ON PELLER’S CHARACTERIZATION OF TRACE CLASS
HANKEL OPERATORS AND SMOOTHNESS OF KDV
SOLUTIONS

ALEXEI RYBKIN

We dedicate this paper to the memory of Ludwig Faddeev, one of the founders of soliton theory.

ABSTRACT. In the context of the Couchy problem for the Korteweg-de Vries
equation we put forward a new effective mathod to link smoothness of the
solution with the rate of decay of the initial data. Our approach is based on
the Peller characterization of trace class Hankel operators.

1. INTRODUCTION

In the recent [11] we extended the inverse scattering transform (IST) for the
Korteweg-de Vries (KdV) equation

Ou — 6udy,u + 03u =0
u(z,0) = q(z)

to initial data ¢ (z) rapidly decaying at +oco but having almost unrestricted be-
havior at —oco. Note that this setting is very different from classical (rapid decay
or periodic) due to a much more complicated spectral situation. Our approach is
based upon Hankel operators and it was some subtle results from the theory of
Hankel operators that allowed us to remove nearly all conditions on ¢ (z) at —oo.
In the present note we show how the famous characterization of trace class Han-
kel operators due to Peller [18] applies to the study of the effect of +00 on the
smoothness of u (z,t). Our goal here is not to achieve optimal results (this will be
done elsewhere) but rather to introduce a new effective approach to study delicate
relations between decay of the data and smoothness of the corresponding solutions.

To state our main result we need some preliminary information. Let ¢ be a real
function such that the differential expression —92 + ¢ (z) is in the limit point case
at —oo and ¢ (z) = O (x_Q_E) as x — +o00. It is well-known that densely defined
(symmetric) —02 + ¢ (z) can be extended to the self-adjoint Schrodinger operator
Lg on L? (R). The corresponding Schrodinger equation

L,u = k*u

(1.1)

has the right Jost solution 1 (x, k), i.e. the solution subject to
O (x, k) =e*® £ 0(1), = — oo,
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and the (essentially unique) left Weyl solution ¥ (x, k?), i.e. the solution subject
to

v (:c, k2) € L? (—00,0) for any Imk? > 0.
Then as in [11] we can define the right reflection coefficient
W(\IJ (', k2 - ZO) 5 T;Z} ('7 k)) ,
where W (f,g) = fg' — f’g is the Wronskian. It can be shown [11] that R is well
defined for a.e. k € R and

R(-k)=R(k), |R(k) <L

Note that in our setting the left reflection coefficient need not exist.
Assume now that Spec(L,) is bounded below. Then [11], shifting the origin to
the right if needed, R admits the analytic split

R(k) = Imk = 0, (1.2)

R (k) = Ro (k) = To (k) /¢ (0, k) + A (k). (1.3)
Here Ry (k) and Tp (k) are respectively the right reflection and transmission coef-
ficients from ¢y := q|R+. Without loss of generality the origin can be moved to

the right so that Ty (k) /4 (0, k) is meromorphic in CT with only one simple pole
iro. Then Tp (k) /4 (0, k) is uniformly bounded in C* away from ikg. The function
A (k) is bounded on R and can be analytically continued into CT\4A where

iA = {k € iRy: k* € Spec(Ly) NR_}.
Furthermore, its jump across ¢A
dp(s) =i (A(is — 0) — A(is + 0)) ds/2m (1.4)

defines a non-negative, finite measure p supported on A. Outside of ¢A the function
A (k) is uniformly bounded in C*. The exact formula for A (k) is not essential to
us. Thus Ry (k) is the only term in (1.3) that need not in general admit an analytic
continuation into C*.

The analytic split (1.3) is the main reason why the IST works for the KdV
equation with unrestricted behavior at —oo. More precisely, the set

Sq = {Ra dp}

forms scattering data for L,. I.e. S, determines g uniquely.

We next recall [17] that given function ¢ € L*™ (R), the operator H(y) defined
on H? (C*) by

H(p)f =JB_pf, feH?(CY), (15)

is called the Hankel operator with symbol ¢. Here H? (C*) stands for the standard
Hardy space of analytic on C* function respectively, P is the orthogonal (Riesz)
projection in L? (R) onto H? (C*), and J is the operator of reflection, i.e. (Jf) (z) =
f (—z). Apparently, JH? (C~) = H?(CT).

We are now ready to state our main result.

