' and a node in F' is q. We make no assumption on the relative values of p and . SBMs
have previously been used to model core-periphery structures in networks [67], although this prior
work assumes that p > ¢ and that there is a probability » < ¢ of nodes in the periphery forming an
edge. (In Section 3, we compare against the belief propagation algorithm developed in this prior
work.)

Our technical result here combines the second bound in Lemma 1 with the well-known lower
bounds on independent set size in Erd6s-Rényi graphs (in the SBM, C' is an Erdés-Rényi graph
with edge probability p).

Lemma 3. With probability at least 1 — |C|73™7/2P)) the union of minimal vertex covers of size
at most |C| contains at most |C|(31n|C|/p + 3) nodes.

Proof. Ttis straightforward to show that the independence number « of C'is less than (31n|C|)/p+1
with probability at least 1 — |C|~3I€1/(2P) [62]. The minimum vertex cover size of the first block is
then k* = |C| — a > |C| — (31n|C|)/p — 1 with the same probability. Plugging into Lemma 1(b)
gives the result. U

We could improve the constants in the above statement with more technical results on the
independence number in Erdds-Rényi graphs [21, 31]. However, our point here is simply that the
SBM provides substantial structure. The following theorem further represents this idea.

Theorem 2. Let C be a planted vertex cover in our SBM model, where we know that |C| = k. Let
p and q be constants, and let the number of nodes in the stochastic block model be ck for some
constant ¢ > 1. Then with high probability as a function of k, there is a set D of size O(klog k)
that is guaranteed to contain C.

Proof. By Lemma 3, we know that |U (k)| is O(k log k) with high probability. Now, for any node
v € O, the probability that it links to at least one node outside of C'is 1 — (1 — ¢)(¢~V*, Taking the
union bound over all nodes in C' shows that with high probability in %, each node in C' has at least
one edge to a node outside C' In this case, Proposition 1 implies that C' C U (k), so by computing
U(k), we contain C' with high probability. O



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 9

CollegeMsg as-caida20071105 p2p-Gnutella31

810 8104 8
7] N 7] Hinh v
° | B R ° : | { H‘." o
o ' | SN : l ! o
D I A g10%f i g
£10% | | 5 ! (! 5
£ 1 ! £ 10 I £
° | 510% M 5
[ ! [ | Q.)
< 10'y T (k+D)A2/4+k < ! <
g — gty L 8
-~ # of nod P~
< # of nodes < LA <
N 1004 improved bound N 1004 N
10° 10! 10? 10° 10! 102 10° 10! 10?
1-hop neighborhood size (k) 1-hop neighborhood size (k) 1-hop neighborhood size (k)

FIGURE 2. Improvements in the second bound from Lemma 1 by bounding the
minimum vertex cover size. The planted vertex covers are 1-hop neighborhoods of
a node, which cover the 2-hop neighborhoods (the center node is excluded). Blue
dots in the scatter plot show the relative sizes of the planted cover and the total
number of vertices in the subgraph. Blue dots above the thick black curve represent
non-trivial bounds from the first bound in Lemma 1 (i.e., the size of the union of
covers is less than the size of the 2-hop neighborhood itself). The orange squares
show improvements in the bound by approximating the minimum vertex cover size.
In many cases, this substantially improves the bound. For the CollegeMsg dataset,
the bounds appear to be linear instead of quadratic.

Bounds on the minimum vertex cover size. While it may sometimes be impractical to compute
the minimum vertex cover size k*, the second bound of Lemma 1 may still be used if we can
bound £* from above and below. Specifically, given a lower bound / and an upper bound u on £*,
\U(k)| < (k—k*+2)k* < (k — 1+ 2)u. Here, we have a scenario in which we want the lower
bound [ to be as large as possible and the upper bound w to be as small as possible.

