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Abstract- Interactions between drugs (also known as drug-drug 
interactions or DDis), which may cause adverse affects, are of 
much concern; predicting, anticipating and avoiding them is key 
for improving patient safety and treatment outcome. Knowledge of 
DDis is important for physicians to avoid adverse effects when 
prescribing two drugs simultaneously. DDis are often published in 
the biomedical literature; however, gathering information about DDis 
is time consuming given the shear volume of publications. Auto-
matic text classification can speed up access to documents related 
to DDis. However, the biomedical literature contains a relatively 
small number of publications relevant to DDis, compared to the 
vast amount of irrelevant publications. This imbalance can lead to 
incorrect classification. While methods addressing class imbalance 
have been introduced to correctly identify items in the minority 
(relevant) class to improve recall, they often misclassify items in the 
majority (irrelevant) class, which leads to low precision. To reduce 
the number of irrelevant documents misclassified as relevant (false 
positive), we develop a two-stage cascade classifier. In each step, we 
separate publication abstracts that are DDI-relevant from those that 
are either drug-irrelevant or drug-relevant but DDI-irrelevant. We 
compare our classifier with other popular learning methods that aim 
to handle imbalance, applying the methods to a well-curated corpus 
consisting of DDI-relevant and DDI-irrelevant PubMed abstracts. 
Our method achieves higher precision and Fl measure than other 
methods while maintaining similar recall. 

I. INTRODUCTION 

Drug-drug interactions (DDis) are of much concern; pre-
dicting, anticipating and avoiding them is key for improving 
patient safety and treatment outcome. DDis occur when one 
drug influences the activity of another. According to a recent 
study, DDis are responsible for about 74,000 emergency room 
visits in the USA alone each year [22]. The knowledge that two 
drugs influence each other helps physicians avoid prescribing 
the drugs at the same time. While discoveries concerning DDis 
are published in the biomedical literature, it is hard for human 
readers to find all publications relevant to DDis within the vast 
amount of biomedical literature, maldng it difficult for physi-
cians to keep up with the state of knowledge. In this work, 
we present a supervised learning approach to automatically 
classify biomedical publication abstracts as DDI-relevant or 
DDI-irrelevant, where an article is viewed as DDI-relevant if 
it provides evidence of interactions between drugs. Articles 
that do not discuss DDis are referred to as DDI-irrelevant. 
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Notably, some DDI-irrelevant articles do not discuss drugs 
at all (we refer to those as drug-irrelevant), while others 
may still discuss properties of a single drug or interactions 
between drugs and various chemicals or genes. Although 
these articles are drug-relevant, they do not discuss drug-drug 
interactions, and as such are DDI-irrelevant. Our work forms 
a step toward methodically maintaining and curating public 
information about DDis. 

Several lines of earlier work started addressing classification 
of articles by relevance to DDis. Duda et al. [6] applied 
text classification methods to a corpus of which 200 PubMed 
abstracts were DDI-relevant and 1,800 were drug-irrelevant. 
This corpus does not include among the irrelevant abstracts 
any that are still relevant to interactions between drug and 
other chemicals such as gene or protein. The classification task 
is thus over-simplified since examples from the DDI-relevant 
(minority) class can be easily distinguished from the drug-
irrelevant (majority) class by keywords such as drug names. 
Kolchinsky et al. [10,11] compared several text classification 
methods on another corpus of which 602 PubMed abstracts 
were DDI-relevant and 611 PubMed abstracts that focus on 
topics such as single drug report, drug-nutrient, drug-gene, 
and drug-protein interactions. This corpus, while containing 
drug-relevant abstracts in its negative set, does not reflect the 
inherent imbalance in publication distribution, where there are 
many more DDI-irrelevant abstracts than DDI-relevant ones. 
Other work [9,24,25,26,27] focused on identifying interacting 
drugs within text sentences, rather than on identifying articles 
that are relevant to DDI. 

