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Abstract

Cache in multicore machines is often shared, and the cache
performance depends on how memory accesses belonging
to different programs interleave with one another. The full
range of performance possibilities includes all possible inter-
leavings, which are too numerous to be studied by experi-
ments for any mix of non-trivial programs.

This paper presents a theory to characterize the effect
of memory access interleaving due to parallel execution of
non-data-sharing programs. The theory uses an established
metric called the footprint (which can be used to calculate
miss ratios in fully-associative LRU caches) to measure cache
demand, and considers the full range of interleaving possi-
bilities. The paper proves a lower bound for footprints of
interleaved traces, and then formulates an upper bound in
terms of the footprints of the constituent traces. It also shows
the correctness of footprint composition used in a number
of existing techniques, and places precise bounds on its ac-
curacy.
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1 Introduction

There are two common approaches to analyzing cache shar-
ing. One is co-run testing, which uses the hardware counters
available on modern processors to count misses while a set
of programs are running. Co-run testing, however, cannot
predict how the performance would change if the group com-
position changes, e.g., when a new program joins or when
program finishes.

The second approach is modeling. A recent example is
based on the footprint, which is a measure of the average
working-set size. The footprint is composable, which means
that the joint footprint of a program group may be computed
from the individual footprints. In the higher-order theory
of locality (HOTL), the footprint is used both in composing
the group effect and computing the miss ratio [1, 21]. Effec-
tively, HOTL “composes” the miss ratio indirectly through
the footprint and predicts shared cache performance for a
program group without co-run testing.

Neither approach considers the full effect of interleaving.
Footprint modeling assumes uniform interleaving, while the
actual interleaving may be non-uniform. Co-run testing mea-
sures an actual execution. However, any instrumentation,
including the reading of hardware counters, may alter an
execution, and testing cannot measure the effect of its own
perturbation. Even if we can model or test any particular
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interleaving, we still do not know the effect of other inter-
leavings. In real systems, the interleavings may change from
execution to execution even for the same set of programs.

The number of all possible interleavings is too numer-
ous to be studied by experiments for any mix of non-
trivial programs. Stirling’s approximation of factorial is
n!~ (n/e)" V2rrn, which we can use to approximate (%) ~
22" This is the number of possible interleavings of two
length-n programs. For n as small as 150, the number of
possibilities approaches 3.4E88, greater than 1E80, the num-
ber of atoms estimated to exist in the known universe.

The scale and complexity of this problem warrant a theo-
retical study. This paper presents a set of formal theoretical
results regarding the footprints that may result from inde-
pendent, non-data-sharing programs interleaving memory
accesses. This includes the precise effect of uniform interleav-
ings and the lower and upper bounds for arbitrary interleav-
ings. As stated above, when the footprint is precisely known,
it can be used to calculate the miss ratio for fully associative
LRU caches of any size. The precise footprint predictions in
this paper can be used directly to predict shared-cache miss
ratios, and the bounds on the range of possible footprints
provide a starting point for future work to determine bounds
on possible shared-cache miss ratios.

The rest of the paper is organized as follows. Section 2
describes the motivation for solving this problem and gives
useful background information that will be used in the pa-
per. Section 3 presents a bound for arbitrarily interleaved
traces. Section 4 proposes a series of theorems regarding
the footprint composition for uniformly interleaved traces.
Finally, Section 5 discusses the related work, and Section 6
concludes.

2 Motivation and Background

2.1 Interference due to Interleaving

>

Consider two infinite length traces: “abc cba abc cba ...’
and “xxx ...”. In a parallel execution, the two traces are
interleaved. Consider two interleaving ratios, 1:1 and 3:3,
which give the following interleaved traces:

1:1 interleaving: axbxcxcxbxax . . .
3:3 interleaving: abcxxxcbaxxx . . .

The two interleavings have the same demand for data:
any prefix whose length is a multiple of 6 contains the exact
same set of data accesses in either trace. The only difference
is the ratio of interleaving. However, this difference leads to
different cache performance.

For a fully associative LRU cache, the following table
shows the miss ratios mn(c) for cache sizes ¢ = 2,3. When
the cache has two blocks, the 3:3 interleaving has one miss
out of every two accesses, while the 1:1 interleaving has one
miss out of every three accesses.
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miss | interleaving
ratio | 1:1 3:3
mn2) | /3 1/2
mr(3) | 1/6  1/3

The effect is similar to one in time-sharing systems, where
the cached data of the last running program is wiped out
by the newly loaded program. In our example, the coarse
interleaving has a greater miss ratio for a similar reason.
The 3:3 ratio means three consecutive accesses each time
by a program, which exerts greater interference to the peer
program.

Cache interference may come from two sources. The first
is space contention, which is an unavoidable result of cache
sharing, and occurs in both partitioned' and unpartitioned
shared caches (in partitioned caches it comes from the fact
that each program is given less than the whole cache). We
call the second source interleaving loss, which happens only
in shared cache.

We can separate the two sources of interference as follows.
We use 1:1 interleaving to measure the effect of space con-
tention. Any degradation beyond that of space contention is
the interleaving loss.

The interleaving loss can be measured in two distinct ways:
higher miss ratio for the same cache size, and greater cache
size for the same miss ratio. The preceding table shows these
two types of interleaving loss. First, at the same cache size
¢ = 2, interleaving loss increases the miss ratio from 1/3 to
1/2. Second, for the same miss ratio mr(c) = 1/3, interleaving
loss increases the cache requirement from 2 to 3.

2.2 Definitions and Notation

To study the effect of interleaving, we use a measure of cache
demand called the footprint. The footprint is composable,
which means that the joint footprint of two programs may be
computed directly from their individual footprints. Next we
outline the definitions and properties related to the footprint,
and the method to compute the miss ratio from the footprint.
Throughout the paper we use zero-indexing. Also, metrics
(such as trace length) are subscripted with the trace they
refer to, except where the identity of the trace is implicit.

Definition 2.1 (Trace). We use the word trace to represent
a sequence of references to data or a memory location. Each
reference can be an object identifier or the address of a mem-
ory cell, block, or page. The length of a trace, A, is written
as N4. The number of distinct items is written as m4.

Definition 2.2 (Reuse Time). The reuse time is the time
between consecutive occurrences of the same item. E.g., in
the trace abba, the reuse time for a is 3, and the reuse time
for bis 1.

