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Abstract—Objectives: Temporal Enhanced Ultrasound (TeUS)
is a new ultrasound-based imaging technique that provides tissue-
specific information. Recent studies have shown the potential of
TeUS for improving tissue characterization in prostate cancer
diagnosis. We study the temporal properties of TeUS – temporal
order and length – and present a new framework to assess their
impact on tissue information. Methods: We utilize a probabilistic
modeling approach using Hidden Markov Models (HMMs) to
capture the temporal signatures of malignant and benign tissues
from TeUS signals of 9 patients. We model signals of benign
and malignant tissues (284 and 286 signals, respectively) in their
original temporal order as well as under order permutations.
We then compare the resulting models using the Kullback-
Liebler divergence and assess their performance differences in
characterization. Moreover, we train HMMs using TeUS signals
of different durations and compare their model performance
when differentiating tissue types. Results: Our findings demon-
strate that models of order-preserved signals perform statistically
significantly better (85% accuracy) in tissue characterization
compared to models of order-altered signals (62% accuracy).
The performance degrades as more changes in signal-order are
introduced. Additionally, models trained on shorter sequences
perform as accurately as models of longer sequences. Conclusion:
The work presented here strongly indicates that temporal order
has substantial impact on TeUS performance, thus it plays a
significant role in conveying tissue-specific information. Further-
more, shorter TeUS signals can relay sufficient information to
accurately distinguish between tissue types. Significance: Under-
standing the impact of TeUS properties facilitates the process of
its adopting in diagnostic procedures and provides insights on
improving its acquisition.

Index Terms—Hidden Markov Models, Probabilistic modeling,
Prostate Cancer, Temporal Enhanced Ultrasound, Temporal
Order, Time Domain Signal Analysis.
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PROSTATE cancer is the most commonly diagnosed can-
cer in men, affecting more than 2.9 million people in

North America [1], [2]. According to the Canadian Cancer
Society, one in eight men is expected to develop prostate
cancer in his lifetime [2]. Despite the increased awareness and
advances in prostate oncology, the disease remains a prominent
health concern for men. The current practice for prostate
cancer diagnosis involves measuring the level of Prostate
Specific Antigen (PSA) in the blood, along with a Digital
Rectal Examination (DRE) to assess the size and stiffness
of the prostate gland [3]–[5]. If either test is abnormal, a
definitive diagnosis is made using histopathology analysis of
core needle biopsy obtained from the prostate under Trans-
Rectal Ultra-Sound (TRUS) guidance [6]. Disease prognosis
and treatment decisions are based on grading – i.e. the assess-
ment of cancer aggressiveness in the biopsy cores [7], [8]. As
prostate cancer is heterogeneous, TRUS-guided biopsies result
in false negative rate between 30% and 47%, since cancer
lesions are often missed, thus repeat biopsies are needed for
accurate diagnosis [5], [9], [10]. In addition, cancer grades are
underestimated in about 48%, and overestimated in up to 67%
of patients [9], [11]. Although prostate cancer screening has
led to a 45% decrease in mortality rates, it has also resulted
in over-treatment due to the inability of current screening
standards to accurately differentiate between indolent and
aggressive cancers [12]–[14]. To reduce inaccurate diagnostic
rates of TRUS-guided biopsies, a targeted biopsy approach is
required, where patient-specific high risk areas of the prostate
are sampled. In the past few years, Magnetic Resonance (MR)
Imaging [15] and MR-TRUS fusion [16]–[18] have been used
for guiding prostate biopsies. However, the ability to obtain
accurate diagnosis using ultrasound remains a priority due to
the wide availability and relatively low cost of this modality.

Temporal Enhanced Ultrasound (TeUS) has been proposed
as a novel ultrasound-based imaging technique for tissue
characterization (differentiating between malignant and benign
tissues) in prostate cancer [19]–[23]. TeUS has been also used
for characterizing in vitro animal tissues [19], [24], [25]. Ana-
lyzing temporal ultrasound sequences is a promising technique
to augment biopsy procedures with tissue-specific information
for guiding the needle to areas that are highly likely to be
malignant. A TeUS signal is a sequence of ultrasound frames
collected during sonication of a stationary tissue over a short
period of time - approximately two seconds. These temporal
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sequences capture ultrasound echoes from scanned tissue in
response to prolonged sonication. During scanning, tissue
responses vary from one time point to another, and the typical
variation pattern obtained from benign tissue is different from
that obtained from malignant one [23]. TeUS has been shown
to capture the difference in micro-structure between malignant
and benign tissues [26]. Micro-vibration of 1-2 Hz frequency is
shown to be the dominant physical phenomenon governing the
interaction of TeUS and the scanned tissue. Tissue cellularity
is one of the tissue characteristics that affect the echointensity
changes conveyed by TeUS. Thus, TeUS provides tissue-
specific information that can be used to identify high-risk
areas during TRUS-guided biopsies. Cancer likelihood maps
can be generated from the analysis of TeUS signals to guide
specimen collection, during biopsies, toward focusing on areas
more likely to be malignant. Currently, we are working on a
GPU implementation of our models to be able to generate and
display these maps in real time on ultrasound machines during
biopsy procedures.

Most approaches for tissue characterization using TeUS
extract features from the signals and use them to build a
classification framework. Previously proposed features in-
clude the fractal dimension, wavelet coefficients, frequency
amplitudes following Discrete Fourier Transform and mean
central frequencies, which were used to train support vector
machines for tissue characterization in prostate cancer [19]–
[21]. More recently, automatic feature extraction using deep-
belief networks was proposed for the same purpose [22].
In an earlier retrospective feasibility trial, we introduced a
stochastic tissue characterization framework using Hidden
Markov Models (HMMs) to explicitly incorporate and model
temporal relations that were not taken into account in previous
models of TeUS. We demonstrated the feasibility of accurate
detection of cancerous ROIs within the biopsy cores [23].
HMMs enable building tissue-specific models that capture the
difference between malignant and benign tissue response to
prolonged sonication.

