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a b s t r a c t

We show that the Cauchy problem for the KdV equation can be solved by the inverse scattering transform
(IST) for any initial data bounded from below, decaying sufficiently rapidly at +∞, but unrestricted
otherwise. Thus our approach does not require any boundary condition at −∞.
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1. Introduction

This note is motivated in part by the open question posed by
Vladimir Zakharov in his plenary talk in July of 2016 at the XXXV
Workshop on Geometric Methods in Physics in Bialowieza, Poland.
Zakharov stated the problem of understanding the KdV equation{
∂tu − 6u∂xu + ∂3x u = 0
u(x, 0) = q(x) (1.1)

with generic bounded but not decaying initial data q. He specifi-
cally pointed out that (1.1) no longer has (finite) conservation laws
while existence of infinitely many such laws is one of the main
features of any completely integrable system. A similar question
was stated in his 2016 paper [1]: ‘Suppose that the initial condition
of (1.1) is a bounded function, which is neither rapidly vanishing
nor periodic. What is its behavior under time evolution?’

To show how nontrivial this problem is let us put it in the
historic context. For smooth rapidly decaying q’s (1.1) was solved

E-mail address: arybkin@alaska.edu.

in closed form in the short 1967 paper [2] by Gardner–Greene–
Kruskal–Miura (GGKM) . As is well-known, the paper [2] intro-
duceswhatwenowcall the inverse scattering transform (IST), one of
the major discoveries in the twentieth century mathematics. This
paper was immediately followed by [3] where the famous Lax pair
first appeared. More specifically, associate with u (x, t) in (1.1) two
linear operators, called the Lax pair,

L (t) = −∂2x + u (x, t) (the Schrödinger operator), (1.2)

P (t) = −4∂3x + 6u (x, t) ∂x + 3 (∂xu (x, t)) .

The main observation made in [3] is that the KdV equation can be
represented as

∂tL (t) = [P (t) , L (t)] , (the Lax representation) (1.3)

which immediately implies that if u solves (1.1) then L (t) is unitary
equivalent to L (0) =: Lq = −∂2x + q (x) . The latter means that
the spectrum of L (t) is preserved under the KdV flow. This in
turn implies that ψ and ∂tψ − P (t) ψ are both eigenfunctions (of
discrete or continuous spectrum) associate with the same point
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of spectrum. While the Lax representation (1.3) is a manifestation
of a very specific structure of the KdV equation, (1.3) alone is
not of much help to solving the Cauchy problem (1.1) as finding
ψ is not any easier than solving (1.1). The main reason why the
Lax representation works is that in some important cases direct
computation of ψ can be effectively circumvented. It is the case
in the original GGKM setting. More specifically, if we assume that
(1.1) has a smooth rapidly decaying solution u (x, t) for all t ≥ 0
then the Jost solutions ψ± remain Jost under the KdV flow. This
readily implies that the scattering data for the pair (L (t) ,L0)
evolves in time by a very simple law. The solution u (x, t) to (1.1)
for each t > 0 is now obtained by the formula

u (x, t) = −2∂2x log τ (x, t) , (1.4)

where τ is the so-calledHirota tau-function introduced in [4] and it
admits an explicit representation in terms of the scattering data.1
The solution has a relatively simple and by now well understood
wave structure of running (finitelymany) solitons accompanied by
radiation of decaying waves (see e.g. [5,6]).

Another equally important case is when q is periodic. Like in
the previous case the problem (1.1) is a priori well-posed and a
unique periodic solution to (1.1) exists. While it was quite clear
from the beginning that the GGKM approach should work but it
was not until 1974 when the actual IST was found in the periodic
context by a considerable effort of such top experts as Dubrovin,
Flascka, Its, Marchenko, Matveev, McKean, Novikov, Trubowitz,
to name just few. We refer to the historically very first survey
[7] byDubrovin–Matveev–Novikov and the 2003Gesztesy–Holden
book [8]where a complete history is given. The periodic IST is quite
different from the GGKM one and is actually the inverse spectral
transform (also abbreviated as IST) since it relies on the Floquet
theory for Lq and analysis of Riemann surfaces and hence is much
more complex than the rapidly decaying case. The time evolution
of the spectral data is nevertheless simple (but not simple to
derive) and the solution u (x, t) is given essentially by the same
formula (1.4), frequently referred to as the Its–Matveev formula [9],
but τ is a multidimensional2 theta-function of real hyperelliptic
algebraic curves explicitly computed in terms of spectral data of
the associatedDirichlet problem forLq. It is therefore very different
from the rapidly decaying case. The main feature of a periodic
solution is its quasi-periodicity in time t .

We have outlined two main classes of initial data q in (1.1) for
which a suitable form of the IST was found during the initial boom
followed by [2]. We emphasize again that existence of the Lax pair
merely means only that the KdV flow is isospectral but it does not
in general offer an algorithm to find the solution. It is the simple
law of time evolution of the scattering/spectral data that makes
the ISTwork in these two cases. That is why Krichever and Novikov
claim in [10] that (1.1) is completely integrable essentially only in
these two cases. In fact, the question if (1.1)3 could be solved by a
suitable IST outside of these two classes, has been raised in one
form or another by (in chronological order) McLeod–Olver [11],
Ablowitz–Clarkson [12], Marchenko [13], Krichever–Novikov [10],
Deift [14],Matveev [15], and Zakharov [1] to name just a few. These
authors also expand on many challenges and complications that
arise and some regard it as a major unsolved problem.

We give a complete answer to the following question: Assum-
ing rapid decay of q (x) at +∞, what conditions do we have to
impose at −∞ for (1.1) to be well-posed in a certain sense and
solvable by a suitable IST? We show that the only condition to be
imposed is that q is bounded from below. More specifically, we
assume the following condition.

1 Will be given later.
2 Infinite dimensional in general.
3 Or any other integrable system.

Hypothesis 1.1. q (x) is a real, locally bounded function such that

(1) For some 0 ≤ h < ∞, q (x) ≥ −h2 (boundedness from
below);

(2) For some α > 4, q (x) = O
(
x−α

)
, x → +∞ (decay at +∞).

