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ABSTRACT
Modern supercomputers have millions of cores, each capable of ex-
ecuting one or more threads of program execution. In these com-
puters the site of execution for program threads rarely, if ever,
changes from the node in which they were born. This paper dis-
cusses the advantages that may accrue when thread states migrate
freely from node to node, especially when migration is managed
by hardware without requiring software intervention. Emphasis
is on supporting the growing classes of algorithms where there is
significant sparsity, irregularity, and lack of locality in the memory
reference patterns. Evidence is drawn from reformulation of sev-
eral kernels into a migrating thread context approximating that of
an emerging architecture with such capabilities.
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1 INTRODUCTION
A thread’s “site of execution” is the core that contains the key state
information needed for a thread to run, and that is capable of up-
dating that state as the thread’s program is executed. Today, the
ability to move the site of execution of a thread is typically at best
limited within a single node. This paper discusses the potential im-
pact on program performance and complexity if that limitation is
not only lifted, but augmented by hardware to make “migration”
between execution sites largely “invisible” to the program.
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Such a capability will become more important as applications
leave the dense regular world of LINPACK linear algebra and en-
ter one where irregular accesses (both in time and location) be-
come commonplace. In this regime, the effects on conventional
cache-based architectures are severe. Similar problems surface as
we enter the Internet of Things and demand real-time process-
ing of floods of data. This paper will build evidence that substan-
tial benefits are possible for both classes of problems if migrating
thread capability is incorporated into the architecture.

The organization of this paper is as follows: Section 2 provides
a definition of thread migration. Section 3 describes some systems
that have hardware support for migration, including one where
that capability is at the heart of the architecture, and which can
scale to very large sizes. Section 4 describes a simple model for
bounding performance when the majority of computation is done
bymigrating threads. Sections 5 and 6 look at two different kernels
where reported information indicates that poor scalability is due to
memory and execution model issues that may be largely avoided
by migrating threads. Section 7 concludes.

2 MIGRATION
In conventional usage a process represents an execution stream for
a program acting on related data. A process state is all the informa-
tion needed to carry out that stream, including the code, data, call
stacks, open files, mappings, etc. A thread is the sequential execu-
tion of one of perhaps many concurrent paths through a process.
Each thread has a thread statewith two parts - a part common to all
threads in the same process, and a part relevant to just that thread.
This part may have two pieces: a fixed size piece holding the work-
ing register values, and a variable size piece representing memory
resources allocated to that thread, such as its call stack.

An execution site is the physical hardware where the state of
a thread is modified to reflect and track the thread’s execution.
Such sites are usually a core within a microprocessor chip within
a particular node that is within a particular rack. If a core is multi-
threaded then one core may hold multiple thread states.

The “migration” of a thread refers to a change in its execution
site. Working register values are moved from one core to another,
and any cached parts of a thread’s variable state are made available
to that core, with the values as modified by the thread just before
the thread moved sites. For the migration to be valid, the process
state must be visible to the thread at its new site.

In modern systems, thread migration to different sites happens
all the time, but is confined in the range of possible execution sites.
A thread may be executing on one core in a multi-core system and
makes an I/O request. The thread’s register state is saved until the
I/O operation completes, and then is re-established in some other
core. Any cached memory state, such as a call stack, must be made
available at the new site through some coherency mechanism.
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Migration via software goes back to the 1990s’ when load bal-
ancing across nodes in a parallel cluster became important, espe-
cially for distributed shared memory systems ([9, 10, 18, 23]).

3 HARDWARE SUPPORTED MIGRATION
While not a central part of current mainstream architectures, there
have been significant demonstrations of various forms of hardware-
supportedmigration capabilities. The J-machine [11, 12] was a fine-
grained parallel computer that had both hardware and instruction-
level support formessage-passing that could support remote spawn-
ing of functions, as in activemessages. Amessage included operands
for the new threadwhen it was spawned. The Cray T3D [20] and re-
lated follow-ons supported a form of a global address space where
some atomic operations could be specified to execute against re-
mote memory. DIVA [17] placed cores near each of multiple mem-
ory modules, and allowed active-message-like function calls to be
spawned on the conventional host, and routed on the basis of mem-
ory address. PIM Lite [26] placed cores directly on a memory chip,
and allowed explicit migration of threads between them.