!We use the term partitioned for a cache that allocates a fixed (but not
necessarily equal) amount of space to each program.
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Definition 2.3 (Reuse Time Histogram). The reuse time
histogram stores the number of times each reuse time occurs
in the trace. Specifically, r#(i) is the number of reuses with
reuse time i.

Definition 2.4 (Window). The window A(t,7) is the 7-
length substring of trace A beginning at the t*" element?.

Definition 2.5 (Working Set). The working set of a window
is the set of distinct elements in it.

Definition 2.6 (Working Set Size). The working set size of
a window, A(t, ), is the size of its working set. We write this
as wa(t, 7).

Definition 2.7 (Disjoint Traces). Two traces A and B are
called disjoint if and only if no element in A is also in B and
vice versa.

Definition 2.8 (Interleaving). The trace a(A, B) is an inter-
leaving of the disjoint traces A and B if and only if A and B
are both subsequences of a(A, B) and N, = N4 + Np.

Definition 2.9 (Footprint). Xiang et al. [20] defines the foot-
print function, fp(x), for a trace of length N. The footprint is
defined for integers x € [0, N] as the average working set
size among all windows of length x:

N-x

N Z w(t, x)

1
L2 — 1
folx) = 24 (1)
Definition 2.10 (Aggregate Footprint). The aggregate foot-
print function is defined as only the summation term in
Equation 1: FP(x) = Zﬁ oF o(t, x). Equivalently, FP(x) =
(N = x + Dfp(x).

2.3 Footprint Calculation

In practice, the footprint cannot be calculated directly from
Definition 2.9 because of the high cost of doing so. Xiang et al.
[21] gave a linear-time algorithm based on the reuse time
histogram and the first and last access times for each distinct
item in the trace. Yuan et al. [23] derived another method for
calculating the footprint using the same information. The
aggregate footprint can be written as

N m
FP(x) = xm + Z ri(i) min(i, x) — Z d(x — 1 — fi(e))
i=1 e=1 (2)
~ 3 d(iite) ~ (N = ).
e=1
where d(x) = x when x > 0 and d(x) = 0 otherwise, and f(e)
and [#(e) indicate the first and last use time of trace element
e, respectively. The footprint can then be calculated from
this by fp(x) = N_lxﬂFP(x).
Equation 2 formulates the footprint using reuse and access
times rather than the working set. This formulation is useful

%In order to make proofs clearer, we depart from the notation of Denning
[4], who uses the first parameter to indicate the end point of the window.
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in proving some of the theorems in the paper. In addition,
Equation 2 may be used in a practical implementation since
its inputs, rt, ft, and It, can be measured in time linear to the
length of a trace.

From Footprint to Miss Ratio The miss ratio in a fully
associative LRU cache can be computed from the footprint
using the Denning-HOTL conversion [21] in two steps. Given
cache size ¢, Denning-HOTL first finds the window length x
where fp(x) = ¢, and then it takes the forward difference of
the footprint at x. Using the difference operator, A (defined
by Af(x) = f(x + 1) — f(x)), we write this as

mr(c) = AfP(x)lfp(x)zc' ®3)

Previous work (which we review in Section 5) has used
footprint composition without considering the precise effect
of interleaving, especially non-uniform interleaving. Next
we prove a set of theorems related to all interleaving.

3 Footprint Bounds for Arbitrary
Interleaving
3.1 Lower Bound

In this section we determine a lower bound for the footprint
of an interleaved trace, given the footprints and lengths of
the two constituent traces.

Intuitively, the working set size of a window will, on av-
erage, be increased by replacing an element in the window
with an element from an entirely different trace (because
the supplanted element may be represented elsewhere in the
window, while the newly introduced one is certainly not).
This would mean that if one wishes to “interleave” two traces
in such a way as to minimize the footprint of the combined
trace, it would be best to keep the two traces entirely separate
(i.e., to concatenate them). This intuition becomes correct for
traces much longer than the window size, but it is sometimes
incorrect for small traces or large window sizes. Take for ex-
ample the two traces 12221 and abbba. For the concatenation
12221abbba, the aggregate footprint for length-4 windows
is FP(4) = 2+ 2+ 3 + 4+ 3 + 2+ 2 = 18. Alternatively, for the
interleaving 1a222bbbla, FP(4) =3 +2+2+2+2+2+3 = 16.
The concatenation turns out to have a larger footprint than
the interleaving because of the reuse pattern at the boundary
between the two concatenated traces.

In Lemma 3.1, we show that the two concatenations of
A and B (AB and BA) have equal footprints for large traces.
In Theorem 3.2, we show that under the same condition
a concatenated trace has the smallest footprint among all
possible interleavings.

Lemma 3.1. Given two traces A and B, with lengths Ny and
Ng, let (A, B) be either concatenation (having length N, =
N4 + Ng). When x < Na, x < N, and x> < Ny,

oo ) = 32 oa0) + o0,
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Proof. When x < Ny and x < Np, the aggregate footprint
of the concatenated trace counts windows entirely within
each constituent trace, as well as the ones at the boundary
(there are x — 1 such windows). Call the sum of the boundary
windows’ working sets S,. The smallest possible value of
Ss occurs when every boundary window contains exactly
2 distinct items. The largest occurs when every window
contains x distinct items. Thus, 2(x — 1) < S, < x(x — 1). For
either concatenation o (A, B), we have

FP,(x) = FPa(x) + S, + FPg(x).
Rewriting in terms of the footprint, this becomes
(Na —x+ 1)fps(x) + So + (Np — x + 1)fpg(x)
fpa(x) = N
s—x+1

which is bounded by the possible values of S,. When x << Ny
and x < Np, this is

s

Ny S Npg
Jpo(x) = N_apr(x) + Na——ic+1 + N_Upr(x)'
And by the bounds on S, when x? < N, we have

fo,(x) ~ Z—jfm(x) . ﬁ—jfpgm.
O

Theorem 3.2. Given two traces A, B, let o(A, B) be either
concatenation of A and B, and a(A, B) be any non-sequential
interleaving. Let fp_(x) denote the footprint of o(A, B) and
fp,(x) the footprint of a(A, B), and Ny = N4+ Np. In the limit
where x* < N, the footprint of the sequential trace is less
than the footprint of the non-sequential one:

Jp6 () < fpo ().