Understanding the properties of TeUS is essential for im-
proving data collection and for clinical translation of the tech-
nology. Here, we build on our previous work [23], [27] and use
HMMs to further examine TeUS signals and assess the impact
of their temporal properties, namely order and signal length,
on tissue characterization. This work directly investigates the
impact of TeUS temporal properties on differentiating tissue
types. The temporal order is an important characteristic that
demonstrates how tissue-specific information is relayed by
TeUS data. Specifically, it is likely to reflect cumulative or
repetitive effect (or a combination of both) exerted on the
scanned tissue whose response to sonication is recorded. The
number of time points in the signal (i.e. the signal length)
is another important factor. The impact of change in signal
length on TeUS properties can help determine the duration
of sonication needed to collect a TeUS signal that carries
sufficient information for tissue characterization. The shorter
the scanning time, the easier it is to incorporate TeUS-data
collection into diagnostic procedures.

HMMs are probabilistic models typically used to detect
motifs and patterns in noisy time series [28]. They are widely

utilized in machine learning and applied in several domains
including speech recognition and synthesis [29], [30]. HMMs
have also been used to model biological data such as proteins
and DNA sequences [31].

To examine the significance of temporal order, we build
HMMs of TeUS signals while conserving their original or-
der as well as under various permutations to their order in
time. We use the Kullback-Leiber (KL) divergence [32] to
measure the difference between models trained on ordered
signals and models trained on signals whose order has been
altered. We then compare the performance achieved by the
respective models on the target task of tissue-characterization.
To assess the impact of signal length, we train HMMs using
signal prefixes, where we vary the number of time points
included within each prefix (hereinafter referred to as cropped
signals), and compare the resulting models performance when
distinguishing between malignant and benign tissues. We
demonstrate that the information carried by the temporal order
of TeUS signals is in fact related to tissue malignancy. We also
show that accurate differentiation between tissue types can be
achieved with shorter TeUS signals, that is, shorter scanning-
duration.

In the next section, we present the data and pre-processing
of TeUS signals. Section III provides a description of our
modeling and tissue characterization framework, and demon-
strates our approach for comparing various models. Section IV
presents results along with a discussion of their implications.
Section V concludes the work and outlines future directions.

II. TEMPORAL ENHANCED ULTRASOUND DATA

A. The Dataset

TeUS data comprises time series of ultrasound echo-
intensities reflected from a scanned tissue over time. The
echo-intensities that ultimately form the ultrasound image
of the scanned tissue at each time point are referred to as
a Radio-Frequency frame. Fig. 1 shows a sequence of 128
ultrasound images corresponding to RF frames obtained during
prostate sonography, along with the time-series representation
of a typical TeUS signal. In our dataset, each RF frame
consists of 1276× 64 intensity values (referred to as RF
values), which amounts to 1276 samples in the axial direction
and 64 in the lateral direction as shown in Fig. 2, while
the corresponding TeUS time series is 128 frames long.
Segmenting the ultrasound images, the boundaries of the
prostate are delineated and the echo-intensities corresponding
to the organ are located. Fig. 2 shows the prostate bound-
aries encircled in white. Pre-operatively, in vivo ultrasound
images were acquired from the prostates of 9 patients who
subsequently underwent radical prostatectomy as part of their
cancer treatment. A SonixTouch ultrasound machine (Analogic
Ultrasound, Massachusetts, USA) was employed to scan the
patients using the side-firing transducer of BPL9-5/55 trans-
rectal probe at a frequency of 6.67 MHz. A clinician was
holding a motorized cradle, where the probe was mounted.
For each patient, the clinician collected a fan of parasagittal B-
mode images at intervals of 0.5◦, where the size of each pixel
was 0.12 × 0.12 mm. The collected ultrasound images were
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Fig. 1. A Sequence of ultrasound images corresponding to 128 RF
frames of a patient’s prostate, along with a sample TeUS time series
of a given data point in the prostate.

then reconstructed into a 3D image with 0.12 mm isotropic
voxels to be later used during the multi-step registration

process performed to establish the ground truth. Afterwards, a

fan of 2-dimensional RF frame with a rotational interval of 2◦

at a resolution of 0.85 mm lateral by 0.04 mm axial directions

at a rate of 77 frames/sec [21].

To obtain the ground truth for tissue-characterization, the

echo-intensities corresponding to malignant and to benign

regions in the prostate were identified using demarcation

from postoperative-histopathology analysis of the tissues [33].

The registration of ultrasound images and high-resolution

histopathology images is a nontrivial procedure. Thus, MR

was used as an intermediary imaging modality. After resec-

tion, special fiducials visible in histopathology imaging were

implanted in and around the specimens to be used as points

of reference later during registration [34]. Ex vivo MR images

of the organs with fiducials were obtained and the prostates

were then sliced into 4.4 mm-thick sections. High-resolution

imaging and annotation of the malignant areas was performed

by a physician and confirmed by a genitourinary pathologist.

Afterwards, 3D reconstruction of the tissue sections was per-

formed [35]. The histopathology information was then overlaid

on the ex vivo MR images and subsequently registered to the

in vivo ultrasound images. The registration process performed

on this data was previously published by Imani et al. [21].