A variety of proposals have beenmade (e.g. [25]) to hardware ac-
celerate the process of saving, moving, and restoring thread states
within a conventional multi-core architecture.

The EMU architecture [16] goes much further in integrating mi-
gration into all aspects of a scalable system architecture. As dis-
cussed in [21], thread states are explicitly separated from process
state, and made very light. A single shared address space encom-
passes the memory in all nodes, with each node made up of multi-
ple nodelets. Each nodelet contains a combination of memory and
its own set of highly multi-threaded cores. The cores support the
automatic migration of execution threads whenever the threads
attempt to access a memory address that is not contained in the
current nodelet. When a non-local address is detected, the core
suspends the thread and sends its state to the nodelet holding the
desired address. At this nodelet, the thread state is placed in any
available core and restarted. Thus, memory references by a thread
are always performed “locally.” An extensive set of Atomic Mem-
ory Operations (AMO) can take advantage of this locality. In ad-
dition, a thread can spawn both other threads and write-based
remote atomic memory operations (akin to very efficient special
purpose migrating threads). Programming the system is done in
Cilk [7]. Caching may be present, but is limited to individual mem-
ory channels (effectively upping the local access rate). Thus no co-
herency across nodelets is needed. Table 1 summarizes some ex-
pected design parameters, with the FPGA box configuration com-
pleting final test, and the others in design.

4 THE VISIT MODEL
To date, many applications designed for Emu exhibit three levels
of threads. An original root thread is spawned at the start of a
program execution, and visits all nodelets that will be involved in
the computation. At each nodelet a child thread is spawned to ini-
tialize any local storage (such as local free pools and call stacks)
and then spawn some number of third level worker threads. These
threads perform most of the actual computation and, for the appli-
cations considered here, their execution path takes them through
data structures spread out across the system.

FPGA-based ASIC-based
Box Rack Box Rack

Nodes in System 8 256 8 256
Nodelets per Node 8 8 8 8
Nodelets per System 64 2048 64 2048
Mem B/W per Nodelet 1.6 1.6 3.2 3.2
Cores per Nodelet 3 4 4 4
Core Clock (GHz) 0.3 0.3 2 2
Instr/s per Nodelet 0.9 1.2 8 8

Network Ports per Node 6 6 8 8
Injection B/W per Port 2.5 2.5 5 5

Injection B/W per Nndelet 1.875 1.875 5 5
Bandwidths in GB/s

Table 1: Emu Design Parameters.

There are typically many worker threads, and over an extended
period most nodelets see a similar number of such visits with sim-
ilar properties. A simple model can then be developed for estimat-
ing performance bounds in terms of maximum “visits per second.”
When a thread arrives, it stays for some period of time, making
memory references and executing instructions. When a reference
to a non-local location is encountered, the thread is migrated by
the hardware without software intervention. A visit thus incorpo-
rates an average stay and an average migration.

It is often possible to estimate the number of memory accesses
and the number of instructions an average stay performs. Divid-
ing accesses into the maximum access rate possible for a nodelet
provides an upper bound on the maximum number of stays that
may be executed per second on one nodelet. A similar bound can
be made with instructions and peak instruction rate.

It is also possible to estimate the size of the thread state that
must migrate and thus the size of the packet that must be injected
into a node’s network ports. Given the peak injection bandwidth
for a node into the system interconnect network, we can compute
the average injection bandwidth per nodelet. Dividing the average
injection bandwidth by the size of a thread migration packet gives
the max number of migrations per second that may leave a nodelet.

Taking theminimumof all three bounds provides an upper bound
on the max number of visits per second that a single nodelet can
sustain. Multiplying by the number of nodelets gives a bound on
the total number of visits supportable by a system per second.

