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Abstract—Manifold learning based methods have been
widely used for non-linear dimensionality reduction (NLDR).
However, in many practical settings, the need to process stream-
ing data is a challenge for such methods, owing to the high
computational complexity involved. Moreover, most methods
operate under the assumption that the input data is sampled
from a single manifold, embedded in a high dimensional
space. We propose a method for streaming NLDR when the
observed data is either sampled from multiple manifolds or
irregularly sampled from a single manifold. We show that
existing NLDR methods, such as Isomap, fail in such situations,
primarily because they rely on smoothness and continuity of the
underlying manifold, which is violated in the scenarios explored
in this paper. However, the proposed algorithm is able to learn
effectively in presence of multiple, and potentially intersecting,
manifolds, while allowing for the input data to arrive as a
massive stream.
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I. INTRODUCTION

Ability to analyze massive streams of data is a valuable
aspect of any modern data science pipeline. This is im-
portant in many contexts, such as high-performance high-
fidelity numerical simulations [3], high-resolution scientific
instrumentation (microscopes, DNA sequencers, etc.) [18],
and even Internet of Things [2], where a huge number of
devices are currently connected to the Internet and feeding a
variety of data streams. Such data sources typically monitor
or measure complex system behaviors, using a large number
of parameters. Dimensionality reduction methods [24] are
typically used to map the resulting high-dimensional data
into a smaller, manageable space. If the data is assumed to
lie on a hyperplane, linear dimensionality reduction methods
such as Principal Component Analysis (PCA) [10], etc.,
maybe applied. However, in many settings, especially when
dealing with complex scientific and natural phenomenon,
the data might lie on a non-linear manifold, in which
case, non-linear dimensionality reduction methods are more
appropriate.

Non-linear dimensionality reduction(NLDR) comes at a
cost; most existing NLDR methods have a computational
complexity of O(n3), n being the size of the data. The
issue is further exacerbated when the data is streaming,
where obtaining exact solution at every step of the stream
is computationally infeasible. While adapatations of existing

NLDR methods, such as Isomap [22] and Local Linear Em-
bedding (LLE) [17], have been proposed for handling data
streams [12], [14], such methods, which typically rely on
incremental updates of the underlying solution, do not scale
well to massive streams. In a recent work [19], a two phase
strategy has been proposed to adapt Isomap to streaming
data. The algorithm, called S-Isomap, operates on the core
principle that a small batch of data is necessary to learn
the underlying small-dimensional manifold using an exact
and computationally expensive, but data-bounded, learning
method. The remainder of the stream may be mapped onto
the learnt manifold using a relatively inexpensive mapping
procedure.

However, the above solution, and other related efforts
to adapt NLDR methods to streaming data [14], rely on
the assumption that the data samples lie on a single low-
dimensional manifold. There have been limited attempts that
allow for multiple manifolds [5], [6], however, they assume
that the manifolds do not intersect in any ambient space. This
is illustrated in Figures 1 and 2. In Figure 1, the synthetic
data set in the top panel consists of four “patches” in 2D
space which are embedded onto different regions of a 3D
Swiss-Roll. Thus the 3D patches data set maybe considered
as the high-dimensional data set consisting of samples from
multiple manifolds. Direct application of Isomap, which
assumes that data comes from a single manifold, results in
poor recreation of the ground truth (Figure 1c). An existing
method, M-Isomap [5], that explicitly handles multiple man-
ifolds, gives somewhat better results (Figure 1d). In Figure 2,
the synthetic data set consists of data from two 2D manifolds
embedded in a 3D space, as an isometric swiss-roll and a
plane, intersecting with each other. In this case, both Isomap
and M-Isomap fail (Figure 2c), primarily because M-Isomap
assumes that the multiple manifolds do not intersect.

The core contribution of this paper is a streaming
non-linear dimensionality reduction algorithm, called S-
Isomap++. The algorithm assumes that the high dimensional
input data consists of samples that truly lie on one or more,
potentially intersecting, low-dimensional manifolds and are
embedded into the high dimensional space via non-linear
transformations. The proposed algorithm extends the widely
used Isomap algorithm to handle multiple intersecting man-
ifolds in a streaming setting. Thus, the proposed algorithm



(a) Original Data in 2D (b) Embedded Data (input) in 3D (c) Isomap Output

(d) M-Isomap Output (e) Proposed S-Isomap++ Output

Figure 1: Multi-manifold patches data set. The 2D samples in (a) are embedded into 3D in (b) via the Euler Isometric

mapping technique [19]. The reduction to 2D is obtained using: (c). Isomap, (d). M-Isomap [5], and (e). the proposed

S-Isomap++ algorithm.

operates under one of the least restrictive set of assumptions,

explored so far in the context of NLDR methods (See

Figures 1e and 2d). Moreover, the ability to handle large

streams of data makes it highly applicable in a broad variety

of domains.

