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A B S T R A C T

Patients associated with multiple co-occurring health conditions often face aggravated complications and less
favorable outcomes. Co-occurring conditions are especially prevalent among individuals suffering from kidney
disease, an increasingly widespread condition affecting 13% of the general population in the US. This study aims
to identify and characterize patterns of co-occurring medical conditions in patients employing a probabilistic
framework. Specifically, we apply topic modeling in a non-traditional way to find associations across SNOMED-
CT codes assigned and recorded in the EHRs of> 13,000 patients diagnosed with kidney disease. Unlike most
prior work on topic modeling, we apply the method to codes rather than to natural language. Moreover, we
quantitatively evaluate the topics, assessing their tightness and distinctiveness, and also assess the medical
validity of our results. Our experiments show that each topic is succinctly characterized by a few highly probable
and unique disease codes, indicating that the topics are tight. Furthermore, inter-topic distance between each
pair of topics is typically high, illustrating distinctiveness. Last, most coded conditions grouped together within a
topic, are indeed reported to co-occur in the medical literature. Notably, our results uncover a few indirect
associations among conditions that have hitherto not been reported as correlated in the medical literature.

1. Introduction

Patients associated with multiple co-occurring health conditions
often face aggravated complications and less favorable treatment out-
comes. The Center for Disease Control and Prevention reports that in
the US alone, one in four individuals suffers from multiple health
conditions, while the rate is three times higher among individuals 65 or
older [1]. Co-occurring conditions are especially prevalent among in-
dividuals diagnosed with kidney disease, an increasingly widespread
condition affecting 13% of the general population and 18% of hospi-
talized patients in the US [2]. Kidney disease is associated with a large
number of complications, including cardiovascular disease, metabolic
bone disease and diabetes [3]. Identifying conditions that tend to co-
occur in the context of kidney disease, followed by evidence based in-
terventions, can slow or prevent a patient’s progression to advanced
stages of the condition. In this study, we thus aim to identify co-oc-
currence patterns of medical conditions among individuals who have
kidney disease.

We analyzed, in collaboration with physicians and researchers from
Christiana Care Health System, Electronic Health Records (EHRs)

of> 13,000 patients, gathered over a period of eight years, from pri-
mary care and specialty practices across Delaware associated with
Christiana Care, the largest health-system in Delaware. We included
patients’ records in our dataset, if at any time during follow-up, there
was an indication of a decline in kidney function, determined by a
lower than normal (< 60mL/min/1.73m2), estimated Glomerular fil-
tration rate (GFR), a common marker of kidney function. Each record
includes attributes such as vital signs, demographics and SNOMED
codes for diagnosed conditions, recorded during multiple office visits
and hospital stays.

We focus our analysis on the diagnosed conditions attribute in the
dataset, represented through the healthcare terminology of SNOMED-
CT codes [4]. SNOMED is specifically designed to capture detailed in-
formation during clinical care, enabling clinicians to choose appro-
priate conditions from a predefined fine grained list, and is thus a
structured non-text representation of patients’ diagnoses. Ours is the first
study that utilizes SNOMED codes for identifying patterns of co-oc-
curring conditions. The large number of patients, the wide timespan in
our EHRs and the use of SNOMED codes to represent diagnosed con-
ditions, yield a large scale dataset which supports identifying patterns
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of co-occurring conditions.
Specifically, we adopt a data driven approach to identify many-to-

many associations among a broad group of medical conditions asso-
ciated with patients who have kidney disease. We apply a probabilistic
topic modeling method, Latent Dirichlet Allocation (LDA) to SNOMED
codes [5]. Topic modeling has primarily been used for identifying
thematic structures (topics) in unstructured text data. In contrast, we
apply topic modeling over structured non-text SNOMED codes to au-
tomatically organize diagnoses associated with patients’ EHRs into
groups of correlated coded conditions, where each group represents a
topic, formally defined as a probability distribution over codes. In our
study, a patient file, which includes all coded conditions with which the
patient has been diagnosed, is viewed as a document, and each code is
treated as a word. We hypothesize that a set of coded conditions,
tending to co-occur in patients, also demonstrate a high probability to
be associated with a specific topic. In preliminary studies (not shown),
we employed simpler unsupervised methods such as K-means and co-
sine-similarity-based clustering to identify co-occurrence patterns of
medical conditions, but unlike topic model those have not revealed
meaningful, clinically relevant associations.