Theorem 1.1 (Main Theorem). Suppose that a (real) initial profile ¢ in (1.1)
satisfies:

inf Spec (L,) = —h* > —o00 (boundedness from below); (1.6)

/ N |q(z)|dr < 0o, N >9/2 (decay at+ o). (1.7)
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Then (1.1) has a global-in-time classical' solution given by

u(z,t) = —20%logdet (1 + H(p,¢)), t >0, (1.8)
where .
(81 3, dp(s)
- E)= R(k z(8krgt+2k:w) / 8s3t—2sx 1.9
Paa (1) = R(k)e + [ et S (19)

such that if up(xz,t) is the (necessarily unique) classical solution with data q, =
Al (p,00) then up(w,t) converges to u(w,t) uniformly on compacts in R x Ry as b —
—o0. Furthermore, the map (x,t) — H(py ) is continuously differentiable in trace
norm n times in x and m times in t where n < 2(N —2) and m < 2(N —2)/3
Consequently, d30Fu (z,t) is continuos on R x Ry if 0 < j+ 3k < 2N — 6.

The condition (1.6) is optimal but (1.7) is not. The best bound known to us is
N = 11/4 [2] but, as it will be easily seen from our arguments, this bound is not
optimal either. Note that the approach of [2] requires a rapid decay at —oo where
as ours doesn’t.

The paper is organized as follows. In Section 2 we give brief background informa-
tion on trace class Hankel operators. Section 3 is devoted to the proof of Theorem
1.1 and the final section 4 is reserved for relevant discussions.

2. TRACE CLASS HANKEL OPERATORS

We refer the reader to [17] and [18] for the details on the facts given in this
section.

It directly follows from the definition (1.5) that the Hankel operator H(yp) is
bounded if its symbol ¢ is bounded and H(y + h) = H(y) for any ¢ € H*>® (CT)
(analytic and bounded on C* function). The latter means that only part of ¢
analytic in C~ matters. More specifically,

H(p) = H(P_yp),
where

(P—¢)(x)

(@t ) (P-pre) (@)

:_%A<S_(:_i0) _Sii> o(s)ds, @€ L™ (R).

We note that the condition ¢ € L> (R) only guarantees that P_y € BMOA (C™)
but the Hankel operator H(y) is still well-defined by (1.5) and bounded.

Much more subtle fact, the Nehari Theorem, says that H(y) is compact iff P_gpec
C (R). We will crucially use the following delicate theorem.

Theorem 2.1 (Peller, 1980). Let ¢ € L (R). Then H(p) is trace class iff
~ N\ ~
(Pop) € L1(C) ond suppy .y [P-p(2)

In general, the membership of H(y) in any Shatten-von Neumann class &,,0 <

< 0.

p < 00, is characterized by the membership of P_¢ in the Besov classes of smooth
functions. If ¢ € C> (R) then H(p) € &, for any 0 < p < cc.

1I.e., at least three times continuously differentiable in « and once in t.
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3. PROOF OF THE MAIN THEOREM

Take b > 0 and consider the problem (1.1) with initial data g, = ¢, . This
problem [2] is well-posed and its solution u; can be written as

up (z,t) = —202 log det (1 + H(gag,t)) , (3.1)
where
h
b _ i(8k>t+2ka) 8s3t—2sz APb(S)

k) = Ry (k —_—. 3.2
Pl () = Ry (k) e o [ etz Sk (32)

Here Ry is the right reflection coefficient off ¢, and
dpy (s) = Z ho (s —kh) ds, (3.3)

where ¢ is the norming constant of the bound state — (/-@Z)z. Split Ry by (1.3) as
follows

Ry (k) = Ro (k) — To (k) /¢ (0, k) + Ay (k) , (3.4)
where A, can be analytically continued into CT as a meromorphic function having
simple poles at (ix%) with residues (c%). If follows from (3.2), (3.3) and (3.4) that
To (k)
¥ (0, k)

oy (k) = (Ro (k) - ) Eonlk) + B, (k).

where

ic%fﬂﬂ,t (Z“%)

o8 | (k) = Ay (k) Ea (k) —

k—irb
n
€2 1(k) == expi(8k3t + 2kw).
Consider the part of ¢}, ; analytic in C™:
P, =P o, —P (—2 ¢, )+P (Rox,t) (3.5)
Pt —Fgt — ’[/) (O7 .) x,t — 0Qx,t .

:¢l{+¢2+¢37

only ¢ being dependent on b. Let us treat it first. One clearly has that for any
B=>0

ol +i9)] = €i8)exp {210 (Vo) (35

= e8ﬂ3t—2[3z exp {—24t (\/Ba)Q} .