A cheap way of finding such bounds is to use the greedy maximal matching approximation
algorithm (Algorithm 1). We can run the approximation algorithm /N times, processing the edges
in different (random) orders, producing sets St, ..., Sy of sizes si,...,sy. We can then set the
largest lower bound obtained to be [ = max; s;/2. As noted in Section 2.3, the sets .S; are not
guaranteed to be minimal. We can post-process them to be minimal, producing sets S, ..., S of
sizes 57, ..., Siy. Setting u = min; s’ gives us the smallest upper bound. Through the lens of this
procedure, the search for a large lower bound makes sense. If we can find a lower bound [/ and an
upper bound u such that [ = 2u, then we know that £* = [. In other words, larger lower bounds,
combined with the 2-approximation, are giving us more information on the interval containing k*.

Before getting to our main computational results in the next section, we begin by evaluating
this particular bounding methodology on three datasets: (i) a network of private messages sent
on an online social network at the University of California, Irvine (CollegeMsg; [56]), (i) an
autonomous systems graph derived from a RouteViews BGP table snapshot in November, 2007
(as-caida20071105; [46]), (iii) a snapshot of the Gnutella peer-to-peer file sharing network from
August 2002 (p2p-Gnutella31; [50]). For each network, we construct planted covers by considering
the 1-hop neighborhood of nodes u as a cover for the 2-hop neighborhood of the same node (and
we remove the node u from both of these sets). This provides a collection of planted vertex covers
in communication-like datasets. We set N = 20 and use the above procedure to employ the second
bound in Lemma 1 without computing any minimum vertex covers. Figure 2 summarizes the results.
We observe that in most cases, the first bound in Lemma 1 is non-trivial (i.e., is smaller than the size
of the 2-hop neighborhood) and that the approximations can substantially improve the bound. In the
case of the CollegeMsg dataset, the upper bounds appear approximately linear in the cover size.



10 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

TABLE 1. Basic summary statistics of our graph datasets: the number of nodes
(n), number of edges (m), total time spanned by the dataset, size of the planted
vertex cover (|C'|), minimum vertex cover size (k*), bounds from Lemma 1 given
as a fraction of the total number of nodes (capped at 1, the trivial bound), fraction
of nodes in u € C that are in an edge with v ¢ C, and fraction of nodes in C' with
a neighbor v in the interior of C' (v and all of its neighbors are in C'). The nodes
in these last two categories are guaranteed to be in the union of all minimal vertex
covers of size at most |C/| by Propositions 1 and 2. Across all datasets, most nodes
in C' fall into these categories.

Dataset n m timespan |C| k* Bound 1l Bound2 frac. C'w/ frac. C'w/
(days) edge outside C' interior neighbor
email-Enron 18.6k 43.2k 1.50k 146 146 0.30 0.02 0.99 0.00
email-W3C 20.1k 31.9k 7.52k 199k 1.11k 1.00 1.00 0.76 0.06
email-Eu 202k 320k 804 1.22k 1.18k 1.00 0.26 0.99 0.00
call-Reality 9.02k 10.6k 543 90 82 024 0.09 0.90 0.01
text-Reality 1.18k 1.95k 478 84 80  1.00 0.41 0.88 0.00

3. RECOVERY PERFORMANCE ON DATASETS WITH “REAL” PLANTED VERTEX CORES

We now study how well we can recover planted vertex covers, where the vertex cover corresponds
to a core set arising from the type of measurement process described in the introduction. We use
five datasets for this purpose:

(1) email-Enron [40]: This is the dataset discussed in the introduction, where the core is the set
of email addresses for which the inboxes were released as part of the investigation by the
Federal Energy Regulatory Commission. Nodes are email addresses and there is an edge
between two addresses if an email was sent between them.

(2) email-W3C [16, 55, 65]: This is a dataset of email threads crawled from W3C mailing lists.
We consider the “core” to be the nodes with a w3.org domain in the email address. There is
an edge between two email addresses if an email was sent between them.

(3) email-Eu [47, 66]: This dataset consists of email communication involving members of a
European research institution. The core represents the members of the research institution.

(4) call-Reality [26]: This dataset consists of phone calls made and received by a set of students
and faculty at the MIT Media Laboratory or MIT Sloan business school as part of the reality
mining project. These students and faculty constitute the core. There is an edge between
any two phone numbers between which a call was made.

(5) text-Reality [26]: This dataset has the same core nodes as the phone-Reality dataset but
edges are formed via SMS text communications instead of phone calls.