This visits/s number is usually translatable into a more mean-
ingful performance metric for the application in question. For ex-
ample, Sec. 5 describes a sparse matrix problem where each visit
encounters some number of non-zeros, each of which is involved
in two floating point operations. Thus multiplying the aggregate
visits per second by 2 times the number of non-zeros gives an ef-
fective floating point rate.

5 SPMV
The producty = Ax of a sparsematrix A and a dense vector x (often
termed SpMV) is a staple of many modern codes (see [14]). A key
parameter is the total number of non-zeros in the array versus the
array’s total size. A related parameter is the average row sparsity
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(termed “s” here), which equals the average number of non-zeros
per row. HPCG (High Performance Conjugate Gradient)[15], for
example, uses an SpMV at the core of a highly scalable parallel
computation where each row has at most 27 non-zeros in it (an s
of 27). Variations [19] support many graph algorithms.

For HPCG “floating point efficiency” (ratio of sustained flops
over peak flops) is a key indicator of how well an architecture is
suited for such problems. Today such numbers are at best a few
percent, indicating that there is a serious problem with today’s
architectures handling such problems. This section explores what
appears to be the underlying cause, and projects that migrating
threads have the potential for a significant improvement.

5.1 Reported Data
Fig. 1 graphs some reported results[8]for a system with up to 8
nodes of dual-socket Intel X5650 6-core chips1. Each chip had an
aggregate peak floating point potential of about 64GF/s, and three
memory channels had an aggregate peak memory bandwidth of
about 32GB/s. The matrices used in the study were taken from
a large online collection[13], and had a variety of sparsities from
about 7 to 398, with between 72,000 and 0.5M rows. A hybrid al-
gorithm was used, where each 6-core socket supported a separate
MPI process, with P = p2 such processes arranged in a square
array of p by p processes. The algorithm assumed that the dense n-
vectors x and y were striped down the memory of the first column
of processes.Whenmore than one process is used, the stripe of x in
each of the left column processes is sent to the diagonal process in
that row, and then broadcast to each process in the corresponding
column. Thus when the actual numeric computation begins, each
process would have an n/p by n/p sub-array of A, and a matching
stripe of x of length n/p. An OpenMP multi-threaded kernel then
performs the local sparse matrix, dense vector product. The result-
ing stripe of n/p elements of y are then sent to the leftmost process
in that process’ row, and then atomically added into the y vector
stripe residing there.

Fig. 1(a) graphs the reported sustained performance for a single
process running on a single 2-socket node as a function of the num-
ber of threads (up to 2 per core), with separate lines for matrices
with 4 different sparsities. The number in the key for each line is
its “s” value. As can be seen, maximum performance occurs around
6 threads (notionally one thread for each core in the socket), is rel-
atively flat thereafter, and is at best a few percent of the maximum
floating point capabilities of the chip. This implies the capacity of
some other resource has been reached, such as memory bandwidth.
Further, the sparser the matrix, the lower the peak performance.
From this data, the rest of the referenced study fixed each process
at one socket, with each of the 6 cores running a single thread
within the process.

Fig. 1(b) graphs sustained performance as a function of the num-
ber of processes (1, 2x2, and 4x4). As can be seen, scaling is rela-
tively low, and in fact is negative for the sparser two cases. Fig. 1(c)
presents the same data but normalized each curve to the perfor-
mance achieved at 1 process, and adds a line representing “perfect

1Data for a more advanced chip are also included, but is not as comprehensive as that
reported for this system.

strong scaling.” The sparsest case loses almost an order of magni-
tude in going from 1 to 4 processes, and the second sparsest at best
matches the performance of a single process by the time we get to
16 processes. Again this is an order of magnitude less than what
perfect scaling would provide.