We call such q step-type. Thus any q subject to Hypothesis 1.1 is
bounded frombelow, decays sufficiently fast at+∞but is arbitrary
otherwise resulting in a much more complicated spectrum. The
general spectral theory of second-order ordinary differential oper-
ators says that the negative spectrumofLq hasmultiplicity one but
could be of any type (including absolutely continuous (a.c.)) and
the positive spectrum has a.c. component filling (0,∞) but need
not be uniform (however no embedded bound states.4)

Note that under our conditions neither well-posedness nor
IST are a priori available and we have to deal with both. Our
approach is based upon the theory of Hankel operators (see Sec-
tion 2.2). Our Hankel operator is unitary equivalent to the well-
known Marchenko integral operator but particularly convenient
for limiting procedures we crucially rely on. Following our [16],
we first introduce the one-sided scattering theory from the right.
The scattering data can be conveniently represented in terms of the
reflection coefficient R from the right and certain positive measure
ρ (see Section 3.2) via

ϕx,t (k) = ξx,t (k)R(k) +

∫ h

0

ξx,t (is) dρ(s)
s + ik

, (1.5)

where

ξx,t (k) := exp{i(8k3t + 2kx)} (cubic exponential). (1.6)

This function ϕx,t appears as the symbol of our Hankel opera-
tor H(ϕx,t ) which solely carries over the scattering data and the
variables (x, t) in the KdV equation. In particular, if q is rapidly
decaying also at −∞ then ρ becomes discrete and the integral in
(1.5) becomes a finite sum.

Our main result is the following theorem.

Theorem 1.2 (Main Theorem). Suppose that the initial data q in (1.1)
satisfy Hypothesis 1.1. Let

qb (x) =

{
0, x < b

q (x) , x ≥ b

and denote by ub(x, t) the (necessarily unique) classical5 solution of
(1.1) with data qb. Then for every x and t > 0 the solutions ub(x, t)
converge6 to some u(x, t) as b → −∞ which is also a classical
solution to the KdV equation. Moreover,

u(x, t) = −2∂2x log det
(
1 + H(ϕx,t )

)
, (1.7)

with ϕx,t defined by (1.5), where the infinite determinant is under-
stood in the classical Fredholm sense.

Note that (1.1) with data qb = q|(b,∞) is well-posed [17,18] and
therefore Theorem 1.2 also says that (1.1) with data q subject to
Hypothesis 1.1 is globally well-posed in the following sense: clas-
sical solutions qn (x, t)with compactly supported initial data qn (x)
converge to a classical solution u (x, t) uniformly on any compact
x-domain for any t > 0 and independently of the choice of
qn (x) approximating q (x). This definition is consistent with [19],
where it is also emphasized that existence implies uniqueness

4 This is due to fast decay at +∞ which rules out solutions square integrable at
+∞.
5 I.e., at least three times continuously differentiable in x and once in t .
6 In fact, uniform convergence on compact sets of (x, t) takes place but we do

not need it here. We hope to present much more specific statements about the
convergence elsewhere.
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and certain continuous dependence on the data. For general back-
ground reading on well-posedness we refer the interested reader
to the book [20] and literature cited therein. For results on well-
posedness of the KdV equation in Sobolev spaces obtained by
IST see the book [21] and in weighted Sobolev spaces see the
recent [22]. We are unaware of any well-posedness results on the
KdV equation with unrestricted behavior at −∞.

The main reason why our Hankel operator approach works is
that it allows us to show that classical solutions for restricted data
qb given by (1.7) suitably converge as b → −∞ to the classical
solution of the KdV given by the same formula (1.7).

Our result includes as particular cases, all q’s approaching a con-
stant at −∞ (considered first in physical literature and rigorously
in 1976 by Hruslov7 [23]) and a periodic function (considered in
1994 by Kotlyarov–Hruslov [24]). But it was not until very recently
when a compete rigorous investigation of (1.1) with such initial
profiles and their generalizations was done by Teschl with his
collaborators (see e.g. [25–29]). We discuss some of their results in
Section 5 where we also give a brief review of some other results
on nonclassical situations.

The paper is organized as follows. In Section 2.1 we discuss
the classical IST and give the solution to (1.1) in terms of the
Hankel operator. In Section 3 we discuss the scattering theory
for potentials satisfying to Hypothesis 1.1. In Section 4 we prove
Theorem 1.2. Section 5 is devoted to some relevant discussions and
connections of our results to those of others.

2. Classical IST and Hankel operators

2.1. The classical IST [12,30]

For the Cauchy problem for the KdV equation (1.1) with real
rapidly decaying q’s the IST method consists, as the standard
Fourier transform method, of the three steps:

Step 1. Direct transform: q (x) −→ Sq, where Sq is a new set of
variables turning (1.1) into a simple order 1 linear ODE for Sq(t)
with the initial condition Sq(0) = Sq.

Step 2. Time evolution: Sq −→ Sq (t) .
Step 3. Inverse transform: Sq (t) −→ q(x, t).
The set Sq is formed as follows. Associate with q the full line

Schrödinger operator Lq = −∂2x + q(x). As well-known, Lq is self-
adjoint on L2 := L2 (R) and its spectrum consists of finitely many
simple (negative) bound states {−κ2

n }, and a twofold absolutely
continuous (a.c.) spectrum filling R+ := (0,∞). The Schrödinger
equation Lqψ = k2ψ has two (Jost) solutions: ψ±(x, k) = e±ikx

+

o(1), x → ±∞. The Jost solutions are analytic for Im k > 0 and
continuous for Im k ≥ 0. Moreover,

ψ±(x, k) = e±ikx
(
1 ±

i
2k

∫
±∞

x
q + O

(
1
k2

))
,

k → ∞, Im k ≥ 0, (2.1)

and

ψ±(x,−k) = ψ±(x, k), k ∈ R. (2.2)

The pair {ψ+, ψ+} forms a fundamental set and hence8

T (k)ψ−(x, k) = ψ+(x, k) + R(k)ψ+(x, k), k ∈ R, (2.3)
(basic scattering identity)

with some T and R called the transmission and (right) reflection
coefficients respectively. R (k) has important properties [31]:

R (−k) = R (k) (symmetry) (2.4)

7 Also transcripted as Khruslov.
8 We call (2.3) the (right) basic scattering relation. Similarly, we define the left one

by using
{
ψ−, ψ−

}
.

|R (k)| < 1, k ̸= 0, (contraction) (2.5)

R (k) = o (1/k) , |k| → ∞ (decay) (2.6)

R ∈ C (R) (continuity). (2.7)

Associate with q the scattering data

Sq := {R (k) , k ≥ 0, (κn, cn) , 1 ≤ n ≤ N} , (2.8)

where cn’s are positive numbers called norming constants of bound
states −κ2

n . In terms of Jost solutions ψ± one has

R =
W (ψ+, ψ−)
W (ψ−, ψ+)

(W (f , g) := fg ′
− f ′g),

cn =

(∫
|ψ+(x, iκn)|2dx

)−1

(2.9)

and Step 1 is solved. As is well-known, Sq determines q uniquely.
It is the fundamental classical fact that under the KdV flow the
scattering data evolves in time as follows

Sq(t) =
{
R(k) exp 8ik3t, k ≥ 0,

(
κn, cn exp 8κ3

n t
)
, 1 ≤ n ≤ N

}
(2.10)

which solves Step 2.We emphasize that the Lax pair considerations
do not imply an explicit time evolutionψ±(x, t, k) for Jost solutions
but do imply that so for quantities (2.9).