Proof. Applying the relationship between footprint and ag-
gregate footprint, Equation 2 may be rewritten as

Zfi‘; ri(i) min(i, x)

xm
fp(x):NU—x+1 Ny—x+1
Xty dx — 1 - file)) (4)
Ny —x+1
>, d(l(e) = (Ng — x + 1))
B N, —x '

Consider the effect of changing from the sequential trace
to the non-sequential one, on each term in Equation 4. The
first term will be unchanged. In the second term, each reuse
time in the non-sequential trace will be at least as large as
the corresponding reuse time in the sequential trace (since
there may be more items in between the uses). The effect
on the reuse histogram is that rt(i) will decrease by one for
some value of i, and it will increase by one for some larger
value of i. Thus, the second term will be larger in the non-
sequential trace. The numerator in the third term is bounded
by 3%, (x—i) = XX, (i—1) = 3" i = x(x — 1)/2, since each
value of fi(e) from 1 to x can occur at most once. By similar
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reasoning, the numerator of the fourth term is also bounded
by x(x — 1)/2. Thus, we have

fpa(x) > fpa(x) -

xz—x

N, —x+1
In the limit where x?> < N, this approaches

fpe(x) < fpg, ().

3.2 Towards an Upper Bound

Non-uniform parallelism may increase the cache demand
compared to uniform parallelism. In this section, we study
the upper bound, which is the highest possible footprint
increase from non-uniform interleaving over uniform inter-
leaving.

We cannot yet derive the precise bound. Instead, we show
that the bound lies between two bands linear in window size.
We first show the lower band, by constructing two example
traces and their interleaving to maximize the footprint. The
bound for all programs must be at least as high as this case.

We use the two traces Ds.1, D;.2 shown in Figure 1. In D5,
the first two thirds all access distinct data, and the last one
third all access a single data block. The first part has a linear
footprint, fp(x) = x, and the second part a constant footprint,
fp(x) = 1. In Dy, the pattern is the opposite. The design
resembles the patterns that form a dovetail join in carpentry.
One can view the linear-footprint part as a notch and the
constant-footprint part a recess.

2:1 ratio

abcd ... eee ...
“dovetail” I ! } |
trace D2 frix)=x frx)=1
1:2 ratio VVV ... WXYZ ...
“dovetail” I } 4 |
trace D12 frix)=1 fr(x)=x

Figure 1. Two “dovetail” traces. In Dy, the first two thirds
all access distinct data, and the last third all access a single
data block. Dy, is the opposite.

Next we consider uniform interleavings and a special non-
uniform interleaving we call “dovetail interleaving”, which
we denote by €(Dz.1, D1.2), §(Da:1, D1:2) respectively.

Uniform Interleaving ¢(D,.;,D;.2) To compute its foot-
print fp_(x), we compute the interleaved footprint in each of
the three parts. In the first third in each length-x window,
the working-set size is % + 1, in which % comes from Ds.j,
and 1 from D.,. The last third is symmetrical, so it has the

same footprint. In the middle third in each length-x window,
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the working-set size is x, in which % comes from each trace.
Adding the three parts together, we have

2 (x
- [=+1

where x = 3i for i > 1. Note that the above calculation does
not apply to windows that span between the first third and
the second third and between the second third and the last
third. We assume that the traces are long enough that we
can ignore the effect of those windows.

x 2
+ = ==x+ -
3

fpe(x) = 3

Dovetail Interleaving 5(D;.1, D12) We interleave the first
two thirds of D,.; with the first third of D;.,, uniformly at
2:1 ratio, and then interleave the remaining third of D,.; and
the remaining two thirds of D;.,, uniformly with 1:2 ratio.
Dovetail interleaving is non-uniform, because a different
mixing ratio is used in each half.

Let fps(x) be the footprint of §(D2.1, D1:2). In each length-x
window of the first half, the working-set size is %x +1,1in
which %x comes from Ds.;, and 1 from Dj.,. The second half
has the same footprint because of symmetry. Therefore, we
have

fps(x) = gx +1

where x = 3i for i > 1. Comparing fps(x) and fps(x), we see
that the footprint is higher by a constant, %, in the dovetail-
interleaving than in the uniform-interleaving. Next we ex-
tend the dovetail example to increase this difference asymp-

totically.

General Dovetails As mentioned earlier, we cannot yet
derive the precise upper bound for the footprint of arbitrary
interleaving for any group of traces (although a trivial over-
estimate of the bound is that fp(x) < x). Instead, we show
a case where an interleaving increases fp(x) over fp (x) by
x/8, demonstrating that the upper bound is at least x/8.

We adapt the dovetail example in two ways. First, instead
of 2:1 ratio between the two parts of a trace, we generalize
and consider k:1 ratio for k > 1. Second, the constant foot-
print is increased to a (for window sizes larger than a) for
any a > 1.

We refer to the two dovetail traces as Dy.;, Di.x. In Dy,
the first % of the trace all accesses distinct data, and the last
ﬁ repeatedly accesses a data blocks. In Dy.x, the pattern is
the opposite.

Next are the footprint for uniform interleaving and dove-
tail interleaving. The calculation for the k:1 ratio traces is
similar to that for the 2:1 ratio traces.

k4 2a

uniform €(Dy.1, D1k):  fp(x) = £;3 oo

dovetail §(Dy.1, D1.k):  fps(x) = %x +a
where k > 1,a > 1, x = (k + 1)ai for i > 1, and k,a, x, i
are all integers. It is simple to verify that they compute the
same footprints, derived previously for the 2:1 ratio traces,

by setting k = 2.
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For any k:1 ratio dovetails, the footprint increase is as
follows:

k—
JPs(x) = fpe(x) = 11
Two Linear Bands of Upper Bound Since it requires x >
(k+1)a for the footprints, we have a < 7%=, and the difference

k1>
ﬁ_}a < (k’i;ll)zx. The difference of k;ll)zx is maximized at

(k+
k = 3, which is % Hence, we have

fos) ~ foel) < 3

Given any two traces A and B, let their uniform interleav-
ing be €(A, B). Let a(A, B) be any interleaving. Let A(A, B) be
the highest possible difference, i.e.

Jpo(x) < fpe(x) + A(A, B)
Let A, = max{A(A, B)} be the greatest increase for all
programs A,B. We have the following:

Theorem 3.3. Forany group of programs, let Ay, be the great-
est possible increase by arbitrary interleaving over uniform
interleaving. We have:
x
8

Proof. From the dovetail construction for k = 3,a = ﬁ
%, we have the pair of traces, Ds.1, D13, whose dovetail-
interleaving footprint is greater than its uniform-interleaving
footprint, and the increase is as high as § at x = (k + 1)a.
Since the upper bound A, is for all interleavings, it is at least
as high as the highest increase from any given interleaving.
Hence, we have A, > §.