A common metric used in many rankings is the “floating point
efficiency” (sustained flops over peak flops). Fig. 1(d) diagrams the
floating point efficiency for these results. In contrast to LINPACK
(dense linear algebra) where efficiencies in the 80s’ to 90s’ are typ-
ical, efficiency here deteriorates rapidly to considerably less than
than 1% for the sparser cases. These sparser cases are even much
worse than seen in HPCG2 [15], where efficiency is between often
1 and 4%, and the equivalent sparsity per process remains relatively
constant at about 27 regardless of the number of processes.

5.2 The Problem
Clearly there are problems with such a kernel, especially when
sparsity is small. Fig. 1(a) shows something other than concurrency
is bounding performance even for the single node multi-threaded
case. Further, parallelizing the kernel to run on multiple processes
makes the situation even worse. In this section we try to abstract
out both problems so that they can be understood in general.

We first posit that the performance bounding in the single pro-
cess case is memory bandwidth3. To validate this, we can compute
backwards from the peak 6-thread performance at each s value to
estimate the number of bytes fetched from memory per row com-
putation as a function of sparsity and assuming that the memory
was running at its maximum bandwidth. As can be seen in Fig. 1(e),
an excellent fit is a linear relation of 19s + 100 bytes per row. The
constants in this model match almost exactly what we would ex-
pect if caches were ineffective (which we might expect in a sparse
problem). For each non-zero in a row there are 3 memory refer-
ences: the value of the non-zero, the column in which the non-zero
resides, and then the matching value from x. If each is 8 bytes, and
there are no cache hits, the total would be 24 bytes. If the column
indecies are 4 bytes rather than 8, the byte count drops to an almost
perfect match of 20 bytes. The 100 bytes per row from the curve fit
is equivalent to about 12-13 8-byte accesses frommemory to select
and start each row computation, and then add the resulting sum
back into memory. Again this seems quite reasonable.

The dip in performance when we start adding more processes
has at least two likely causes. First, this is a strong scaling code, so
unlike HPCG, the sparsity seen by each process decreases as the
number of processes increase. For p2 processes the sparsity seen
by each process decreases to s/p. This increases the effect of the
fixed 100 bytes per row startup costs.

Second, of probably bigger effect, is the communication needed
by the algorithm at the beginning and at the end. An MPI process
adds at least 6 memory references per word transferred: a read
from the memory array as declared by the program, a write to an
I/O buffer, a read from that buffer when it is ready for transmis-
sion, a write to the corresponding I/O buffer on the other side, a
read from that buffer, and a write into the process’s memory. This

2http://www.hpcg-benchmark.org/
3[22] came to similar conclusions after performing an analysis of the bigger HPCG
application that incorporates SpMV.
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Figure 1: Reported SpMV Single Process Performance.

happens at least twice in the initialization time: from each of col-
umn 0 process to the matching diagonal process, and then up to
each process in the column (perhaps more depending on the im-
plementation of a broadcast). This is even worse on the cleanup,
where each process transmits its stripe of y to its column 0 pro-
cess, where an atomic add to memory must be performed. Also,
any time that a thread in the program spends stalled for an MPI
request to complete is equivalent to adding more "accesses" to the
constant part of the model.

There are two complications to this effect. First is that the stripes
of x and y that are read and written are probably largely in the
samememory channel, which in this case has the effect of reducing
effective bandwidth by a factor of 3. Further, the write-backs of
the y strips all target the same process (column 0). This causes a
hot-spot for incoming messages, which means that those transfers
are driven by the network’s bandwidth and the software stack to
handle the MPI calls, not that of memory.

A more detailed analysis4 of the MPI collective indicates that
its implementation determines the bathtub shape of the curves. A
simple implementation that transfers the entire segment of y from
a process to its leftmost avoids the dip for small p, but at larger
p dives without any recovery. Partitioning the y segments into
smaller packets provides more performance, but eventually goes
negative in the same way. A log-based tree reduction, on the other
hand, reproduces the shape almost exactly. The early dip is due
4There is insufficient space in this paper for the details.

to the extra steps needed to combine segments two at a time, but
once p gets large enough, the log number of steps, rather than lin-
ear in p helps and the performance turns around and climbs with
larger ps’. The resulting curve, however, stays well under an order
of magnitude of the perfect line.