Step 3 amounts to solving the inverse scattering problem of
recovering the potential u (x, t) from Sq(t) and can be done in
many ways. Historically, the first one is due to Gelfand–Levitan–
Marchenko and it requires solving an integral (Marchenko)
equation. The most powerful one is based on the Riemann–Hilbert
problem which is solved by means of singular integral equations
(cf. Deift–Zhou [32] or recentGrunert–Teschl [33] for a streamlined
exposition of [32]). Our approach also starts out from a Riemann–
Hilbert problem (the basic scattering relation (2.3))whichwe solve
in terms of Hankel operators.

2.2. Hankel operators and the IST

A Hankel operator is an infinite-dimensional analog of a Hankel
matrix, a matrix whose (j, k) entry depends only on j + k, i.e. a
matrix Γ of the form

Γ =

⎛⎜⎝γ1 γ2 γ3 ...γ2 γ3 ...

γ3 ...

... γn

⎞⎟⎠ .

The immediate Hilbert space generalization of a Hankel matrix is
an integral operator on L2(R+) whose kernel depends on the sum
of the arguments

(Hf )(x) =

∫
∞

0
h(x + y)f (y)dy, f ∈ L2(0,∞), x ≥ 0, (2.11)

and it is in this form that Hankel operators typically appear in the
inverse scattering formalism and are referred to as Marchenko’s
operator. The form (2.11) however does not prove to be convenient
for our purposes and in fact it is not used much in the Hankel
operator community either. Instead, we consider Hankel opera-
tors on Hardy spaces. (see e.g. excellent books [34,35] for more
information and numerous references). We recall that a function
f analytic in C± is in the Hardy space H2

±
if

sup
y>0

∫
∞

−∞

|f (x ± iy)|2 dx < ∞.
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It is particularly important thatH2
±
is a Hilbert spacewith the inner

product induced from L2:

⟨f , g⟩H2
±

= ⟨f , g⟩L2 = ⟨f , g⟩ =

∫
∞

−∞

f (x) ḡ (x) dx.

It is well-known that L2 = H2
+

⊕ H2
−
, the orthogonal (Riesz)

projection P± onto H2
±
being given by

(P±f )(x) = ±
1

2π i

∫
∞

−∞

f (s) ds
s − (x ± i0)

. (2.12)

Notice that for any f ∈ H2
+
and λ ∈ C+

P−

f (·)
· − λ

= P−

f (·) − f (λ)
· − λ

+ P−

f (λ)
· − λ

=
f (λ)
· − λ

. (2.13)

We will also need H∞
±
, the algebra of analytic functions uni-

formly bounded in C±.
Let (Jf )(x) def

= f (−x) be the operator of reflection. It is clearly an
isometry on L2 intertwining the Riesz projections

JP∓ = P±J. (2.14)

Given ϕ ∈ L∞ the operator H(ϕ) : H2
+

→ H2
+
is called Hankel if

H(ϕ)f def
= JP−ϕf , f ∈ H2

+
, (2.15)

and ϕ is called its symbol.
It immediately follows from the definition (2.15) that

H(ϕ + h) = H(ϕ) for any h ∈ H∞

+
. (2.16)

meaning that only P−ϕ (the so-called co-analytic) part of the
symbol matters.

Observe that if Jϕ = ϕ then H(ϕ) is obviously selfadjoint. Note
thatH(ϕ) is unitary equivalent to the operatorH given by (2.11), ϕ
being the Fourier transform of h in (2.11).

For a given bounded operator A on a Hilbert space, we recall
that its nth singular value sn (A) is defined as the nth eigenvalue of
the operator (A∗A)1/2. We say that A is compact if sn (A) → 0 and
we write A ∈ S∞. If Σnsn (A) =: ∥A∥S1 < ∞ then A is called a
trace class operator and we write A ∈ S1.

The membership of a Hankel operator H(ϕ) in the trace class
is determined by smoothness of its symbol ϕ. In particular, the
following criterion holds (see e.g. Theorems 9.1 and 9.2 in [16]).

Proposition 2.1 (Adamyan–Arov–Krein). If a bounded function ϕ is
twice differentiable on R then ∈ S1. Moreover,9

∥H(ϕ)∥S1
≤ const

ϕ′′


∞
.

The proof of Proposition 2.1 is based upon the seminal
Adamyan–Arov–Krein Theorem on singular numbers of Hankel
operators (see, e.g. [34,35] and the original literature cited therein).
A necessary and sufficient condition for H(ϕ) ∈ S1 is found by
Peller [35]. We are not sure if the beautiful Adamyan–Arov–Krein
theory has been used in soliton theory.

Proposition2.2. Let ϕ1, ϕ2 are bounded and supposeH(ϕ1),H(ϕ2) ∈

S1, then H(ϕ1ϕ2) ∈ S1.

This statement is of course well-known but for the reader’s
convenience we give its elementary proof.

Proof. Note first that H(ϕ) is different from10

H̃(ϕ)f = P−ϕf , f ∈ H2
+

9 Recall ∥f ∥∞ = sup |f (x)| , x ∈ R
10 In fact, in the literature it is how Hankel operators are typically defined.

only by isometry J and hence it is sufficient to prove the statement
for H̃(ϕ). Since P+ + P− = I , we then have

H̃(ϕ1ϕ2)f = P−ϕ1ϕ2f = P−ϕ1 (P+ + P−) ϕ2f
= P−ϕ1P+ϕ2f + P−ϕ1P−ϕ2f
= H̃(ϕ1)P+ϕ2f + P−ϕ1H̃(ϕ2)f .

But ∥AKB∥S1 ≤ ∥A∥ ∥K∥S1
∥B∥ and thereforeH̃(ϕ1ϕ2)


S1

≤
H̃(ϕ1)


S1

∥ϕ2∥∞ + ∥ϕ1∥∞

H̃(ϕ2)

S1
. □

As mentioned before the Hankel operator appears in the clas-
sical IST as Marchenko’s integral operator. But the integral re-
alization (2.11) of a Hankel operator has some serious technical
disadvantages and for some serious reasons is less popular in the
Hankel operator community. On the other hand, we have not seen
Marchenko’s operator written in the form (2.15).

We now demonstrate how convenient the definition (2.15) of
the Hankel operator is for solving (1.1) for rapidly decaying initial
data in closed form.

Introduce

y± (x, k) := e∓ikxψ±(x, k) (Faddeev functions)

and rewrite the basic scattering identity (2.3) in the form

Ty− = ȳ+ + Rξxy+, (2.17)

where ξx(k) := e2ikx. Let us regard (2.17) as a Riemann–Hilbert
problem of determining y± by given T , R which we will solve by
Hankel operator techniques. For simplicity assume that there is
only one bound state −κ2

0 with the norming constant c0.
The function Ty− in (2.17) is meromorphic in C+ as a function

of k for each x with a simple pole at iκ0 and the residue

Res
k=iκ0

T (k) y−(x, k) = ic0ξx (iκ0) y+ (x, iκ0) .