None of the above work focused on separating DD I-relevant 
abstracts from both other drug-relevant abstracts and drug-
irrelevant abstracts. Moreover, as we have noted, the total 
number of DDI-irrelevant abstracts (both drug-irrelevant and 
drug-relevant) abstracts is much larger than the number of 
DDI-relevant ones. Without handling the imbalance, automatic 
classifiers are trained on a dataset most examples of which are 
from the majority class, which leads to low recall. Such class 
imbalance is characteristic of many real world problems, such 
as fraud detection, anomaly detection, and medical diagnosis. 
It has thus been studied for more than two decades [3,4,28, 



30,8,13,15,14,16]. Classification algorithms that address class 
imbalance typically employ one of the following methods: 
sampling, ensemble, cost sensitive learning, and one class 
learning. Here we focus on two widely used types of methods: 
sampling and ensemble methods [3,4,30,8,13]. 

Sampling typically aims to adjust the data distribution so as 
to obtain a balanced training set. It is based either on over-
sampling from the minority class thus increasing its repre-
sentation in the training set, or under-sampling by selecting 
a subset of instances from the majority class, preventing the 
latter from overwhelming the dataset. While both are simple 
to implement and useful in reducing the level of imbalance, 
they suffer several shortcomings: under-sampling uses only a 
small portion of the data, while ignoring much of the majority 
(irrelevant) data; over-sampling does use all the training data, 
but utilizes multiple copies of instances from the under-
represented class, which can lead to over-fitting [5]. 

In addition to sampling methods, ensemble classifiers are 
often utilized to further improve classification performance. 
Ensemble methods are based on the idea of iteratively training 
multiple weak-classifiers. To classify an instance, the multiple 
weak-classifiers are applied to the instance and the output from 
all classifiers is combined to obtain a classification decision. 
The combination is typically based on stacking, weighted 
voting, or other voting methods. In the context of methods 
addressing class imbalance, weak-classifiers are often trained 
on balanced subsets of training examples. The weak-classifiers 
are sometimes also referred to as base-classifiers [3], which 
is the term we use throughout this paper. EasyEnsenible and 
BalanceCascade are two examples of ensemble methods that 
have shown to outperform many other methods addressing 
class imbalance [13]. 

Meta learning [3] is a specific way of combining classifi-
cation decisions from multiple classifiers. Under this scheme, 
the majority class is split into multiple subsets, each of which 
is of similar size to the minority class. One base-classifier is 
trained per subset, separating it from all instances associated 
with the minority class. Each base-classifier is then applied to 
all the data instances. Following this classification step, each 
data instance is re-represented as a vector of the class labels 
assigned to it by the base classifiers .. The new representation 
is used as input for the meta classifier, which is trained on the 
set of the minority class and one subset of the majority class. 
To label an instance, the base-classifiers are first applied to the 
instance. The meta classifier then labels the instance using the 
class labels assigned by the base-classifiers [3]. 

While the above methods correctly identify DDI-relevant 
PubMed abstracts, they often misclassify drug-relevant ab-
stracts as DDI-relevant, which leads to low precision. To 
improve classification performance within corpora that are 
likely to include drug-relevant abstracts, we develop a two-
stage cascade classifier for identifying DDI-relevant abstracts. 
In the first stage, we classify abstracts into two groups, drug-
irrelevant and drug-relevant. Drug-irrelevant abstracts are 
never DDI-relevant, while drug-relevant ones may or may 
not be DDI-relevant. In the second stage, we thus distinguish 
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between DDI-relevant and DDI-irrelevant abstracts. Each step 
within the two-stage cascade involves a base-classifier. The 
classifier labels an article as DDI-relevant if and only if 
the first base-classifier labels the article as potential DDI-
relevant and the second, downstream classifier labels it as 
DDI-relevant. We train and test our method on a corpus 
that includes both drug-relevant and drug-irrelevant abstracts 
as part of the DDI-irrelevant subset. Our corpus consists of 
11,499 PubMed abstracts as described in the next section. 

The rest of the paper is organized as follows: Section II 
describes the dataset and methods. Section III presents exper-
iments and results using the two-stage cascade as compared to 
others. Section IV discusses the advantage of using the cascade 
method for our task, and Section V summarizes the findings 
and outlines future directions. 

II. DATA AND METHODS 

Building a text classifier requires a set of documents for 
training and testing, where documents are typically represented 
as feature vectors. When the class distribution in the training 
set is skewed, the imbalance needs to be addressed. In this 
section, we discuss each of the above. 