Fig. 1 (f) assumes the same linearms+b model as before, but ad-
justs the s to s/p forp2 processes (to account for the first effect), and
derives backwards an equivalent resulting “constant” that would
be added to get to the same measured performance. The 2x2 and
4x4 cases show a huge jump over that of a single process (factors of
20x to 80x), and correspond to the aggregate of the factors just dis-
cussed. This accounts for the significant dip in sustained gflops/s
for low sparsities as parallelism increases.

5.3 SpMV via Migrating Threads
Migrating threads can help not only with both the above prob-
lems, but also in reducing the complexity of the code. Consider a
straight-forwardmigrating thread code running on amachinewith
P nodelets (with all memory in a common address space). Assume
that vectors x and y are striped equally across all nodelets so that
x[j] and y[j] are in the same nodelet. Assume also that each non-
zero A[i, j] is represented as 3 words stored in the same nodelet as
x[j]. Two of these are the same as in a CSR representation: the col-
umn number j and the value of the non-zero. The third is a pointer
to the next non-zero triple in row i , which may be on a totally dif-
ferent nodelet. Assume also that there is a third vector co-located
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with x and y where the i’th element is a pointer to the first non-
zero in the i’th row of A. Thus each nodelet has the same number
of rows from A, and equal length stripes of x and y (including all
the y values that will be modified by processing the locally orig-
inated rows), and all elements of A that fall under the matching
column indices of the local stripe of x values.

An algorithm for SpMV is now essentially the same as for the
OpenMP version discussed above. A thread is given a row index,
and proceeds down the row, performing eachmultiply-add for each
non-zero, with the final sum written to y[i] at the end. Assuming
that the thread for row i originates in the nodelet holding x[i],
there are at most s+1 migrations in this process: one each to the
next non-zero and one to write the sum into y[i].

In terms of memory references, there are only two small addi-
tions to the basic OpenMP model described above. Instead of 3
memory reads per non-zero there are 4 (the extra pointer), and
there may be an extra read at the beginning of the row to fetch the
pointer to the first non-zero in the row. A reasonable upper bound
for the number of bytes needed from memory for a row is thus
32s + 108 bytes, assuming no helpful caching effects and regard-
less of where the non-zeros are and independent of P.

Significant optimizations are possible, such as by adding CSR-
like edge blocks to handle all, and only, non-zeros that are in the
same nodelet. The Stinger data structure [5] is an excellent match
to such representations.

We note that the characteristics of the aggregate load on the
network is better than for the hybrid algorithm. Since rows start
and end at all nodelets, there is none of the hot-spotting described
above. Further, a variety of tweaks could increase the effective uti-
lization of the bandwidth by having say all the even rows by linked
lower to higher and the odd rows linked higher to lower.

We can now compare implementations on the basis of howmany
sustainable flops are achievable per byte of memory bandwidth from
a single memory channel (a single nodelet). Multiplying this ra-
tio by the number of memory channels in a system, and then the
bandwidth per memory channel gives the sustainable flop rate. Fig.
2 provides curves for both the hybrid algorithm discussed above
and the migrating algorithm. For the hybrid case, each socket has
three attached memory channels, so one process in Fig. 1 corre-
sponds to 3 channels. Thus the hybrid numbers are computed by
taking the original performance data and dividing by the number

of channels (3) and the per channel bandwidth (10.66 GB/s). The
migrating thread numbers are computed from the observation that
2s flops are computable for each 32s+108 bytes read from anymem-
ory channel.

The only place where the hybrid algorithm on the conventional
architecture does better is for the 3 channel (single socket) case
where the multiplier for the OpenMP case is 19 bytes per non-zero,
vs 32 for the migrating thread. After that, as soon as the deleterious
effects of inter-node parallelism come into play, the migrating case
wins, and by up to 50+X, especially for the sparsest cases.