Another contribution of the paper is a novel tangent based
clustering strategy to separate samples from the input batch,

in the original high-dimensional space, into different clus-

ters. Each cluster is processed independently to obtain the

manifold and the corresponding low-dimensional reduction

of the corresponding data samples, using Isomap. The re-

duced data samples are then mapped into a common ambient
space by exploiting the relationship between the samples

across the clusters in the original space. The streaming

samples are then mapped, in parallel, on each manifold. An

evaluation strategy is employed to choose the best manifold

for each streaming sample.

The rest of the paper is organized as follows: we provide

necessary background about manifold learning in Section II.

Related works are discussed in Section III. The proposed

algorithm, S-Isomap++, is presented in Section IV. Exper-

imental results on synthetic and benchmark datasets, are

summarized in Section V.

II. BACKGROUND AND MOTIVATION

Our motivation for this work stems from one of the

foundation principles of Manifold Learning, which assumes

that the distribution of the data in the high-dimensional

observed space is not uniform and in reality, the data lies

near a non-linear low-dimensional manifold embedded in the

high-dimensional space. In many real-world problems such

as those resulting from multi-modal or unevenly sampled

distributions, the data lies on multiple manifolds of possibly

different “dimensionalities” and is typically separated by

regions of low density as depicted in Figure 3. Thus, to find

a representative low-dimensional embedding of the data, one

needs to first cluster the data appropriately and subsequently

find a low-dimensional representation for the data in each

cluster. Even then, manifolds can be very close to each other

and can have arbitrary intrinsic dimensions, curvature and

sampling which makes it a hard problem to solve.

A. Defining a Manifold

Mathematically, a manifold M is defined as a metric

space with the following property: if x ∈ M, then there

exists some neighborhood U of x and ∃n such that U is

homeomorphic to R
n [21].



(a) Original Data in 2D (b) Embedded Data (input) in 3D (c) Isomap/M-Isomap Output

(d) Proposed S-Isomap++ Output

Figure 2: Multi-manifold intersecting data set. One set of 2D samples (blue) in (a) are embedded into 3D in (b) via the
Euler Isometric mapping technique [19]. Second set (cyan) are embedded using a linear mapping. The reduction to 2D is
obtained using: (c). Isomap/M-Isomap, and (d). the proposed S-Isomap++ algorithm. Both Isomap and M-Isomap give the
same output because M-Isomap cannot handle intersecting manifolds and, thus, reverts to a single manifold scenario.

Figure 3: 2-D reduction of a sample of images from the
MNIST digits dataset. Real-world data generally lies near
multiple manifolds and is usually separated by regions of
low density.

The global structure of the high-dimensional ambient
space can be more complicated. Usually manifolds are
embedded in high-dimensional spaces, but the intrinsic
dimensionality is typically low due to fewer degrees of
freedom in the underlying data generating process.

B. Nonlinear Dimensionality Reduction

Typically, nonlinear dimensionality reduction (NLDR)
techniques are used as learning methods for discovering
the underlying low-dimensional structure from samples from
high-dimensional data. Existing techniques typically ex-
ploit either the global (Isomap, Minimum Volume Embed-
ding [26]) or local (LLE, Laplacian Eigenmaps [1]) prop-
erties of the manifold to map each high-dimensional point
xi ∈ RD to its corresponding low-dimensional embedding,
yi ∈ Rd. They are used as a generic non-linear, non-
parametric technique to approximate probability distribu-
tions in high-dimensional spaces.

The Isomap algorithm, being a global NLDR technique
should ideally provide a more faithful representation and
preserve geometry irrespective of scale i.e. map data samples
which are close in the manifold to points which are close
in the low-dimensional embedding and similarly for distant
samples. However, it struggles when dealing with multi-
modal and non-uniform distributions.