Most previous studies, aiming to identify associations among dis-
eases have focused on exposing associations among a few pre-defined
specific conditions [6–13]. For instance, Farran et al. targeted asso-
ciation between diabetes and hypertension [12], while a more recent
work by Chen et al. explored association between colorectal cancer and
obesity [13]. In contrast, ours is the first study aiming to find many-to-
many associations among a broad group of conditions, doing so within
a specific disease context, namely, kidney disease. Our results thus
show highly informative groups of meaningful connections (i.e. in-
formative topics), which manifest themselves within the context of the
disease.

A handful of earlier studies explored association among a broad
group of conditions [14–16] utilizing textual data present in patient
records. In contrast, we utilize non-text SNOMED codes that are de-
signed to unambiguously record diagnosed conditions during clinical
care. Hence, using SNOMED as the basis for the analysis can directly
expose connections among conditions.

Topic modeling has been broadly used for text analysis [5] and
image processing [17] applications. Recently, topic models have also
been applied in the biomedical domain [18–23], mostly applying the
method to text data (e.g., physicians’ notes, biomedical literature). Only
a few studies have applied topic models to non-text data as we do here
[24–27]. Most recently, a study by Chen et al. [27] used topic modeling
for predicting clinical order-sets from inpatient hospitalization records,
with reported performance of 47% precision and 24% recall. In contrast
to our study, which aims to expose patterns of co-occurring medical
conditions while rigorously assessing topic quality, Chen et al. aimed to
predict clinical order-sets using topic modeling as tools without eval-
uating the obtained topics themselves.

The work most related to ours, a study by Li et al. [26], utilizes topic
modeling to cluster patient diagnosis-groups, represented by ICD-9
codes, for identifying comorbidity. Notably, ICD-9 codes are defined at
a coarser granularity level than SNOMED codes and thus capture less
detailed information during clinical care, than SNOMED codes [28].
Moreover, the dataset used in that work was relatively small, com-
prising only 4644 patients. Most importantly, unlike our study, the
study by Li et al. does not ensure that topics indeed capture clinically-
relevant associations; nor evaluates the topics quantitatively.

Preliminary steps of this study were discussed in our earlier ex-
tended abstract [29]. Here we present additional experiments and re-
sults and extended analysis. Specifically, we conduct a thorough
quantitative evaluation of the performance of our model, and an as-
sessment of the medical validity of our results. Moreover, we include
results obtained over an additional dataset consisting of many thou-
sands of hospitalization records, which were not available for the pre-
liminary study.

We assess the performance of our method qualitatively as well as
quantitatively. For qualitative evaluation, we assess the clinical validity
of our results by examining whether the conditions that show high
probability to be associated within a topic are known to co-occur ac-
cording to the medical literature. When applying an unsupervised
method such as topic modeling to data, the uncovered groups (topics)
may not always carry a useful cohesive semantics. Hence, it is im-
portant to quantitatively assess whether the topics are indeed in-
formative. Unlike most other studies on topic modeling, we quantita-
tively evaluate the topics obtained from our model, by assessing their
tightness and distinctiveness.

Tightness signifies that the codes characterizing the topic are highly
correlated with each other and thus capture strong non-arbitrary as-
sociations. Distinctiveness across topics indicates that codes that are
highly probable to be grouped under a specific topic, are unlikely to be
associated with other topics. Furthermore, to verify that the topics are
informative, we measure the entropy of each topic, and show entropy
that is significantly lower than that of the uniform distribution (i.e. high
information contents).

We applied our method to two datasets collected from the patients,
one comprising office visit records and the other hospitalization re-
cords. In both cases, we obtained informative, distinct and tight topics
that align well with known co-occurrences among conditions cited in
the medical literature. We note that similar disease themes emerge in
topics inferred from each of the two sets, but also that the conditions
grouped together under topics obtained from the hospitalization dataset
typically indicate higher severity than those grouped under topics in-
ferred from office visits. The difference is expected, as patients who are
hospitalized often manifest more severe conditions (such as congestive
heart failure and renal failure), than patients who are not.

