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We dedicate this paper to the memory of Ludwig Faddeev, one of the founders of soliton theory.

Abstract. In the context of the Couchy problem for the Korteweg-de Vries
equation we put forward a new e¤ective mathod to link smoothness of the
solution with the rate of decay of the initial data. Our approach is based on
the Peller characterization of trace class Hankel operators.

1. Introduction

In the recent [11] we extended the inverse scattering transform (IST) for the
Korteweg-de Vries (KdV) equation{

∂tu− 6u∂xu+ ∂3xu = 0

u(x, 0) = q(x)
(1.1)

to initial data q (x) rapidly decaying at +∞ but having almost unrestricted be-
havior at −∞. Note that this setting is very di¤erent from classical (rapid decay
or periodic) due to a much more complicated spectral situation. Our approach is
based upon Hankel operators and it was some subtle results from the theory of
Hankel operators that allowed us to remove nearly all conditions on q (x) at −∞.
In the present note we show how the famous characterization of trace class Han-
kel operators due to Peller [18] applies to the study of the e¤ect of +∞ on the
smoothness of u (x, t). Our goal here is not to achieve optimal results (this will be
done elsewhere) but rather to introduce a new e¤ective approach to study delicate
relations between decay of the data and smoothness of the corresponding solutions.
To state our main result we need some preliminary information. Let q be a real

function such that the di¤erential expression −∂2x + q (x) is in the limit point case
at −∞ and q (x) = O

(
x−2−ε

)
as x → +∞. It is well-known that densely de�ned

(symmetric) −∂2x + q (x) can be extended to the self-adjoint Schrödinger operator
Lq on L2 (R). The corresponding Schrödinger equation

Lqu = k2u

has the right Jost solution ψ (x, k), i.e. the solution subject to

ψ (x, k) = eikx + o (1) , x→∞,
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and the (essentially unique) left Weyl solution Ψ
(
x, k2

)
, i.e. the solution subject

to
Ψ
(
x, k2

)
∈ L2 (−∞, 0) for any Im k2 > 0.

Then as in [11] we can de�ne the right re�ection coe¢ cient

R (k) =
W (ψ (·, k) ,Ψ

(
·, k2 + i0

)
)

W (Ψ (·, k2 + i0) , ψ (·, k))
, Im k = 0, (1.2)

where W (f, g) = fg′ − f ′g is the Wronskian. It can be shown [11] that R is well
de�ned for a.e. k ∈ R and

R (−k) = R (k), |R (k)| ≤ 1.

Note that in our setting the left re�ection coe¢ cient need not exist.
Assume now that Spec(Lq) is bounded below. Then [11], shifting the origin to

the right if needed, R admits the analytic split

R (k) = R0 (k)− T0 (k) /ψ (0, k) +A (k) . (1.3)

Here R0 (k) and T0 (k) are respectively the right re�ection and transmission coef-
�cients from q0 := q|R+ . Without loss of generality the origin can be moved to
the right so that T0 (k) /ψ (0, k) is meromorphic in C+ with only one simple pole
iκ0. Then T0 (k) /ψ (0, k) is uniformly bounded in C+ away from iκ0. The function
A (k) is bounded on R and can be analytically continued into C+�i∆ where

i∆ =
{
k ∈ iR+ : k2 ∈ Spec(Lq) ∩ R−

}
.

Furthermore, its jump across i∆

dρ (s) = i (A(is− 0)−A(is+ 0)) ds/2π (1.4)

de�nes a non-negative, �nite measure ρ supported on ∆. Outside of i∆ the function
A (k) is uniformly bounded in C+. The exact formula for A (k) is not essential to
us. Thus R0 (k) is the only term in (1.3) that need not in general admit an analytic
continuation into C+.
The analytic split (1.3) is the main reason why the IST works for the KdV

equation with unrestricted behavior at −∞. More precisely, the set
Sq = {R, dρ}

forms scattering data for Lq. I.e. Sq determines q uniquely.
We next recall [17] that given function ϕ ∈ L∞ (R), the operator H(ϕ) de�ned

on H2 (C+) by
H(ϕ)f = JP−ϕf, f ∈ H2

(
C+
)
, (1.5)

is called the Hankel operator with symbol ϕ. Here H2 (C±) stands for the standard
Hardy space of analytic on C± function respectively, P± is the orthogonal (Riesz)
projection in L2 (R) ontoH2 (C±), and J is the operator of re�ection, i.e. (Jf) (x) =
f (−x). Apparently, JH2 (C−) = H2 (C+).
We are now ready to state our main result.

