Fast Miss Ratio Curve Modeling for Storage Cache

XIAMENG HU, XIAOLIN WANG, and LAN ZHOU, Peking University

YINGWEI LUO, Peking University; Shenzhen Key Lab for Cloud Computing Technology & Applications,
SECE, Peking University, SHENZHEN

ZHENLIN WANG, Michigan Technological University

CHEN DING, University of Rochester

CHENCHENG YE, Huazhong University of Science and Technology

The reuse distance (least recently used (LRU) stack distance) is an essential metric for performance prediction
and optimization of storage cache. Over the past four decades, there have been steady improvements in the
algorithmic efficiency of reuse distance measurement. This progress is accelerating in recent years, both in
theory and practical implementation.

In this article, we present a kinetic model of LRU cache memory, based on the average eviction time (AET)
of the cached data. The AET model enables fast measurement and use of low-cost sampling. It can produce
the miss ratio curve in linear time with extremely low space costs. On storage trace benchmarks, AET reduces
the time and space costs compared to former techniques. Furthermore, AET is a composable model that can
characterize shared cache behavior through sampling and modeling individual programs or traces.

CCS Concepts: « Computing methodologies — Modeling methodologies; « Information systems — Hi-
erarchical storage management;

Additional Key Words and Phrases: Cache system, data locality, miss ratio curve

ACM Reference format:

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen Ding, and Chencheng Ye. 2018.
Fast Miss Ratio Curve Modeling for Storage Cache. ACM Trans. Storage 14, 2, Article 12 (April 2018), 34 pages.
https://doi.org/lo.l145/3185751

1 INTRODUCTION

Memory system is a multi-level structure where the upper level of memory often plays the role
of cache for the lower level of storage. This design is motivated by a simple fact of program
locality: in any time period, only a small fraction of data in a program will be frequently used.
This behavior used to be modeled by the working set locality theory (Denning 1980), where
data locality is characterized by working set size (WSS) (Denning 1968; Denning and Slutz 1978).

The research is supported in part by the National Science Foundation of China (Grants No. 61232008, No. 61472008, No.
61672053, and No. U1611461); Shenzhen Key Research Project No: JCYJ20170412150946024; the National Science Founda-
tion (Contracts No. CSR-1618384, No. CSR-1422342, No. CCF-1717877, No. CCF-1629376, and No. CNS-1319617); and an
IBM CAS Faculty Fellowship.

Authors’ addresses: X. Hu, X. Wang, L. Zhou, and Y. Luo, Peking University, No.5 Yiheyuan Road Haidian District, Beijing,
P.R.China 100871; emails: {hxm, wxl, lanzhou, lyw}@pku.edu.cn; Z. Wang, Michigan Technological University, 1400
Townsend Drive, Houghton, MI 49931-1295; email: zlwang@mtu.edu; C. Ding, University of Rochester, 500 Joseph C.
Wilson Blvd., Rochester, NY 14627; email: cding@cs.rochester.edu; C. Ye, Huazhong University of Science and Technology,
Luoyu Road 1037, Wuhan, P.R.China 430074; email: yechencheng@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1553-3077/2018/04-ART12 $15.00

https://doi.org/10.1145/3185751

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

https://doi.org/10.1145/3185751
mailto:permissions@acm.org
https://doi.org/10.1145/3185751

12:2 X. Hu et al.

A
Stack
P/rocessing
,71970)
- / Interval Tree
o 1975
& Counter Seg»rfh Tree ()
5 Stacks ~ (1981)
2 (2014) ,
g . 7 Scale Tree
[, 4 (2009)
» Working Set
AET SHARDS &Footprint
(This paper) (2015) (1972,2011)

Space overhead

Fig. 1. The time and space overhead of MRC profiling techniques.

Locality characterization techniques have been developed for decades. They are widely used for
management and optimization at different levels of memory hierarchy.