Our method’s ability to generate meaningful topics from both da-
tasets, where one comprises more common conditions (office visits) and
the other more severe ones (hospitalization cases), demonstrates its
effectiveness in reliably exposing co-occurring conditions. Notably, our
results uncover a few indirect associations among conditions that have
hitherto gone unreported, suggesting that topic modeling over codes
can expose yet unnoticed associations.

2. Material and methods

2.1. Datasets

Our datasets consist of information gathered from office visit re-
cords of 13,111 patients in Delaware, who have shown evidence of
decreased kidney function during these visits, and from the hospitali-
zation records of a subset of 9,530 patients who had at least one hos-
pital visit. The records included in the office visit set and those included
in the hospitalization set do not overlap. Each record contains attributes
such as age, ethnicity, and diagnosed conditions, collected between
August 2007 and July 2015. As noted, we focus solely on the diagnosed
conditions attribute, represented via SNOMED codes.

We extracted the office visit records from the Christiana Care Health
System outpatient EHR (CentricityTM, GE) and the hospitalization re-
cords from the Christiana Care inpatient EHR (PowerChartR, Cerner
Millennium). Patients’ identifiers were removed from records in both
the office visit and hospitalization sets. The records were then trans-
formed and standardized into a common data model, the Observational
Medical Outcomes Partnership (OMOP) [30]. SNOMED is one of the
standardized vocabularies available in the OMOP model. This project
was approved by the Christiana Care IRB with a waiver of consent ac-
cording to 45CFR46.116d.

Table 1 summarizes key characteristics of the office visit and the
hospitalization datasets. As shown in the table, the patients’ age is quite
high; the mean age is 70 (σ =12) for the office-visit set and 67 (σ =14)
for the hospitalization set. The vast majority of patients (94%) are
above 50, 66% above 65, while less than 1% are below 35. Fig. 1 shows
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descriptions of the twenty most frequent codes appearing in each record
set, in decreasing order of occurrence frequency.

To create a data-matrix that can be processed via topic modeling we
make several data organization and preprocessing choices.
Traditionally in topic modeling, a natural language word is the basic
data unit, while the set of unique words is referred to as the vocabulary.
In contrast, in our study, we use coded conditions, represented as
SNOMED codes, rather than words, such that the vocabulary is the set
of unique codes. To determine the number of unique codes included in
our vocabulary, denoted V, we conducted multiple experiments while
varying the vocabulary size, considering all codes occurring in the da-
tasets and reduced code sets accounting for 90% and for 80% of the
cumulative frequency in each dataset. As further discussed in Section 3,
the larger of these vocabularies do not perform as well. We thus focus
here on the vocabulary comprising the set of codes accounting for 80%
of the cumulative frequency. Of the 4,000 codes in the office visit set,
just 180 account for 80% of the cumulative frequency (see Fig. 2). To
avoid sparsity in the data-matrix, we limit our vocabulary to these 180
frequent codes (V=180). Similarly, when working with the hospitali-
zation set, we limit our vocabulary to 250 of the 4,000 codes (V=250),
which accounts again for 80% of the cumulative frequency.

After defining the vocabulary, we preprocess the original patient
files to represent each patient in a bag-of-codes format (analogous to the
bag-of-words representation of documents) for applying topic mod-
eling. Bag-of-codes accounts for the number of times a code appears in a

patient file. Recurring conditions that persistently recur multiple times
in the file (e.g. chronic conditions), and often indicate a higher level of
severity, thus incur a higher weight (counts). In contrast, conditions
occurring only sporadically in the patient’s history (e.g. occasional
cough or headache) receive a lower weight, and as such play a lesser role
in the topic profiles. We also experimented with two additional
common representations, namely, binary (0/1) and tf-idf (term fre-
quency, inverse document frequency), which proved less effective as we
further discuss in Section 3.