B. Time-domain Representation of TeUS Data

Ultrasound imaging techniques do not provide accurate

information about the location of very small objects due to

the scattering phenomenon. That is, echo deflected from such

small objects in soft tissue is scattered in all directions rather

than reflected solely back to the transducer [36]. Thus, the

annotation of ultrasound images is based on groups of RF

values, (as opposed to single values), corresponding to areas

known as Regions Of Interest (ROIs), which can be easily

Fig. 2. An example of an RF frame, consisting of 1276 samples in the axial
direction and 64 in the lateral direction. The grid divides each RF frame into
ROIs. The white circle shows the boundaries of the prostate. The solid red
arrows point to ROIs labeled as malignant, while the dashed green arrows
point to ROIs labeled as Benign.

visualized by clinicians. Imani et al. proposed the use of

an ROI size of 1.7×1.7 mm [21], which we also use in

this paper. A grid of 1.7×1.7 mm squares is overlaid on

each RF frame. The grid divides each frame into ROIs of

44 values in the axial direction and 2 values in the lateral

direction. On the ultrasound RF frames, the annotations appear

along the line of intersection between the imaging plane and

the histopathology cross-section. The ROIs that overlap with

the cancerous markings are selected as malignant ROIs and

modeled in this study. According to the Epstein criteria, a

minimum lesion size of 0.20.5 cc is clinically important [37].

In our dataset, the average size of dominant lesions is 19 mm,

with a lower bound of 4 mm. The Gleason Scores (GSs) for

the 9 patients vary between 6 and 8. Malignant ROIs were only

selected where cancer appears in consecutive histology slices

and where the lesion size is > 7 mm. As for benign ROIs,

they were selected with a safe margin of ≥ 5 mm away from

malignancy, prostatic intraepithelial neoplasia, benign prostatic

hyperplasia or atrophy. An example of an ROI grid is depicted

in Fig. 2. The ROIs are labeled according to the histopathology

annotations registered to the ultrasound. The solid red arrows

point to ROIs labeled as malignant, while the dashed green

arrows point to ROIs labeled as benign. Each patient data

consists of a set of annotated ROIs, in which each ROI is

a 128-long series, defined as:

ROIx = 〈ROIx1
, . . . , ROIx128

〉, (1)

where x enumerates the ROIs, ranging from 1 to 286 for ma-

lignant ROIs, and 1-284 for benign ROIs. The total data used

here thus consists of 570 ROIs. Within each ROI sequence,

the ith value, denoted ROIxi
, is the mean intensity of all

44×2 RF values at the ith time point. As mentioned earlier,

due to the scattering phenomenon, single RF values do not

accurately represent the image contents, since a single value

can be attributed to noise or generated by multiple scatterers.
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TABLE I
THE DISTRIBUTION OF MALIGNANT AND BENIGN ROIS OVER PATIENTS,

ALONG WITH GSS FOR PRIMARY AND SECONDARY LESIONS PER
HISTOPATHOLOGY SLICES.

Patient
Number

Number of ROIs Gleason ScoresMalignant Benign
1 42 42 3+3, 3+4, 4+4
2 17 17 3+3, 3+4, 4+3, 4+4
3 64 61 3+3, 3+4, 4+3, 4+4
4 29 29 3+3, 3+4, 4+4
5 35 35 3+3, 3+4, 4+3, 4+4
6 18 18 3+3, 3+4, 4+4
7 28 29 3+3, 3+4, 4+4
8 30 30 3+3, 3+4, 4+3, 4+4
9 23 23 3+3, 3+4, 4+3, 4+4
Total 286 284 —

As such, averaging the 88 (44×2) RF values into a single
mean as we do here, reduces the impact of noise in the
TeUS time series without incurring a significant information
loss, while also reducing data dimensionality. TeUS Data from
the 9 subjects, whose benign and malignant ROIs are clearly
labeled, is used in the analysis described here. The ROIs were
selected in a way that maximizes the distance between benign
and malignant ROIs to avoid mislabeling (see [21] for details
regarding the ROI selection process). The number of ROIs per
patient, along with GSs of primary and secondary lesions per
slice are shown in Table I.

the data is pre-processed to detect any gross-motion using
a windowing technique where TeUS signals showing sudden
changes in the echointensities are excluded from further analy-
sis. As noted in the introduction, malignant and benign tissues
demonstrate different patterns of echointensity variation during
the sonication period [19]. As such, patterns of echointensity
variations can serve as a source of tissue-specific information
carried by TeUS data. To focus the analysis on the variation
in values, we calculate the first-order difference series of each
ROIx, transforming the 128-long time series into a 127-long
series of differences ROI ′x, where:

ROI ′xi
= ROIxi+1

−ROIxi
, (2)

and 1 ≤ i ≤ 127. Since the first-order difference values
ROI ′xi

are real numbers while we use discrete observations
in our HMMs representation, (see Sec. III-A for details),
we discretize these values into 10 equally spaced bins of
difference subranges. The ordinal number, O, of each bin is
used to represent the values falling in its respective sub-range.
As such, the discretized signal is ROIdx = 〈Ok

1 , . . . , O
k
127〉,

where Ok
1 is the kth bin number, which is used to represent

the value of the first time-point in the difference signal ROI ′x,
and 1≤k≤10. We experimented with different numbers of
bins (10, 20, . . . , 50), and our experiments suggest that 10
bins are sufficient for effective tissue characterization (see
Sec. III-C for further details). The discretized-representations
of ROIs, from all patients, are partitioned into two groups:
malignant ROIs – represented as a (286×127) matrix, GM,
and benign ROIs – represented as a (284×127) matrix, GB.
These representations are used to train the HMM models, as
discussed in Sec. III.