Each dataset has timestamps associated with the nodes, and we will evaluate how well we can
recover the core as the networks evolve. Table 1 provides some basic summary statistics of the
datasets. The table includes the minimum vertex cover size (computed using Gurobi’s linear integer
program solver), which lets us evaluate the second bound of Lemma 1. We also computed the
fraction of nodes that are guaranteed to be in U (|C'|) by Propositions 1 and 2 and find that 82%-99%
of the nodes fit these guarantees, depending on the dataset.

3.1. The union of minimal vertex covers algorithm and recovery performance. We now study
how well we can recover the planted vertex cover consisting of the core C'. All of the methods we
use provide an ordering on the nodes, often through some score function on the nodes in the graph.



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 11

function UMVC (A::SparseMatrixCSC{Int64,Int64}, ncovers=300)

1

2 edgevec = filter(e -> e[l] < e[2],

3 collect (zip(findnz (A) [1:2]...)))

4 umvce = zeros (Int64, size(A,1))

5 for _ in l:ncovers

6 # Run 2-approximation with random edge ordering

7 cover = zeros (Int64, size(A,1))

8 edge_qgqueue = shuffle (edgevec)

9 while length (edge_queue) > 0

10 i, j = pop! (edge_queue)

11 if cover[[i,3J]] == [0,0]; cover[[i,3]] = [1,1]; end
12 end

13 # Reduce to a minimal cover

14 while true

15 reduced = false

16 for c in shuffle(find(cover .== 1))

17 nbrs = find(A[:,c])

18 if sum(cover[nbrs]) == length (nbrs)

19 cover[c] = 0

20 reduced = true

21 end

22 end

23 if !reduced; break; end

24 end

25 umvc [cover .== 1] =1

26 end

27 d = vec(sum(A,2)) # degrees of nodes

28 return [sort (find(umvc .== 1), by=v->d[v], rev=true);
29 sort (find (umvc .== 0), by=v->d[v], rev=true)]
30 end

FIGURE 3. Complete implementation of our union of minimal vertex covers
(UMVC) algorithm in 30 lines of Julia code. The algorithm repeatedly runs
the standard maximal matching 2-approximation algorithm for minimum ver-
tex cover (Algorithm 1; lines 6-12) and reduces each cover to a minimal one
(lines 13-24). The union of covers is ranked first in the ordering (sorted by
degree; line 28). The remaining nodes are then sorted by degree (line 29).
The code is available as a Gist at https://gist.github.com/arbenson/
cl251£0851£dfc97021b%a0a37d4fb69.

We then evaluate recovery on two criteria: (i) precision at core size (i.e., the fraction of nodes in
the top |C| of the ordering that are actually in C') and (ii) area under the precision recall curve (this
metric is more appropriate than area under the receiver operating characteristic curve when there is
class imbalance [22], which is the case here).

Proposed algorithm: union of minimal vertex covers (UMVC). Our proposed algorithm, which
we call the union of minimal covers (UMVC), repeatedly finds minimal vertex covers and takes
their union. The nodes in this union are ordered by degree and the remaining nodes (not appearing
in any minimal core) are ordered by degree. The minimal covers are constructed by first finding a
2-approximate solution to the minimum vertex cover problem using the standard greedy algorithm
(Algorithm 1) and then pruning the resulting cover to be minimal. We randomly order the edges
for processing by the approximation algorithm in order to capture different minimal covers. The
algorithm is incredibly simple—Fig. 3 shows a complete implementation of the method in just 30
lines of Julia code. In our experiments, we use 300 minimal vertex covers.

Our algorithm is motivated by the theory in Section 2 in several ways. First, we expect that
most of C' will lie in the union of all minimal vertex covers of size at most |C'| by Propositions 1
and 2 and Theorem 1. The degree-ordering is motivated by Observation 1, which says that nodes of



12 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

sufficiently large degree must be in C. Alternatively, one might order the nodes by the number of
times they appear in a vertex cover. Second, even though we are pruning the maximal matchings to
be minimal vertex covers, Corollary 1 provides motivation that the matchings should be intersecting
C. If only a constant number of nodes are pruned when making the matching a minimal cover, then
the overlap is still a constant fraction of C'. Third, Corollary 2 says that we shouldn’t expect the
union to grow too fast.