Each patient file, Fi (1≤ i≤M), is converted to a vector of codes,
= 〈 … 〉F c c, ,i

i
N
i

1 i , where M denotes the number of patients in the dataset
and Ni is the total number of code occurrences in the ith patient file.
Each code, cj

i, in the vector is one of the V SNOMED codes in our vo-
cabulary, viewed as a value taken by a respective random variable, Cj

(1≤ j≤Ni), denoting the code value occurring in the jth position of the

Table 1
Key characteristics of the office visit and hospitalization datasets. The leftmost
column lists the characteristics; the middle column shows the corresponding
values in the office visit set, while the rightmost column shows the values in the
hospitalization set.

Office visit set Hospitalization set

Number of Patients 13,111 9,528
Age Range (25th –75th Percentile) 60–80 60–80
Mean Age (σ) 70 (12) 67 (14)
% Female 60% 61%
% Male 40% 39%
Avg. Number of Visits per Patient 17 5

Fig. 1. Number of occurrences of the twenty most frequent conditions in the office visit record set (a) and in the hospitalization record set (b). Each bar represents the
number of occurrences of each condition in the respective record set. For clarity, we show the descriptive name associated with each SNOMED code rather than the
code itself.

Fig. 2. Number of occurrences for each of the 4,000 SNOMED codes in the
office visit set. The y-axis shows the number of times each SNOMED code occurs
in the set; the x-axis corresponds to indices representing the 4,000 SNOMED
codes, sorted in decreasing order of number of occurrences.
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ith patient file. We note that any of the V codes in our vocabulary can
appear at any position in a patient file.

We process all patient files, Fi, (1≤ i≤M), to create a data matrix
where each row represents a patient, and each column represents a
SNOMED code included in the vocabulary, such that each cell 〈p, c〉
holds the number of times a patient p was diagnosed with condition c.
Each patient in the record set is thus associated with a V-dimensional
vector, where V denotes the number of unique codes in our vocabulary
and each vector entry corresponds to the occurrence frequency of a
condition within the patient’s file. We refer to each such vector as a
patient-conditions record, and to the collection of all vectors as the pa-
tient-conditions corpus. The latter consists of a 13,111× 180 matrix for
the office visits dataset, and a 9,528× 250 matrix for the hospitaliza-
tion dataset.

Studies analyzing clinical data often take into account age as a
possible confounding factor affecting disease severity and number of
hospitalizations or office visits, and consider stratifying the population
by age. In this study we applied similar consideration, and inspected the
variation in the total number of code occurrences within patient records
as a function of age (data not shown). We have found that the the total
number of times coded-conditions are assigned to each patient do not
vary significantly with age. This finding is not surprising, because as
noted above, the patients in our dataset are predominantly (>94%)
older than 50, and are all (even the younger ones) at moderate-to-se-
vere stages of the disease. As such, physician visits are frequent and
code distributions do not significantly vary by age throughout the po-
pulation; we thus apply topic-modeling to the population as a whole
without any further stratification.

Table 2 shows examples of five patient-conditions records, where
each row corresponds to a patient’s record and each column corre-
sponds to a condition. Due to limited space, only eight conditions are
shown. Each cell lists the number of times a patient has been diagnosed
with the condition.

2.2. Latent Dirichlet Allocation (LDA)

We employ LDA to model patient records as though they were
generated by sampling from a mixture of K underlying topics, where a
topic is a multinomial distribution over all coded conditions in our
vocabulary [5]. The generative process for each patient file consists of
the following steps:

First, a multinomial distribution over V codes for the tth topic, de-
noted Φt (1≤ t≤K), is obtained by sampling from a Dirichlet dis-
tribution with parameter α; Φt represents the conditional probability of
a code to occur in the tth topic. Next, for each patient file, Fi, a multi-
nomial distribution over K topics, denoted θi, is sampled from a
Dirichlet distribution with parameter β; θi represents the conditional
probability of the file to be associated with each of the K topics.
Subsequently, for each code-position, j, in the file, Fi: (1) A topic is

drawn by sampling from θi; the selected topic at position j in Fi, is de-
noted zj

i ∈ {1,…,K}; (2) Given the topic zj
i a code cj

i is drawn by sam-
pling the topic-code distribution, Φzj

i.
The model parameters are learnt iteratively for different values of K,

where K ranges from 5 to 100, and the data log-likelihood is calculated
for each value of K. To determine the optimal number of topics, we
identify the K value that maximizes the data log-likelihood, which is

defined as: ∫∑ ∑ ∏= ={ }log Pr c z Φ Pr z θ Pr θ β dθ[ ( | , ) ( | )] ( | )i
M

z j
N

j
i

j
i

z j
i

i i i1 1
i

j
i ,

(where M denotes the number of patients in the corpus and Ni denotes
the total number of code occurrences in the ith patient file, as defined
earlier. See Hornik et al. [31] for details.)