Therefore [31] for each fixed x

T (k) y−(x, k) − 1 −
ic0ξx(iκ0)
k − iκ0

y+(x, iκ0) ∈ H2
+
.

Rearrange (2.17) to read

T (k) y−(x, k) − 1 −
ic0ξx(iκ0)
k − iκ0

y+ (x, iκ0)

= (y+(x, k) − 1)+ (Rξx) (k) (y+(x, k) − 1)

+ (Rξx) (k)−
ic0ξx(iκ0)
k − iκ0

y+ (x, iκ0) . (2.18)

Noticing that the last term in (2.18) is inH2
−
, we can apply the Riesz

projection P− to (2.18). Introducing Y := y+ − 1, we have

P−(Y + RξxY ) + P−Rξx − ic0ξx(iκ0)
Y (x, iκ0)
· − iκ0

−
ic0ξx(iκ0)
· − iκ0

= 0. (2.19)

It follows from (2.1) that Y ∈ H2
+

for any x ∈ R. Due to the
symmetry (2.2), Y = JY and by (2.14) we have

P−Y = P−JY = JP+Y = JY . (2.20)

Note that by (2.13)

Y (iκ0, x)
· − iκ0

= P−

Y (·, x)
· − iκ0

. (2.21)

Inserting (2.20) and (2.21) into (2.19), we obtain

JY + P−

(
Rξx −

ic0ξx(iκ0)
· − iκ0

)
Y = −P−

(
Rξx −

ic0ξx(iκ0)
· − iκ0

)
.
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Applying J to both sides of this equation yields

(I + H(ϕx))Y = −H(ϕx)1, (2.22)

where H(ϕx) is the Hankel operator with symbol

ϕx(k) = R(k)ξx(k) +
c0ξx(iκ0)
κ0 + ik

.

Similarly, for N bound states one has

ϕx(k) = R(k)ξx(k) +

N∑
n=1

cnξx(iκn)
κn + ik

.

By (2.4), Jϕx = ϕx and hence H(ϕx) is selfadjoint. It follows from
(2.7) that H(ϕx) is compact for any x. Note that H(ϕx)1 on the right
hand side of (2.22) should be interpreted as H(ϕx)1 = P+ϕx ∈ H2

+
.

It is now clear that if we show that (2.22) is uniquely solvable
and Y (x, k) is its solution then the potential q (x) can be found from
(2.1) by

q(x) = ∂x lim 2ikY (x, k), k → ∞. (2.23)

Alternatively,

q(x) = −2∂2x log det (1 + H(ϕx)) , (2.24)

where the determinant is understood in the classical Fredholm
sense. In a different (but equivalent) form (2.24) has been known
sinceBargmannandhas beenderived in anumber of differentways
(cf. e.g. [30,36,37]). Loosely speaking, it follows from solving (2.22)
by Cramer’s rule.

Steps 2 and 3 of Section 2.1 nowmerely amount to replacing ϕx
with

ϕx,t (k) = R(k)ξx,t (k) +

N∑
n=1

cnξx,t (iκn)
κn + ik

,

where ξx,t (k) = exp i(8k3t + 2kx) solely carries the dependence on
(x, t). Thus Steps 1–3 can now be put together in a compact form

q(x) −→ H(ϕx,t ) −→ q(x, t), (2.25)

where q(x, t) is explicitly given by

q(x, t) = −2∂2x log det
(
1 + H(ϕx,t )

)
. (2.26)

We will call H(ϕx,t ) the IST Hankel operator.
For rapidly decaying initial data our Hankel operator approach

is shorter but completely equivalent to the classical treatment.
However our edition (2.25)–(2.26) of the IST turns to be a very
convenient starting point to extend IST far beyond standard as-
sumptions on initial data.

3. Step-type potentials

In this sectionwe discuss scattering theory for step-type poten-
tials following our [16]. But first we need to review some facts from
the classical Titchmarsh–Weyl theory.

3.1. Titchmarsh–Weyl Theory and m-function [38]

The main point of this theory is that the problem

Lqu = λu, x ∈ R±, u (·, λ) ∈ L2 (0,±∞) , λ ∈ C+,

has a unique (up to a multiplicative constant) solution Ψ±(x, λ),
called a Weyl solution for broad classes of q’s (called limit point
case at ±∞). Define then the (Titchmarsh–Weyl) m-function m± for

(0,±∞) as follows:

m± (λ) = ±∂x logΨ± (±0, λ) , λ ∈ C+. (3.1)

One definesm± (λ, a) for (a,±∞) in a similar way.
By the Borg–Marchenko uniqueness theorem {m+,m−} recovers

q uniquely (see [39] and the original literature cited therein).While
fundamentally important to spectral theory of OD operators,11 its
role in scattering theory is modest. Moreover, Steps 1–3 in the
previous subsection with data Sq = {m+,m−} do not work well
[13]. For this reason the m-function is little known in the soliton
community.

In our approach the m-function plays a supporting but never-
theless crucial role due to the following reasons: it is well-defined
for any realistic q (with nodecay assumptions) including q’s subject
to Hypothesis 1.1, and it is a Herglotz function, i.e. it is analytic and
maps C+ analytically to C+. As is well-known, each such function
f can be represented as

f (λ) = a + bλ+

∫
∞

−∞

(
1

s − λ
−

s
1 + s2

)
dµ (s) (3.2)

with some

a ∈ C+, b ≥ 0, dµ (s) ≥ 0,
∫

∞

−∞

dµ (s)
1 + s2

< ∞.

If m = m+ is given by (3.1) then µ is the spectral measure of
the Schrödinger operator on L2 (0,∞) with a Dirichlet boundary
condition at x = 0. The latter implies that if the spectrum is
bounded from below then so is the support of µ. It follows that
m can be analytically extended into C−.

Theorem 3.1. If q, qn are limit point case at ±∞ and qn → q in L1loc
then m± (λ, qn) → m± (λ, q) uniformly on compacts away from the
spectra.

A proof of this statement in the most general case is given in
[40].

Note that by definition (3.1) them-function is a 1D Dirichlet-to-
Neumann map.