6 FIREHOSE - A STREAMING APP
Firehose is a benchmark [2] designed to represent cyber-security
applications that must process large streams of meta-data from net-
work traffic in real-time, and detect possible anomalies. The input
is a high-speed stream of datums, where each consist of an ASCII
key (corresponding to a 64-bit IP address), an ASCII value (which
depends on the benchmark variant), and a truth value (used only
to verify that the implementation is correct). Processing consists
of tracking the incoming stream for datums with the same key. An
event is declared when some number (24) with identical keys are
found. Further, detecting an event leads to a test if the event is
an anomaly - when the set of values associated with the detected
stream has some characteristics. Performance is measured by the
peak datums per second5 that the system can handle.

There are three variations of this benchmark. InAnomaly 1 there
are at most 100K unique keys and the values are either 0 or 1, taken
from either an “unbiased” distribution (approximately equal num-
bers of 0’s and 1’s) or “biased” distribution (15 to 1 ratio of 0s and
1s). Anomaly 2 is similar but there are an unlimited number of pos-
sible keys in the generated stream. Anomaly 3 has a two-stage pro-
cess involving an “outer” and an “inner” key.

Fig. 3 diagrams a generic processing flow for these benchmarks.
Potentiallymultiple concurrent streams provide packets, eachwith
multiple ASCII-encoded datums. After parsing of the ASCII string,
a hash table is interrogated to see if the key has been detected be-
fore. If not, a new entry in the hash table is formed. If so, a count is
updated on the number of observations and the number of times a
value of 0 was found. When the observation count reaches 24, the
value count is checked to see if the stream was unbiased or not. If
the latter, an anomaly message is formed and sent.

6.1 Reported Data
Fig. 4 plots data from the website [2] using a dual-socket 6-core In-
tel X5690 3.46 GHz machine, with each socket supporting 3 mem-
ory channels and a peakmemory bandwidth of 32GB/s. Depending
on the implementation, some number of these cores are used for
generation of the data streams, and the rest for the actual stream
processing. Four different programming paradigms are reported:
pure sequential Python andC++ implementations, use of the PHISH
library [24] (a lightweight framework for streaming data viamessage-
passing), and use of theWaterslide framework [3] for streammulti-
threading, based on Sandia’s Q-Threads [27] multi-threading li-
brary. The hollow markers in Fig. 4 represent data from the Anom-
aly 1 version of the problem; the filled markers represent data from
5The spelling “datums” comes from the documentation.
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Figure 3: Firehose Processing Flow.
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Figure 4: Firehose on Single Node.

the Anomaly 2 version. The dotted lines represent linear projec-
tions of performance if the best single core implementations (C++)
could scale perfectly to multiple cores.

The Waterslide implementation in particular is at the surface a
good match for processing such as shown in Fig. 3. The stream of
incoming datums go through a series of functions in a pipelined
fashion, with little direct interaction between individual inputs.

Berry [6] reports a bigger study of an MPI+PHISH implementa-
tion of Anomaly 1 on a Cray CS300 cluster system [1] with 1848
nodes. Each node has two 16-core sockets, each with 4 memory
channels aggregating about 60 GB/s of bandwidth. Each node also
has ports into a Dragonfly interconnection network.

The sockets in each node either generate simulated data to be
processed, or perform the processing on that data. Sockets devoted
to processing used 6 cores for parsing input traffic, 6 cores for key
hashing, and 2 cores for anomaly detection. The largest reported
run processed 1.1 billion datums per second with about 400 nodes.
Scaling was fairly linear up to about 300 nodes handling about 975
million datums per second, for an average of about 3.25 million
datums/s per node. At 80 nodes per rack, this is about 260 million
datums/s per rack.

6.2 The Problem
Fig. 4(a) indicates that even within a single shared memory envi-
ronment there are significant scaling issues for both versions of
the benchmark. The sequential C++ code provides far more per-
formance per core than any of the parallel forms, and by 7 cores
even the best of the parallel paradigms (Waterslide) have maxed
out at perhaps twice the performance of a single core. As the right
curve shows, the effectiveness of parallelism dies rapidly as core
counts increase, for both benchmark versions.

