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Abstract— Interactions between drugs (also known as drug-drug
interactions or DDIs), which may cause adverse affects, are of
much concern; predicting, anticipating and avoiding them is key
for improving patient safety and treatment outcome. Knowledge of
DDIs is important for physicians to avoid adverse effects when
prescribing two drugs simultaneously. DDIs are often published in
the biomedical literature; however, gathering information about DDIs
is time consuming given the shear volume of publications. Auto-
matic text classification can speed up access to documents related
to DDIs. However, the biomedical literature contains a relatively
small number of publications relevant to DDIs, compared to the
vast amount of irrelevant publications. This imbalance can lead to
incorrect classification. While methods addressing class imbalance
have been introduced to correctly identify items in the minority
(relevant) class to improve recall, they often misclassify items in the
majority (irrelevant) class, which leads to low precision. To reduce
the number of irrelevant documents misclassified as relevant (false
positive), we develop a fwo-stage cascade classifier. In each step, we
separate publication abstracts that are DDI-relevant from those that
are either drug-irrelevant or drug-relevant but DDI-irrelevant. We
compare our classifier with other popular learning methods that aim
to handle imbalance, applying the methods to a well-curated corpus
consisting of DDI-relevant and DDI-irrelevant PubMed abstracts.
Our method achieves higher precision and F1 measure than other
methods while maintaining similar recall.

I. INTRODUCTION

Drug-drug interactions (DDIs) are of much concern; pre-
dicting, anticipating and avoiding them is key for improving
patient safety and treatment outcome. DDIs occur when one
drug influences the activity of another. According to a recent
study, DDIs are responsible for about 74,000 emergency room
visits in the USA alone each year [22]. The knowledge that two
drugs influence each other helps physicians avoid prescribing
the drugs at the same time. While discoveries concerning DDIs
are published in the biomedical literature, it is hard for human
readers to find all publications relevant to DDIs within the vast
amount of biomedical literature, making it difficult for physi-
cians to keep up with the state of knowledge. In this work,
we present a supervised learning approach to automatically
classify biomedical publication abstracts as DDI-relevant or
DDlI-irrelevant, where an article is viewed as DDI-relevant if
it provides evidence of interactions between drugs. Articles
that do not discuss DDIs are referred to as DDI-irrelevant.
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Notably, some DDI-irrelevant articles do not discuss drugs
at all (we refer to those as drug-irrelevant), while others
may still discuss properties of a single drug or interactions
between drugs and various chemicals or genes. Although
these articles are drug-relevant, they do not discuss drug-drug
interactions, and as such are DDI-irrelevant. Our work forms
a step toward methodically maintaining and curating public
information about DDIs.

Several lines of earlier work started addressing classification
of articles by relevance to DDIs. Duda et al. [6] applied
text classification methods to a corpus of which 200 PubMed
abstracts were DDI-relevant and 1,800 were drug-irrelevant.
This corpus does not include among the irrelevant abstracts
any that are still relevant to interactions between drug and
other chemicals such as gene or protein. The classification task
is thus over-simplified since examples from the DDI-relevant
(minority) class can be easily distinguished from the drug-
irrelevant (majority) class by keywords such as drug names.
Kolchinsky et al. [10,11] compared several text classification
methods on another corpus of which 602 PubMed abstracts
were DDI-relevant and 611 PubMed abstracts that focus on
topics such as single drug report, drug-nutrient, drug-gene,
and drug-protein interactions. This corpus, while containing
drug-relevant abstracts in its negative set, does not reflect the
inherent imbalance in publication distribution, where there are
many more DDI-irrelevant abstracts than DDI-relevant ones.
Other work [9,24,25,26,27] focused on identifying interacting
drugs within text sentences, rather than on identifying articles
that are relevant to DDI.

None of the above work focused on separating DDI-relevant
abstracts from both other drug-relevant abstracts and drug-
irrelevant abstracts. Moreover, as we have noted, the total
number of DDI-irrelevant abstracts (both drug-irrelevant and
drug-relevant) abstracts is much larger than the number of
DDI-relevant ones. Without handling the imbalance, automatic
classifiers are trained on a dataset most examples of which are
from the majority class, which leads to low recall. Such class
imbalance is characteristic of many real world problems, such
as fraud detection, anomaly detection, and medical diagnosis.
It has thus been studied for more than two decades [3,4,28,




30,8,13,15,14,16]. Classification algorithms that address class
imbalance typically employ one of the following methods:
sampling, ensemble, cost sensitive learning, and one class
learning. Here we focus on two widely used types of methods:
sampling and ensemble methods [3,4,30,8,13].