Le. for every fixed 8 > 0 the function &, ;(c+¢8) shows a rapid decay as |a| — oc.
Observe that as opposed to Ay, ¢, the function @g’t has only removable singularities
in C* and therefore for any hg > h we clearly have

y ki [ ®5(s) ds
¢1:_2m‘/R s+i s— (k—i0)
7k+z'/ Ap (8)Eae(s) ds
B R-+iho

2 s+1 k—s’
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It is proven in [11] that Ay (s) — A (s) uniformly on compacts in C* and hence we
have

j A .
lim 6 (k) = k—l—.z/ (s) 5”’.t(8) ds
b—o0 270 JRying s+1i k—s

= gbl (k) .
Since the last equation holds for hg > h, we immediately conclude that ¢; (k) is an
entire function with the property that for any n > 1

limoy oy (k) =0, Imk=0, k— +oo.
Moreover, for every n,m
T 070" % (K) = 00" 6n (K)
and 070" ¢1 (k) is an entire function such that im0} ¢, (k) =0, Imk =0, k—
+00. We can now conclude that for every n,m
|0z o H (¢7) —H(¢1)]|g, =0, b— oo (3.7)

For the symbol ¢y in (3.5) we notice that Tp (k) /¢ (0,k) is meromorphic in C*
with only one simple pole, call it ixg. Therefore, merely repeating same arguments

as before, we have
kit To(s)&uni(s) ds
92 (k) = 2mi /]R-&-iho (s+1i)v(0,s) k—s’ (38)

with any 0 < hg < kg and for every n,m

R OH (62) € B, (3.9)
The symbol ¢3 in (3.5) is the most difficult as Ry (k) need not extend into CT as
an analytic function. Our analysis is based on the representation [4]

Ry (k) = ng(:) /000 e 23 g (s5)ds, (3.10)

where g is some function for which we only need the bound

\wmsmm+mm/|w

which implies that under the condition (1.7) (i.e. [~ 2™ |q(x)|dz < o0)

/OO 2N g (z)| dz < oo, (3.11)

By construction, qq is supported on a half-line and hence [4] T (k) is meromorphic
in the entire complex plane with one simple pole ik in C*. Generically Tp (0) =
0 (otherwise we shift the origin) and hence f (k) := Ty (k) /2ik is analytic and
bounded on the strip Sy, = {0 <Imk < ho} for any hg < kg. Thus for ¢3 in (3.5)
we now have

03 =P_ (&,.4fG),

where -
G(k):= / e 23 g (5)ds.
0
It follows from (3.11) that
oG (k)€ H® (CT)NC(R) (3.12)
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for any integer n < N — 1 but it doesn’t in general extend analytically into CT
and we can no longer deform the contour into the upper half plane. Let us now
consider instead its pseudoanalytic extension into C*. Following [5] we call F (z,y)
a pseudoanalytic extension of f () into C if

F (x,0) = f(x) and OF (z,y) — 0,y — 0,

where 0 := (1/2) (9, +i9,). Note that due to (3.12) for any n < N — 1 the Taylor
formula

ey = 5 GOy

m=0

— AeCT, (3.13)

defines such continuation as G (/\, X) clearly agrees with G on the real line and for
AeCt

(Grii(lA)? (A-N"", n<N-1. (3.14)

Evaluate now ¢3 by the Cauchy-Green formula applied to the strip Sp,. We have
A=a+i8)

3G (A X) =

¢s (k) = P_ ¢ (k) (3.15)
_Eti [ &GN iy
2mi Jn At X — (k —i0)
ki / Lot V) FA)G (N X)  dA
- 27T'L R+iho A+IL k*)\
kti [ f(N)&: (NG (N\A) dad
+ -
™ Sh A +1 A—k
0
= ¢4 (k) + ¢s5 (k).
The function ¢4 is similar to ¢ given by (3.8) and hence as for ¢ we have
OrOf"H (¢4) € G5. (3.16)
It remains to treat
bs k)= KT8 [ S NE& NG A) dadf
T s, At A—k
Since 06y r = —8§’§$7t without loss of generality we can consider z-derivatives only.
We define the z-derivatives of H (¢5) by the formula
OIH (¢5) = H (3¢5 - (3.17)
We now show that
H (9)¢5) € &, for any j < 2(N —2). (3.18)

By Theorem 2.1 we need to demonstrate that (Q{%)” € L' (C7). One has

i\ 2i0)’ £ (N) &0 (VM) IG (A,
(89 ¢5) (@2/5( )f(();;iy) (A )

™

dadp
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and thus we need to prove convergence of the following integral (k = u + iv)

/ / NTTH (N) & (A) OG (A, N)
C |/ S, (A= k:)3

dudv
S/sh N () ar (0 )‘</C |)\_kl3>dadﬁ.zl.