A. Dataset 
The DDI corpus that we use throughout our experiments 

was created by the Center for Computational Biology and 
Bioinformatics at Indiana University and Purdue Univer-
sity Indianapolis (IUPUI). The corpus consists of 900 DDI-
relevant, 600 drug-relevant but DDI-irrelevant, and 9,999 
drug-irrelevant publication abstracts obtained from PubMed 
[18]. To retrieve DDI-relevant and drug-relevant abstracts, we 
first search PubMed using the query "drug" and "interaction". 
Next, we either label an abstract or eliminate it from the 
dataset if it is not related to drug interactions. Each abstract 
in the corpus was annotated with a label indicating whether 
the abstract is DDI-relevant or not. The label assignment 
was accomplished by four members with M.S. degree from 
the Center for Computational Biology and Bioinformatics at 
IUPUI. Each abstract was reviewed by at least two annotators. 
The inter-annotator conflicts were resolved by a senior mem-
ber with extensive pharmacological training. Drug-irrelevant 
abstracts were selected from PubMed at random. 

The set of DDI-irrelevant abstracts consists of three main 
groups. One includes discussion of drug-nutrition interactions 
or on a single drug. A second consists of documents discussing 
drug-protein or drug-gene interactions; as such, abstracts in 
this group may contain keywords such as interaction, or drug. 
The third group consists of abstracts randomly selected from 
all of PubMed. While this last group may contain some drug-
relevant abstracts, the number of drug-relevant articles is so 
small compared to the tens of millions of abstracts within 
PubMed, that most of abstracts in the last group do not focus 
on evidence of drug interactions. This random set includes 
PubMed abstracts that come from both inside and outside 
of the query results. The random abstracts focus on topics 
other than evidence of DDis. The whole annotated dataset thus 



contains 900 DDI-relevant abstracts, 300 abstracts concerning 
single drug or drug-nutrient interactions, 300 abstracts about 
drug-gene and drug-protein interactions, and 9,999 randomly 
selected abstracts discussing other topics. There are 10 times 
more DDI-irrelevant abstracts in the dataset than DDI-relevant 
ones. For simplicity, throughout the paper we refer to the set 
of DDI-relevant articles as the positive set, and to the set of 
DDI-irrelevant as the negative set. Throughout the rest of this 
section, we describe methods for feature extraction and text 
classification. 

B. Document Representation and Feature Selection 
To represent documents within the corpus as feature-vectors 

we first identify named-entities related to DDI such as drug 
names, cytochrome P450 (CYP) enzymes or types of phar-
macoldnetics (PK) parameter in each abstract. Such named-
entities are identified by a simple pattern-matching against a 
dictionary of DD I-related terms. The dictionary was assembled 
based on the resources shown in Table I. Each named-entity 
within the text that is successfully matched against a dictionary 
entry is replaced by a generic special string denoting a drug, 
a CYP enzyme, a type of PK parameter, or an adverse drug 
event. We then remove stop words [19] in PubMed abstracts. 
We also remove standard suffices in abstracts using Porter 
stemmer [23]. 

To construct feature vectors from pre-processed abstracts, 
we identify a set of terms consisting of individual words 
(unigrams) and pairs of consecutive words (bigrams) that help 
distinguish articles in the positive set from those in the negative 
set. A term is distinguishing if its probability to appear 
in abstracts in the positive set is statistically-significantly 
different from its probability to appear in abstracts in the 
negative set. Previous work [2] demonstrated effectiveness of 
using such distinguishing terms selected based on Z-scores for 
classification purposes. Thus, we calculate the Z-score for each 
unique term in the pre-processed abstracts and select those 
whose Z-scores are higher than a threshold. The higher the 
Z-score of a term, the more likely it is to distinguish between 
abstracts associated with each of the classes. Each abstract is 
represented as a vector ( w1 , w2 · · · wv) of 0/1 feature values, 
where each Wi is 1 if the ith distinguishing term occurs in 
the abstract and 0 otherwise, and V is the total number of 
distinguishing terms. 

TABLE I: Resources used for building the entity dictionary. The left 
column shows types of entity. The right column shows resources. 