We emphasize that the UMVC algorithm makes no assumption or use of the size of the planted
cover C'. Instead, we are only motivated by the theory of Section 2. Finally, we note that there is a
tradeoff in computation and number of vertex covers. We chose 300 because it kept the running
time to about a minute on the largest dataset. However, a much smaller number is needed to obtain
the same recovery performance for some of our datasets.

Other algorithms for comparison. We compare UMVC against five other methods. First, we
consider an ordering of nodes by decreasing degree. This heuristic captures the fact that the nodes
outside of C' cannot link to each other and that |C| is much smaller than the total number of
vertices. This heuristic has previously been used as a baseline for core-periphery identification [58]
and is theoretically justified in certain stochastic block models of core-periphery structure [67].
Second, we use betweenness centrality [30] to order the nodes, the idea being that nodes in the
core must appear in shortest paths between nodes in the fringe. Third, we use the Path-Core (PC)
scores [18] to order the nodes; these scores are a modified version of betweenness centrality, which
have been used to identify core-periphery structure in networks [45]. Fourth, we use a scoring
measure introduced by Borgatti and Everett (BE) for evaluating core-periphery structure with the
core-fringe structure in which we are interested [8]. Formally, the score vector s is the minimizer of
the function | (ij)e s(Ai; — sisj)z. We use a power-method-like iteration to compute s [15]. Fifth,
we use a belief propagation (BP) method designed for stochastic block models of core-periphery
structure [67].

Results. We divide the temporal edges of each dataset into 10-day increments and construct an
undirected, unweighted, simple graph for the first 107 days of activity, » = 1,2,...,|7/10], where
T 1s the total number of days spanned by the dataset (Table 1). Given the ordering of nodes from
each algorithm, we evaluate recovery performance by the precision at core size (P@CS; Fig. 4,
left column) and the area under the precision recall curve (AUPRC; Fig. 4, middle column). We
emphasize that no algorithm has knowledge of the actual core size. We also provide an upper bound
on performance, which for the P@CS metric is the number of non-isolated nodes in the core at the
time divided by the total number of core nodes in the dataset and for AUPRC is the performance of
an order of nodes that places all of the non-isolated core nodes first and then a random order for the
remaining nodes. The right column of Fig. 4 provides statistics on the growth of the network over
time.

We observe that, across all datasets, our UMVC algorithm out-performs the degree, betweenness,
PC, and BE baselines at essentially nearly all points in time. The belief propagation sometimes
exhibits better slightly performance but suffers from erratic performance over time due to landing
in local minima; for example, see the recovery performance of the email-W3C dataset in row 2 of
Fig. 4. In some cases, belief propagation can hardly pick up any signal, which is the case in the
email-Eu dataset (row 3 of Fig. 4). In this dataset, UMVC clearly out-performs other baselines. In
the email-Enron dataset, UMVC achieves perfect recovery after around 800 days of activity.

The key reason for the better performance of UMVC is that it uses the fact that the core is
a vertex cover. Low-degree nodes that might look like traditional “periphery” nodes in a core-
periphery dataset but remain in the core are not picked up by the other algorithms. Core-periphery