0

dadpB| dudv (3.19)

By a direct computation

/ aludv3 :/ dudv / / dudv (3.20)
c- [A—k| lu—a+i(v—7 <8 Jr |u+iv|?

dudv 1
—2 7.3 = const 7.
|u—|—w| g v Jr ju+

Next, it follows from (3.14) that

19G (A, V)| < il gnt, (3.21)

2n71
— |G
(n—1)! H
Let us now estimate &, ¢ (A). By (3.20), (3.21), and (3.6), the inequality (3.19) can
be continued

I< const/s (Joo| + ho) ™~ fnﬂf(zﬁ exp{ 24t (\/a> }ﬁnldad,@

const [ €00 (iB) "2 [/R (|l + ho)’ " exp {—24t (\/Ba)z} da} d

0
Substituting w = +/Ba we have

/ (le| + h)’ " exp {—241& (\/Ba)2} dox

-1

\f/ ('wl +h0) exp {2410} du.

This integral is clearly convergent since

j—1
%/ <\|;Jg|>j exp {—24tw2} dw
R
= ﬁ*%/ |Lu|j_1 exp {—24tw2} dw < 0.
R
But &, .(i8) = exp{833t — 28z)} and we finally have

I <const [ & (iB)B 5B 2dB
o -
< const ; B*%B”*Qdﬂ = const /0 ﬁ*%Jr"*Qdﬁ.
The last integral converges if —j/24+n —2> —1 or
j<2(n-1)<2(N-2),
which proves (3.18). It follows form (3.5) and (3.15) that
ﬁ’—@i,t = @% + ¢2 + da + 5.
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The latter combined with (3.18), (3.7), (3.9), and (3.16) immediately yields
0707 [H (5 1) = H (0w0)][| g, = 0, b — o0, (3.22)
for any n, m subject to
n+3m=j5<2(N-2).
It remains to show that
uy(w,t) — u(w,t) = —202logdet (1 + H(p,+)), b— oo,

and u (z,¢) solves (1.1). As in [11], [20] we rewrite u = up, + Aup. For Auy, we have

Auy (3,1) = —20%og det (1 — {(I + H(pe)) ™" [Hlpan)-H(S, )] })  (3.23)
where (I 4+ H(g,,)) " is bounded [11]. By the well-known differentiation formula
(logdet (1+ A)) =tr (14 A)" "4

it follows from (3.22) and (3.23) that
OnAu, — 0, (n=1,2,3), Auy, — 0, b — 0
and therefore
Oyu — 6ud,u + afu (3.24)
= 0y Auy, + 30, [(Aup — 2u) Aup] + 02 Auy — 0, b — 0.
Thus u(x,t) solves (1.1) for all  and ¢ > 0 and Theorem 1.1 is proven.

4. DISCUSSIONS

We conclude our short note with some comments.

1. Theorem 1.1 says if ¢ (z) is subject to conditions (1.6)-(1.7) then (1.1) is
globally well-posed in the following strong sense: classical solutions w,, (z,t) with
compactly supported initial data ¢, () converge to a classical solution w (z, ) uni-
formly on any compact z-domain for any ¢ > 0 and independently of the choice of
¢n (x) approximating ¢ (x). Note that [6] the condition

Sup /maX (—q(x),0) dx < oo, (essential boundedness from below) (4.1)
l1=1.J1

is sufficient for the condition (1.6) to hold and is also necessary if ¢ < 0. Therefore,
any ¢ subject to (1.6)-(1.7) is essentially bounded from below, decays sufficiently
fast at +oo but is arbitrary otherwise. Thus we don’t assume any kind of pattern
of behavior of ¢ (z) at —oo.