Entity Type Resource 
Adverse Drug Event Medical Dictionary for Regulatory Activities 

Gene Ontology 
CYP HUGO Gene Nomenclature Committees 

Human Cytochrome P450 Allele Nomenclature 
Drug DrugBank 
PK Parameter Published Paper on PK Ontology [29] 

C. Document Classification 
The classification task involves assigning each abstract as 

DDI-relevant or DDI-irrelevant given features constructed 
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based on the presence/absence of class-distinguishing terms 
in the article abstract. To address this task, we develop a 
framework that we refer to as Two Stage Cascade. It consists 
of two base-classifiers, each of which is trained to differ-
entiate positive abstracts from a different type of negative 
abstracts, namely drug-irrelevant and drug-relevant (but not 
DDI-relevant). The first one is used for distinguishing between 
the DDI-relevant abstracts and drug-irrelevant abstracts. We 
use all DDI-relevant training examples and an equally-sized 
set of drug-irrelevant training examples randomly sampled 
from all drug-irrelevant abstracts to train the first base-
classifier. The second one aims to separate the DDI-relevant 
examples from other drug-relevant examples. We use all of 
the DDI-relevant and drug-relevant training examples to train 
the second base-classifier. Features are selected separately for 
each of the classification phases. The training process is shown 
in Figure 1. 

Fig. 1: Two-stage cascade learning process. Two base-classifiers 
are trained. Base-classifier 1 (bottom left) is trained to distinguish 
between DDI-relevant abstracts and drug-irrelevant abstracts. Base-
classifier 2 (bottom right) is trained to distinguish between DD/-
relevant abstracts and other drug-relevant ones. 

PubMed Abstracts 

In the decision process, we first transform the abstract 
into a feature vector as described in part B above. The 
two base-classifiers are then applied to the feature vector. 
The abstract is labeled as DDI-relevant if and only if both 
base-classifiers label it as DDI-relevant. We use Maximum 
Entropy, Na.Ive Bayes classifier, and Support Vector Machines 
as base-classifiers since they all have been popularly applied 
in previous text classification studies [10,6,20,7,17,1]. The 
decision process is shown in Figure 2. 

III. EXPERIMENTAL SETTING AND RESULTS 

We employ commonly used 5-fold cross validation on the 
DDI corpus to compare our two-stage cascade method to 
random under-sampling, meta learning, EasyEnsemble and 
BalanceCascade. We use Maximum Entropy classifier as the 
baseline. It is trained on the whole imbalanced dataset. Max-
imum Entropy is used since it performs better than the other 
two methods, Nai've Bayes classifier and SVM, as a baseline. 
In addition to the comparison against other methods, we 
demonstrate the advantage of two-stage cascade by presenting 
a per-category (drug-relevant and drug-irrelevant) break-up of 



Fig. 2: Two-stage cascade decision process. First, PubMed abstracts 
are transformed into weight vectors.The abstracts are next labeled as 
drug-relevant or not by base-classifier 1. An abstract labeled as drug-
irrelevant by base-classifier 1 is always DD I-irrelevant. The abstracts 
labled as drug-relevant by base-classifier 1 are then labeled as DDI-
relevant or DDI-irrelevant by base-classifier 2. 

Feature 
Vector 

the results. We also report experiments explaining the benefit 
of combining the base-classifiers via conjunction, and the 
benefit of sampling drug-relevant and drug-irrelevant abstracts 
separately in two-stage cascade. 

We ran 5 complete rounds of 5-fold cross validation where 
each complete nm used a different 5-way split (25 tests in 
total). We implemented the methods described above using 
Python and two libraries Scikit-leam [21] and lmbalanced-
learn [12]. Since accuracy is inherently high when classifying 
an imbalanced dataset (as classification into the majority 
class is usually correct), we report performance in terms of 
precision, recall, and FI-measure. 

. TP ll TP 
precsion = TP + FP; reca = TP + FN (1) 

F 2 · precision · recall 
1 measure= 

precision + recall 
(2) 

Table II shows these performance measures obtained by 
two-stage cascade compared with those obtained by the 
baseline method, random under-sampling, meta learning, 
EasyEnsemble and BalanceCascade, using the same set of 
training and test abstracts. The table shows that two-stage 
cascade achieves statistically-significantly higher precision (p 
« 0.01 int-test) and Fl measure (p « 0.01) while maintaining 
similar recall (p ~ 0.13) compared to the other classification 
methods (except for the baseline method, which has the highest 
precision, p « 0.01). The baseline performance, as compared 

to the others, has the lowest recall due to its bias towards the 
majority class. 