Most existing NLDR techniques, perform a similar series
of data transformations as shown in Figure 4. First, a
neighborhood graph is constructed, where each node of the
graph is connected to its k nearest neighbors. This involves
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Figure 4: General non-linear spectral dimensionality reduction workflow.

computing O(n2) pairwise distance values. Next, a feature
matrix is computed from this neighborhood graph, which
encodes properties of the data that should be preserved
during dimensionality reduction. For example, in the Isomap
formulation, the feature matrix stores shortest paths between
each pair of points in the neighborhood graph, which is an
approximation of the actual geodesic distance between the
points. The cost to compute the feature matrix generally
varies in the range O(n) and O(n3). To obtain the low rep-
resentation of the input data, the feature matrix is factorized
and the first d eigen vectors/values form the output Y . This
step has a O(n3) cost.

When used on data streams, NLDR methods typically
have to recompute the entire manifold for every new stream-
ing data point, which is computationally expensive. In such
scenarios, there is the need for incremental techniques
(Out-of-Sample technique [14], S-Isomap [19]), which can
process the new streaming points “cheaply”, compared to
the traditional batch techniques without affecting the quality
of the embedding significantly.

C. Handling Multiple Manifolds

In the ideal scenario, when manifolds are densely sampled
and sufficiently separated, existing NLDR methods can be
extended to perform clustering before applying the dimen-
sionality reduction step [5], [16], by choosing an appropriate
local neighborhood size so as not to include points from
other manifolds and still be able to capture the local geom-
etry of the manifold. However, if the manifolds are close or
intersecting (See Figure 7), such methods typically fail.

III. RELATED WORK

Most existing NLDR techniques can only deal with a
single manifold which leads to them discovering error-prone
low dimensional embeddings given inter-manifold distances
are usually much larger than the intra-manifold distances.

Wu et al. [27] was among the earliest attempts to work
with multiple manifolds via NLDR techniques. Since then,
other sophisticated approaches [4], [5], [9], [23], [28] have
emerged, apart from techniques in the area of manifold
alignment [8], [25] and manifold clustering [5], [20]. Some
assumed a supervised setting [9], [23], and learn multiple
sub-manifolds corresponding to different given classes in
a dataset. The MMDA method [28] is based on Locality
Preserving Projections. Similarly, the SMCE algorithm [4]
makes assumptions about sparsity and linearity of the em-
bedding.

There have been earlier attempts to cluster sub-
manifolds [5], [20], which are primarily based on the idea
of forming a graph with edges only between a node and
its nearest neighbors. However, these methods cannot deal
with intersecting manifolds when it is possible for the local
neighborhood of a point to have nearest neighbors from
different sub-manifolds. Manifold alignment approaches [8],
[25] typically align manifolds using a set of correspondences
between data points. Whereas [25] uses Procrustes Anal-
ysis, [8] tries to solve a constrained embedding problem,
where the embeddings of the corresponding points from
different sets are constrained to be identical.

In a batch setting, the M-Isomap [5] algorithm comes
close to our proposed work. The algorithm attempts to work
with multiple manifolds embedded in a high-dimensional
space. First, it performs clustering to identify the indi-
vidual sub-manifolds via a nearest neighbor approach and
subsequently runs Isomap on each of these sub-manifolds.
Finally, it stitches the sub-manifolds together via a set
of support points, by finding an optimal transformation
between the embeddings uncovered by Multidimensional
Scaling(MDS) [13] and Isomap, respectively. However, the
nearest neighborhood clustering strategy employed can mis-
represent individual sub-manifolds if they are intersecting
and/or very close to each other by grouping them together
(See Figure 2).

IV. METHODOLOGY

There are two key challenges that a streaming manifold
learning algorithm has to address: 1) handle streaming data
in a scalable manner, and, 2) learn in presence of multiple,
possibly intersecting, manifolds. The proposed S-Isomap++
algorithm follows the two-phase strategy proposed in our
earlier work [19], where we first learn exact manifolds
from an initial batch, and then employ a computationally
inexpensive mapping method to process the remainder of
the stream. An error metric is used to decide on when to
switch from expensive and exact learning to inexpensive and
approximate mapping [19]. To address the second challenge,
we first cluster the batch data using a tangent-based manifold
clustering approach and then apply exact Isomap on each
cluster. The resulting low-dimensional data for the clusters
is then stitched together to obtain the data reduced to a low
(and closer to true) dimensionality.