In addition, the footprint is bounded by x, i.e. fp(w, x) < x

for any trace w. Let o be any interleaved trace, we have

fpa (x) - fpe(x) < fpa(x) =x
Hence we have the lower and the upper bands of the greatest
footprint increase due to non-uniform interleaving. O

<Ap<x

Theorem 3.3 shows that the upper bound lies between two
bands that are functions linear in the window size. Although
we use a special example, a pair of programs of an equal
length, to derive the lower band, the theorem holds for any
program groups of any length.

4 Footprint Composition of Uniform
Interleaving

This section presents theorems that accurately compute or
bound the effect of uniform-interleaving. The formal reason-
ing is made through two formulations. One is Definition 2.9,
which defines the footprint as the average working-set size.
We refer to it as the working-set based formulation. The
other is Equation 2, which computes the footprint using
reuse times and first and last access times. We call it access-
time based. Table 1 shows which of the results are proved
from which formulation.
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Table 1. Two formulations are used to derive the footprint
of uniform interleaving: based on the working set as in Defi-
nition 2.9 and on the access time as in Equation 2.

Footprint a:b 1:1 interleaving
formulation interleaving fp(2x) fp(2x + 1)
Working Set Theorem 4.4 Corollary 4.7

Based
Access Time Theorem 4.8 Theorem 4.9
Based

4.1 a:b Uniform Interleaving

In this section we discuss footprint composition for a:b uni-
formly interleaved traces, which are composed of a elements
from one trace, and b elements from another, alternating.
With one correctness condition, the footprint of the inter-
leaved trace can be calculated exactly from the footprints of
the two constituent traces. We use the following definitions:

Definition 4.1 (a:b Uniform Interleaving). An interleaving
€(A, B) of traces A and B is a:b uniform if and only if it satisfies
the following properties:

1. a(A,B) = A(0,a)B(0,b)A(a, a)B(b, b) - - - B(b(n — 1), b).
E.g., abxcdyefz is a 2:1 interleaving of abcde f and
xyz.

2. Each window of length p £ a + b in €(A, B) contains
exactly a elements from A, and b elements from B. This
property follows from the first.

Note that for a:b uniform interleavings, we use the low-
ercase n to represent the number of cycles. Le., n = Ny/a =
NB/b = Ne /P

Definition 4.2 (a-Stepping Footprint). Given a trace of
length an, for every x € [1, n] we define the a-stepping foot-
print for length-ax windows as the average working-set size
of every a' h length-ax window, i.e., the windows which start
at time ai, for any i € [0, n — x]. Formally,

Z

w(ai, ax).

sfplax) =

n—-x+1

Assumption 1 (Stepping Footprint Assumption). Fora trace
of length an, the a-stepping footprint for length-ax windows is
approximately equal to the sliding-window footprint®.

sfp(ax) = fp(ax)

Theorem 4.3. Letp = a + b, and e(A, B) be an a:b uniform
interleaving of A and B of length pn, for which Assumption 1
holds. For all integers x € [1,n],

Jpe(px) = fpalax) + fop(bx) ()

3More precisely, |sfp(ax) —fp(ax)| < a/4. We leave the proof of this to

Appendix A.
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Proof. The proof follows from the definition of the aggregate
footprint function. For €(A, B), this is

pn—px

FPe(px) = > wel(t, px).

t=0

(6)

Leti = [t/p] and j =t (mod p). By the first property of a:b
uniform interleaving, the working set size of €(A, B)(t, px) is
as follows:

wa(ai + j, ax) + wp(bi, bx), 0<j<a

wp(bi +j —a,bx) + wala(i + 1),ax), a<j<p

we(t’px) = {

The summation term on the right hand side of Equation 6
is the aggregate footprint, FP.(px), and can be written as
the sum of all such windows, with the last window (where
i =n—xand j = 0) written separately.

1
i=0 (
p=

+ Z wp(bi +j—a,bx) + wa(a(i + 1), ax)

a—1

Z walai + j, ax) + wp(bi, bx)

n—x-—

2

1

FP.(px)

,_‘

=a

j
+ wala(n — x), ax) + wp(b(n — x), bx)

n—x-1a-1
— walan—x)ax)+ > > walai+jax)
i=0  j=0
n—-x-1p-1
+ wp(b(n — x), bx) + Z Z wp(bi + j — a, bx)
i=0 Jj-a
n—-x n-x-1
+b Z wa(ai,ax) +a Z wp(bi, bx)
i=1 i=0
an—ax—1
= wala(n — x), ax) + Z wa(k, ax)
k=0
bn-bx-1
+ wp(b(n — x), bx) + Z wp(k, bx)
k=0

n—x-—1

n—x
+b Z wa(ai,ax) +a Z wp(bi, bx)

i=1 i=0

an—ax bn—bx
= Z wa(k, ax) + Z wp(k, bx)
k=0 k=0

n—x-—1

+b Z walai,ax) +a Z wp(bi, bx)
i=1

i=0
(bn — bx + 1)fpg(bx)

n-x-1

n—x
+b Z walai,ax) + a Z wp(bi, bx).

i=1 i=0

(an — ax + 1)fp,(ax) +

(7)

When n > x, and by Assumption 1, we can rewrite the two
summations at the end of Equation 7 based on the following:

1

Z walai, ax) = sfp,(ax) ~ fp,(ax)

i=1
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Possible Values
of fp(i)
et &--
DN
fr@w) r
o
P px i porD)

Window Size (w)

Figure 2. The concave property of footprint. The footprint
for window i should lie within the shadow region

and

n—x-1
- i " Z{; wp(bi, bx) ~ sfpg(bx) ~ fpg(bx).
Thus, Equation 7 becomes
FPc(px) = (an — ax + 1)fp,(ax) + (bn — bx + 1)fp(bx)
+(bn = bx)fp s(ax) + (an — ax)fpp(bx)
= (pn = px + 1)fp(ax) + (pn — xn + 1)fpp(bx)
Dividing both sides by (pn — px + 1), we achieve our result:

fpe(px) = fpa(ax) + fpy(bx).