3.2. Scattering theory for step-type potentials

The main feature of such potentials is that we can do one-
sided scattering theory replacing in (2.3) the Jost solutionψ− with
Weyl solution Ψ−. This immediately yields

R = W (ψ+,Ψ−)/W (Ψ−, ψ+) (3.3)

which is consistent with the classical reflection coefficient. While
properties (2.4)–(2.7) all hold for rapidly decaying potentials, only
(2.4) holds for our step-type potentials. The property (2.5) is re-
placed with |R (k)| ≤ 1 but |R (k)| = 1 may occur for almost all
k. The properties (2.6)–(2.7) fail and this is a very serious circum-
stance even for the powerful Riemann–Hilbert problem approach.
In [16] we found what makes up for the lost properties:

Theorem 3.2 (Analytic Split Formula). Under Hypothesis 1.1

R (k) = Ra (k)+ ξ−1
a {Aa (k)− Ta (k) /y+ (a, k)} , (3.4)

where Ra, Ta are respectively the right reflection, transmission coeffi-
cients from qa = q|(a,∞), and

Aa (k) = 2ik y+(a, k)−2 (
m−(k2, a) + m+(k2, a)

)−1
(3.5)

11 The dependence of m on q is very intricate and understood only in rather
narrow classes.
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is analytic in C+ except for i∆ :=
{
k : k2 ∈ SpecLq ∩ (−∞, 0)

}
.

Moreover, (1)

Ra (k) =
Ta (k)
2ik

Ga (k) , Ga (k) :=

∫
∞

a
e−2iksQ (s) ds, (3.6)

with some function Q (independent of a) such that

|Q (s)| ≤ |q (s)| + const
∫

∞

s
|q| ; (3.7)

(2) for a large enough y+(a, k)−1
∈ H∞

+
;

Ta (k) =
k + i~a
k − i~a

ga (k) , ~a ≥ 0,

where ga ∈ H∞
+

has only one simple zero at k = 0 inC+
∪R; (3) for a

large enough the jump Aa(is−0)−Aa(is+0) across i∆ is independent
of a and defines a non-negative finite measure

dρ (s) := i {Aa(is − 0) − Aa(is + 0)} ds/2π
= Im Aa(is + 0)ds/π (3.8)

supported on∆ ⊆ [0, h].

The set

Sq = {R, ρ}

plays the role of the classical scattering data (2.8) in our one
sided scattering. The measure ρ carries over the information on
the negative spectrum. In particular, if q is rapidly decaying at
both ±∞ then dρ =

∑
c2nδ (s − κn) ds. Therefore we can call ρ a

smeared norming constant measure. If q(x) is a pure step function,
i.e. q(x) = −h2, x < 0, q(x) = 0, x ≥ 0 then Spec

(
Lq

)
=

(−h2,∞) and purely a.c., (−h2, 0) and (0,∞) being components of
the spectrumwith respectivemultiplicities one and two.Moreover

R(k) = −

(
h

√
k2 +

√
k2 + h2

)2

,

ρ (s) =
1

3πh2

(
h3

−
(
h2

− s2
)3/2)

.

The split (3.4) is surprisingly effective. Its main feature is that
the analytic part Aa of Rmimics the rough behavior of R and carries
all the information about ρ in the set of scattering data Sq = {R, ρ}.
The rest is at least continuous and its smoothness is determined by
the decay of q at +∞ . This is crucially used in developing the IST
for step-type initial data as all properties of R required for the IST
are encoded in the analytic part Aa of A through the m-functions
m±. Thus the m-function works behind the scene but in a crucial
way.

4. The IST for the KdV equation with step-type initial data

In this section we prove Theorem 1.2. Since the KdV equation
is translation invariant by shifting q (if needed) we may assume
in Theorem 3.2 that a = 0. Moreover, to avoid unnecessary
technicalities we suppose that κ0 = 0 (i.e. q0 has no bound states).
In this case T0 = g0 ∈ H∞

+
and (3.4) simplifies to read

R (k) = R0 (k)+ A (k) , (4.1)

with

R0 (k) = f0 (k)G0 (k) , G0 (k) =

∫
∞

0
e−2iksQ (s) ds (4.2)

and

A (k) = 2ik y+(0, k)−2 (
m−(k2) + m+(k2)

)−1
− T0 (k) /y+ (0, k)

= f1 (k)
2ik

m−(k2) + m+(k2)
+ f2 (k) , (4.3)

where

f0 (k) = T0 (k) /2ik, f1 (k) = y+(0, k)−2,

f2 (k) = −T0 (k) /y+ (0, k) ∈ H∞

+
, (4.4)

i.e. are analytic functions all bounded in the upper half plane.
Throughout this section we assume that q in (1.1) is subject to
Hypothesis 1.1.

4.1. Fundamental properties of the IST Hankel operator

Theorem 4.1. Let

ϕx,t (k) = ξx,t (k)R(k) +

∫ h

0

ξx,t (is) dρ(s)
s + ik

.

Under Hypothesis 1.1 for any real x and positive t the operator H(ϕx,t )

(1) is selfadjoint (also holds for t = 0),
(2) has no eigenvalue equal −1,
(3) its derivatives ∂tH

(
ϕx,t

)
, ∂mx H

(
ϕx,t

)
, 0 ≤ m ≤ 5, are com-

pact Hankel operators,
(4) is trace class.

Proof. Part (1) is trivial as clearly ϕx,t (−k) = ϕx,t (−k). Part (2) is
the most difficult and it is proven in our [16].

Let us show (3). It follows from (4.1) that

ϕx,t (k) = ξx,t (k)R0(k) +

{
ξx,t (k)A(k) +

∫ h

0

ξx,t (is) dρ(s)
s + ik

}
.

It follows from (2.16) that

H
(
ϕx,t

)
= H

(̃
ϕx,t

)
, (4.5)

with

ϕ̃x,t (k) = ξx,tR0 +Φx,t ,

where

Φx,t (k) = P−

(
ξx,tA

)
(k)+

∫ h

0

ξx,t (is) dρ(s)
s + ik

(4.6)

=
i

2π

∫
R

ξx,t (z) A (z)
z − (k − i0)

dz +

∫ h

0

ξx,t (is) dρ(s)
s + ik

(by (2.12)).

By Theorem 3.2 A is analytic in C+
\ i∆. Since m± are

Herglotz functions, so is −(m− + m+)
−1 and hence by (3.2)

iz
{
m−(z2) + m+(z2)

}−1 does not grow faster that z3 along the line
R + ih0 for any h0 > h.12 Due to the rapid decay of ξx,t (z) along
R + ih0 we can deform the contour in the first integral of the right
hand side of (4.6) to R + ih0. We have
i

2π

∫
R

ξx,t (z) A (z)
z − (k − i0)

dz (by (3.8))

=
i

2π

∫
R+ih0

ξx,t (z) A (z)
z − k

dz −

∫ h

0

ξx,t (is) dρ(s)
s + ik

.

Inserting this formula into (4.6) yields

Φx,t (k) =
i

2π

∫
R+ih0

ξx,t (z) A (z)
z − k

dz.

We emphasize that the cancellation of the second integral of the
right hand side of (4.6) is themain reasonwhy our approachworks.

12 In fact, it is even bounded.
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Thus we have obtained the crucially important split of our
symbol:

ϕ̃x,t = ϕ0
x,t +Φx,t , (4.7)

where

ϕ
(0)
x,t := ξx,tR0, Φx,t (k) =

∫
R+ih0

φx,t (z)
z − k

dz, φx,t :=
i

2π
ξx,tA.