If in fact the bottleneck is memory bandwidth, and the 7 cores
use all the memory bandwidth on the node, then for Anomaly 1
processing, each datum requires over 5,000 bytes accessed from
memory, and over 18,000 for Anomaly 2.

The cluster results are in line with these conclusions. The use of
14 cores of a more modern chip actually provide only about 1/3 of
the performance of the single node 7-core PHISH implementation.
If all the memory bandwidth is consumed by analysis, the average
bytes accessed per datum is about 18,000 bytes.

As with SpMV, there are probably several memory-related rea-
sons for these issues: the addition of extra memory operations
to handle the queueing and de-queueing of the transfer between
nodes, and the need to introduce atomicity in updating data entries
in the hash table when multiple datums descend on the same entry
concurrently. Further, the key hash tables must be large enough
to allow 128K+ different keys to be routed to separate bins with
high probability. This probably causes significant caching prob-
lems, pushingmost of thememory references out to the real memo-
ries, and requiring significant coherency traffic. Finally, it is likely
that the hash table accesses use very little of the bandwidth re-
turned by a typical 64 byte access to a modern DDR DIMM, mean-
ing that memory bandwidth must be inflated significantly above
that actually needed.

6.3 Firehose via Migrating Threads
Again as with SpMV, the potential use of a migrating thread for
Firehose goes a long way to eliminating the above problems. A
single thread could be written to implement one datum passing
through Fig. 3 much as was done with the C++ implementation,
with atomic operations added when necessary to guarantee cor-
rect updates to the hash table in the presence of multiple threads.
No extra memory operations need be added to buffer data between
processing stages: each thread carries the datumwith it as it moves.
No extra sequences to call and return from various procedure calls
are needed: once launched, a thread can perform the entire process-
ing of a single datum. Only when it can find no new datum packets
need the thread return to some call stack to signal its termination
and potentially wake a parent.

Further, having a large hash table spread out over a potentially
large number of nodelets means that different threads represent-
ing different datums have good chances of executing on different
nodelets, upping dramatically the potential for good scaling via de-
cent load balancing.

To get a feel for what such memory traffic might entail, Fig.
5 summarizes a spreadsheet model for the processing of a single
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Figure 5: Memory Access Estimates for a Migrating Firehose Thread.

datum by a single migrating thread. The cells filled with yellow
are numbers entered as estimates for each step, based on a hand-
assembly of possible code. Each column in the table is a different
stage in the processing pipeline. The four rows labelled “Reads”,
“Writes,” “CAS” (Compare and Swap), and “Atomics” (other atomic
memory operations such as atomic add to memory) represent dif-
ferent classes ofmemory operations. Assuming that CAS andAtom-
ics take two memory accesses each (a read and a write), there are
about 13.1 memory operations that translate into about 14.4 8-byte
memory accesses needed per datum6.

This table accounts in the “Insert and Parse” column for some
outside I/O source having to write the ASCII form of the datum
into a buffer and the thread then needing to read it out. Interest-
ingly, these two operations account for over 40% of the memory
operations per datum, suggesting that our supposition as to the
cause of the slowdown in the conventional implementations due
to multiple layers of such extra buffering is probably correct.

For a memory system where each access returns just 8 bytes (as
in the systems of Table 1, this 14.4 accesses for anAnomaly 1 datum
translates into about 115 bytes of bandwidth per datum (almost
1/50th of that from the conventional single node solutions).

Estimating code length in an architecture designed for migrat-
ing threads indicates a path length per datum of about 420 instruc-
tions, of which about 3/4 are for the ASCII conversion and hash
key computations.