]

Note that fp_(x) for window sizes that are non-multiples
of p can be constrained using the concavity of the footprint
function, which is shown by Xiang et al. [21]. We illustrate
this bound in Figure 2. Consider an integer i, which is not a
multiple of p. There exists some integer, x, for which px < i <
plx + 1). The value of fp_(i) is constrained below by the line
traveling through fp_(px) and fp_(p(x + 1)). It is constrained
above by the minimum of the line traveling through fp_(p(x—
1)) and fp_(px), and the line traveling through fp_(p(x + 1))

and fp, (p(x + 2)).

4.2 Error Bound for a:b Uniform Interleavings

In this section we prove a general error bound for footprint
composition for uniform interleavings. The idea is to first
establish a relative error bound between the footprint and
the stepping footprint. Then we use that bound to prove
that fp_(px) and fp,(ax) + fpg(bx) are relatively close to each
other. We formally state this result as follows:

Theorem 4.4. Let €(A, B) be an a:b uniform interleaving of
A and B, respectively of lengths an and bn. Withp = a + b, for
all integers x € [1,n),

|fpa(ax) + fpg(ax) — fp.(px)| i

< — +

=%

2abx
p(n —x)

X

+

n—x
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The first expression on the right hand side is a constant (only
depends on a and b). The other terms are negligible when
n> x.

Proof. In order to prove this bound, we first prove a lemma
about how the working-set size of a window changes as it
slides over the trace.

Lemma 4.5. The working-set size of a window can change by
no more than j when it slides j points over the trace. Formally,

|a)(t +Jj,a) — ot, a)\ <j.

Proof. Tt is sufficient to prove that sliding every window one
step to the right can change its working-set size by at most
one. Consider the a-size window starting at time ¢. As this
window slides to ¢ + 1, its working set can only change by
losing the element accessed at ¢t and acquiring the element
accessed at a + t. Thus its cardinality may change by at most
one. o

In order to prove Theorem 4.4, we first use Lemma 4.5
to find a relation between footprint and the stepping foot-
print for each of the traces A and B. We then combine these
relations along with Equation 7 to establish the theorem.

Let us present how the aggregate footprint for trace A is
related to the aggregate stepping footprint, i.e., the aggregate
working set size of all stepping windows. A similar relation
for trace B (which we will mention without proof) can be
derived in a similiar fashion.

We partition all an—ax +1 length-ax windows into n—x+1
non-overlapping chunks, with the first and last chunks con-
sisting, respectively, of the first [ §] and the last [ 5 | + 1 win-
dows, and each of the remaining n — x — 1 chunks consisting
of exactly a windows centerred around an a-stepping win-
dow. Specifcally, the i*" chunk among these chunks consists
of all windows which start at a time t € [ai -5, ai+ (%]).

Now within each chunk, we apply Lemma 4.5 to bound
the difference between the working set size of the a-stepping
window in that chunk and each of its other windows. Specif-
ically, for every i,j where 0 < i <n-x, 5] <j<T[3],
and 0 < ai + j < an — ax, we have

®)

|wa(ai, ax) — wa(ai + j, ax)|< |j]

Summing the inequalities for every chunk (indexed by i),
and all the neighbouring windows (indexed by j) in the trace
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gives
[41-1
| >3 (040G.0x) - 04(0,00))
j=0
n—-x-1 F%]—l
+ Z (wA(ai +j,ax) — walai, ax))
=T
L]
+ Z (coA(an —ax — j,ax) — wa(an — ax, ax)) ’
j=1
[91-1  px—1 [§1-1 L[]
DYDY Lil+ D)
j=0 i=1 j——|2]  Jj=0

In the above inequality, the working set size of each length-
ax window, except the last one, appears exactly once in
the summations on the left hand side. In addition, every a-
stepping window is subtracted a times by the terms in these
summations (except the first and the last which are respec-
tively subtracted [ 5] and | 5] times). Thus, by coalescing the
summations on the left hand side and evaluating the series
on the right hand side of the inequality, we get

an—ax—1 n—-x-1
Z walt,ax)—a Z wa(ai, ax)
t =0 i=1

- [g]a)A(O, ax) — LEJwA(an — ax, ax)

L5I(L3]+ D+ (51— DI5]
2

<(n-x)

2(n —
Sa(n x),

4

where the last inequality can be established by individually
considering the even and odd cases of a.

On the left hand side of the above inequality, we subtract
an extra a X wa(an — ax, ax) in the second summation and
add that same quantity to the last term. Then by pulling the
first and last working set size terms to the right hand side
we get:

an—ax-1 n—-x
Z walt,ax)—a Z wa(ai, ax)
t=0 i=1
2
a‘(n—x a
< % + [EﬂwA(O, ax) — wal(an — ax, ax)i .

The above inequality is a precise formulation of Assump-
tion 1. On the left hand side, the first summation is the
aggregate footprint over all (length-ax) windows except
the last one and is equal to FP4(ax) — wa(an — ax, ax). The
second summation is the aggregate working set size of all
a-stepping windows except the first one. The expression
|a)A(0, ax) — walan — ax, ax)| on the right hand side is the dif-
ference between the working set size of the first and the last
windows and is clearly bounded by ax. Thus multiplying
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both sides by %, we have

b n—x
‘5 (FPa(ax) — wa(an — ax, ax)) — b ,Z:; wa(ai, ax)

- ab(n — x)

+ abx.

Adding and subtracting FP4(ax) on the left hand side we get

(‘l—)FPA(ax) - Ea)A(an — ax, ax))
a a

i=1

- (FPA(ax) +b 'if wa(ai, ax))

- ab(n — x)

+ abx.

Replacing FP4(ax) with (an — ax + 1)fp,(ax) we obtain:

(pn = px + 1)fpa(ax) — (FPA(ax) +b nz_)‘: wa(ai, ax))
i-1
)

< 0 e Vo) o - . ).
a
< M + abx + bx.

Using the same window-partitioning approach for trace B
and for length-bx windows, we will obtain:

n-x-—1

i=0

(pn — px + 1)fpg(bx) — (FPB(bx) +b wp(bi, bx))

- ab(n — x)

+ abx + ax.

(10)

Summing up Inequalities 9 and 10, and then according to the
end of Equation 7 we get

(pr = px + 1)(fpa(ax) + fps(bx)) = FPe(px)
- ab(n — x)

+ 2abx + px.