We examined the number of drug-relevant and drug-
irrelevant abstracts that are correctly identified by each 
approach. We present both number and accuracy of cor-
rectly classified documents. Table III shows average number 
and accuracy of correctly classified drug-relevant (but DD/-
irrelevant) and drug-irrelevant abstracts by two-stage cascade, 
compared with results obtained by the other methods address-
ing class imbalance, using the same set of training and test 
data. Two-stage cascade shows statistically-significantly (p-
value « 0.01) improved accuracy of classifying drug-relevant 
abstracts compared to the others. 

Two-stage cascade not only achieves higher precision, but 
also maintains the same level of recall as the others. This is 
because both base-classifiers correctly identify at least 95% 
of DDI-relevant abstracts. Table IV shows average number of 
correctly classified DDI-relevant, drug-relevant (negative), and 
drug-irrelevant abstracts as identified by the base-classifiers in 
two-stage cascade. Both base classifiers correctly identify over 
95% of DDI-relevant articles. 

In two-stage cascade approach, more drug-relevant but 
DDI-irrelevant abstracts are included in training data. Recall 
that in the second stage, the negative subset of training 
data consists of only drug-relevant abstracts. In contrast, 
drug-relevant abstracts are always under-represented in train-
ing dataset used by random under-sampling, meta learning, 
and EasyEnsemble approaches. While more drug-relevant 
abstracts are used to train the classification model in Bal-
anceCascade approach than in other approaches, the number 
of drug-relevant abstracts is still smaller compared to drug-
irrelevant abstracts. Figure 3 shows the average number of 
drug-irrelevant and drug-relevant abstracts sampled for each 
base classifier in BalanceCascade. As can be seen from the 
figure, although the number of drug-relevant examples in-
creases progressively, the number of drug-irrelevant examples 
is always larger. 

IV. DISCUSSION 

Our results demonstrate that two-stage cascade achieves 
higher precision and Fl measure, as well as similar recall com-
pared to random under-sampling, meta learning, EasyEnsem-
ble and BalanceCascade for distinguishing DDI-relevant ab-
stracts from DDI-irrelevant abstracts. 

Notably, our model also outperforms other methods in 
separating DDI-relevant abstracts from drug-relevant ab-
stracts. As discussed earlier, the dataset used to train the 

TABLE II: A comparison of classification performance, in terms of Average precision, recall and Fl-measure, between the baseline method, 
random under-sampling, meta learning, Easy Ensemble, BalanceCascade and two-stage cascade. Standard deviations are shown in parentheses. 
The highest values are shown in boldface. 

Metric 
Precision 

Recall 
Fl Measure 

Baseline Method 
.842 (.001) 
.780 (.001) 
.810 (.001) 

Under-sampling 
.740 (.016) 
.983 (.009) 
.844 (.011) 

Meta Learning 
.798 (.014) 
.952 (.022) 
.868 (.011) 
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Easy Ensemble 
.780 (.013) 
.954 (.018) 
.858 (.010) 

BalanceCascade 
.779 (.014) 
.948 (.016) 
.855 (.011) 

2stage cascade 
.825 (.021) 
.948 (.012) 
.882 (.014) 



TABLE III: Accuracy and number of abstracts correctly classified by 
different methods, averaged from 5 rounds of 5-fold cross validation. 
For each of the categories, the left column shows average number of 
correctly labelled documents, while the right column shows accuracy. 
Each row shows the number of abstracts or accuracy of a method. 
Standard deviations were shown in parentheses. The largest values 
are shown in boldface. 

Method Drug-relevant Drug-irrelevant 
#of #of 
Correctly Accuracy Correctly Accuracy Classified Classified 
Abstracts Abstracts 

Rand. Under 60.0(5.7) .500 (.048) 1996.6 (1.8) -sampling .998 (.001) 

Meta 76.4(4.2) .637 (.035) 1999.0 (0.0) Learning 1.0 (.000) 

Easy 72.2(3.8) .602 (.032) 1998.4 (0.8) .999 (.000) Ensemble 
Balance 72.0(4.1) .600 (.034) 1998.4 (0.6) Cascade .999 (.000) 

1\vo-Stage 84.0(5.0) .700 (.042) 1998.6 (0.6) .999 (.000) Cascade 

TABLE IV: Average number of correctly classified abstracts attained 
by each of the base-classifiers within two-stage cascade. The total 
number of abstracts per category is shown in the column header. Each 
column shows the number of abstracts correctly classified within the 
respective category, averaged over 5 rounds of 5-fold cross validation. 
The first two rows correspond to base-classifier 1 and 2. The third 
row corresponds to their conjunction. Standard deviations are shown 
in parentheses. 