Since we can take h0 in (4.7) as large as we want, the functionΦx,t
is entire. Due to the rapid decay of ξx,t (z) along each R + ih0 one
easily sees that ∂nt ∂

m
x Φx,t is also entire for any nonnegative integers

n,m and hence by Proposition 2.1

∂nt ∂
m
x H(Φx,t ) = H(∂nt ∂

m
x Φx,t ) ∈ S1. (4.8)

The Hankel operatorH(ϕ0
x,t ) is implicitly studied in [18]. In particu-

lar, it follows from the proof of Theorem5.1 in [18] (themain result
of this paper) that for 0 ≤ m ≤ 5

∂mx H
(
ϕ0
x,t

)
, ∂tH

(
ϕ0
x,t

)
∈ S∞. (4.9)

Indeed, as was discussed in Section 2.2,H
(
ϕ0
x,t

)
is unitarily equiva-

lent to the integral Hankel operator given by (2.11) with the kernel

Hx,t (s) =
1
π

∫
∞

−∞

ϕ0
x,t (k) e

2iksdk.

Under our conditions on q0, by (b) on page 1012 of [18] we have
that ∂mx Hx,t ∈ L1 (0,∞) , 0 ≤ m ≤ 5. By Corollary 8.11 of [35]
the integral Hankel operator with kernel ∂mx Hx,t is compact13 and
therefore, by unitary equivalence, so is ∂mx H(ϕ0

x,t ). Since ∂tHx,t =

∂3xHx,t one also concludes that ∂tH(ϕ0
x,t ) ∈ S∞. Thus (4.9) is proven

and due to (4.8) so is (3).
It remains to show (4). Due to (4.8) one only needs to demon-

strate that H(ϕ0
x,t ) is trace class. It follows from (4.2) that

ϕ0
x,t = ξx,t f0G0.

By Proposition 2.2 H
(
ξx,tRa

)
is trace class if each H

(
ξx,t

)
,H (f0) ,

H (G0) is. For H
(
ξx,t

)
as before we write

H
(
ξx,t

)
= H

(
Φ
(0)
x,t

)
, Φ

(0)
x,t (k) :=

i
2π

∫
R+ih0

ξx,t (z)
z − k

dz

and hence H(ξx,t ) is trace class for any real x and positive t .
Since f0 ∈ H∞

+
(see (4.4)) we simply have H(f0) = 0. It remains

to show thatH(G0) ∈ S1. It follows from condition 2 of Hypothesis
1.1 that Q (s) = O

(
s−α+1

)
, s → ∞, and hence⏐⏐∂2kG0 (k)

⏐⏐ ≤ 4
∫

∞

0
s2 |Q (s)| ds < ∞.

By Proposition 2.1 H(G0) is trace class which completes the
proof. □

Theorem 4.1 says that I + H(ϕx,t ) is invertible globally in time
which is the main reason for validity of the IST for any step-type
data. It is also the most nontrivial part of Theorem 4.1. The proof is
based on Theorems 3.1, 3.2, properties of them-function discussed
in Eq. (3.1), and subtle arguments and facts from the theory of
Hankel/Toeplitz operators. This has been incrementally improved
in the course of our [41–45,16].

Remark 4.2. Theorem 4.1 does not say that the Hankel operator
corresponding to each piece in (1.5) is trace class. In fact, it is
shown in [16] that the Hankel operator with symbol φx,t (k) :=∫ h
0
ξx,t (is) dρ(s)

s+ik is trace class iff
∫ h
0 dρ(s)/s is bounded.

13 In fact, boundedness alone is trivial.

4.2. Proof of the main theorem

The proof of Theorem 1.2 merely combines Theorem 4.1 and
results of [18].

Proof. Take b < 0 and consider qb. Belowanyobject corresponding
to qb will be labeled by either a subscript b or a superscript (b).
The KdV equation with the initial data qb has a classical solution
ub (x, t) [18] given by the Dyson formula

ub (x, t) = −2∂2x log det
(
I + H(ϕ(b)x,t )

)
, (4.10)

where by Theorem 4.1 the operatorH(ϕ(b)x,t ) is trace class and hence
the determinant is well-defined.

Let

u (x, t) = −2∂2x log det
(
I + H(ϕx,t )

)
, (4.11)

where by the same theorem the operator H(ϕx,t ) is trace class.
Consider

∆u := u − ub (4.12)

= 2∂2x log det
(
I + H(ϕx,t )

)−1
(
I + H(ϕ(b)x,t )

)
= 2∂2x log det

(
I+

(
I + H(ϕx,t )

)−1
(
H(ϕ(b)x,t ) − H(ϕx,t )

))
= 2∂2x log det

{
I+

[
I + H(ϕx,t )

]−1
∆H(ϕx,t )

}
.

By Theorem 4.1
[
1 + H

(
ϕx,t

)]−1 is a bounded operator indepen-
dent of b. In virtue of (4.5) and (4.7) for∆H(ϕx,t ) we have

∆H(ϕx,t ) = H
(
ϕ
(b)
x,t − ϕx,t

)
= H

(
ϕ̃
(b)
x,t − ϕ̃x,t

)
= H

(
∆Φx,t

)
,

where

∆Φx,t (k) =
i

2π

∫
R+ih0

ξx,t (z)∆A (z)
z − k

dz

=
i

2π

∫
R+ih0

2iz f1 (z) ξx,t (z) ∆f (z)
dz

z − k

and

∆f (z) :=

(
m(b)

− (z2) + m+(z2)
)−1

−
(
m−(z2) + m+(z2)

)−1
.

By (4.8) ∂nt ∂
m
x H

(
∆Φx,t

)
is trace class. We now show that for all n

andm∂nt ∂mx H
(
∆Φx,t

)
S1

→ 0, b → −∞. (4.13)

To this end consider

∆φ (k) := ∂nt ∂
m
x

(
∆Φx,t

)
(4.14)

=
i

2π

∫
R+ih0

∂nt ∂
m
x ξx,t (z) 2iz f1 (z) ∆f (z)

dz
z − k

.

Differentiating (4.14) in k twice, one has

∂2k∆φ (k) =
1
π

∫
R+ih0

(2iz)3n+m+1ξx,t (z) f1 (z)∆f (z)
dz

(z − k)3

and hence

sup
k∈R

⏐⏐∂2k∆φ (k)⏐⏐
≤

23n+m+1

πh3
0

∫
R+ih0

|z|3n+m+1
⏐⏐ξx,t (z)⏐⏐ |f1 (z)| |∆f (z)| |dz|

≤ const.
∫
R+ih0

⏐⏐z3n+m+1ξx,t (z)
⏐⏐ |∆f (z)| |dz| (since f1 ∈ H∞

+
).