Finally, dividing both sides by pn — px + 1 gives the bound:

b b
[foatan) + fou(b) ~foo(po] < 3+ 2

X

+

n—x

4.2.1 Tightness of the Bound

We present an example to demonstrate the tightness of the
bound in Theorem 4.4 for sufficiently long traces. Intuitively,
the interleaved footprint prediction is as far as possible from
the actual value when the working set sizes of the a-stepping
windows differ the most from their surrounding windows
(and they all differ in the same direction, positive or negative).
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For any &k, consider a trace which consists
of infinitely many repetitions of the sequence
X1 Xk Y1 Yk X oo o X1 Yg - .- y1. When a = k and x = 2,
the sequence of working set sizes for windows of length
ax will be (2k,2k — 1,---,2k —a/2,2k —a/2 + 1,--- 2k, ).
In fact, wa(ai,ax) — wa(ai + j,ax) = j for all values of i
and j as described in Inequality 8. Thus, when this trace is
k:k uniformly interleaved with another trace of the same
pattern, the footprint composition error is exactly %.

Corollary 4.6 (a:b:c... Uniform Interleaving). Letp = a+b+c,
let €5(A, B) be an a:b uniform interleaving of A and B, and let
€3(A, B, C) be an (a+b):c uniform interleaving of €;(A, B) and
C. When Assumption 1 is true, the footprint of e3(A, B, C) can
be expressed for all x € [1,n] as

I, (px) = fp(ax) + fpg(bx) + fpo(cx),

where p £ a + b + c. Furthermore, the footprint of k uniformly
interleaved traces can be expressed for all x € [1,n] as

IPe, (px) = fpalax) + fpp(bx) + fpc(ex) + - -,

wherep Za+b+c+---.

Proof. From Theorem 4.3, an a:b uniform interleaving,
€2(A, B) of A and B will have footprint fp, ((a + b)x) ~
fpalax) + fpg(bx). That trace may then be (a+b):c uniformly
interleaved with a third trace, C, so that fp ((a + b + ¢)x) =
fr((a+Db)x)+fpo(cx) = fpa(ax)+ fpg(bx) + fp-(cx). Similarly,
a fourth trace may be interleaved with the first three, and so
on. [m}

Corollary 4.7 (1:1 Uniform Interleaving). Without the need
for Assumption 1, the footprint of a 1:1 uniformly interleaved
trace, (A, B), composed from A and B, can be written as

— 0’
Jpe(2x) = fpa(x) + fpp(x) + %
, p5() ~ wp(n —x. %)

2n—2x+1 '

Furthermore, when n > x, it can be written in the same way
as Theorem 4.3:

fpe(2x) = fpa(x) + fop(x).
Proof. When a = b = 1 (and thus, p = 2), Equation 7 states:
FPe(2x) = (n = x + 1)fpo(x) + (n = x + 1)fpp(n)

n—x n-x-1
+ Z wa(i,x) +
i=1

(11)

Z wg(i, x)

i=0

By the definition of the footprint, the summation terms can
each be rewritten to obtain

FPe(2x) = (n—x+1)fp,(x) + (n—x+1)fpg(x) + (n—x+1)fp,(x)
—0A(0,x) + (n — x + 1)fpg(x) — wp(n — x,x)
= (2n = 2x + 1)fp,(x) + (2n — 2x + 1)fpp(x)
+ fpa(x) = @a(0,x) + fp,(x) — wp(n — x, x).
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Dividing both sides by (2n — 2x + 1), and applying the def-
initions of the footprint and aggregate footprint to the left
hand side, we get

xX) — wa(0, x
1p.(23) = fpa0) + fppo) + LA~ 040 )
fu) — op(n—x %)
2n—2x+1
Trivially, —x < fp,(x) — wa(0,x) < x and —x < fp,(x) —
wp(n —x,x) < x. For n > x, these terms disappear, and we
are left with

(12)

IPe(2x) = fpa(x) + fpp(x).

]

Note that the last step in the proof could equivalently be
taken using Assumption 1, but in this derivation it is clear
how the exact form can be calculated from the working set
sizes of the first window in A and the last one in B.

4.3 Access-Time Based 1:1 Uniform Interleaving

Corollary 4.7 shows how to calculate the footprint of a 1:1
uniformly interleaved trace for even-length windows. The
proof followed from the working set based definition of the
footprint. This approach becomes quite complicated for odd-
length windows. However, using Equation 2, the derivation
of the interleaved footprint for odd-length windows is more
straightforward. We call this the access time based approach.
In Theorem 4.8, we state a result that is equivalent to that
of Corollary 4.7, and then in Theorem 4.9, we extend this
result to cover odd-length windows. Corollary 4.10 further
extends the result for interleavings of more than two traces.
We prove the first theorem to illustrate the access time based
approach, and omit the proof of the second theorem as it is
similar.

Equation 2 shows that the footprint can be calculated from
3 attributes of a trace: (1) the first access time, fi(e), for each
distinct item, e, (2) its last access time, [t(e), and (3) the reuse
time histogram of the trace, ri(i) for i € [1, N]. There are
simple linear relationships between each of these metrics in
the constituent traces and the same metrics in the interleaved
trace. The proof follows from these relationships.

Theorem 4.8. For window size 2x, where x is a non-negative
integer, the footprint of the composed trace is

FP.(2x) = Z(FPA(x) . FPB(x)) - % I(ft,(e) < (x — 1))
e=1

mp

— > K(ita(e) = (N - x).
e=1
Note that Theorem 4.8 is equivalent to the result stated
in Equation 12. This can be seen from the definitions
of FP(x) and fp(x), and the fact that for any trace, the
working set size for the first window of length x is
(0, x) S04 I((x — 1) > fty(e)), and the working set
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FP.(2x) = 2x(ma + mp) Z min(i, 2x)rte (i) — fi d@2x -1~ ft_(e
i=1 e=1

Jacob Brock, Chen Ding, Rahman Lavaee, Fangzhou Liu, and Liang Yuan

ma+mp

— > d(lte(e) = (Ne — 2x))

e=1

= 2x(ma + mg) i}mm(Zl 2x)rte(2i) — Z d(2x —1-2ft,(e))

- f“ d(2x — 2 — 2fty(e)) - f] d(2lta(e) -
e=1 e=1

= (meA + % min(i, x)rt4(i) — 2 % dix —1—fty(e)) -2 % d(Ita(e) — (Ny — x)))

Npg

mp
+ (meB + Z min(i, x)rtg(i) — 2 Z d(x
i=1 e=1

2(N4 — x)) — f} d(2lts(e) — (2Ng — 2x) + 1)
e=1

(13)

~ fip(e) ~ 2 > dlts(e) ~ (N — )
e=1

=S < - 1) = 3 Htp(e) > (N - x)
e=1 e=1

= 2(FPAG) + FP3() — S I(LA(0) < (x — 1) — S (lts(e) > (N — )

size of the last window of length x is wp(Np — x,x) =
ZZE I(ltB(e) > (NB - x))

Proof. For a 1:1 uniformly interleaved trace €(A, B), com-
posed from traces A and B, the first and last times, and the
reuse time histogram change as follows:

21t ,(e), ifee A
fte(e) — fA( ) .