FOUND GRAPH DATA AND PLANTED VERTEX COVERS

email-Enron

email-Enron

email-Enron

1.0 1.04 1.04
8 2
% 0.8 5 084 0.8
e o
4
S 06+ o 064 S 061
= - =]
© o} (%}
©
g 0.4 . g 0.4 & 0.4+ —— core nodes
) g 3 . —— total nodes
T © R
§ 024 | Il wem upper bound BRI © 24 | l_,' = upper bound BP 0.2 total edges
& 1|9 — uMvC -—-- PC| & i — UMVC ---- PC -=- nodes in core
= Degree —-— BE - Degree —-— BE A
0.04 Betweenness 0.04 " —— Betweenness 004 T
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Nave Naves Nave
email-W3C email-w3C email-w3C
1.0 1.04
] [9]
N s
» 0.8+ 5 0.
E 19)
.4
S 061 d o s
- o -
© [} ®
< 0.44 ° o
o™ < o. -
n =
© ©
0 021 o,
a < ¢
0.0+ .
T v v v T v v v v v v
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Nave Naves Dave
email-Eu email-Eu email-Eu
1.0
[ ]
N c
o E 0.8
e o
4
8 o S 06
E 5 8
S c o 047
@ i >
0 024 3 024 0.2
e o
a < \
0.0 0.04 0.0 TTTTTmmmmmmmmomoooooooooo
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Nave Nave Nave
call-Reality call-Reality call-Reality
1.04 1.04
3 ¢
% 0.8 5 087
E 19)
<) .4
S 064 o 0.6
® a
S 0.4+ T o044
2 S
© ©
o 0.21 0 0.2
o <
0.04 0.04
T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Nave Navs Dave
text-Reality text-Reality text-Reality
[ ]
N c
n =1
Gd o)
o o« c
o a o
= =]
© S [¥]
(]
c ° o
] c e
2 S
kY] ©
o o
a <
T T T T T 0.0 T T T T 0.0 T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Days Days Days

FIGURE 4. Core recovery performance on five real-world datasets with respect to
six methods: our proposed union of minimal vertex covers (UMVC), degree ordering
(degree), betweenness centrality (betweenness; [30]), belief propagation (BP; [67]),
Borgatti-Everett scores (BE; [8]), and Path-Core scores (PC; [18]). Each dataset has
timestamped edges, and we measure the performance of all algorithms every 10 days
of real time as the networks evolve. The left column shows precision at the core size,
the middle column is the area under the precision recall curve, and the right column
tracks the amount of data over time. Our proposed UMVC algorithm performs well
on all datasets. BP is sometimes competitive but is susceptible to poor local minima,
as evidenced by its erratic performance on several datasets.

13



14 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

TABLE 2. Time to run the algorithms on the largest dataset appearing in Fig. 4. Our
proposed union of minimal vertex covers algorithm (UMVC) is fast and provides
the best performance on several real-world datasets (see Fig. 4). Here, we use 300
minimal vertex covers in our UMVC algorithm; choosing the number of covers
allows the user to tune the running time.

Dataset UMVC degree betweenness [30] PC[18] BE[8,15] BP[67]
email-W3C  6.5secs < 0.01 secs 2.8 mins 1.1 hours 0.1 secs 1.0 mins
email-Enron 8.4 secs < 0.01 secs 2.5 mins 1.8 hours 0.1 secs 20.2 mins
email-Eu 1.2 mins < 0.01 secs 11.8 hours > 3 days 0.9 secs 15.0 mins
call-Reality 2.2 secs < 0.01 secs 27.9 secs 6.1 mins 1.8 secs 4.3 secs
text-Reality 0.5 secs < 0.01 secs 0.8 secs 11.4secs < 0.1 secs 6.8 secs

detection algorithms in network science have traditionally relied on SBM benchmarks, eyeball
tests, or heuristic benchmarks [58, 67]. We have already theoretically shown how the SBM induces
substantial structure for this problem in our setup, and others have performed similar analysis for
block models [67]; thus, this may not be an appropriate benchmark for further analysis. Here, we
give some notion of ground truth labels on which to evaluate the algorithms and exploited the vertex
cover structure of the problem.

3.2. Timing performance. We also measure the time to run the algorithms on the entire dataset
(Table 2). For our UMVC algorithm, we use the union of 300 minimal vertex covers. Tuning the
number of vertex covers provides a way for the application user to trade off run-time performance
and (potentially) recovery performance. The algorithm was implemented in Julia (Fig. 3). The
degree-based ordering was also implemented in Julia, betweenness centrality was computed with
the LightGraphs. jl julia package’s implementation of Brandes’ algorithm for sparse graphs [9,
10]. The Path-Cores method was implemented in Python using the NetworkX library, and the
Belief Propagation algorithm was implemented in C++. We emphasize that our goal here is to
demonstrate the approximate computation times, rather than to compare the most high-performance
implementations possible.