To learn the model parameters based on our data and obtain the
data log-likelihood, we employ the R topicmodels library [32], which
uses Gibbs sampling. We use the default parameter values, set in the
topicmodels library, for the parameter β (0.1) and for the initial value of
the parameter α (50/M) [31].

2.3. Jensen-Shannon divergence (JSD)

JSD is a symmetric measure of similarity between two probability
distributions [33]. Let

⎯→⎯
= 〈 … 〉X x x, , N1 and

→
= 〈 … 〉Y y y, , N1 represent two

N-dimensional multinomial distributions. The JSD between
⎯→⎯
X and

→
Y is

defined as:
⎯→⎯ →

= ∑ + ∑= =( ) ( )JSD X Y x log y log( || ) ,i
N

i
x
m i

N
i

y
m

1
2 1

1
2 1

i
i

i
i

where

the vector ⎯→⎯ = 〈 … 〉m m m, , N1 represents the mean distribution of
⎯→⎯
X and

→
Y , calculated as: = +m x y( )i i i

1
2 (where ⩽ ⩽x y0 , 1i i and

∑ = ∑ =
= =

x y 1i
N

i i
N

i1 1 ).
The JSD value is 0 for identical distributions, and approaches ln(2)

(∼0.693) as the two distributions become more different from one
another. We use JSD to calculate the inter-topic distance between each
pair of topics, where the distribution dimension N is the number of
coded conditions in our vocabulary. In the work presented here,
N=180 for the office visit dataset and N=250 for the hospitalization
set.

3. Experiments and results

We applied the LDA implementation provided via the R topicmodels
library [32], to the patient-conditions corpus, where each of the re-
sulting topics is a distribution over coded conditions. We experimented
with different number of topics, K, ranging from 5 to 100. To avoid the
use of poor initial estimates as part of the Gibbs sampling process, we
discarded 4,000 samples in the burn-in period – the initial stage of the
sampling process in which the Gibbs samples are poor estimates of the
posterior. We repeated each experiment five times employing different
initial seeds, and calculated an average log-likelihood value. We saved
the initial seeds so that the results can be reproduced.

As mentioned in Section 2.2, to determine the optimal number of

Table 2
Examples of five of the 13,111 patient-conditions office-visits records. The leftmost column shows patient IDs and the topmost row
shows eight of the 180 conditions. Each cell lists the number of times a patient has been diagnosed with the respective condition, during
the eight-year period for which data was gathered.
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topics, we identified the value K that maximizes the data log-likelihood.
Fig. 3 shows plots of the data log-likelihood as a function of the number
of topics (K), for both the office-visit (Fig. 3a) and the hospitalization
(Fig. 3b) sets. As demonstrated in the figure, for both record sets, the
log-likelihood shows almost no change as K ranges between 20 and 30,
while the maximum value log-likelihood is obtained at K=30 for the
office visit set and K=25 for the hospitalization set. As 20 topics are
easier to describe, visualize and evaluate, we report results obtained for
K=20.

Table 3 shows examples of five characteristic topics from the 20
identified by our model from the office visit set. For each of the five
displayed topics, we list the conditions that are assigned a probability
greater than a threshold value – set here to 0.01, along with their re-
spective probabilities. The term distributions associated with the other
15 topics show similar characteristics. The results obtained over the
hospitalization set are similar (Table 4).

After obtaining the topics, we conducted a thorough evaluation of
the performance of our method. First, we surveyed the medical litera-
ture by manually searching the PubMed, Google Scholar,WebMD and the
Mayo Clinic websites [34–47] to verify whether the most probable
conditions within each topic are indeed known to co-occur according to
medical literature. We then conducted a rigorous quantitative evalua-
tion by assessing the resulting topics in terms of tightness and distinc-
tiveness.