Base-Classifier # 

1 
2 

1 /\ 2 

# of Correctly Classified Abstracts 
DDI-relevant Drug-relevant Drug-irrelevant 

(180) (120) (1,999) 
179.5 (0.6) 17.8 (3.9) 1998.5 (0.6) 
171.0 (2.1) 83.3 (5.0) 1796.5 (25.4) 
170.6 (2.1) 84.0 (5.0) 1998.6 (0.6) 

random under-sampling, meta learning, EasyEnsemble and 
Balance-Cascade methods comprised drug-relevant and drug-
irrelevant abstracts. Recall that drug-relevant abstracts are 
under-represented in the negative (DDI-irrelevant) dataset, 
leading to under-representation of the drug-relevant abstracts 
in a set that is obtained by random sampling of the negative 
dataset. These random samples are used for training the base-
classifiers of the aforementioned methods. Due to this under-
representation of the drug-relevant abstracts in the training 
set, these methods misclassify about 40% of the drug-relevant 
abstracts, as shown in Table III. In contrast, our method cor-
rectly identifies 70% drug-relevant abstracts, since we choose 
training data selectively instead of randomly. The training set 
used in the second stage of the two-stage cascade method 
consists of DDI-relevant and drug-relevant abstracts (a subset 
of DDI-irrelevant abstracts) while the dataset used to train the 
classifier in the first stage does not contain any drug-relevant 
abstracts. 

The training set used in the second stage does not include 
drug-irrelevant abstracts. Consequently, the second base-
classifier correctly identifies only 1,796.5 out of 1,999 drug-

1145 

Fig. 3: Average number of drug-irrelevant abstracts (solid) and 
drug-relevant ones (striped) sampled to train BalanceCascade. The 
X-axis indicates the step in which step the training set is sampled. 
The Y-axis shows the number of abstracts sampled. Drug-relevant 
abstracts (striped) are under-represented compared to drug-irrelevant 
ones (solid). 
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irrelevant abstracts. In other words, 202.5 drug-irrelevant 
abstracts are mis-classified as positive (DDI-relevant) by the 
second base-classifier. However, an abstract in the test set 
is predicted as positive (DDI-relevant) if and only if it is 
identified as positive by both base-classifiers. Since the first 
base-classifier correctly identifies 1,998.5 out of 1,999 drug-
irrelevant abstracts, the drug-irrelevant abstracts mis-classified 
in the second stage are still correctly labeled as DDI-irrelevant 
in the final decision of two-stage Cascade. 

V. CONCLUSION 

We have presented a supervised learning approach to iden-
tify articles relevant to DDis. We developed a two-stage 
cascade classifier to handle class imbalance issue. Three 
performance measures were: precision 0.83, recall 0.95, and 
Fl measure 0.88. For comparison, we also applied random 
under-sampling, meta learning, EasyEnsemble and Balance-
Cascade. Our experiments demonstrate that two-stage cascade 
achieves higher precision and Fl measure while maintaining 
similar recall compared to that obtained by other classifiers. 
As there are many more drug-irrelevant articles than drug-
relevant ones, a classifier trained on DDI-relevant abstracts 
and disproportionally many drug-irrelevant abstracts tends to 
mistakenly label any drug-relevant abstract as DDI-relevant. 
We show that DDI text classification is improved by training 
classifiers for distinguishing DDI-relevant from other drug-
relevant abstracts and from drug-irrelevant abstracts sepa-
rately. The classifier for identifying DDI-relelvant from other 
drug-relevant abstracts incorrectly labels some drug-irrelevant 
abstracts as DDI-relevant. However, these mis-classified drug-
irrelevant abstracts are still correctly labeled as DDI-irrelevant 
in the final decision of two-stage cascade because of the other 
classifier. 

While two-stage cascade indeed improves the classification 
performance on the current DDI corpus, there is still room 
for further improvement. Two-stage cascade method relies on 
pre-set class labels, drug-relevant and drug-irrelevant which 



comprise the majority class. The pre-set labels are not always 
available in other DDI corpora. Another future direction is to 
explore whether we can split the majority class by unsuper-
vised learning while maintaining similar perforn1ance. 
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