The UMVC algorithm takes a few seconds for the email-W3C, email-Enron, reality-call, and
reality-text datasets, and about one minute for the email-Eu dataset. This is an order of magnitude
faster than belief propagation (BP), and several orders of magnitude faster than betweenness
centrality and Path-Core scores (PC). There are approximation algorithms for betweenness centrality,
which would be faster than the exact algorithm [6, 32]; however, the weak performance of the exact
betweenness-based algorithm on our datasets did not justify our exploration of these approaches.

4. DISCUSSION

Many network datasets are constructed with partial measurements and such data is often “found”
in some way that destroys the record of how the measurements were made. Here, we have examined
the particular case of graph data where the edges are collected by observing all interactions involving
some core set of nodes, but the identity of the core nodes is lost. Such sets of core nodes act as a
planted vertex cover in the graph. In addition to developing theory for this problem, we devised a
simple and fast algorithm that recovers such cores with extremely high efficacy in several real-world
datasets.

There are a number of further directions that would be interesting to consider. First, in order to
develop theory and abstract the problem, we assumed that our graphs were simple and undirected.



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 15

However, there is much richer structure in the data that is generally collected. For example,
the interactions in the email, phone call, and text messaging data are directional and could be
modeled with a directed graph. Furthermore, we did not exploit the timestamps or the frequency
of communication between nodes. One could incorporate this information into a weighted graph
model of the data.

Substantial effort has been put forth in the network science community to study mesoscale core-
periphery structure in network data. However, the evaluation of such methods has been empirical or
evaluated on simple models such as the stochastic block model, which we showed actually induces
a substantial amount of structure on the recovery problem. The present work is the first effort to
evaluate the recovery of core-periphery-like (i.e., core-fringe) network structure with much more
worst-case assumptions through the lens of machine learning with “ground truth” labels on the nodes.
We hope that this provides a valuable testbed for evaluating algorithms that reveal core-periphery
structure, although we should not take evaluation on ground truth labels as absolute [57].

Software accompanying this paper is available at:

https://github.com/arbenson/FGDnPVC.

Acknowledgments. We thank Jure Leskovec for providing access to the email-Eu data; Mason Porter
and Sang Hoon Lee for providing the Path-Core code; and Travis Martin and Thomas Zhang for
providing the belief propagation code. This research was supported in part by a Simons Investigator
Award and NSF TRIPODS Award #1740822.

REFERENCES

[1] E. Abbe. Community detection and stochastic block models: recent developments. arXiv:1703.10146, 2017.
[2] E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic block model. IEEE Transactions on
Information Theory, 62(1):471-487, 2016.
[3] E. Abbe and C. Sandon. Recovering communities in the general stochastic block model without knowing the
parameters. In Advances in Neural Information Processing Systems, pages 676684, 2015.
[4] R. Albert and A.-L. Barabadsi. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1),
2002.
[5] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph. Random Structures
and Algorithms, 13(3-4):457-466, 1998.
[6] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness centrality. In International
Workshop on Algorithms and Models for the Web-Graph, pages 124—137. Springer, 2007.
[7] P.J. Bickel and A. Chen. A nonparametric view of network models and newman—girvan and other modularities.
Proceedings of the National Academy of Sciences, 106(50):21068-21073, 2009.
[8] S.P. Borgatti and M. G. Everett. Models of core/periphery structures. Social Networks, 21(4):375-395, 2000.
[9] U. Brandes. A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2):163-177,
2001.
[10] U. Brandes. On variants of shortest-path betweenness centrality and their generic computation. Social Networks,
30(2):136-145, 2008.
[11] R. Breiger. Structures of economic interdependence among nations. Continuities in structural inquiry, pages
353-380, 1981.
[12] P. Buneman, S. Khanna, and T. Wang-Chiew. Why and where: A characterization of data provenance. In The
International Conference on Database Theory, pages 316-330. Springer Berlin Heidelberg, 2001.
13] R. S. Burt. Positions in networks. Social Forces, 55(1):93, 1976.
14] J. E. Buss and J. Goldsmith. Nondeterminism within p*. SIAM Journal on Computing, 22(3):560-572, 1993.
15] A. L. Comrey. The minimum residual method of factor analysis. Psychological Reports, 11(1):15-18, 1962.
16] N. Craswell, A. P. de Vries, and 1. Soboroff. Overview of the trec 2005 enterprise track. In TREC, volume 5, pages
199-205, 2005.