To assess tightness we inspected, for each topic, the number of codes
within it that are assigned a probability greater than 0.01 (the threshold
value set here). We refer to each list of coded conditions whose prob-
ability is greater than 0.01 as the top-codes for the topic. As shown in
Table 3, four of the five topics (Topics 1–4) are associated with 10 top-
codes, while the remaining topic (Topic 5) is associated with 13 top-
codes. The cumulative probability mass associated with the top-codes
accounts for over 0.9 of the total probability mass, as shown at the
bottom row of the table. Our results show that for each topic inferred
from the office visits set, only a few codes have a probability above 0.01
(at most 15, out of 180 codes); moreover, the cumulative probability
mass for these 15 codes is above 0.9.

Fig. 4 shows graphs plotting the probability of each of the 180 codes
to be associated with each of four example topics. The x-axis corre-
sponds to the 180 codes, while the y-axis corresponds to the conditional
probabilities of the codes to occur in the respective topic. As shown in
the figure, for each of the four topics, only a few codes (less than 15) are
assigned a non-negligible probability of association with the topic,
further illustrating tightness of the topics. Likewise, for each topic ob-
tained from the hospitalization set, 25 or fewer codes have a probability
higher than the threshold value (0.01), and the cumulative probability
of these 25 codes is higher than 0.9.

We also calculated the entropy of each topic and compared the
values to the entropy of the uniform distribution (i.e., the maximum
possible entropy, log N2 , where N is the number of codes in our voca-
bulary). The entropy for each of the 20 topics obtained from the office
visit set ranges from 1.208 to 3.576; the average entropy value is 2.853
(σ = 0.557), which is much lower than the entropy of the uniform
distribution, ( =log N 7.491,2 where N=180). Similarly, for the hospi-
talization set, the entropy of the 20 topics ranges from 0.849 to 4.907;
the average entropy value is 3.507 (σ= 1.049); again, much lower than
the entropy of the uniform distribution ( =log N 7.9662 , where N=250).

To assess distinctiveness of the topics, we used two approaches. First,
we calculated and compared the corpus-wide versus the topic-specific
number of occurrences of each top-code associated with each topic.
Fig. 5 shows two example plots depicting both the corpus-wide and the
topic-specific abundance of top-codes for topics obtained from the of-
fice visit set (Topics 1 and 4 in Table 3). For each coded condition, the
black bar represents the topic-specific number of occurrences, while the
combined black-and-grey bar represents the corpus-wide number of
occurrences.

We also calculated inter-topic distances between all distinct pairs
within the 20 topics inferred from each record set, using Jensen-
Shannon divergence [33]. The mean value of the JSD obtained from the
office visit set is 0.666 (σ= 0.150), (with median= 0.691 and
minimum= 0.483), while for the hospitalization set, the mean is 0.637
(σ= 0.053), with median and min of 0.649 and 0.423, respectively.

While as noted in Section 2.1 we utilized in the above experiments

Fig. 3. Data log-likelihood as a function of the number of topics, K, for the office visit record set (a) and for the hospitalization record set (b). The x-axes correspond to
the number of topics (K) ranging from 0 to 100; the y-axes correspond to the data log-likelihood values.
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only 180 (or 250) codes accounting for 80% of the cumulative code
frequency in the respective dataset, we have conducted additional ex-
periments varying the vocabulary size. Using a vocabulary comprising
all 4,000 coded-conditions in the dataset led to very sparse data-ma-
trices and to topics that were neither distinct nor tight. We also used
codes accounting for 90% of the respective cumulative frequencies in
each dataset, 590 codes to represent the office visit record set and 616
codes for the hospitalization record set. The topics obtained using these
vocabularies were as informative and clinically meaningful – but not as
tight – as the topics obtained when the vocabulary was smaller and
limited to codes comprising 80% of the cumulative frequency. We thus
only report here the results obtained using the latter smaller vocabu-
lary.