Theorem 1.1 (Main Theorem). Suppose that a (real) initial pro�le q in (1.1)
satis�es:

inf Spec (Lq) = −h2 > −∞ (boundedness from below); (1.6)∫ ∞
xN |q (x)| dx <∞, N > 9/2 (decay at+∞). (1.7)
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Then (1.1) has a global-in-time classical1 solution given by

u(x, t) = −2∂2x log det (1 +H(ϕx,t)) , t > 0, (1.8)

where

ϕx,t (k) = R (k) ei(8k
3t+2kx) +

∫ h

0

e8s
3t−2sx dρ(s)

s+ ik
, (1.9)

such that if ub(x, t) is the (necessarily unique) classical solution with data qb =
q|(b,∞) then ub(x, t) converges to u(x, t) uniformly on compacts in R× R+ as b→
−∞. Furthermore, the map (x, t) → H(ϕx,t) is continuously di¤erentiable in trace
norm n times in x and m times in t where n ≤ 2 (N − 2) and m ≤ 2 (N − 2) /3
Consequently, ∂jx∂

k
t u (x, t) is continuos on R× R+ if 0 ≤ j + 3k ≤ 2N − 6.

The condition (1.6) is optimal but (1.7) is not. The best bound known to us is
N = 11/4 [2] but, as it will be easily seen from our arguments, this bound is not
optimal either. Note that the approach of [2] requires a rapid decay at −∞ where
as ours doesn�t.
The paper is organized as follows. In Section 2 we give brief background informa-

tion on trace class Hankel operators. Section 3 is devoted to the proof of Theorem
1.1 and the �nal section 4 is reserved for relevant discussions.

2. Trace class Hankel Operators

We refer the reader to [17] and [18] for the details on the facts given in this
section.
It directly follows from the de�nition (1.5) that the Hankel operator H(ϕ) is

bounded if its symbol ϕ is bounded and H(ϕ + h) = H(ϕ) for any ϕ ∈ H∞ (C+)
(analytic and bounded on C+ function). The latter means that only part of ϕ
analytic in C− matters. More speci�cally,

H(ϕ) = H(P̃−ϕ),

where

(P̃−ϕ)(x) = (x+ i)

(
P−

1

·+ i
ϕ

)
(x),

= − 1

2πi

∫
R

(
1

s− (x− i0)
− 1

s+ i

)
ϕ(s)ds, ϕ ∈ L∞ (R) .

We note that the condition ϕ ∈ L∞ (R) only guarantees that P̃−ϕ ∈ BMOA (C−)
but the Hankel operator H(ϕ) is still well-de�ned by (1.5) and bounded.
Much more subtle fact, the Nehari Theorem, says that H(ϕ) is compact i¤ P̃−ϕ ∈

C (R). We will crucially use the following delicate theorem.

Theorem 2.1 (Peller, 1980). Let ϕ ∈ L∞ (R). Then H(ϕ) is trace class i¤(
P̃−ϕ

)′′
∈ L1 (C−) and supIm z≤−1

∣∣∣P̃−ϕ (z)
∣∣∣ <∞.

In general, the membership of H(ϕ) in any Shatten-von Neumann class Sp, 0 <
p <∞, is characterized by the membership of P̃−ϕ in the Besov classes of smooth
functions. If ϕ ∈ C∞

(
R
)
then H(ϕ) ∈ Sp for any 0 < p ≤ ∞.

1I.e., at least three times continuously di¤erentiable in x and once in t.
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3. Proof of the Main Theorem

Take b > 0 and consider the problem (1.1) with initial data qb = q|(b,∞). This
problem [2] is well-posed and its solution ub can be written as

ub (x, t) = −2∂2x log det
(
1 +H(ϕbx,t)

)
, (3.1)

where

ϕbx,t (k) = Rb (k) ei(8k
3t+2kx) +

∫ h

0

e8s
3t−2sx dρb(s)

s+ ik
. (3.2)

Here Rb is the right re�ection coe¢ cient o¤ qb and

dρb (s) =
∑
n

cbnδ
(
s− κbn

)
ds, (3.3)

where cbn is the norming constant of the bound state −
(
κbn
)2
. Split Rb by (1.3) as

follows
Rb (k) = R0 (k)− T0 (k) /ψ (0, k) +Ab (k) , (3.4)

where Ab can be analytically continued into C+ as a meromorphic function having
simple poles at

(
iκbn
)
with residues

(
cbn
)
. If follows from (3.2), (3.3) and (3.4) that

ϕbx,t (k) =

(
R0 (k)− T0 (k)

ψ (0, k)

)
ξx,t(k) + Φbx,t (k) ,

where

Φbx,t (k) = Ab (k) ξx,t(k)−
∑
n

icbnξx,t(iκ
b
n)

k − iκbn
,

ξx,t(k) := exp i(8k3t+ 2kx).