2ftg(e)+1 ifeeB
It.(e) = 21tx(e), %fe €A

2ltg(e) +1 ife€ B

and
rte(2i) = rta(i) + rep(i).

From these relationships, we derive the aggregate foot-
print for the interleaved trace FP.(2x). We use the notation
I(P) £ 1 if the predicate P is true, and I(P) = 0 if it is false,
and d(x) £ x - I(x > 0). Note that d(x + 1) = d(x) + I(x > 0).
Equation 13 shows the derivation.

O

Theorem 4.9. For window size 2x + 1, where x is a non-
negative integer, the footprint of the composed trace is

FP.(2x +1) = (FPA(x + 1) + FPg(x + 1) + FP4(x)

+ FPy(x ) ZI(ﬁA(e) (x - 1))
—Zl(ltg(e)
e=1

The change of window size doesn’t affect the relation
of ft, It and rt between the interleaving trace and individual
trace, and notes that for d(x), we have d(2x+1) = d(x+1)+d(x)
and min(i, 2x + 1) = (mm(z 2x) + min(i, 2(x + 1))). Then,

> (DJB —-x)).

105

we can derive the aggregate footprint FP(2x + 1) through the
procedure similar to the proof of Theorem 4.8.

Theorem 4.8 and Theorem 4.9 can predict the aggregate
footprint for two threads only. Based on these two theorems,
we now extend the aggregate footprint for any number of
threads that are 1:1... uniformly interleaved together.

Corollary 4.10. For k threads, 1:1... uniformly interleaved,
given any window size kx + j, where x is a non-negative integer,
k > 2,and 0 < j < k, the aggregate footprint can be expressed
as:

k
FPe(kx +j) = >

t=1

((k — )PP (x) + jFP,(x + 1))

( Z(k - DI(f(e) < (x - 1)

5 IM»

(t = DI((e) = (N, = ).

—_

e=

5 Related Work

Working-Set Models of Cache The working set model
was originally proposed by Denning [4]. More recent work
in memory management has extended the model to include
the the space-time product [6]. Denning and Schwartz [5]
derived several properties of the working set, including the
linear-time formula to compute the average working-set size
and its conversion to the miss ratio of LRU page replacement.

Similar concepts have been used to model cache perfor-
mance. To compute reuse distance, Shen et al. [17] gives a
formula similar to Denning and Schwartz [5] to compute
the probability that a given data element appears in a time
interval of given length. Early models of cache sharing ap-
proximated the working-set size. For time-shared cache, Suh
et al. [18] formulated similar properties to those of Denning



Prediction and Bounds on Shared Cache Demand...

and Schwartz [5]. For multicore cache, Chandra et al. [3] de-
fined the sequence function seq(d, n) as a series of n accesses
to d data blocks, where all accesses map to the same cache
set. Jiang et al. [12] defined DPC as the number of distinct
data blocks per cycle. Eklov and Hagersten [9] developed
StatCache, whose estimate of the average reuse distance is
similar to the average working-set size. We use the footprint,
initially defined by Ding and Chilimbi [7]. Xiang et al. [20]
gave a technique for efficiently measuring a program’s foot-
print for all timescales. Footprint measurement has been
improved by Hu et al. [11] and Yuan et al. [23].

Previous techniques show that the working-set models
predict the effect of cache sharing both quickly and accu-
rately [3, 8, 11, 12, 21]. However, those results were based
on the assumption of uniform interleaving. Jiang et al. [12]
predicted the increase in concurrent reuse distance by the
ratio of the co-run DPC over the solo-run DPC. Brock et al.
[1] proposed a general form of the footprint composition
function in Theorem 4.3, as well as the natural cache par-
tition, which is the average number of items kept in cache
from each trace, when the traces satisfy certain properties.
That work stated the footprint composition function without
proof or exploration of the bounds on its accuracy for uni-
formly interleaved traces or the range of possible footprints
for other interleavings. In this paper, we present the first
study on (1) the effect of non-uniform interleaving and (2)
the correctness of footprint composition for uniform inter-
leaving. These results are applicable to other working-set
models and their uses in modeling a parallel execution.

Effects of Interleaving in Shared Cache Sandberg et al.
[16] studied the variation in co-run performance and showed,
for example, that a program was slowed down between
1% and 17% depending on how it overlapped with another
program. They developed a method to divide a program
into phases and evaluate different overlappings efficiently
by reusing co-run results from different phases. Instead of
modeling the variation, Zhang et al. [24] neutralized it by
taking the average effect by running each co-run program
enough times so the difference becomes negligible in the
overall performance across different tests. This method has
been adopted in other studies, e.g., [20-22]. The variation
observed in prior work may come from two effects: arbitrary
interleaving (to create different phase overlaps) and differ-
ent uniform interleaving (for the same phase overlap). Both
effects are studied in this paper and given precise bounds
(except for the upper bound of arbitrary interleaving).
Interleaving-based techniques have been used to improve
cache sharing. Fedorova et al. [10] addressed the problem
of fairness and performance isolation in shared cache and
developed the cache-fair scheduler. The technique is based on
the property that if two programs have the same frequency
of cache misses, they have the same cache occupancy, so it
suspends a program execution when needed to equalize the
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miss ratios of co-run applications. West et al. [19] developed
a cache-occupancy model assuming random replacement and
evaluated its accuracy in modeling LRU caches. The cache-
fair scheduler effectively changes the interleaving to manage
cache sharing. Zhang et al. [25] developed throttling-enabled
multicore management (TEMM), which throttles the speed
of a core by reducing its frequency. Scheduling and throttling
are both ways to improve interleaving. The theorems in this
paper can help to develop such techniques and derive their
performance limits.