(4.15)
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Since⏐⏐ξx,t (α + ih0)
⏐⏐ = ξx,t (ih0) exp

{
−24h0tα2} ,

one sees that z3n+m+1ξx,t (z) falls off along R + ih0 faster than
exponential for any n,m. Split the contour R + ih0 into γN =

(−N + ih0,N + ih0) and ΓN = (R + ih0) \ γN . Since clearly
SpecLqb ≥ −h2 by Theorem 3.1∆f (z) → 0, b → −∞, uniformly
on γN for any N and hence∫
γN

⏐⏐z3n+m+1ξx,t (z)
⏐⏐ |∆f (z)| |dz| → 0, b → −∞.

Consider ∆f (z) on ΓN . Since the m-function has a non-negative
imaginary part14 (the Herglotz property), one has

|∆f (z)| ≤

⏐⏐⏐⏐⏐ 1

m(b)
− (z2) + m+(z2)

⏐⏐⏐⏐⏐ +

⏐⏐⏐⏐ 1
m−(z2) + m+(z2)

⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐ 1

Imm(b)
− (z2) + Imm+(z2)

⏐⏐⏐⏐⏐ +

⏐⏐⏐⏐ 1
Imm−(z2) + Imm+(z2)

⏐⏐⏐⏐
≤

⏐⏐⏐⏐ 2
Imm+(z2)

⏐⏐⏐⏐ .
For our decay condition at +∞ one has ψ+ (0, z) = 1 + O (1/z)
(see e.g. [31]) and hence m+

(
z2

)
= ∂xψ+ (0, z) /ψ+ (0, z) =

iz + O (1/z) as |z| → ∞ in C+. Therefore,
⏐⏐⏐ 2
Imm+(z2)

⏐⏐⏐ is bounded
on ΓN and hence by choosing N large enough the integral∫
ΓN

⏐⏐z3n+m+1ξx,t (z)
⏐⏐ |∆f (z)| |dz|

≤ 2
∫
ΓN

⏐⏐z3n+m+1ξx,t (z)
⏐⏐ ⏐⏐⏐⏐ dz

Imm+(z2)

⏐⏐⏐⏐
can be made as small as one wishes for any real x and positive t .

Thus we can conclude that
∆φ′′


∞

→ 0 as b → −∞ and
Proposition 2.1 implies (4.13).

Next we show that u (x, t) given by (4.11) is differentiable three
time in x and once in t . We have

u (x, t) = −2∂2x log det
{
1 + H(ϕx,t )

}
= −2∂2x log det

{
1 + H(̃ϕx,t )

}
= −2∂2x log det

{
1 + H(ϕ0

x,t +Φx,t )
}
(by (4.7))

= −2∂2x log det
{
1 + H(ϕ0

x,t ) + H
(
Φx,t

)}
= −2∂2x log det

{
1 + H(ϕ0

x,t )
}

− 2∂2x log det
{
1 +

[
1 + H(ϕ0

x,t )
]−1

H
(
Φx,t

)}
= u0 (x, t)+ U (x, t) (by (4.10) with b = 0),

where

U (x, t) := −2∂2x log det
{
1 +

[
1 + H(ϕ0

x,t )
]−1

H
(
Φx,t

)}
.

The well-known differentiation formula

(log det (1 + A))′ = tr (1 + A)−1A′,

(4.8) and (4.9) imply that U (x, t) is differentiable three time in x
and once in t . Since u0 (x, t) is the classical solution to (1.1) with
q = q0 by definition u0 (x, t) has the same property and thus so is
u = u0 +U . It follows from (4.12), (4.13), and Theorem 4.1 that for
0 ≤ m ≤ 3

∂mx ub (x, t) → ∂mx u (x, t) , ∂tub (x, t) → ∂u (x, t) . (4.16)

14 Note that z2 is in C+ if z is in the first quadrant. If z is in the second quadrant,
then Imm

(
z2

)
≤ 0.

Finally, it only remains to show that u indeed solves the KdV
equation. To this end, represent u = ub + ∆u where as above
∆u = u − ub. We have

∂tu − 6u∂xu + ∂3x u (4.17)

= ∂t∆u + 3∂x [(∆u − 2u)∆u] + ∂3x∆u
→ 0, b → −∞ (due to (4.16) )

and the proof is complete. □

The conditions of Hypothesis 1.1 are very general and admit
the case of |R (k)| = 1 for almost all real k that has never been
considered in the literature before. In the quantum mechanical
sense, such q’s are repulsive for plane waves coming from +∞.
Examples include (1) Gaussian white noise on a left half line (like
the stock market), (2) Pearson blocks (certain sparse sequences of
bumps), (3) Kotani potentials (certain random slowly decaying at
x → −∞ functions [46]), and (4) functions growing at −∞ (not
quite physical), to mention just four.

Remark 4.3. As a by-product, we have shown that the operator-
valued function (x, t) →

[
1 + H(ξx,tR0)

]−1H
(
ϕx,t − ξx,tR0

)
is

continuously differentiable in trace norm five times in x and at
least once in t . Analogous statements for (x, t) → H

(
ϕx,t

)
will

be studied jointly with S. Grudsky elsewhere. We only mention
here that Proposition 2.1 is no longer useful and our arguments are
based upon Peller’s subtle characterization of all trace class Hankel
operators [35] and preliminary results to this effect is to appear
in [47].

Remark 4.4. The first condition in Hypothesis 1.1 cannot be
relaxed as the following simple argument suggests. Consider a
sequence of soliton type bumps qn (x) of height −~2

n located on
(−∞, 0)with some phases γn. Under the KdV flow all qn startmov-
ing to the rightwith velocities 2~2

n .We can choose (~n) , (γn) → ∞

so that all qn (x, t) would meet at a fixed point x0 at a fixed time
t0. Apparently, this means that a blow-up solution develops in time
t0 which can be made arbitrarily small. The operator Lq is clearly
unbounded below. Note that our approach breaks down in a crucial
way if we relax the semiboundedness condition. We do not plan
to pursue this issue any further as this situation looks physical
irrelevant.

Remark 4.5. The second condition in Hypothesis 1.1 can be some-
what relaxed but the statement becomes weaker. For example,
the condition

∫
∞

|xq (x)| dx < ∞ will guarantee the existence of
det

(
1 + H(ϕx,t )

)
but classical differentiability becomes a serious

issue. Further relaxation of the decay at+∞ is a big open problem.
It follows from the famous 1993 Bourgain result [17] that the
problem (1.1) will remain well-posed (although in a much weaker
sense) if q is square integrable at +∞ but it is currently unknown
if (1.1) is completely integrable for q ∈ L2. Note that even the
particular case of Wigner–von Neumann initial profiles is still an
open problem [15]. But as opposed to Remark 4.4, such initial
profiles are physically relevant as theymay be used tomodel rogue
waves [15].