Order Rearrangement: To assess the significance of order
in TeUS signals, we generate collections of order-altered (re-
arranged) ROIs, where we select a block within the sequence
(block length ranges between 32 and 128 – the latter being the
entire sequence), and permute at random the order of all values
within the block. The permutations are performed on the orig-
inal signals before calculating and discretizing the first-order
difference. We experimented with blocks of different lengths
(32, 64, 96, and 128), and with different starting positions for
the block along the sequence (1, 33, 65, or 97). We denote
the starting point by f , and the block length by L.

For each of the 10 viable combinations of f and L (that
is, the combinations in which f+L≤128) we generate two
rearranged groups of signals: one for malignant ROIs G(f,L)

M

and the other for benign ROIs G(f,L)
B . Fig. 3.A illustrates a

simple case where the block-length is 3, the block starting
point is I and the end point is K. The values within the
rearranged block are permuted at random. Fig. 3.B, 3.C
and 3.D show example ROIs in their original order along
with a rearranged block of different lengths (L) as well as
different first time points (f ). For each rearranged group of
ROIs G(f,L)

M and G(f,L)
B , we generate 100 versions, each has

a different random permutation of the time points in the
rearranged block. We then calculate their first-order difference
series and discretize them to be used in training and testing
the models of rearranged signals (denoted HMMRe). In total,
we generated 2000 ROI groups: 1000 for the malignant ROI
groups, G(f,L)

M , and 1000 for the benign ROI groups, G(f,L)
B .

Signal-length Cropping: To determine the effect of the
temporal-duration of TeUS signals on tissue characterization,
we generated data for collections of cropped ROIs while
varying signal length. For each signal length, we employed
a sliding window of length, z, and a starting-point index,
i. The sliding window determines the time points from the
original signal to be included in the cropped version of the
signal. We experimented with 9 values for the length z,
z ∈ {20, 30, . . . , 100}, and 10 values for the starting-point
index i, i∈{10, 20, . . . , 100}. Combinations of z and i were
restricted to those resulting in a window that is fully contained
in the original signal. We generated a total of 63 collections
of cropped signals. In each collection, the group of malignant
ROIs, G(z,i)

M , and the group of benign ROIs, G(z,i)
B , are used

to train and test the respective malignant-characteristic and
benign-characteristic HMM.

III. METHODS

A. Hidden Markov Models of TeUS Data

An HMM represents a pair of two stochastic processes,
where the first process consists of transitions among states
that are not directly observable; the states can only be es-
timated through a second process that generates a sequence
of observed symbols [29]. The underlying Markov property
assumption implies that the state at time t depends only
on the state directly preceding it, that is, the state at time
t− 1, conditionally independent of earlier states. In the work
presented here, we use HMMs to model discretized TeUS
time series. A hidden Markov model, λ, is formally defined
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Fig. 3. A) A sequence of ultrasound images corresponding to TeUS data
illustrating order rearrangement in a block of length 3 (top). The order of the
three frames – I, J and K – is permuted at random (middle), while the whole
permuted block is placed at its original position in the sequence (bottom). B-
D) A TeUS signal from a sample ROI, shown along with a rearranged block
of varying lengths (L) and starting positions (f ), where L = 32, 64 and 128
(B, C, D respectively) and f = 33 in C, and 1 in B and D.

using five elements: A set of N states {s1, . . . , sN}; a set

of M observations {v1, . . . , vM}; a probability distribution

governing state-transition denoted by an N × N matrix A
whose elements Aij are defined as:

Aij = Pr(s(t+ 1) = sj |s(t) = si), (3)

where s(t) is the state at time point t, 1≤i, j≤N , 1≤t≤T − 1
and T is the length of the modeled time series; a state-emission

probability distribution, denoted by an N×M matrix B where

the elements of B are defined as:

Bik = Pr(v = vK |s = si), (4)

where vk is the kth observation symbol, 1 ≤ k ≤ M and

1≤ i≤N [29]. Typically, the model includes an initial-state

distribution, denoted by a 1×N vector Π, whose elements πi

are defined as: πi=Pr(s=si|t=1), where 1≤i≤N . However,

in our model we assume that s1 is always the initial state, and

as such do not explicitly include the initial vector parameters.

The proposed HMM is ergodic, where transitions between

states are expected to capture the pattern of tissue response

to prolonged sonication. Based on our experiments, five states

(N=5) and ten observations (M=10) have shown to be suf-

ficient for the tissue characterization problem at hand. Hence,

the HMM model λ consists of 5 states and 10 observation

symbols (see Sec. II-B for details on discretization). The length

of the observation sequence is T =127. To train (learn) the

model λ using observation sequences O=〈o1, . . . , o127〉, we

estimate the model parameters (namely A & B) to maximize

the log(Pr(O|λ)), which is the log probability of observing

sequence O given model λ. Learning the model is an opti-

mization task performed using the Baum-Welch algorithm, an

Expectation-Maximization (EM) method. In this method, an

initial model is estimated followed by iterative updates of its

parameters until convergence is reached to a locally-optimal

model.