Sampling typically aims to adjust the data distribution so as
to obtain a balanced training set. It is based either on over-
sampling from the minority class thus increasing its repre-
sentation in the training set, or under-sampling by selecting
a subset of instances from the majority class, preventing the
latter from overwhelming the dataset. While both are simple
to implement and useful in reducing the level of imbalance,
they suffer several shortcomings: under-sampling uses only a
small portion of the data, while ignoring much of the majority
(irrelevant) data; over-sampling does use all the training data,
but utilizes multiple copies of instances from the under-
represented class, which can lead to over-fitting [5].

In addition to sampling methods, ensemble classifiers are
often utilized to further improve classification performance.
Ensemble methods are based on the idea of iteratively training
multiple weak-classifiers. To classify an instance, the multiple
weak-classifiers are applied to the instance and the output from
all classifiers is combined to obtain a classification decision.
The combination is typically based on stacking, weighted
voting, or other voting methods. In the context of methods
addressing class imbalance, weak-classifiers are often trained
on balanced subsets of training examples. The weak-classifiers
are sometimes also referred to as base-classifiers [3], which
is the term we use throughout this paper. EasyEnsemble and
BalanceCascade are two examples of ensemble methods that
have shown to outperform many other methods addressing
class imbalance [13].

Meta learning [3] is a specific way of combining classifi-
cation decisions from multiple classifiers. Under this scheme,
the majority class is split into multiple subsets, each of which
is of similar size to the minority class. One base-classifier is
trained per subset, separating it from all instances associated
with the minority class. Each base-classifier is then applied to
all the data instances. Following this classification step, each
data instance is re-represented as a vector of the class labels
assigned to it by the base classifiers.. The new representation
is used as input for the meta classifier, which is trained on the
set of the minority class and one subset of the majority class.
To label an instance, the base-classifiers are first applied to the
instance. The meta classifier then labels the instance using the
class labels assigned by the base-classifiers [3].

While the above methods correctly identify DDI-relevant
PubMed abstracts, they often misclassify drug-relevant ab-
stracts as DDI-relevant, which leads to low precision. To
improve classification performance within corpora that are
likely to include drug-relevant abstracts, we develop a two-
stage cascade classifier for identifying DDI-relevant abstracts.
In the first stage, we classify abstracts into two groups, drug-
irrelevant and drug-relevant. Drug-irrelevant abstracts are
never DDI-relevant, while drug-relevant ones may or may
not be DDI-relevant. In the second stage, we thus distinguish
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between DDI-relevant and DDI-irrelevant abstracts. Each step
within the two-stage cascade involves a base-classifier. The
classifier labels an article as DDI-relevant if and only if
the first base-classifier labels the article as potential DDI-
relevant and the second, downstream classifier labels it as
DDI-relevant. We train and test our method on a corpus
that includes both drug-relevant and drug-irrelevant abstracts
as part of the DDI-irrelevant subset. Our corpus consists of
11,499 PubMed abstracts as described in the next section.

The rest of the paper is organized as follows: Section II
describes the dataset and methods. Section III presents exper-
iments and results using the two-stage cascade as compared to
others. Section I'V discusses the advantage of using the cascade
method for our task, and Section V summarizes the findings
and outlines future directions.

II. DATA AND METHODS

Building a text classifier requires a set of documents for
training and testing, where documents are typically represented
as feature vectors. When the class distribution in the training
set is skewed, the imbalance needs to be addressed. In this
section, we discuss each of the above.