Much research has studied the effect of interleaving on
debugging, e.g., finding races that only manifest in specific in-
terleavings. Most methods focused on data sharing, which is
less an interest for locality analysis since the actively shared
data is usually cached. Burckhardt et al. [2] took a different
approach and developed a method called probabilistic con-
currency testing (PCT). For n threads executing a total of k
instructions, the interleaving generated by PCT satisfies any
set of d ordering constraints with a probability at least #.
An ordering constraint restricts the choice of interleaving.
Recently, Li et al. [13] used PCT to measure the variation in
reuse distance with a probabilistic coverage.

Peak Memory Demand Li et al. [14, 15] defined first aver-
age liveness and then peak memory demand to measure a pro-
gram’s need for heap memory, which increases by memory
allocation and decreases by reclamation. By demonstrating
a similar mathematical formulation, they showed that heap
dynamics are analogous to cache dynamics [15]. Extending
this analogy, we note that the interleaving in memory alloca-
tion and reclamation by concurrent threads has an effect on
the heap demand, as the interleaving of memory access does
on the cache demand. In fact, the problem of interleaving
is unavoidable whenever there is parallelism and (memory)
resource sharing, and this effect is an important factor in
performance and scalability. It remains future work whether
the interleaving effect on heap demand can be predicted and
bounded by extending the solutions presented in this paper.

6 Conclusions

In this paper, we explored the effects of interleaving mem-
ory accesses in shared cache, from the perspective of the
footprint. This problem cannot be exhaustively addressed
by co-run testing or simulation, due to the large number
of possible interleavings. Our new theory first shows that
for long traces, the cache demand of sequentially executed
programs will always be lower than it will be for a parallel
execution of the programs, and then it finds a loose bound on
the footprint for any interleaving between the two programs’
memory accesses.

We also proved that the footprint for an a:b uniformly
interleaved trace can be calculated from the footprints of
the two constituent traces, within well-defined bounds that
scale with a and b.
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A Appendix
Error Bound for Assumption 1

Here we demonstrate and prove an upper bound for the
difference between the a-stepping footprint for windows of
length ax and the footprint for a trace, which Assumption 1
claimed was small. We start with a lemma constraining how
the working set size may change from one window to the
next, and use this to motivate a method for maximizing the
difference between the stepping footprint and the footprint.

Lemma A.1. The working set size may change by —1, 0, or
+1 from one window to the next. Le., w(t + 1,x) — w(t,x) €
{-1,0,1}.

Proof. When the window moves forward, one item departs
the window, and another arrives in the window. The depar-
ture may change the working set size by either —1 (if that
was the only instance of that item in the window) or 0 (oth-
erwise). The arrival may change it by 0 (of the new item is
already in the window) or 1 (otherwise). Therefore, the net
change in working set size can only be —1, 0, or 1. O

o 4 ° °
-
L 3 ° ° ° °
g3
e 2 ® )
£ 3
—él
=

o 1 2 3 4 5 6 7 8

Time (t)

Figure 3. An example sequence of working set sizes for the
trace abcd dcba abed. Windows of length 4 beginning at
multiples of 4 have working set sizes of 4. Between these
windows, the working set size decreases as much as possible.

Theorem A.2. For a trace of length N = an, where a and n
are positive integers,

|sfp(ax) - fp(ax)] < 7.

Proof. We prove this in two parts. First we show that sfp(ax)—
fp(ax) < ¢, and then we show that fp(ax) — sfp(ax) < §.
Call windows beginning at values of ¢ where ¢ (mod a) =
0 a-stepping windows. In order to find the upper bound
on how much the stepping footprint can exceed the foot-
print, consider a trace for which w(t,ax) = ax for all
a-stepping windows. By the definition of the a-stepping
footprint, sfp(ax) = ax. The difference sfp(ax) — fp(ax) is
maximized when the other windows are as much smaller
than ax as possible. From Lemma A.1, it is clear that this
occurs when the sequence of working set sizes for win-
dows between consecutive a-stepping decreases by 1 and
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then increases by 1 until reaching the next stepping win-
dow starting point. An example of the working set sizes
for such a trace (with a 4 and x 1) is shown in
Figure 3. Another example, where a = 4 and x = 3 is
Xy Xg Yy UYs Zyc e ZaXg- o X1 Yg- oYy Zg- o 21

Note that when a is odd, there are two consecutive win-
dows between consecutive stepping windows with the low-
est working set size of ax — | 5|, and when a is even, there is
only one window with the lowest working set size of ax — .
When a is odd, the aggregate footprint is then the sum of
the (n — x + 1) peak working set sizes, plus the sums of the
working set sizes on the downslope and the upslope (of the
working set size sequence as shown in Figure 3), for all (n—x)
cycles. When a is even, the bottom working set value oc-
curs only on the downslope, so we count it separately, again
(n — x) times. The aggregate footprint is then

ax(n—x +1) + 2(n — x) ZI‘;:;}(—L(J/ZJ k aisodd.
FP(ax) =
Pax) ax(n—x +1) + (ax — §)(n — x)
+2(n — x) ZZ’:‘;}C_MZH k, a is even.

Converting to the footprint, and subtracting from the step-
ping footprint yields

(@*-1)(n—x)/4
a(n—x)+1

a?(n-x)/4

a(n—x)+1°

a is odd.

a is even.

sfp(ax) — fplax) =
|

sfplax) — fplax) < Z

1 .
1q> ais odd.

s a is even.

ENEEENH

In both cases, we have:

Now we show a symmetrical result for the maximum pos-
sible value of fp(ax) — sfp(ax). Consider a trace for which the
stepping footprintis ax—| a/2], and the footprint climbs up to
ax and back down again in between stepping windows. Two
examples of such a trace are cddc baab cddc fora = 4and x =
1, and XpXs Yy« Ys 21 24 Xac XL Ygoo oY1 24 21 X1X2
for a = 4 and x = 3. Note that these are the same traces as
used previously, with the first two . In this case, the aggregate
footprint is

(ax = la/2])(n—x+1)

+2(n — x) Zgax—[a/zjﬂ k a is odd.
FP(ax) =

(ax —a/2)(n — x + 1) + (ax)(n — x)

+2(n —x) Zif;i_a/m k, a is even.
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Converting to the footprint and subtracting the stepping
footprint yields a familiar result:
(@-1)(n-x)/4
a(n—-x)+1
a?(n-x)/4
a(n—x)+1°

a is odd.

a is even.

fplax) — sfp(ax) =

1 .
1o a is odd.

, ais even.

<

ENISEENN

Again, in both cases we have a difference smaller than a/4,
thus, we have our result:

|sfp(ax) — fp(ax)| <

LN RN
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