2. We note that the problems of the well posedness and related regularity of
(1.1) have been extensively studied since about the same time when the IST was
first introduced. The literature on the subject is truly enormous and we make no
attempt to give a comprehensive review here. Besides the already discussed [2],
we only mention a few relevant papers where much more literature on the subject
can be found. In [16] the existence and uniqueness of a weak solution is proven for
L? (R) data subject to the additional condition

/ooar:Nq(3:)2cl:13<oo7 N > 3/2. (4.2)

In [9] the latter condition is improved to N > 3/4. In the famous [1] the global
well posedness is proven without the extra condition (4.2). This paper drew much
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of attention. In particular, its results were generalized to singular initial data from
the Sobolev space H® (R) with negative index s. In [13] the well-posedness result
was extended locally in time to s > —3/4 and then globally in time in [3]. In [15]
and [7] the limiting case s = —3/4 was finally included. Moreover, it was shown in
[14] that s = —3/4 is in a certain sense optimal. Note however that s = —3/4 is the
threshold for the harmonic analytical methods used in above mentioned papers. It
was shown in [12] and [11] that IST techniques can push well-posedness to some
classes of singular functions from H~! (R).

3. Most of papers discussed in 2 also provide some norm estimates for the
solution u (z,t). For this reason the referee posed the question: "Does one have
any control of the ’growth’ in time of the norms of the solutions?" We believe that
our explicit formula (1.8) for u (x,t) should yield new types of norm estimates.
However, at the moment we don’t know even basic form of trace formulas for
potentials subject to our conditions (1.6)-(1.7). The referee also asks if "for a
solution u(x;t) corresponding to a data (potential) satisfying the hypothesis (1.6)-
(1.7) can one say anything about the decay property of u(z;1) for z > 07" It is
yet another good question of practical importance. Our explicit formula (1.8) is
not convenient for subtle asymptotic analysis of u(x,tj. Methods based upon the
Riemann-Hilbert problem have been proven best for such analysis. The main issue
is that these methods break down in a serious way and it is far from being clear how
to modify them. We note that the basic theory guarantees only that the spectrum
of Ly(z,+) is independent of ¢ which is insufficient to make meaningful conclusions
about asymptotic behavior of u(x,t) even for fixed t¢.

4. The negative spectrum of L, has multiplicity one but could be of any type
(including absolutely continuous (a.c.)) and the positive spectrum has a.c. com-
ponent filling R4 but need not be uniform (however no embedded bound states).
Thus Theorem 1.1 says that the IST for the KdV equation works smoothly with-
out boundary condition at —oco which is a very strong manifestation of spatial
anisotropy of the KdV equation. Our [21] appears to be the first rigorous paper
to this effect. We however still needed some extra (technical) assumptions which
were further relaxed in [20] and [19] culminating in [11] where techniques of Hankel
operators allowed us to get rid of inessential conditions.

5. The bounded invertibility of I + H(y, ;) for all z and positive ¢ is the reason
why a blow-up solution doesn’t develop over time. It is one of the main results of
our [11].

6. If ¢ () = O (z7>°),x — oo, then the solution is (infinitely) smooth. A precise
descriptions of smoothness in the scale ¢ (x) = O e’CIé) , & — 00, is given in [19].

We proved that if § > 1/2 then u (z,t) is meromorphic in  on the entire complex
plane (with no real poles). If 6 = 1/2 then w (z,t) is meromorphic in z in a strip
around the real line which width is increasing as v/t. If 0 < § < 1/2 then u (x,1) is
Gevrey smooth. In all these cases u (z,t) is smooth in ¢. It is worth mentioning that
the smoothing effect of the KdV flow is so strong that even strong (nonintegrable)
singularities instantaneously disappear [10].

7. As we have already mentioned the condition (1.6) is optimal but the condition
(1.7) is not. The bound on N in (1.7) can be lowered to 7/2. It can be achieved by
a different from (3.10) representation for Ry which follows from our [22]. The main
loss of accuracy however comes from the estimate (3.19) where the oscillatory nature
of the integral was lost. In fact, the integral on the left hand side of (3.19) admits a



10 ALEXEI RYBKIN

sharp estimate based upon the steepest descent approximation significantly lowering
the bound on N. We also expect some improvements related to pseudoanalytic
continuations. The very interesting paper [5] contains a number of if-and-only-if
statements linking smoothness of an analytic in C~ function and the rate of decay
of the 9 derivative of its pseudoanalytic continuation into C*. We hope that all
this will result in optimal statements relating decay of ¢ (x) at —oco and smoothness
of u (z,t). We will return to it elsewhere.

8. We emphasize the importance of the analytic split (1.3) in our consideration.
It allows us to effectively separate the influence of the behavior of initial data at
—oo from that at +o0o which effect the solution in profoundly different ways.

9. The formula (1.8) can also be written as

w(@,t) = 260 { (T + H(p0)) " [(0aHlpn))? — O2H(as) — Blspa)O2H(020) |}
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