A. Dataset

The DDI corpus that we use throughout our experiments
was created by the Center for Computational Biology and
Bioinformatics at Indiana University and Purdue Univer-
sity Indianapolis (TUPUT). The corpus consists of 900 DDI-
relevant, 600 drug-relevant but DDI-irrelevant, and 9,999
drug-irrelevant publication abstracts obtained from PubMed
[18]. To retrieve DDI-relevant and drug-relevant abstracts, we
first search PubMed using the query “drug” and “interaction”.
Next, we either label an abstract or eliminate it from the
dataset if it is not related to drug interactions. Each abstract
in the corpus was annotated with a label indicating whether
the abstract is DDI-relevant or not. The label assignment
was accomplished by four members with M.S. degree from
the Center for Computational Biology and Bioinformatics at
TUPUL Each abstract was reviewed by at least two annotators.
The inter-annotator conflicts were resolved by a senior mem-
ber with extensive pharmacological training. Drug-irrelevant
abstracts were selected from PubMed at random.

The set of DDI-irrelevant abstracts consists of three main
groups. One includes discussion of drug-nutrition interactions
or on a single drug. A second consists of documents discussing
drug-protein or drug-gene interactions; as such, abstracts in
this group may contain keywords such as interaction, or drug.
The third group consists of abstracts randomly selected from
all of PubMed, While this last group may contain some drug-
relevant abstracts, the number of drug-relevant articles is so
small compared to the tens of millions of abstracts within
PubMed, that most of abstracts in the last group do not focus
on evidence of drug interactions. This random set includes
PubMed abstracts that come from both inside and outside
of the query results. The random abstracts focus on topics
other than evidence of DDIs. The whole annotated dataset thus




contains 900 DDI-relevant abstracts, 300 abstracts concerning
single drug or drug-nutrient interactions, 300 abstracts about
drug-gene and drug-protein interactions, and 9,999 randomly
selected abstracts discussing other topics. There are 10 times
more DDI-irrelevant abstracts in the dataset than DDI-relevant
ones. For simplicity, throughout the paper we refer to the set
of DDI-relevant articles as the positive set, and to the set of
DDl-irrelevant as the negative set. Throughout the rest of this
section, we describe methods for feature extraction and text
classification.

B. Document Representation and Feature Selection

To represent documents within the corpus as feature-vectors
we first identify named-entities related to DDI such as drug
names, cytochrome P450 (CYP) enzymes or types of phar-
macokinetics (PK) parameter in each abstract. Such named-
entities are identified by a simple pattern-matching against a
dictionary of DDI-related terms. The dictionary was assembled
based on the resources shown in Table I. Each named-entity
within the text that is successfully matched against a dictionary
entry is replaced by a generic special string denoting a drug,
a CYP enzyme, a type of PK parameter, or an adverse drug
event. We then remove stop words [19] in PubMed abstracts.
We also remove standard suffices in abstracts using Porter
stemmer [23].

To construct feature vectors from pre-processed abstracts,
we identify a set of terms consisting of individual words
(unigrams) and pairs of consecutive words (bigrams) that help
distinguish articles in the positive set from those in the negative
set. A term is distinguishing if its probability to appear
in abstracts in the positive set is statistically-significantly
different from its probability to appear in abstracts in the
negative set, Previous work [2] demonstrated effectiveness of
using such distinguishing terms selected based on Z-scores for
classification purposes. Thus, we calculate the Z-score for each
unique term in the pre-processed abstracts and select those
whose Z-scores are higher than a threshold. The higher the
" Z-score of a term, the more likely it is to distinguish between
abstracts associated with each of the classes. Each abstract is
represented as a vector (wy,wg - -+ wy) of 0/1 feature values,
where each w; is 1 if the %" distinguishing term occurs in
the abstract and O otherwise, and V is the total number of
distinguishing terms.

TABLE I: Resources used for building the entity dictionary. The left

column shows types of entity. The right column shows resources.

Entity Type
Adverse Drug Event

Resource
Medical Dictionary for Regulatory Activities
Gene Ontology

CYP HUGO Gene Nomenclature Committees
Human Cytochrome P450 Allele Nomenclature
Drug DrugBank

PK Parameter Published Paper on PK Ontology [29]

C. Document Classification

The classification task involves assigning each abstract as
DDI-relevant or DDI-irrelevant given features constructed
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based on the presence/absence of class-distinguishing terms
in the article abstract. To address this task, we develop a
framework that we refer to as Two Stage Cascade. It consists
of two base-classifiers, each of which is trained to differ-
entiate positive abstracts from a different type of negative
abstracts, namely drug-irrelevant and drug-relevant (but not
DDlI-relevant). The first one is used for distinguishing between
the DDI-relevant abstracts and drug-irrelevant abstracts. We
use all DDI-relevant training examples and an equally-sized
set of drug-irrelevant training examples randomly sampled
from all drug-irrelevant abstracts to train the first base-
classifier, The second one aims to separate the DDI-relevant
examples from other drug-relevant examples. We use all of
the DDI-relevant and drug-relevant training examples to train
the second base-classifier. Features are selected separately for
each of the classification phases. The training process is shown
in Figure 1.