The overall S-Isomap++ algorithm is outlined in Algo-
rithm 1. The algorithm takes a batch data set, B and the



streaming data, S as inputs1, such that, B,S ∈ RD. The
processing is split into two phases: a batch learning phase
(Lines 1–12) and a streaming phase (Lines 13–20). The
batch learning phase consists of three steps:
• Step 1: Cluster samples in B into p clusters (Line 1).
• Step 2: Learn p individual manifolds corresponding to

each cluster, and map samples within each cluster to a
low-dimensional representation2 (Lines 6–7).

• Step 3: Map reduced samples from individual manifolds
into a global reduced space (Lines 8–12).

In the streaming phase, each sample in the stream set S is
mapped onto each of the p manifolds by using an inexpen-
sive mapping procedure (Lines 14-17). The nearest manifold
is identified by comparing each reduced representation of
the sample to the “center” of each manifold (Line 18), and
choosing the corresponding reduced representation for the
stream sample (Line 19).

The individual components of the proposed S-Isomap++
algorithm are discussed in the subsequent subsections.

A. Clustering Multiple Intersecting Manifolds

The objective of the first step in Algorithm 1 is to
separate the batch samples into clusters, such that each
cluster corresponds to one of the multiple manifolds present
in the data. Note that, in this paper, we do not assume that
the number of manifolds (p) is specified; it is automatically
inferred by the clustering algorithm3. Given that the batch
samples lie on low-dimensional and potentially intersecting
manifolds, it is evident that the standard clustering methods,
such as K-Means [11], that operate on the observed data in
RD, will fail in correctly identifying the clusters.

To handle this challenge, we propose a novel clustering
algorithm that is based on the notion of smoothness of mani-
fold surfaces. Consider a single batch data sample, xi ∈ RD.
Let N (xi) be the set of k nearest neighbor samples of xi in
the batch B. Let Ti denote a d′ dimensional tangent plane
represented using d′ basis vectors, ti1, ti2, . . . , tid′ , i.e.,
Ti = span(ti1, ti2, . . . , tid′). Here, d′ denotes the intrinsic
dimensionality of the tangent plane. We assume that each
xi belongs to a single manifold Mj ,∃j ∈

{
1, 2 . . . p

}
.

The proposed clustering algorithm (Algorithm 2) is based
on the following intuition: For a given sample, xi, and its

1Note that in practical applications, one might not have data split into
batch and streaming parts. In that scenario, one may track the quality of
the output of the batch phase using suitable error metrics [19], and switch
when a reliable solution for the batch is obtained. For simplicity, we will
assume that the optimal batch size has been pre-determined.

2The true dimensionality of the manifolds corresponding to the clusters
can vary. We assume that the true dimensionality for each cluster has been
determined using techniques such as studying the spectral properties of
the geodesic distance matrix computed as part of Isomap learning (See
Figure 4).

3In cases of uneven/low density sampling, the clustering strategy dis-
cussed might possibly generate many small clusters. In such cases, one can
try to merge clusters, based on their affinity/closeness to make the clusters’
size reasonable.

Algorithm 1 S-Isomap++

Input: Batch: B, Streaming: S; Parameters: ε, k, l, λ
Output: YS : low-dimensional representation for S

. Batch Phase
1: Ci=1,2...p ← FIND CLUSTERS(B, ε)
2: ξs ← ∅
3: for 1 ≤ i ≤ p do
4: LDE i ← ISOMAP(Ci)
5: end for

6: ξs ←
p⋃

i=1

p⋃
j=i+1

NN(Ci, Cj ,k) ∪ FN(Ci, Cj , l)

7: GEs ← MDS(ξs)
8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A ←
[
LDEIj
eT

]
11: Ri, ti ← GEI,s ×AT

(
AAT + λI

)−1
12: end for

. Streaming Phase
13: for s ∈ S do
14: for 1 ≤ i ≤ p do
15: yis ← S-ISOMAP(s, Ci)
16: GE is ← Riy

i
s + ti

17: end for
18: index ← argmini

∣∣yis − µ(Ci,Ri, ti)
∣∣

19: YS ← YS ∪ yindexs

20: end for

21: return YS

Algorithm 2 Tangent Manifold Clustering
1: function FIND CLUSTERS(B, ε)
2: Si=1,2...n ← MSVD(B)
3: labels ← 0n×1
4: idx ← 1
5: while labelsi=1,2...n 6= 0 do
6: Cidx, labels ← CLUSTER(B,S, labels, idx, ε)
7: idx ← idx + 1
8: end while
9: return Ci=1,2...p