Model Initialization via Clustering: To initialize the pa-

rameters of the HMMs, we use estimates based on cluster-

ing the values of the first-order difference signals of ROIs

(namely, ROI ′xi
as defined in equation 2) into five clusters

〈C1, . . . , C5〉, which are centered around randomly initialized

centroids cj , where 1≤ j≤ 5∗. Each point-value within the

ROIs is assigned to one of the clusters according to the squared

difference between the ROI ′xi
value (see equation 2) and each

cluster centroid cj . The outcome of clustering the values in

the malignant ROI matrix GM is a 286×127 matrix, CM,

where CM
ij holds the cluster number (between 1-5) to which

the jth value of the ith ROI sequence was assigned. Similarly,

clustering the values of the benign ROI matrix GB results in a

284×127 matrix, CB, where each entry in the matrix holds the

cluster-number of the cluster into which the respective ROI

sequence value was assigned. The parameters of the initial

model are estimated based on the values within these matrices.

The initial values of the transition matrix A (see Equation 3)

and of the observation matrix B (see Equation 4) are thus

estimated as:

Aij =
# of times Cj at (t+ 1) & Ci at t occurs

# of times Cj occurs
,

Bik =
# of times vk & Ci occurs

# of times Ci occurs
,

where Ci and Cj are the ith and jth clusters respectively,

1≤i, j≤5, t is the time point, 1≤t≤(T − 1), vk is the kth

observation symbol in the disretized ROI signal ROIdx , and

1≤k≤10. Recall that we fix the initial vector Π such that state

s1 is always the initial state in the model, thus π1=1 and πi=0
for all i�=1.

We use the group of malignant ROIs GM to learn an HMM

λM aiming to capture the temporal pattern of signals stemming

from malignant tissues, while the group of benign ROIs GB

is used to learn the HMM λB capturing the pattern of signals

stemming from benign signals, (we refer to the models as

malignant HMM and benign HMM respectively). The trained

models represent the patterns of echointensity variation of

tissues as a response to prolonged sonication. To assess the

impact of order in the TeUS data, we also train HMMs

based on each of the rearranged groups of ROIs, G
(f,L)
M and

G
(f,L)
B (see Sec. II-B). Moreover, to assess the effect of signal

duration on tissue characterization, we train HMMs using the

sets of cropped-ROIs we have generated, both malignant and

benign, G
(z,i)
M and G

(z,i)
B , respectively.

B. Kullback-Leibler Divergence for HMM Comparison

To assess the impact of the order of points within the

TeUS data on the resulting models, we compare the transition

and emission probability distributions of the corresponding

models built in the previous section. We expect that if the

temporal order within the TeUS data carries no information,

HMMs learned from ROI sequences in their original order and

∗We use the MATLAB implementation of the K-means algorithm.
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Fig. 4. The tissue characterization framework, which consists of training and testing HMMs based on order-preserving and order-altered signals. The labeling
of test-ROI sequences is done according to log of the probability ratio.

models learned from rearranged signals will generate similar

sequences with similar governing probability distributions. The

similarity in distribution can be measured using the Kullback-

Leibler (KL) Divergence [38]. Thus two highly similar models

give rise to very small KL-divergence values. Two HMMs are

equivalent when the probability assigned by the two models to

any observation sequence is the same, and the KL divergence

is zero. When two HMMs are not equivalent, the divergence is

a positive real number; as the difference between the models

increases, the KL-divergence between them increases as well.
To compare two models, λi and λj , we calculate the sym-

metric version of the KL-divergence between them [32], [38]

utilizing sampled sequences in the calculation. Monte-Carlo

sampling is employed to obtain pairs of observation sequences

generated from both models. For each pair, a sequence Seqi is

sampled from model λi (which was trained on ROIs in their

original order), while another sequence of the same length,

Seqj , is sampled from λj (the HMM trained on ROIs with

permuted order). The symmetric KL-divergence measure, Ds

between two models λi and λj is calculated as:

Ds(λi, λj) =
D(λi, λj) +D(λj , λi)

2
,

where:

D(λi, λj) = log(Pr(Seqi|λi))− log(Pr(Seqi|λj)),

Seqi is a simulated sequence sampled from model λi, and

log(P (Seqi|λi)) and log(Pr(Seqi|λj)) are the log probabili-

ties of a sequence given the models λi and λj .

C. Assessing HMM Performance for Tissue Typing
We use a previously proposed tissue characterization frame-

work employing HMMs [23], as depicted in Fig. 4. Supervised

learning is utilized to train and test the HMMs, through a

leave-one-patient-out cross-validation. In each cross-validation

run, the malignant and the benign ROIs of eight out the

nine patients serve to train the HMMs and the ROIs of the

ninth patient are used for testing. The training and testing

are repeated nine times to ensure that the models were tested

on the ROIs of all patients. Performance measures are then

averaged over the nine cross-validation runs and reported

here. For each test-ROI ROItestx , (where 1≤x≤# of test-

ROIs), the malignant HMM, λM, and the benign HMM, λB,

generate log likelihood values, log(Pr(ROItestx |λM)) and

log(Pr(ROItestx |λB)), respectively, reflecting how likely each

test-ROI is to be generated by each of the HMMs. The ROI test

sequence ROItestx is then assigned the class label Cltestx based

on the log of the probability ratio according to the following:

Cltestx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
M, log

(
Pr(ROItestx |λM)

Pr(ROItestx |λB)

)
> 0

B, log

(
Pr(ROItestx |λM)

Pr(ROItestx |λB)

)
≤ 0

(5)

If the log ratio is greater than 0, the ROI is labeled malignant
(M), otherwise it is labeled benign (B) (see Fig. 4). The

HMMs performance in tissue characterization is evaluated by

calculating the accuracy, sensitivity and specificity in predict-

ing the class label of each tissue-type in the test set, defined as:
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accuracy= TP+TN
Total # of ROIs

, sensitivity= TP
TP+FN , and specificity=

TN
TN+FP , where TP is the number of true positives (i.e. the

number of malignant ROIs that were correctly classified), TN
is the number of true negatives (i.e. benign ROIs that were

correctly classified), FN is the number of false negatives, and

FP is the number of false positives. We report the average

performance over all cross-validation iterations.