Fig. 1: Two-stage cascade learning process. Two base-classifiers
are trained. Base-classifier 1 (bottom left) is trained to distinguish
between DDI-relevant abstracts and drug-irrelevant abstracts. Base-
classifier 2 (bottom right) is trained to distinguish between DDI-
relevant abstracts and other drug-relevant ones.

PubMed Abstracts

Drug Irrelevant

Drug Relevant

Sample from
Drug Relevant
Abstracts

B
Classifier 2

In the decision process, we first transform the abstract
into a feature vector as described in part B above. The
two base-classifiers are then applied to the feature vector,
The abstract is labeled as DDI-relevant if and only if both
base-classifiers label it as DDI-relevant, We use Maximum
Entropy, Naive Bayes classifier, and Support Vector Machines
as base-classifiers since they all have been popularly applied
in previous text classification studies [10,6,20,7,17,1]. The
decision process is shown in Figure 2.

Sample from
Drug Irrelevant
Abstracts

Base-
Classifier 1

III. EXPERIMENTAL SETTING AND RESULTS

We employ commonly used 5-fold cross validation on the
DDI corpus to compare our two-stage cascade method to
random under-sampling, meta learning, EasyEnsemble and
BalanceCascade. We use Maximum Entropy classifier as the
baseline. It is trained on the whole imbalanced dataset. Max-
imum Entropy is used since it performs better than the other
two methods, Naive Bayes classifier and SVM, as a baseline.
In addition to the comparison against other methods, we
demonstrate the advantage of two-stage cascade by presenting
a per-category (drug-relevant and drug-irrelevant ) break-up of




Fig. 2: Two-stage cascade decision process. First, PubMed abstracts

are transformed into weight vectors.The abstracts are next labeled as
drug-relevant or not by base-classifier 1. An abstract labeled as drug-
irrelevant by base-classifier 1 is always DDI-irrelevant. The abstracts
labled as drug-relevant by base-classifier 1 are then labeled as DDI-
relevant or DDI-irrelevant by base-classifier 2.

Feature
Vector

ase-Classifier I>
rug Relevant?

PubMed
Abstract

Base-Classifier 23
DDI Relevant?

Yes No
DDI Relevant DDI Irrelevant

the results. We also report experiments explaining the benefit
of combining the base-classifiers via conjunction, and the
benefit of sampling drug-relevant and drug-irrelevant abstracts
separately in two-stage cascade.

We ran 5 complete rounds of 5-fold cross validation where
each complete run used a different 5-way split (25 tests in
total). We implemented the methods described above using
Python and two libraries Scikit-learn [21] and Imbalanced-
learn [12]. Since accuracy is inherently high when classifying
an imbalanced dataset (as classification into the majority
class is usually correct), we report performance in terms of
precision, recall, and Fl-measure.

TP
TP + FP’

TP
el =rp v ry W

precsion =

2 - precision - recall
precision + recall

Fy measure = )

Table II shows these performance measures obtained by
two-stage cascade compared with those obtained by the
baseline method, random under-sampling, meta learning,
EasyEnsemble and BalanceCascade, using the same set of
training and test abstracts. The table shows that two-stage
cascade achieves statistically-significantly higher precision (p
< 0.01 in t-test) and F1 measure (p < 0.01) while maintaining
similar recall (p > 0.13) compared to the other classification
methods (except for the baseline method, which has the highest
precision, p < 0.01). The baseline performance, as compared

to the others, has the lowest recall due to its bias towards the
majority class.