Consider the part of ϕbx,t analytic in C−:

P̃−ϕbx,t = P̃−Φbx,t − P̃−
(

T0
ψ (0, ·)ξx,t

)
+ P̃− (R0ξx,t) (3.5)

= φb1 + φ2 + φ3,

only φb1 being dependent on b. Let us treat it �rst. One clearly has that for any
β ≥ 0

|ξx,t(α+ iβ)| = ξx,t(iβ) exp

{
−24t

(√
βα
)2}

(3.6)

= e8β
3t−2βx exp

{
−24t

(√
βα
)2}

.

I.e. for every �xed β > 0 the function ξx,t(α+ iβ) shows a rapid decay as |α| → ∞.
Observe that as opposed to Abξx,t, the function Φbx,t has only removable singularities
in C+ and therefore for any h0 > h we clearly have

φb1 = −k + i

2πi

∫
R

Φbx,t(s)

s+ i

ds

s− (k − i0)

=
k + i

2πi

∫
R+ih0

Ab (s) ξx,t(s)

s+ i

ds

k − s .



Ab (s) → A (s) C+

lim
b→∞

φb1 (k) =
k + i

2πi R+ih0

A (s) ξx,t(s)

s+ i

ds

k − s
=: φ1 (k) .

h0 > h φ1 (k)
n ≥ 1

lim ∂nkφ1 (k) = 0, Im k = 0, k → ±∞.
n,m

lim
b→∞

∂nx∂
m
t φ

b
1 (k) = ∂nx∂

m
t φ1 (k)

∂nx∂
m
t φ1 (k) lim ∂nkφ1 (k) = 0, Im k = 0, k →

±∞. n,m

∂nx∂
m
t H φb1 −H (φ1)

1
→ 0, b→∞.

φ2 T0 (k) /ψ (0, k) C+

iκ0

φ2 (k) = −k + i
2πi R+ih0

T0 (s) ξx,t(s)

(s+ i)ψ (0, s)

ds

k − s ,

0 < h0 < κ0 n,m

∂nx∂
m
t H (φ2) ∈ S1

φ3 R0 (k) C+

R0 (k) =
T0 (k)

2ik

∞

0

e−2iksg (s) ds,

g

|g (s)| ≤ |q (s)|+ const
∞

s

|q| ,
∞
xN |q (x)| dx <∞

∞

xN−1 |g (x)| dx <∞.

q0 T0 (k)
iκ0 C+ T0 (0) =

0 f (k) := T0 (k) /2ik
Sh0 = {0 ≤ Im k ≤ h0} h0 < κ0 φ3

φ3 = P− (ξx,tfG) ,

G (k) :=
∞

0

e−2iksg (s) ds.

∂nkG (k) ∈ H∞ C− ∩ C (R)



6 ALEXEI RYBKIN

for any integer n ≤ N − 1 but it doesn�t in general extend analytically into C+
and we can no longer deform the contour into the upper half plane. Let us now
consider instead its pseudoanalytic extension into C+. Following [5] we call F (x, y)
a pseudoanalytic extension of f (x) into C if

F (x, 0) = f (x) and ∂F (x, y)→ 0, y → 0,

where ∂ := (1/2) (∂x + i∂y). Note that due to (3.12) for any n ≤ N − 1 the Taylor
formula

G
(
λ, λ

)
=

n−1∑
m=0

G(n)
(
λ
)

m!

(
λ− λ

)m
, λ ∈ C+, (3.13)

de�nes such continuation as G
(
λ, λ

)
clearly agrees with G on the real line and for

λ ∈ C+

∂G
(
λ, λ

)
=
G(n)

(
λ
)

(n− 1)!

(
λ− λ

)n−1
, n ≤ N − 1. (3.14)

Evaluate now φ3 by the Cauchy-Green formula applied to the strip Sh0 . We have
(λ = α+ iβ)

φ3 (k) = P̃−φx,t (k) (3.15)

=
k + i

2πi

∫
R

ξx,t (λ) (fG) (λ)

λ+ i

dλ

λ− (k − i0)

=
k + i

2πi

∫
R+ih0

ξx,t (λ) f (λ)G
(
λ, λ

)
λ+ i

dλ

k − λ

+
k + i

π

∫
Sh0

f (λ) ξx,t (λ) ∂G
(
λ, λ

)
λ+ i

dαdβ

λ− k
= φ4 (k) + φ5 (k) .