10: end function



neighbor xj ∈ N (xi):

If Mi =Mj ⇒ φ(Ti, Tj) ≥ ε (1)

φ(Ti, Tj) = cos θ, where θ is the angle between the two
tangent planes4, Ti and Tj . Similarly,

If Mi 6=Mj ⇒ φ(Ti, Tj) < ε (2)

In other words, within a tight neighborhood, a given data
sample and its neighbors are expected to lie on tangent
planes that are approximately similar in orientation, and,
thus, the cosine of the angle between the two planes will be
closer to 1 (cos θ ≈ 1). However, if a sample’s neighborhood
contains samples that lie on other intersecting manifolds,
their tangent planes should be significantly different, and
cos θ � 1.

1) Learning a Tangent Plane for a Given Sample: We use
Multiscale Singular Value Decomposition (or MSVD [15])
on the local neighborhood of xi, to determine basis vectors,
ti1, ti2, . . . , tid′ , which define the tangent plane, Ti. Use
of SVD allows us to follow the intuitions expressed in (1)
and (2), since it explores directions in which the spread of
points is maximal. In the presence of multiple intersecting
manifolds, these directions get mangled up, whereas non-
intersecting regions have better agreement with regards to
principal directions.

MSVD allows us to deal with the problem of estimating
the intrinsic dimension of noisy, high-dimensional point
clouds. For the linear case, SVD analysis can estimate the in-
trinsic dimensionality ofM correctly, with high probability.
However, whenM is a nonlinear manifold, curvature forces
the dimensionality of the best-approximating hyperplane to
be much higher, which hinders attempts to uncover the true
intrinsic dimensionality of M.

MSVD estimates the intrinsic dimensionality of M by
computing the singular values, σz,r

i for all ∀z ∈ M at
different scales r > 0 and i ∈ {1, 2, . . . D}. Small values of
r lead to not enough samples in B(z, r), while large values
of r lead to curvature making the SVD computation over
estimate the intrinsic dimensionality. At the right scale (value
of r), the true σz,r

i ’s separate from the noise σz,r
i ’s due to

their different rates of growth and the true dimensionality
of M is revealed. Figure 5 demonstrates how σz,r

i behave
over different scales when MSVD is done a noisy R5 sphere
embedded in R100 ambient space. Notice how the noise
dimensions decay out, leaving only the primary components
at the appropriate scale.

2) Computing Angle Between Two Tangent Planes: We
explore several strategies of computing the similarity be-
tween a pair of tangent planes, Ti and Tj . As mentioned
earlier, this is equivalent to computing the cosine of the
angle between the two planes. We consider one approach,
as proposed by Gunawan et al. [7]. Let Ti and Tj be

4Ti and Tj are the tangent planes for the samples xi and xj .

Algorithm 3 Incremental Partitioning Strategy
1: function CLUSTER(B,S, labels, index, ε)
2: Cindex ← ∅, Cold ← ∅
3: I ←

{
i|labelsi = 0

}
, idx ∼ RANDOM(I)

4: Cindex ← Cindex ∪ Bidx
5: Cold ← Cold ∪ Bidx, labelsidx ← index
6: countnew ← 1, mode = ‘L1’

7: while countnew > 0 do
8: countnew ← 0, Cnew ← ∅
9: for ∀i ∈ Cold do

10: Iknn ← KNN(B, i)
11: for ∀j ∈ Iknn do
12: if labelsj = 0 then
13: simi,j ← SIM(Si, Sj , mode)
14: if simi,j ≥ ε then
15: Cnew ← Cnew ∪ Bj
16: labelsj ← index
17: countnew ← countnew + 1
18: end if
19: end if
20: end for
21: end for
22: Cindex ← Cindex ∪ Cnew, Cold ← Cnew
23: end while

24: return Cindex, labels
25: end function

Figure 5: Multiscale SVD on a noisy R5 sphere embedded
in R100 ambient space.



orthonormal subspaces5. If θ is the angle between Ti and
Tj , then:

φ(Ti, Tj) = cos θ =
√
det(NN>) (3)

where N is a matrix, such that N [u][v] = 〈tiu, tjv〉, where
tiu is the uth basis vector for Ti and tjv is the vth basis
vector for Tj . Additionally, when the dimensionality of Ti
and Tj is same, the expression simplifies to:

φ(Ti, Tj) = cos θ = |det(N )| (4)

Alternately, one can use the following procedure. Without
loss of generality, let us assume that ti1, ti2, . . . , tik are the
singular vectors for the plane Ti corresponding to the top
k singular values. Similarly, let tj1, tj2, . . . , tjk be the top-
k singular vectors for the plane Tj . Then we can compute
φ(Ti, Tj) as:

φ(Ti, Tj) =
1

k

k∑
l=1

|t>il tjl| (5)

We refer to the above as the L1 metric. In the same way,
one can define the L2 metric as:

φ(Ti, Tj) =

√√√√1

k

k∑
l=1

(t>il tjl)
2 (6)

3) Tangent Manifold Clustering Algorithm: The proposed
tangent manifold clustering strategy is outlined in Algo-
rithm 2. Algorithm 3 is the support method to the above.
The inputs to the Algorithm 2 are the batch dataset B and
a threshold value ε.

Algorithm 2 initially calls MSVD(·) (See Section IV-A1)
on the input batch set, B, to decide on an appropriate scale r
to use and subsequently to extract the top-k singular vectors
Si=1,2...n for all xi ∈ B, at the scale r. Initially all points are
unlabeled i.e. labels is all zeros initially. Algorithm 2 calls
CLUSTER(·) repeatedly till all xi ∈ B have labels assigned
to them, which represents the different clusters, Ci for i =

1, 2 . . .m where
m⋃
i=1

Ci = B.

Algorithm 3, which contains the function CLUSTER(·)6,
works as follows: it picks a currently unlabeled xi at
random, and assigns it to a new cluster Cindex. Subsequently,
it looks at the unassigned nearest neighbors of xi i.e.
xj ∈ N (xi) and checks to see how close their tangent
planes are. If they are similar enough i.e. the similarity
score φ(Ti, Tj) ≥ ε, then the unassigned nearest neighbor
is assigned to Cindex. The algorithm proceeds similarly in a
breadth-first manner till no new points remain to be tested.

It internally calls Algorithm SIM(·) to measure similarity,

5One can use QR factorization to orthonormalize any subspace, which
is not already orthonormal.

6We use ‘L1’ as the mode by default (Line 6) since it provides the best
accuracy.

using one of the three strategies, discussed in Section IV-A2
(See (4), (5), and (6)).

B. Processing multiple manifolds

The S-Isomap++ algorithm independently learns the man-
ifolds for each cluster (Lines 3–5). However, since these
manifolds are not necessarily aligned with respect to each
other, an additional step is needed to represent the reduced
samples from each cluster into a common space. We refer to
this process as stitching, and is essential to recreate the final
reduced representation. This step, similar to the approach in
M-Isomap, maintains the information of the global location
of different manifolds using a set of support points which
form the skeleton on which it can later places the different
manifolds. This support set is formed using the k nearest
neighbor pairs as well as the l farthest neighbor pairs
between every pair of manifolds present i.e. ∀{Ci, Cj}j 6=i, let
Xi,j ∈ R|Ci|×|Cj | denote the RD Euclidean distance matrix
between all points in clusters Ci and Cj , then support set
ξs contains the co-ordinates (index sets Ii and Ij from Ci
and Cj respectively) of both the smallest k values as well
as the largest l values in Xi,j . The former are calculated by
method NN(·) and the latter FN(·) (Line 6). Subsequently, a
global reduced space embedding GEs for this support set is
calculated using MDS (Line 7). After this, for each manifold
Mj ,∃j ∈

{
1, 2 . . . p

}
, a least-squares problem is solved to

generate the transformation components Ri, ti which can
project reduced samples from each cluster into the global
space (Lines 8–12).

C. Mapping Streaming Samples

In the streaming part, each sample in the stream set
S is mapped onto each of the p manifolds in parallel,
using the inexpensive S-ISOMAP(·) algorithm proposed in
our earlier work [19] (Line 15) and subsequently mapped
to the global space using {Ri, ti} ∃i ∈

{
1, 2 . . . p

}
(Line

16). The nearest manifold is identified by comparing each
reduced representation of the sample to the mean µ(·) of
each manifold (Line 18), and choosing the corresponding
reduced representation for the stream sample (Line 19).