We examined the number of drug-relevant and drug-
irrelevant abstracts that are correctly identified by each
approach. We present both number and accuracy of cor-
rectly classified documents. Table III shows average number
and accuracy of correctly classified drug-relevant (but DDI-
irrelevant) and drug-irrelevant abstracts by two-stage cascade,
compared with results obtained by the other methods address-
ing class imbalance, using the same set of training and test
data. Two-stage cascade shows statistically-significantly (p-
value < 0.01) improved accuracy of classifying drug-relevant
abstracts compared to the others.

Two-stage cascade not only achieves higher precision, but
also maintains the same level of recall as the others. This is
because both base-classifiers correctly identify at least 95%
of DDI-relevant abstracts. Table IV shows average number of
correctly classified DDI-relevant, drug-relevant (negative), and
drug-irrelevant abstracts as identified by the base-classifiers in
two-stage cascade. Both base classifiers correctly identify over
95% of DDI-relevant articles.

In two-stage cascade approach, more drug-relevant but
DDl-irrelevant abstracts are included in training data. Recall
that in the second stage, the negative subset of training
data consists of only drug-relevant abstracts. In contrast,
drug-relevant abstracts are always under-represented in train-
ing dataset used by random under-sampling, meta learning,
and EasyEnsemble approaches. While more drug-relevant
abstracts are used to train the classification model in Bal-
anceCascade approach than in other approaches, the number
of drug-relevant abstracts is still smaller compared to drug-
irrelevant abstracts. Figure 3 shows the average number of
drug-irrelevant and drug-relevant abstracts sampled for each
base classifier in BalanceCascade. As can be seen from the
figure, although the number of drug-relevant examples in-
creases progressively, the number of drug-irrelevant examples
is always larger.

IV. DIisSCUSSION

Our results demonstrate that two-stage cascade achieves
higher precision and F1 measure, as well as similar recall com-
pared to random under-sampling, meta learning, EasyEnsem-
ble and BalanceCascade for distinguishing DDI-relevant ab-
stracts from DDI-irrelevant abstracts. )

Notably, our model also outperforms other methods in
separating DDI-relevant abstracts from drug-relevant ab-
stracts. As discussed earlier, the dataset used to train the

TABLE II: A comparison of classification performance, in terms of Average precision, recall and Fl-measure, between the baseline method,
random under-sampling, meta learning, EasyEnsemble, BalanceCascade and two-stage cascade. Standard deviations are shown in parentheses.

The highest values are shown in boldface.

Metric | Baseline Method  Under-sampling  Meta Learning  EasyEnsemble  BalanceCascade  2stage cascade
Precision .842 (.001) .740 (.016) .798 (.014) 780 (.013) 779 (.014) .825 (.021)
Recall .780 (.001) .983 (.009) .952 (.022) .954 (.018) .948 (.016) 948 (.012)
F1 Measure .810 (.001) .844 (.011) .868 (.011) .858 (.010) .855 (.011) 882 (.014)
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TABLE III: Accuracy and number of abstracts correctly classified by
different methods, averaged from 5 rounds of 5-fold cross validation.
For each of the categories, the left column shows average number of
correctly labelled documents, while the right column shows accuracy.
Each row shows the number of abstracts or accuracy of a method.
Standard deviations were shown in parentheses. The largest values
are shown in boldface.

Drug-relevant Drug-irrelevant

Method o o

Correctly ) Correctly

Classified Accuracy Classified Accuracy

Abstracts Abstracts
ig‘;ﬁlﬂg‘é““ 60.0(5.7) 500 (048) 1996.6 (1.8) .998 (.001)
LMef:raning 76.4(42) 637 (035) 1999.0 (0.0) 1.0 (.000)
gzZZmble 722(3.8) 602 (.032) 1998.4 (0.8)  .999 (.000)
g:l‘;‘;‘éee 72.0(4.1) 600 (034)  1998.4 (0.6)  .999 (.000)
gz;:;gge 84.0(5.0) 700 (.042) 1998.6 (0.6) .99 (.000)

TABLE IV: Average number of correctly classified abstracts attained
by each of the base-classifiers within two-stage cascade. The total
number of abstracts per category is shown in the column header. Each
column shows the number of abstracts correctly classified within the
respective category, averaged over 5 rounds of 5-fold cross validation.
The first two rows correspond to base-classifier 1 and 2. The third
row corresponds to their conjunction. Standard deviations are shown
in parentheses.