Last, as also mentioned earlier, in addition to employing bag-of-
codes to represent each patient-file, we have experimented using binary
(0/1) and tf-idf representations. The former representation does not
account for code abundance, while the latter penalizes code abundance
if a code occurs in many patient records. While the complete results are
not shown here due to space limits, the topics resulting from the 0/1
representation are not as distinct as the ones obtained using bag-of-
codes, although topics inferred using each of the two representations
capture many similar condition-association patterns. Moreover, since tf-
idf penalizes codes that frequently appear within the corpus, this re-
presentation loses important information, as a persistently recurring
condition (i.e. a code with a high count) is often indicative of a stronger
association with other conditions. Hence, topics formed under the tf-idf
representation do not capture some of the associations between recur-
ring conditions (e.g. hypertension), and other conditons that are man-
ifested in the disease. We have thus focused our report on the bag-of-
codes representation.

4. Discussion

As demonstrated by Tables 3 and 4, the topics obtained from both
the office visit and the hospitalization datasets indeed reveal patterns of
commonly co-occurring conditions. As mentioned in Section 1, while
similar disease themes are found in topics inferred from the hospitali-
zation and from the office visit sets (e.g. Topic 5 in Table 3, and Topics
4 and 5 in Table 4 are all related to Heart disease), disease profiled by
topics emerging from hospitalization records reflect a higher level of
severity than the topics stemming from office visits. This difference in
co-occurrence patterns matches the reality in which hospitalized pa-
tients often show more severe manifestations of the disease than non-
hospitalized patients. Fig. 1 illustrates this point, where the twenty
most frequent codes associated with the hospitalization set denote more
severe conditions than those associated with the office visit set. For
example, congestive heart failure, atrial fibrillation, and acute renal failure
syndrome, are among the most frequent condition codes in the hospi-
talization list (Fig. 1b) but are not among the most frequent codes in the
office visit set (Fig. 1a).

To validate that the condition-association patterns exposed through
topic models are meaningful, we verify that the most probable condi-
tions within each topic have indeed been reported to co-occur in the
medical literature. For instance, many of the conditions grouped to-
gether in the leftmost column of Table 3, (Topic 1), are clearly related to
Diabetes – one of the most frequent causes of decline in kidney function
[34–37]. Likewise, most of the conditions grouped in Topic 2 (see
Table 3) are related to Limb- or Joint-pain, including Chronic Renal-
failure, since Metabolic Bone Disease is a frequent complication of
advanced kidney disease [3,38]. Similar relationships characterize each
of the other topics [34–47].

To further assess the clinical validity of our topics, we selected 10
topics, examining two randomly selected high probability codes from
each. We surveyed the medical literature to verify whether these coded
conditions are known to co-occur [34–47]. Table 5 shows for each pair
of conditions, the PubMed identifier of the paper that establishes theTa
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medical connection between them. Most of the condition pairs are well
known according to the medical literature, supporting the hypothesis
that the model adequately uncovers true associations among coded
conditions.

Notably, a few of the coded condition pairs grouped together in our
topics are not known to be directly associated with each other. For
instance, no direct association is reported between Allergic Rhinitis and
Osteoporosis, two conditions grouped under Topic 4. However, a recent
study has shown that treating Allergic Rhinitis with depot-steroid in-
jections increases the risk of Osteoporosis [39], which supports the high
correlation we find between the two conditions. Similarly, Renal failure
and Bone- and Joint-pain are not reported as associated conditions;
however, Renal failure causes Osteodystrophy, which in turn causes
Bone- and joint-pain [3], explaining the significant association exposed
among the conditions in our results. The identification of two indirect
medical associations, suggests that our approach is likely to expose yet
unnoticed associations among medical conditions when applied to ad-
ditional datasets.

Our quantitative evaluation of the model performance shows that
the obtained topics are indeed tight and distinct. A topic that can be
specified by a small number of coded conditions (tightness), is expected
to capture meaningful and specific associations, since the codes char-
acterizing the topic are highly correlated with each other.

Fig. 4 shows that each plot contains only a small number of peaks
(typically 10), indicating that no more than 10 coded conditions ac-
count for most of the topic's probability mass, demonstrating the
tightness of our resulting topics. Thus, 10 conditions are typically suf-
ficient for characterizing each topic inferred from the office visit record

set, although a few topics are characterized by 11–15 coded conditions
(e.g. Topic 5, rightmost column of Table 3).