To assess the impact of order on tissue-specific information,

we compare the performance of HMMs trained on ROIs in

their original order (HMMOr) to that of HMMs trained on

ROIs with rearranged order (HMMRe). A better performance

of the model trained on the original signals than that obtained

by a model trained on permuted sequences, demonstrates that

the temporal order is indeed important for capturing tissue-

specific patterns. Similarly, we compare the performance of

HMMs trained on cropped ROIs of different durations in order

to determine the effect of the signal duration (series length) on

the ability to distinguish between malignant and benign ROI

signals.

D. Experiments

Using ROI sequences in their original temporal order, we

have trained two HMMs, one over the sequences originating

from malignant tissue (referred to as a malignant HMM) and

one over those originating from benign tissue (referred to as a

benign HMM). We then used the groups of rearranged ROI

sequences of each type (malignant or benign, described in

Sec. II-B), to train a large set of malignant and benign HMMs,

as described below. For each of the 10 viable pairs of block-
length L and block starting-position f , (see Sec. II-B), we gen-

erated 100 different random order-permutations of length L,

and applied each of these permutations starting at position f to

all the malignant originally-ordered sequences. This gives rise

to 100 groups of permuted malignant-ROI sequences. Each

of these groups is then used to train a respective malignant
HMM. Notably, this process is repeated 10 times, once for each

combination of block-length and starting-point. Through the

same permutation process we similarly train benign HMMs,

each stemming from a set of rearranged benign ROI sequences,

under varying permutation block-length and starting point.

We have also generated groups of malignant and benign

cropped-ROIs, G
(z,i)
M and G

(z,i)
B , where z is the length (du-

ration) of the cropped ROI sequence starting at position i
(see Sec. II-B). For each of the 63 viable pairs of duration

and starting-position of the sliding window†, The respective

group of cropped ROI sequences are used to train 63 malignant
HMMs and 63 benign HMMs.

Using a process of leave-one-patient-out cross validation,

we trained malignant HMMs and benign HMMs over the

order-preserved ROI sequences, obtained from malignant and

from benign tissue regions, as well as over the order-

rearranged ROI sequences and the cropped sequences. For

each cross-validation run two HMMs – one for malignant

and one for benign – were trained over the respective ROIs

obtained from eight of the patients and tested on the ROIs

†Cropped-ROI length, z ∈ {20, . . . , 100}, and starting position,
i ∈ {10, 20, . . . , 100}

Fig. 5. Average KL-divergence values for divergence calculated between
HMMs learned from ordered signals and those trained on rearranged signals.
The solid-red line shows the average KL-divergence between models trained
on malignant ROI signals, whereas the dashed-blue line shows the KL
divergence between models learned from benign ROI sequences.

obtained from the ninth patient. Using the trained HMMs, we

assigned class labels to ROIs in the corresponding test dataset.

We evaluated the performance of each pair of malignant and

benign HMMs by calculating its accuracy, sensitivity and

specificity. The performance measures are averaged over the

9 pairs of malignant and benign HMMs.

IV. RESULTS

A. KL-Divergence Results

To compare HMMs trained over the original sequences with

those trained over permuted sequences, for each pair 〈L, f〉 we

selected from the respective set of 100 HMMs (be it malignant

or benign), the HMM that shows the highest performance

in tissue characterization. This selection results in 10 HMMs

learned from permuted malignant-ROIs and 10 HMMs learned

from benign ones. We calculated the symmetric-sampled KL-

divergence Ds(λm, λmj
), between the HMM learned from

the malignant ROI sequences in their original order, λm and

each of the 10 selected models, λmj , (1≤ j ≤ 10), learned

from rearranged malignant-ROIs. Similarly, we also calculated

the KL-divergence Ds(λb, λbj
) between the respective benign

models.

For each of the KL-divergence calculations we employed

Monte-Carlo sampling to generate sequences, each of length

127, from the respective HMM. KL-divergence values that

were obtained from all HMMs learned from permuted ROI

sequences sharing the same permutation block-length L (re-

gardless of the block’s position f ) are averaged. We thus obtain

4 KL-divergence values comparing models of malignant ROIs

and 4 values comparing models of benign ROIs. Each KL-

divergence value represents the distance between the model

trained over ordered ROI sequences and a typical model

learned from sequences containing a permuted block of length

32, 64, 96 or 128.

Fig. 5 shows the mean KL-divergence values, as calculated

between the models learned from ordered ROIs and each of

the models trained on rearranged ROIs, as a function of the

rearranged block length L. The red solid-line plots results

obtained when the training sequences stem from malignant
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regions, while the blue dashed-line corresponds to models
trained over sequences stemming from benign tissue. The
figure clearly shows that the KL-divergence between models
learned from the original sequences and those learned from
the permuted ones increases as the number of permutation
points increases, indicating that the specific order within the
sequences forms an essential component of the signal pattern
that is captured by the HMMs.

The increase in KL-divergence is consistent for both models
that are trained on malignant ROI sequences and those trained
on signals reflected from benign tissue. However, the KL-
divergence mean values for malignant models are higher than
those obtained from benign models. That is, malignant models
appear more sensitive to random rearrangement up to the
point where more than 50% of the time points are substituted
and none of the original order is retained any more. These
results suggest that malignant tissues may be more sensitive
to the effect induced by the acoustic waves during sonication,
corresponding to a stronger temporal signal in the TeUS
sequences. The models compared using KL-divergence are
used in our tissue characterization framework. We thus expect
that prediction performance of models learned from rearranged
sequences stemming from malignant ROIs will be affected
more than the performance of models learned from benign
ROI sequences, as shown and validated in the next section.