We emphasize that as we have shown the solution (1.7) is
classical. That is, the solution is at least three-times continuously
differentiable in x and at least once in t while we do not assume
any smooths of the initial data. Thus the KdV flow instantaneously
smoothens any (integrable) singularities of q (x). This effect, com-
monly called now dispersive smoothing, was first proven in 1978 by
Cohen [48] for box shaped initial data with much of effort. In [43]
we prove it for any initial data with the decay

q (x) = O
(
exp

{
−Cxδ

})
, x → ∞, (4.18)
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with some positive C and δ. If δ > 1/2 then q(x, t) is meromorphic
with respect to x on the whole complex plane (with no real poles)
for any t > 0. If δ = 1/2 then q(x, t) is meromorphic in a strip
around the x-axis widening proportionally to

√
t . For 0 < δ < 1/2

the solution need not be analytic but is at least Gevrey smooth.
We also prove in [16] that under the extra condition (4.18) the
singular numbers of H(ϕx,t ) have subexponential decay uniformly
on compacts of (x, t). The lattermeans that the determinant in (1.7)
rapidly converges suggesting that (1.7) could be used for numerical
computations (cf. recent [49] for new numerical techniques for
Fredholm determinants).

We also note that our approach can handle [40] nonintegrable
singularities like Dirac δ−functions, Coulomb potentials, etc. and
the strong smoothing effect takes place even in this very singular,
although not quite physical, setting.

Note that our solutions do not in general satisfy conservations
laws. Itwould be interesting to find an analog of

∫
u2 (x, t) dxunder

our conditions. Certain regularizations of conservation laws in a
highly singular setting were considered in our [50]. We also by-
passed answering such questions as well-posedness of the one-
sided inverse scattering problem or direct proof of time evolution
of scattering quantities. It is the limiting procedure that allowed us
to detour such delicate questions.

5. Conclusions

Wehave given a partial answer to Zakharov’s question stated in
[51]: ‘‘In spite of all these brilliant achievements, the theory of the
KdV equation is not yet developed to a level which would satisfy
a pragmatic physicist, who may ask the following question: What
happens if the initial data in the KdV equation is neither decaying
at infinity nor periodic? Suppose that the initial data is a bounded
function

u(x) = u(x, 0), |u(x)| < c.

Can we extend the IST to this case, which has great practical
importance?’’ Theorem 1.2 gives the affirmative answer to this
question under the extra assumption that the initial profile de-
cays fast enough at +∞. However, only boundedness15 from
below is actually required. This can be viewed as a very strong
manifestation of unidirectional nature of the KdV equation: no
condition at−∞ and a decay condition at+∞. A complete answer
to Zakharov’s question requires the study of the influence of +∞

on the KdV solution. By Bourgain’s theorem a decay slower than
O

(
x−1/2

)
, x → +∞, will cause some major issues as the problem

(1.1)may fail to bewell-posed. But even if it is well-posed, we need
not have even one-sided scattering in this situation and would
have to deal the spectral problem instead. The latter becomes very
complicated and the time evolution of the spectral data neednot be
simple. The Lax pair representation of the KdV equation does not
appear to be any easier than the KdV equation itself. Due to com-
plexity of the spectrum the solution may have such a complicated
structure that tracking it may be impossible and examples of such
situations are already known. It happens in the study of the so-
called soliton gas, a randomdistribution of infinitelymany solitons.
The underlying physics of this situation suggests that statistical
description is much more suitable. Such approach was pioneered
by Zakharov [52] back in 1971 and recently received renewed
interest in the connection with integrable turbulence considered
in [53]. The theory is under construction. We only mention [51]
where certain type of soliton gas is described as a closure of the
set of reflectionless rapidly decaying potentials of the Schrödinger
operator. The resulting solutions are bounded, but neither periodic
nor vanishing as x → ±∞. (see also Gesztesy et al. [54]). A

15 In fact, only essential boundedness from below is required [16].

different approach to soliton gas and integrable turbulencewas put
forward by El (see, e.g. [55,56] and the literature cited therein). His
approach is based on a closure of finite band potentials. Physical
examples of integrable turbulence include coastal areas of seas, and
effects occurring in optical fibers.

As we have already mentioned, step like initial profiles were
first considered during the initial boom in the 1970s. The case
of q’s attaining different limits at ±∞ was considered first by
Gurevich–Pitaevski [57] in 1973 and has been further developed
by Hruslov [23] in 1976, Cohen [58] in 1984, Venakides [59] in
1986, and many others. The most complete asymptotic analysis
of this case was recently done by Teschl and his collaborators
in [25,28] (which also contain the expensive literature on the
subject). The treatment is based upon the scattering theory for step
potentials and somewhat similar to the rapidly decaying case but
with serious complications coming from the negative continuous
spectrum. The main feature of this case is that the initial step
will emit solitons which are asymptotically twice as high as the
original step followed by a nearly periodic ‘‘washboard’’. Another
physically interesting case of a profile rapidly decaying at one
end and approaching a periodic function at the other was first
considered by Kotlyarov–Hruslov [24] in 1994. The study of such
initial profiles recently culminated in [26]where two crystals fused
together were considered.

Save [26] our class of step-type initial data is much more gen-
eral. However the important problem of finding asymptotics of our
solutions given in Theorem 1.2 is yet to be solved. The main chal-
lenge is that it is not clear at all how to adapt the powerful machin-
ery of the Riemann–Hilbert problem so effectively used since the
seminal 1993 paper [32] by Deift–Zhou to our setting. The above
mentioned 2016 papers [25,28] do not suggest an easy solution.

Another important recent breakthrough is related to the 2008
question due to Deift [14]. He conjectures that, as in the periodic
case, the solution will be almost periodic in time emphasizing that
its existence even for small time is not known. A partial affirmative
answer was recently given by Binder et al. [60].

Note that there are classes of explicit solutions to the KdV
equation which are neither rapidly decaying nor periodic (quasi
periodic). Many such solutions come from considering specific
tau-functions in (1.4). This way a very important class of positon
solutions was discovered byMatveev (see e.g. [61]). Such solutions
are parametrized by a finite number of constants and have some
interesting properties. However they are all singular and cannot
be described within a suitable IST. It has also been long known
(see e.g. the books [12] and [62]) that certain (formal) substi-
tutions parametrized by some functions solve the KdV equation
but again neither rapidly decaying nor (quasi) periodic. However
as Marchenko says [13] ‘‘It has not been found yet whether it is
possible (and if possible, then by what means) to determine these
parameters so as to obtain the solution satisfying the initial data
u (x, 0) = q (x), i.e., to solve the Cauchy problem’’. A partial answer
is given in the same paper [13] in terms of a closure of certain
specific types of potentials. Themembership in such classes is hard
to verify. Since time evolution in all these formulas is a priori given
and simple, such solutions are very specific.
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