The probability plots for the other 16 topics show very similar
trends, and are not shown here due to limited space. Moreover, the
significantly lower entropy of the topic-distributions compared to the
entropy of the uniform distribution (the max-entropy distribution) in-
dicates that the topics obtained by our model bear high information
contents. The information-based assessment is extended as part of the
evaluation of distinctiveness, using the Jensen-Shannon divergence as
discussed below.

Topic distinctiveness is established by showing that many of the
codes appearing in a topic’s top-codes list are predominantly associated
with a specific topic. That is, a top-code corpus-wide abundance is close
in count to its topic-specific abundance for one particular topic. For
instance, Fig. 5 shows that the majority of the top-codes associated with
Topic 1 (eight of ten) and with Topic 4 (six of ten) are all-black, that is,
the topic-specific count is the same as the corpus-wide count for these
codes. We likewise inspected the other 18 topics (not shown here),
observing a similar trend, indicating that the topics capture distict
patterns of co-occurrences. While most codes are typically associated
with a single topic, a few codes, such as benign essential hypertension,
diabetes and vitamin D deficiency, are strongly associated with multiple
topics as these conditions co-occur with several different groups of
conditions.

The large inter-topic distance between each pair of topics, indicated
by high JSD values, further illustrates the distinctiveness of the re-
sulting topics. As discussed earlier, JSD values range from 0 to ln(2)
(∼0.693), where 0 indicates identical distributions, and ln(2) indicates

Fig. 4. The probability distribution of SNOMED codes in four example topics denoted A-D identified by our model when applied to the office visit set. The x-axes
correspond to the 180 codes; the y-axes correspond to the conditional probability of each code to occur in the respective topic.

Fig. 5. Topic-specific and corpus-wide number of occurrences of the top-codes associated with Topics 1 and 4, obtained from the office visit set. Black bars represent
topic-specific number of occurrences for each condition. Combined black-and-grey bars represent the corpus-wide number of occurrences for each condition.
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orthogonal distributions. The higher the divergence value between two
topics, the more distinct they are from one another. The high mean and
median values (close to the upper bound of ln(2)) of the inter-topic
distances we have obtained indicate that almost all our topic are highly
distinct.

The topics obtained from the hospitalization records are also clini-
cally-relevant, tight and distinct. As with the office visit records, we
surveyed the medical literature and found that the coded conditions
grouped together as topics, inferred from the hospitalization dataset,
have been reported to co-occur. Moreover, the observation that only a
few coded conditions (25 or fewer, out of 250) characterize each topic,
indicates tightness, while the high JSD values of the topics indicate
distinctiveness. Furthermore, the low entropy of the topic distributions
(compared to that of a uniform distribution), indicates that the topics
are indeed informative. The ability of our method to generate clinically-
relevant, tight and distinct topics from both datasets, demonstrates its
effectiveness in identifying patterns of co-occurring medical conditions.

5. Conclusion

We have employed topic modeling over disease codes using LDA,
obtaining probabilistic topics that highlight characteristic patterns of
co-occurring medical conditions among patients who have kidney dis-
ease. Our results indicate that most coded conditions grouped together
within a topic, are indeed reported to co-occur in the medical literature.
Our results also uncover several associations among conditions that
were hitherto not reported as co-occurring. We quantitatively evaluated
the performance of our method and have shown that the topics iden-
tified from two different datasets are tight and distinct.

Our approach can also be helpful as a basis for a recommender
system, suggesting to the practitioner, conditions that are likely to co-
occur with a patient’s current diagnoses. Given a diagnosis code, the
topic with which the code is most strongly associated can be identified.
Accordingly, the list of the other codes associated with the topic can be
shown to the physician, as conditions to be checked for. For instance, if
a healthcare provider seeing a patient with decreased kidney function
enters Anemia as a diagnosis, the system will prompt checking for
Goiter, Hypothyroidism and Hypertension, since these conditions are
all strongly associated with the same topic, thus highly likely to co-
occur. Last, as conditions associated with other diseases are coded in a
similar way within EHRs, we expect that our proposed method can be

used to address similar research questions for diseases beyond kidney
dysfunction.
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