B. Effect of Rearranged-Block Length

During the cross-validation iterations, a total of 18 HMMs
were trained (9 models from malignant ROIs and 9 models
from benign ROIs) for each of the ordered and permuted
ROI groups. We then averaged the performance measures of
all HMMs trained on permuted ROIs that share the same
rearranged-block length L (regardless of the block’s starting
position) and used them in assessing the effect of the block
length, L, on tissue characterization.

Fig. 6 shows the performance measures of the models
trained on order-preserved and order-altered signals as a
function of the length of rearranged-blocks. The models
of order-preserved signals has zero rearranged frames. The
accuracy, sensitivity and specificity decrease as the length
of the rearranged-block increases. The accuracy of tissue
characterization is 85.01% when using the models trained and
tested on ROIs in their original order, whereas it decreases
to 62.35% when using the models trained and tested on
completely rearranged ROIs (L= 128 and f = 1) as shown
in Fig. 6.A. This decrease indicates that the temporal order
is essential for accurate differentiation between malignant
and benign ROIs. The sensitivity decreases from 83.86% for
models of ordered signals to 45.12% using models of permuted
ROIs (L=128, f=1), whereas the specificity decreases from
86.2% for HMMs of ordered ROIs to 79.6% using the HMMs
of the completely rearranged ROIs, as shown in Fig. 6.B and
Fig. 6.C respectively.

The results show that order-permutation leads to higher
degradation in sensitivity (∼39%) than in specificity (∼7%),
which suggests that signal-rearrangement has more impact
within the echointensity patterns of malignant ROI sequences

than in benign ones. That is, the ordered pattern within the
signal is more significant for identifying malignant ROIs than
benign ones. These results thus suggest that the mechanism
captured by TeUS may be more pronounced in malignant
regions than in benign ones.

The specificity levels, which do not fall below 79%, indicate
that benign ROIs are correctly identified in the majority of
cases even when the signals are completely rearranged. This
result indicates that the tissue-specific information characteriz-
ing benign regions is not solely reflected by the temporal order
of the signal. In contrast, the sensitivity drops to 45% in the
rearranged signal, indicating that order is likely to carry tissue-
specific information in sequences emanating from malignant
regions, which is significant for characterizing the latter.

C. Effect of Rearranged-Block Position
For each of the permuted-ROI groups, both malignant and

benign, we also compared the performance among HMMs
trained and tested on ROI sequences that have undergone
block-permutation for blocks of the same length, L, while
varying the block starting position, f , along the ROI sequence.
Fig. 7 A-C shows the performance measures obtained from
HMMs learned from ROI sequences in which the rearranged
block length (L) takes on three different values (32, 64
and 96), while varying the block starting point f along the
sequence (f = 1, 33, 65, and 97). The figure demonstrates
the impact of the starting position of the rearranged block
on performance. Specifically, for all block lengths, both the
accuracy and the specificity (A1-C1; A3-C3) are lower when
the rearrangement is introduced early in the sequence (e.g.
position 1) than when it is introduced toward the end of the
sequence (e.g. position 65).

The accuracy and specificity of the model trained on ROIs
containing a rearranged block of length 32 at the beginning
of the signal is statistically significantly lower than those of
models trained on ROI sequences of the same length (L=32)
but with different starting points (f = 33, 65 and 97) (p-
value � 10−12, calculated using a one-tail 2-sample t-test).
Moreover, the accuracy and specificity of HMMs learned from
ROIs where the rearranged block length was 64 starting at the
first point in the signal is statistically-significantly lower than
of models learned from ROIs where the permuted block of the
same length started at different positions (f = 33 and 65) (p-
value � 10−8). The differences in sensitivity across models
learned from permuted signals, where the permuted block is
of length L = 32, or 64, but starts at a different position
along the ROI sequence are not statistically significant. As
for the models trained on ROIs containing rearranged-blocks
of 96 time-points, the accuracy and sensitivity are slightly
lower when the starting point of the block f=33, unlike the
specificity which is lower when f=1 as shown in Fig. 7.C.

These results implicate that the benign ROIs are more
sensitive to rearrangement at the beginning of the signal unlike
the malignant ROIs since the decrease in specificity is greater
than the decrease in sensitivity when the permuted ROIs have
a permuted-block starting at f=1. Hence, the temporal order
in the beginning of the signal has more information about the
ROIs, in comparison with other parts of the signal.
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Fig. 6. A comparison between the average performance of HMMs learned from ROIs in their original order (a rearranged-block of length 0) and HMMs
trained/tested on ROIs that have a permuted block of length L∈{32,64,96,128}. Performance is measured in terms of average accuracy, sensitivity and
specificity. Average performance is calculated for all HMMs trained on rearranged sequences sharing the same block-length L regardless of the block
starting-position (see Sec. II-B for details).

D. Effect of TeUS Signal Duration

For each of the 63 pairs of malignant and benign models

trained on cropped-ROIs, we calculated the average accu-

racy, sensitivity and specificity, over all HMMs trained on

ROIs sequences sharing the same duration, z, regardless of

the starting-position, i. Fig. 8 shows the average accuracy,

sensitivity and specificity of the resulting HMMs. Standard

deviations shown at the top of the bars, indicate variation in

performance due to change in the window-starting position i.