# of Correctly Classified Abstracts
Base-Classifier #  DDI-relevant  Drug-relevant  Drug-irrelevant

(180) (120) (1,999)
1 179.5 (0.6) 17.8 (3.9) 1998.5 (0.6)
2 171.0 2.1) 83.3 (5.0) 1796.5 (25.4)
1A2 170.6 (2.1) 84.0 (5.0) 1998.6 (0.6)

random under-sampling, meta learning, EasyEnsemble and
Balance-Cascade methods comprised drug-relevant and drug-
irrelevant abstracts. Recall that drug-relevant abstracts are
under-represented in the negative (DDI-irrelevant) dataset,
leading to under-representation of the drug-relevant abstracts
in a set that is obtained by random sampling of the negative
dataset. These random samples are used for training the base-
classifiers of the aforementioned methods. Due to this under-
representation of the drug-relevant abstracts in the training
set, these methods misclassify about 40% of the drug-relevant
abstracts, as shown in Table III. In contrast, our method cor-
rectly identifies 70% drug-relevant abstracts, since we choose
training data selectively instead of randomly. The training set
used in the second stage of the two-stage cascade method
consists of DDI-relevant and drug-relevant abstracts (a subset
of DDI-irrelevant abstracts) while the dataset used to train the
classifier in the first stage does not contain any drug-relevant
abstracts.

The training set used in the second stage does not include
drug-irrelevant abstracts. Consequently, the second base-
classifier correctly identifies only 1,796.5 out of 1,999 drug-
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Fig. 3.  Average number of drug-irrelevant abstracts (solid) and
drug-relevant ones (striped) sampled to train BalanceCascade. The
X-axis indicates the step in which step the training set is sampled.
The Y-axis shows the number of abstracts sampled. Drug-relevant
abstracts (striped) are under-represented compared to drug-irrelevant
ones (solid).

700 681 '673“““'667'*”~654~~
600 | ,
s00 | | _— [ . | . ......... ‘
a0 | |- ' '

300

# of Abstracts

200
100

o

S5
Steps

O Drug-irrelevant N Drug-relevant

irrelevant abstracts. In other words, 202.5 drug-irrelevant
abstracts are mis-classified as positive (DDI-relevant) by the
second base-classifier. However, an abstract in the test set
is predicted as positive (DDI-relevant) if and only if it is
identified as positive by both base-classifiers. Since the first
base-classifier correctly identifies 1,998.5 out of 1,999 drug-
irrelevant abstracts, the drug-irrelevant abstracts mis-classified
in the second stage are still correctly labeled as DDI-irrelevant
in the final decision of two-stage Cascade.

V. CONCLUSION

We have presented a supervised learning approach to iden-
tify articles relevant to DDIs. We developed a two-stage
cascade classifier to handle class imbalance issue. Three
performance measures were: precision 0.83, recall 0.95, and
F1 measure 0.88. For comparison, we also applied random
under-sampling, meta learning, EasyEnsemble and Balance-
Cascade. Our experiments demonstrate that two-stage cascade
achieves higher precision and F1 measure while maintaining
similar recall compared to that obtained by other classifiers.
As there are many more drug-irrelevant articles than drug-
relevant ones, a classifier trained on DDI-relevant abstracts
and disproportionally many drug-irrelevant abstracts tends to
mistakenly label any drug-relevant abstract as DDI-relevant.
We show that DDI text classification is improved by training
classifiers for distinguishing DDI-relevant from other drug-
relevant abstracts and from drug-irrelevant abstracts sepa-

-rately. The classifier for identifying DDI-relelvant from other

drug-relevant abstracts incorrectly labels some drug-irrelevant
abstracts as DDI-relevant. However, these mis-classified drug-
irrelevant abstracts are still correctly labeled as DDI-irrelevant
in the final decision of two-stage cascade because of the other
classifier. )

While two-stage cascade indeed improves the classification
performance on the current DDI corpus, there is still room
for further improvement. Two-stage cascade method relies on
pre-set class labels, drug-relevant and drug-irrelevant which




comprise the majority class. The pre-set labels are not always
available in other DDI corpora. Another future direction is to
explore whether we can split the majority class by unsuper-
vised learning while maintaining similar performance.
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