V. RESULTS AND ANALYSIS

A. Experimental Setup

We present several experiments here on a variety of
data sets to illustrate the behavior of different approaches
proposed in the Section IV.

We use four different datasets in our experiments. Given
swiss roll datasets are typically used for evaluating manifold
learning algorithms, we use the Euler Isometric Swiss Roll
dataset, proposed by Schoeneman et al. [19], wherein a R2

data set having n = 3000 points, chosen at random, are
embedded into R3 using a non-linear function ψ(·). We
use this in conjunction with a R3-dimensional hyperplane
passing through it as shown in Figure. 2b having n = 1500



points, chosen at random. We know the ground truth for
both parts (See Figure. 2a). We use this to evaluate the S-
Isomap++ algorithm as shown in Figure. 2. We also use an
extension of this, wherein two R3-dimensional hyperplanes
pass through the Isometric Swiss Roll, wherein the points
are chosen in random and each hyperplane has n = 3000
points, as shown in Figure. 6.

Apart from this, we use different artificial datasets con-
sisting of intersecting manifolds i.e. two intersecting R3-
dimensional unit hyperspheres, having n = 1000 points each
and a R3-dimensional plane intersecting a R3-dimensional
hypersphere, again having n = 1000 points each, as shown
in Figure. 7. We use these datasets to test our tangent
manifold approach more rigorously. We also use patches on
the Euler Isometric Swiss Roll dataset (Figure. 1) which
are Gaussian in nature, to study the effect of the different
parameters, apart from evaluating our algorithm, as well as
the MNIST digits dataset.

Our evaluation metrics for the experiments primarily focus
on 1) ability on our tangent manifold clustering strategy
to be able to cluster points from multiple intersecting/non-
intersecting manifolds correctly, 2) test the quality of the
embedding uncovered by our algorithm, for the streaming
dataset S, with regards to agreeability with ground truth
via an appropriate distance metric, as well as, tightness of
clustering and last but not the least, 3) scalability of our
algorithm over different sizes of both batch and streaming
datasets B and S respectively.

B. Results on Artificial Datasets

1) Gaussian patches on Isometric Swiss Roll: Figures. 1c,
1d, 1e demonstrate the results with this dataset for Isomap,
M-Isomap and our approach respectively. Both the M-
Isomap and S-Isomap++ algorithms can deal with individual
manifolds better than Isomap, which severely deforms the
individual clusters. It should also be noted that whereas both
the M-Isomap and S-Isomap++ algorithms required small
values of k i.e. k = 8 to operate, Isomap needed values of
k ≥ 500 to even work. As a consequence, idiosyncrasies
i.e. short-circuiting become a factor to distort the uncovered
embedding. M-Isomap has scaling issues and can only seem
to attempt to position the individual manifolds in the global
ambient space correctly, without being able to recreate the
spread, which defined the individual manifolds. We think
that M-Isomap internally normalizes individual manifolds
which results in this behavior. Our approach, S-Isomap++ is
the most robust in its recreation of the ground truth.

2) Intersecting Swiss-roll with R3-dimensional plane:
Figure. 2 demonstrates our experiments with this dataset.
We evaluate different algorithms to see how well they
recreate the ground truth (Figure. 2a). Both Isomap and M-
Isomap produce the same output, given M-Isomap employs
a nearest-neighbor based clustering strategy to disambiguate
between manifolds, and hence is unable to handle inter-

Figure 6: Top Left: Actual manifolds in R3 space, clustered
to demonstrate individual manifolds, Top Right: Recreation
by Isomap/M-Isomap, Bottom Row: Recreation by our ap-
proach, S-Isomap++.

secting manifolds, which results in highly distorted recre-
ations of the ground truth. As before, S-Isomap++ produces
the most robust recreation of the ground truth. Figure 6,
demonstrates how well S-Isomap++ recreates the original
manifolds, in case the batch B is clustered correctly. M-
Isomap/Isomap are unable to recreate the ground truth and
severely contort the ground truth.