As the figure shows, the best performance was attained by

HMMs trained on cropped ROIs of length 80, where accuracy

was 85.4%. This is almost the same accuracy attained by

HMMs trained over the original ordered signals (85.01%,

where the signal length is 128). Moreover, the difference in

performance between HMMs trained over cropped signals of

lengths 80, 90, 100, and 128 are not statistically significant (p-

value 
 0.05, using 2-sample t-test). As such, we conclude

that HMMs trained over significantly shorter ROI sequences

retain the same level of performance as that attained by HMMs

trained on the original longer sequences. However, below a

certain threshold (z≤70) performance drops significantly (p-

value <7×10−5, according to the one-tailed 2-sample t-test).

These results show that shorter ROI signals carry sufficient

information about the sequence pattern, to train HMMs that

are as effective for tissue characterization as models trained

over longer sequences. Thus, the time required for TeUS

data collection can be reduced while the resulting sequence

can still be used to train effective models for differentiating

between malignant and benign signals. The sequences carry

tissue specific information captured as repetitive patterns of

echointensity changes. These patterns are not captured in

signals whose duration fall below a certain threshold, since

in the presence of noise, the number of frames in shorter

sequences is not sufficient to relay the complete pattern of

echointensity changes that is tissue specific.

V. CONCLUSION

In this paper, we propose a stochastic temporal tissue char-

acterization framework for assessing the influence of temporal-

order and signal duration on tissue-specific information re-

layed by TeUS signals. We utilize HMMs to model TeUS

data of malignant and of benign regions obtained from nine

prostate cancer patients. Application of HMMs to model the

TeUS data (in the time domain), allows us to capture temporal

patterns in the signals, and to assess their impact on tissue

characterization.

We compare HMMs trained and tested on TeUS data in

their original order to those obtained from sequences with

permuted order using the symmetric sampled KL-divergence.

KL-divergence increases as a function of increased permuta-

tion, which indicates that the order of values within the time-

domain sequence carries significant information that enables

modeling the variability in prostate tissue and the respective

variation in tissue response to ultrasound sonication.

To assess the actual impact of TeUS temporal order on tissue

characterization in prostate cancer, we compare the perfor-

mance of HMMs learned from signals in their original tempo-

ral order, to that of models learned from order-altered signals.

Our results show that the model performance in distinguishing

between malignant and benign prostate ROIs decreases as

the amount of permutation increases. That is, change in the

original order corrupts the tissue-specific pattern of response,

reducing the amount of tissue specific information carried by

the TeUS signal, and making it harder to distinguish between

malignant and benign tissue based on this signal. Moreover,

we investigated the effect of the position of permutation along

the ROI signals. Our findings demonstrate that HMMs trained

on ROIs that undergo permutations at the beginning of their

sequences have significantly worse performance than models

learned from ROIs containing permuted blocks along other

parts of the signals.
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Fig. 7. Average performance resulting from models trained/tested over rearranged ROI sequences that share the same permuted block-length, as a function
of the block’s starting-point. The standard deviation at the top of the bars shows the variations in the results due to the change in the random permutations
used to rearrange the order in the blocks. Parts A-C show the accuracy, sensitivity and specificity for models of ROIs whose rearranged-block length is 32,
64 and 96, respectively.

We also examine the impact of signal duration on tissue-

characterization performance, by comparing HMMs trained

on cropped TeUS-signals, thus varying signal duration. Our

results indicate that even when sequence duration is reduced

down to a certain limit (in our dataset, almost 40% reduction

in length from 128 to 80), there is sufficient information in the

temporal signal to support differentiation between malignant

and benign tissue. We note that the experiments, presented

here, are designed to show the impact of signal length on the

performance of HMMs in tissue typing. For the dataset used

in this paper, we demonstrated that 80 frames of data were

sufficient to achieve tissue typing with a performance similar
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Fig. 8. Average performance (accuracy, sensitivity, and specificity) of HMMs trained on cropped ROI signals, as a function of the signal duration z, along
with the results obtained from models trained on the complete signal of length 128. The standard deviation at the top of each of the bars shows the variation
in performance due to change in the starting-point index, i, of the sliding window used to generate the cropped signals. The accuracy of the models learned
from full-length signals (128) for comparison with performance of HMMs trained on cropped signals. The results of the statistical test show that the accuracy
values of the models trained on signals of length 80, or 90, or 100, or 128 are not statistically significantly different from each other.

to that of using the full length of time series. It is important

to emphasize that the choice of 80 frames is specific for our

data and is likely not a universally optimal signal length. As

such, the sonication time needed for gathering sufficient TeUS

data can be shortened while retaining the same level of tissue-

characterization performance.
These results implicate that the earlier time points in the

ROI signals are more informative for tissue characterization,

since order-alterations happening later down the signal have

a lower impact on the performance than alterations at the

beginning and shorter ROI sequences are as effective as longer

ones in differentiating between tissue types. To summarize, our

findings validate the value of explicitly exploiting temporal

order when modelling TeUS signals, and the utility and

robustness of such temporal models in distinguishing between

malignant and benign tissue. The results of these experiments

support further research on tissue characteristics captured by

TeUS. The phenomenon governing the interactions between

TeUS and the scanned tissues is expected to have a repetitive

(periodic) pattern, which is related to changes in the distribu-

tion of scatterers within the scanned tissue caused by 1-2 Hz

micro-vibrations, as reported by Bayat et al. [26]. The time

needed to capture the periodic pattern of echointensity changes

corresponds to the shortest signal length that is sufficient for

tissue typing. It is important to note that showing the feasibility

of decreasing the duration of TeUS acquisition enables the

clinical translation as it warrants shorter interruption for the

current flow of diagnostic procedures.
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