There is usually at least one migration: from the nodelet where
the datum is found to the nodelet holding the appropriate hash
table entry. Depending on how reports are accumulated, occasion-
ally a thread may migrate to some nodelet that holds an output
record queue (this is at most once every 24 datums, and usually
a lot less). Another migration would be needed if the nodelet re-
turned to its source node after completing a datum. This could be
avoided by having the thread look for work at whatever nodelet it

6Functions such as CAS and atomics take two accesses per operation

Per Peak Visits/sec
Visit FPGA ASIC

Memory Accesses 14.3M 14 28M
Thread Size 128B 14.6M 29M
Instructions 420 2.1M 19M

Bound 2.1M 19M
Table 2: Bounding Firehose on a Single Nodelet.

finds itself on after processing. However, such a move may end up
introducing load imbalances, as certain nodelets may end up being
abandoned by processing threads.

A better solution is to use another aspect of a migrating thread
architecture, namely the ability to spawn child threads cheaply. In
this scenario, some number of threads may stay resident in each
nodelet, with each simply fetching, parsing, and possibly hashing
each datum, and spawning a child thread at that point. This child
thread then migrates as necessary, and at its completion can sim-
ply die. In stream processing we don’t really care about when the
“last” thread is done, as there are no barriers before any next steps.
Also, this means that we can keep approximately the same num-
ber of threads processing incoming datums per nodelet, and select
that number to utilize most of the memory bandwidth if no other
children are passing through.

Table 2 uses the visit model to provide an upper bound on the
potential processing potential of a single nodelet. As can be seen,
the bounding condition is the instruction processing rate, and 3/4
of this is related to string handling. It is not hard to believe that
some better string handling sequences might double or more the
visit limit for this condition, and still leave some memory and net-
work head room. However, using a single node with 8 nodelets as a
possible point of comparison to a node in the conventional systems
(both have about the same number of memory channels), the take-
away is that even with this lower bound, 8 nodelets implemented
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with FPGAs have the potential for an aggregate performance of 16
million datums/s, or about 5X that of a CS300 node. AnASIC imple-
mentation ups this ratio to about 40X on a node basis, or upwards
of 149X on a rack to rack basis.

7 CONCLUSION
Hybrid parallel codes use one paradigm (OpenMP) for code run-
ning inside a single node, and an entirely different paradigm (message-
passing) between nodes. This leads to complex codes, especially
when patterns of data transfers between nodes are unpredictable
in time or irregular in source-destination. It also affects perfor-
mance by adding significant extra memory traffic, especially when
the amount of processing needed on each node is small. The two
kernels described here, SpMV and Firehose, are significantly differ-
ent from each other but both suffer when scaling beyond a single
node is attempted.

This paper discusses an alternative based on allowing threads
to change their sites of execution invisibly within a large shared
address space. While this isn’t a universal panacea, in cases where
where there is little locality, then as shown here substantial per-
formance gains are possible, with simplified code. For SpMV, the
code is simple row traversals, and gains over conventional codes
may range as high as 50X, especially when matrices are extremely
sparse and irregular. For streaming problems like Firehose, the mi-
grating code paradigm again resembles considerably that of a sim-
ple serial code. Any “pipelining” in execution happens automati-
cally as a thread touches different data structures (located on dif-
ferent nodelets) on the computational path.

A simple “visit” model permits performance bounding of many
algorithms by counting the basic memory and instruction opera-
tions that need to be performed by a typical thread from the time
it arrives on a nodelet until the time it migrates away. For many
applications there are a large number of “worker” threads perform-
ing the same migration pattern, so such an approach is relatively
accurate in projecting a potential performance throughput.

Real world proof of the validity of this new paradigm should be
be available in the near future when actual codes are run on real
hardware supporting the paradigm. In addition, designs of codes
for more complex applications such as Breadth First Search [4]
have been completed, and will also be tested in the near future.

Looking down the road, the migrating thread paradigm may
also make an outstanding match for systems with significant near-
memory processing. Such accelerators will need to be told when
to start processing, and what functions to perform on what data.
A migrating thread can visit a nodelet holding an accelerator, and
spawn a child thread to run on the accelerator. Depending on the
application, the parent thread could be suspended until the child
completes, pick up the results, and then proceed to perform other
functions elsewhere in memory, all without ever having to report
back to some central node.
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