3) Tangent Manifold Clustering: Here we present clus-
tering results for intersecting manifolds. (See Figures. 2, 7
for the different datasets). The table below demonstrates
accuracy values7 with which the L-1, L-2 metric schemes
proposed in this work, along with the technique proposed
by Gunawan et al. [7] clustered the different intersecting
manifolds. The L-2 metric performed much better than
Gunawan’s approach, however the L-1 metric performed
the best. The accuracy values are indicative of the level of
difficulty to cluster the different scenarios.

Method L-1 L-2 Gunawan
Sphere-Sphere 0.825 0.619 0.5
Sphere-Plane 0.759 0.602 0.5

Swiss Roll-Plane 0.838 0.621 0.5

4) Effect of different parameters: Here we present results
of the effect of changing the different parameters of the
S-Isomap++ algorithm, while keeping all other parameters
fixed. Figures 8, 9, 10, demonstrates the effect of parameter
λ, k and l on the embeddings uncovered by the S-Isomap++
algorithm. Larger values of k seems to make the manifolds
more uniform or rounded. Larger values of parameter l
seem to stretch the manifolds. Parameter λ seem to separate

7Gunawan’s approach was unable to distinguish between the intersecting
manifolds scenarios and always clustered them as one and hence its
accuracy was 0.5 in all cases.



Figure 7: Left: Original datasets unclustered, Right: Clus-
tered using the proposed tangent clustering method.

Figure 8: Effect of changing λ. Top Left: λ = 0.01, Top
Right: λ = 0.02, Bottom Left: λ = 0.04, Bottom Right:
λ = 0.16

the manifolds apart when it has larger values. This is
really interesting since it means we can use it to visualize
manifolds better on account of separability.

Figure 11 demonstrates the scalability of our algorithm
with regards to streaming data S. Batch B having size
n = 2000 was used for this experiment. The timing results
are in log scale and clearly demonstrate the efficiency
gained. M-Isomap has the same result as Isomap since
it cannot distinguish between intersecting manifolds and
treats them as one. While the run-time for Isomap/M-Isomap
increases rapidly with increasing stream size, the run time
for S-Isomap++ does not grow much at all, making it highly
conducive to large stream processing.

C. Results on MNIST Dataset

The table below shows results for different digits of the
MNIST dataset. Using a batch dataset B of size n = 2000,
a streaming dataset S of size m = 4000 was recreated in

Figure 9: Effect of changing k. Top Left: k = 8, Top Right:
k = 16, Bottom Left: k = 24, Bottom Right: k = 32

Figure 10: Effect of changing l. Left: l = 1, Right: l = 4

3D by the S-Isomap++ algorithm, for each of the digits.
Subsequently the 3D recreation was compared to the 3D
ground truth obtained by running Isomap on all digits, using
the Procrustes Error metric to measure the quality of the
recreation.

The Procrustes Error metric determines an optimal align-
ment between two matrices X and Y and returns a goodness-
of-fit criterion, based on sum of squared errors. As the results
below demonstrate, the recreation error is pretty low, even
after embedding in the common global space. This shows
the efficacy of the S-Isomap++ algorithm.

digit ‘0’ 0.0296 digit ‘3’ 0.0364 digit ‘6’ 0.0476
digit ‘1’ 0.0806 digit ‘4’ 0.0586 digit ‘8’ 0.0712
digit ‘2’ 0.0499 digit ‘5’ 0.0449 digit ‘9’ 0.0498

VI. CONCLUSION

The proposed S-Isomap++ algorithm allows for scal-
able non-linear dimensionality reduction of streaming high-
dimensional data. By allowing for the samples to belong
to multiple manifolds, or sampled non-uniformly from a
single manifold, we have developed an algorithm that can
be applied to a wide variety of practical settings. Moreover,
the two-phase strategy for streaming Isomap, first proposed
in [19], and adapted here for multiple manifold learning,



Figure 11: The results are in log scale and demonstrate the
scalability of our proposed algorithm.

allows us to scale a computationally intensive algorithm
(Isomap) to arbitrarily large streams.

The ability to cluster data lying on multiple intersecting
manifolds is a key innovation, proposed as the Tangent
Manifold Clustering algorithm, allows us to automatically
identify the number of underlying manifolds. One limitation
of the method, however, is that it assumes that all manifolds
are represented in the batch data set, which means that a
novel manifold behavior that might appear subsequently in
the stream, will not be learned. This issue will be studied in
future research.
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