[
[
[
[



16 FOUND GRAPH DATA AND PLANTED VERTEX COVERS

[17] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi. Structure and dynamics of core/periphery networks. Journal of
Complex Networks, 1(2):93-123, 2013.

[18] M. Cucuringu, P. Rombach, S. H. Lee, and M. A. Porter. Detection of core-periphery structure in networks using
spectral methods and geodesic paths. European Journal of Applied Mathematics, 27(06):846-887, 2016.

[19] P. Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. Theoretical
Computer Science, 351(3):337-350, 2006.

[20] P. Damaschke and L. Molokov. The union of minimal hitting sets: Parameterized combinatorial bounds and
counting. Journal of Discrete Algorithms, 7(4):391-401, 2009.

[21] V. Dani and C. Moore. Independent sets in random graphs from the weighted second moment method. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 472-482.
Springer Berlin Heidelberg, 2011.

[22] J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd
international conference on Machine Learning. ACM Press, 2006.

[23] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova. Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications. Physical Review E, 84(6), 2011.

[24] Y. Deshpande and A. Montanari. Finding hidden cliques of size y/N/e in nearly linear time. Foundations of
Computational Mathematics, 15(4):1069-1128, 2014.

[25] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer Science & Business Media, 2012.

[26] N. Eagle and A. S. Pentland. Reality mining: sensing complex social systems. Personal and Ubiquitous Computing,
10(4):255-268, 2005.

[27] D.Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge
University Press, 2010.

[28] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world graphs. In Experimental
Algorithms, pages 364-375. Springer Berlin Heidelberg, 2011.

[29] U. Feige and D. Ron. Finding hidden cliques in linear time. In 21st International Meeting on Probabilistic,
Combinatorial, and Asymptotic Methods in the Analysis of Algorithms, pages 189-204. Discrete Mathematics and
Theoretical Computer Science, 2010.

[30] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35, 1977.

[31] A. Frieze. On the independence number of random graphs. Discrete Mathematics, 81(2):171-175, 1990.

[32] R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness centrality. In Proceedings
of the Meeting on Algorithm Engineering & Expermiments, pages 90—100. Society for Industrial and Applied
Mathematics, 2008.

[33] K.J. Gile and M. S. Handcock. Respondent-driven sampling: An assessment of current methodology. Sociological
Methodology, 40(1):285-327, 2010.

[34] S.P. Hier and J. Greenberg. Surveillance: Power, Problems, and Politics. UBC Press, 2009.

[35] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social Networks, 5(2):109-137,
1983.

[36] P. Holme. Core-periphery organization of complex networks. Physical Review E, 72(4), 2005.

[37] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and C. Shahabi. Big
data and its technical challenges. Communications of the ACM, 57(7):86-94, 2014.

[38] M. Khabbazian, B. Hanlon, Z. Russek, and K. Rohe. Novel sampling design for respondent-driven sampling.
Electronic Journal of Statistics, 11(2):4769-4812, 2017.

[39] M. Kim and J. Leskovec. The network completion problem: Inferring missing nodes and edges in networks. In
Proceedings of the 2011 SIAM International Conference on Data Mining, pages 47-58. Society for Industrial and
Applied Mathematics, 2011.

[40] B. Klimt and Y. Yang. Introducing the Enron Corpus. In CEAS, 2004.

[41] G. Kossinets. Effects of missing data in social networks. Social Networks, 28(3):247-268, 2006.

[42] D. Koutra, J. T. Vogelstein, and C. Faloutsos. DeltaCon: A principled massive-graph similarity function. In
Proceedings of the 2013 SIAM International Conference on Data Mining, pages 162—170. Society for Industrial
and Applied Mathematics, may 2013.

[43] T. Kuny. A digital dark ages? challenges in the preservation of electronic information of electronic information. In
63rd IFLA Council and General Conference, 1997.

[44] E. O. Laumann, P. V. Marsden, and D. Prensky. The boundary specification problem in network analysis. Research
methods in social network analysis, 61:87, 1989.