The function φ4 is similar to φ2 given by (3.8) and hence as for φ2 we have

∂nx∂
m
t H (φ4) ∈ S1. (3.16)

It remains to treat

φ5 (k) =
k + i

π

∫
Sh0

f (λ) ξx,t (λ) ∂G
(
λ, λ

)
λ+ i

dαdβ

λ− k .

Since ∂tξx,t = −∂3xξx,t without loss of generality we can consider x-derivatives only.
We de�ne the x-derivatives of H (φ5) by the formula

∂jxH (φ5) = H
(
∂jxφ5

)
. (3.17)

We now show that

H
(
∂jxφ5

)
∈ S1 for any j < 2 (N − 2) . (3.18)

By Theorem 2.1 we need to demonstrate that
(
∂jxφ5

)′′ ∈ L1 (C−). One has

(
∂jxφ5

)′′
(k) =

2

π

∫
Sh0

(2iλ)
j
f (λ) ξx,t (λ) ∂G

(
λ, λ

)
(λ− k)

3 dαdβ
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and thus we need to prove convergence of the following integral (k = u+ iv)∫
C−

∣∣∣∣∣
∫
Sh0

λj−1T0 (λ) ξx,t (λ) ∂G
(
λ, λ

)
(λ− k)

3 dαdβ

∣∣∣∣∣ dudv (3.19)

≤
∫
Sh0

∣∣λjf (λ) ξx,t (λ)
∣∣(∫

C−

dudv

|λ− k|3

)
dαdβ := I.

By a direct computation∫
C−

dudv

|λ− k|3
=

∫
C−

dudv

|u− α+ i (v − β)|3
=

∫
v≤−β

∫
R

dudv

|u+ iv|3
(3.20)

=

∫ ∞
β

∫
R

dudv

|u+ iv|3
=

∫ ∞
β

dv

v2

∫
R

du

|u+ i|3
= const β−1.

Next, it follows from (3.14) that∣∣∂G (λ, λ)∣∣ ≤ 2n−1

(n− 1)!

∥∥∥G(n)∥∥∥
∞

βn−1. (3.21)

Let us now estimate ξx,t (λ). By (3.20), (3.21), and (3.6), the inequality (3.19) can
be continued

I ≤ const
∫
Sh0

(|α|+ h0)
j−1

ξx,t(iβ) exp

{
−24t

(√
βα
)2}

βn−1dαdβ

= const

∫ h0

0

ξx,t(iβ)βn−2
[∫

R
(|α|+ h0)

j−1
exp

{
−24t

(√
βα
)2}

dα

]
dβ.

Substituting ω =
√
βα we have∫
R

(|α|+ h)
j−1

exp

{
−24t

(√
βα
)2}

dα

=
1√
β

∫
R

(
|ω|√
β

+ h0

)j−1
exp

{
−24tω2

}
dω.

This integral is clearly convergent since

1√
β

∫
R

(
|ω|√
β

)j−1
exp

{
−24tω2

}
dω

= β−
j
2

∫
R
|ω|j−1 exp

{
−24tω2

}
dω <∞.

But ξx,t(iβ) = exp{8β3t− 2βx)} and we �nally have

I ≤ const
∫ h0

0

ξx,t(iβ)β−
j
2 βn−2dβ

≤ const
∫ h0

0

β−
j
2 βn−2dβ = const

∫ h0

0

β−
j
2+n−2dβ.

The last integral converges if −j/2 + n− 2 > −1 or

j < 2 (n− 1) ≤ 2 (N − 2) ,

which proves (3.18). It follows form (3.5) and (3.15) that

P̃−ϕbx,t = φb1 + φ2 + φ4 + φ5.



∂nx∂
m
t H ϕbx,t −H (ϕx,t)

1

→ 0, b→∞,
n,m

n+ 3m = j < 2 (N − 2) .

ub(x, t)→ u(x, t) = −2∂2x log det (1 +H(ϕx,t)) , b→∞,
u (x, t) u = ub+Δub Δub

Δub (x, t) = −2∂2x log det I − (I +H(ϕx,t))
−1

H(ϕx,t)−H(ϕbx,t)

(I +H(ϕx,t))
−1

(log det (1 +A))
�
= tr (1 +A)

−1
A�

∂nxΔub → 0, (n = 1, 2, 3), ∂tΔub → 0, b→∞

∂tu− 6u∂xu+ ∂3xu

= ∂tΔub + 3∂x [(Δub − 2u)Δub] + ∂3xΔub → 0, b→∞.
u(x, t) x t > 0

D

q (x)
un (x, t)

qn (x) u (x, t)
x t > 0

qn (x) q (x)

Sup
|I|=1 I

max (−q (x) , 0) dx <∞,

q ≤ 0
q
+∞

q (x) −∞

L2 (R)
∞

xNq (x)
2
dx <∞, N > 3/2.

N > 3/4
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of attention. In particular, its results were generalized to singular initial data from
the Sobolev space Hs (R) with negative index s. In [13] the well-posedness result
was extended locally in time to s > −3/4 and then globally in time in [3]. In [15]
and [7] the limiting case s = −3/4 was �nally included. Moreover, it was shown in
[14] that s = −3/4 is in a certain sense optimal. Note however that s = −3/4 is the
threshold for the harmonic analytical methods used in above mentioned papers. It
was shown in [12] and [11] that IST techniques can push well-posedness to some
classes of singular functions from H−1 (R).
3. Most of papers discussed in 2 also provide some norm estimates for the

solution u (x, t). For this reason the referee posed the question: "Does one have
any control of the �growth�in time of the norms of the solutions?" We believe that
our explicit formula (1.8) for u (x, t) should yield new types of norm estimates.
However, at the moment we don�t know even basic form of trace formulas for
potentials subject to our conditions (1.6)-(1.7). The referee also asks if "for a
solution u(x; t) corresponding to a data (potential) satisfying the hypothesis (1.6)-
(1.7) can one say anything about the decay property of u(x; 1) for x > 0?" It is
yet another good question of practical importance. Our explicit formula (1.8) is
not convenient for subtle asymptotic analysis of u(x, t)̇. Methods based upon the
Riemann-Hilbert problem have been proven best for such analysis. The main issue
is that these methods break down in a serious way and it is far from being clear how
to modify them. We note that the basic theory guarantees only that the spectrum
of Lu(x,t) is independent of t which is insu¢ cient to make meaningful conclusions
about asymptotic behavior of u(x, t) even for �xed t.
4. The negative spectrum of Lq has multiplicity one but could be of any type

(including absolutely continuous (a.c.)) and the positive spectrum has a.c. com-
ponent �lling R+ but need not be uniform (however no embedded bound states).
Thus Theorem 1.1 says that the IST for the KdV equation works smoothly with-
out boundary condition at −∞ which is a very strong manifestation of spatial
anisotropy of the KdV equation. Our [21] appears to be the �rst rigorous paper
to this e¤ect. We however still needed some extra (technical) assumptions which
were further relaxed in [20] and [19] culminating in [11] where techniques of Hankel
operators allowed us to get rid of inessential conditions.
5. The bounded invertibility of I +H(ϕx,t) for all x and positive t is the reason

why a blow-up solution doesn�t develop over time. It is one of the main results of
our [11].
6. If q (x) = O (x−∞) , x→∞, then the solution is (in�nitely) smooth. A precise

descriptions of smoothness in the scale q (x) = O
(
e−Cx

δ
)
, x→∞, is given in [19].

We proved that if δ > 1/2 then u (x, t) is meromorphic in x on the entire complex
plane (with no real poles). If δ = 1/2 then u (x, t) is meromorphic in x in a strip
around the real line which width is increasing as

√
t. If 0 < δ < 1/2 then u (x, t) is

Gevrey smooth. In all these cases u (x, t) is smooth in t. It is worth mentioning that
the smoothing e¤ect of the KdV �ow is so strong that even strong (nonintegrable)
singularities instantaneously disappear [10].
7. As we have already mentioned the condition (1.6) is optimal but the condition

(1.7) is not. The bound on N in (1.7) can be lowered to 7/2. It can be achieved by
a di¤erent from (3.10) representation for R0 which follows from our [22]. The main
loss of accuracy however comes from the estimate (3.19) where the oscillatory nature
of the integral was lost. In fact, the integral on the left hand side of (3.19) admits a



N

C−

∂ C+

q (x) −∞
u (x, t)

−∞ +∞

u(x, t) = 2 tr (I +H(ϕx,t))
−2

(∂xH(ϕx,t))
2 − ∂2xH(ϕx,t)−H(ϕx,t)∂2xH(ϕx,t) .

A

R

L (R) ∩ LN (R )

R T

H
/ (R)
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