FOUND GRAPH DATA AND PLANTED VERTEX COVERS 17

[45] S. H. Lee, M. Cucuringu, and M. A. Porter. Density-based and transport-based core-periphery structures in
networks. Physical Review E, 89(3), 2014.

[46] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and
possible explanations. In Proceeding of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM Press, 2005.

[47] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. ACM
Transactions on Knowledge Discovery from Data, 1(1):2—es, 2007.

[48] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical comparison of algorithms for network community detection.
In Proceedings of the 19th international conference on World Wide Web. ACM Press, 2010.

[49] C. Lynch. How do your data grow? Nature, 455(7209):28-29, 2008.

[50] R. Matei, A. Iamnitchi, and P. Foster. Mapping the gnutella network. IEEE Internet Computing, 6(1):50-57, 2002.

[51] R. Meka, A. Potechin, and A. Wigderson. Sum-of-squares lower bounds for planted clique. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing. ACM Press, 2015.

[52] T. Monahan, D. J. Phillips, and D. M. Wood. Surveillance and empowerment. Surveillance and Society, 8(2):106—
112, 2010.

[53] E. Mossel, J. Neeman, and A. Sly. Belief propagation, robust reconstruction and optimal recovery of block models.
In Conference on Learning Theory, pages 356-370, 2014.

[54] M. E.J. Newman. The structure and function of complex networks. SIAM Review, 45(2), 2003.

[55] D. Oard, T. Elsayed, J. Wang, Y. Wu, P. Zhang, E. Abels, J. Lin, and D. Soergel. Trec-2006 at maryland: Blog,
enterprise, legal and qa tracks. Technical report, University of Maryland Institute for Advanced Computer Studies,
2006.

[56] P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users’ behavior and interaction: Network
analysis of an online community. Journal of the American Society for Information Science and Technology,
60(5):911-932, 2009.

[57] L. Peel, D. B. Larremore, and A. Clauset. The ground truth about metadata and community detection in networks.
Science Advances, 3(5):€1602548, 2017.

[58] P. Rombach, M. A. Porter, J. H. Fowler, and P. J. Mucha. Core-periphery structure in networks (revisited). SIAM
Review, 59(3):619-646, 2017.

[59] D. M. Romero, B. Uzzi, and J. Kleinberg. Social networks under stress. In Proceedings of the 25th International
Conference on World Wide Web. ACM Press, 2016.

[60] C. Seshadhri, A. Pinar, and T. G. Kolda. Fast triangle counting through wedge sampling. In Proceedings of the
SIAM Conference on Data Mining, volume 4, page 5, 2013.

[61] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science. ACM SIGMOD Record,
34(3):31, 2005.

[62] D. A. Spielman. Erdos-Rényi Random Graphs: Warm Up. Graphs and Networks Lecture Notes. http://www.
cs.yale.edu/homes/spielman/462/2010/1lect3-10.pdf, 2010.

[63] W.-C. Tan. Research problems in data provenance. IEEE Data Engineering Bulletin, 27:45-52, 2004.

[64] A. Tsiatas, I. Saniee, O. Narayan, and M. Andrews. Spectral analysis of communication networks using dirichlet
eigenvalues. In Proceedings of the 22nd international conference on World Wide Web. ACM Press, 2013.

[65] Y. Wu, D. W. Oard, and I. Soboroff. An exploratory study of the w3c mailing list test collection for retrieval of
emails with pro/con argument. In CEAS, 2006.

[66] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 2017.

[67] X.Zhang, T. Martin, and M. E. J. Newman. Identification of core-periphery structure in networks. Physical Review
E, 91(3), 2015.



	1. Partially measured graphs, data provenance, and planted structure
	2. Theoretical methodology for partial recovery or tight containment
	2.1. Finding a planted vertex cover
	2.2. Non-minimal vertex covers
	2.3. Maximal matching 2-approximation to minimum vertex cover and intersecting the core
	2.4. Improving results with known graph structure

	3. Recovery performance on datasets with ``real'' planted vertex cores
	3.1. The union of minimal vertex covers algorithm and recovery performance
	3.2. Timing performance

	4. Discussion
	References