Much progress has been made to model locality through reuse distance analyses and the result
miss ratio curves (MRCs), as shown in Figure 1.

From the reference trace of a program, accurate MRC can be calculated by measuring reuse dis-
tance (least recently used (LRU) stack distance as defined by Mattson et al. (1970)). Reuse distance
is the number of distinct data accesses between two consecutive accesses to the same location.
Precise reuse distance tracking requires O(N log M) time and O(M) space for a trace of N accesses
to M distinct elements (Olken 1981a).

For CPU workloads, the recent footprint theory (Xiang et al. 2013), StatStack (Eklov and
Hagersten 2010), and time-to-locality conversion (Jiang et al. 2010; Shen et al. 2007) use reuse time
instead of reuse distance to model the workloads. The (backward) reuse time is the time between
a data access and the most recent access to same location. The footprint approach reduces the
run-time overhead of MRC measurement to O(N).! However, the space overhead of the footprint
algorithm is still O(M).

As for storage workloads, their sizes are usually much larger than CPU workloads, and their
lifespan may last for weeks or more. Therefore, techniques like the footprint analysis may require
too much space. Counter Stacks (Wires et al. 2014) and SHARDS (Waldspurger et al. 2015) are recent
breakthroughs to reduce space cost in asymptotic complexity (Wires et al. 2014) and in practice
(Waldspurger et al. 2015). Counter Stacks uses probabilistic counters and for the first time can mea-
sure reuse distances in sub-linear space with a guaranteed accuracy (Drudi et al. 2015). But Counter
Stacks’ space overhead remains modestly high. SHARDS uses a splay tree to track the reuse dis-
tances of sampled data. The time and space consumption are reduced to a low level. However,
SHARDS cannot characterize shared cache behavior through modeling individual programs.

This article describes a novel kinetic model for MRC construction of LRU caches based on
average eviction time (AET). AET runs in linear time asymptotically, uses sampling to minimize
the space overhead, and adopts adaptive phase sampling to capture time-varying behavior. In
evaluation, AET has the lowest level space and run-time overhead compared to past techniques,
while maintaining high MRC accuracy. Although SHARDS is comparable to AET in time and
space overhead, AET is a composable metric, i.e., the MRC of a multi-programmed workload in
shared cache can be computed directly from the AET of its member programs.

IThe working-set theory has a similar effect and same time and space complexity (Denning and Schwartz 1972; Denning
and Slutz 1978). See Sec. 2.8 of Xiang et al. (2013) for a comparison.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:3

time| ref rt |hit
0 a El o 0
s [(]
| [Bk

3 |a|[abfcbbpa]{ee]|o0

a lal|[aPaP c]| a1
s |la|[aPfaP c P b]|2]1

6 |a|la2alcp]]2]1

7 (b [al a6 |12

8 |a|[aolalc]|2]1

9 e[altr P al]l 7|12

10| e |[efctalrb][e]|o0
11 (d|[afH e clal|l6|o0

Fig. 2. Example 4-block cache, viewed as a stack (priority list). The table shows the logical time, the data
referenced each time (ref), the reuse time (rt) of each access and whether the access is a cache hit or not.
The shaded area is the eviction process of d.

2 AET MODEL

This section describes the kinetic model. Section 2.1 uses an example to introduce the basic con-
cepts especially the eviction time. Section 2.2 formulates and computes the average eviction time
(AET) by solving the distance integration equation. The AET model relates MRC to reuse-time
distribution. Section 2.3 discusses the correctness of the model. Section 2.4 shows an alternate
approach to deriving the AET model using Little’s law. Section 2.5 models the shared cache and
solves the eviction-time equalization equation. Section 2.6 shows multi-level cache modeling using
AET.

2.1 LRU Stack and Eviction Time

LRU cache can be logically viewed as a stack (Mattson et al. 1970). Data blocks are ranked by their
recent access time from most recent to least recent. Every access brings the accessed data to the
top of the stack. The bottom of the stack stores the least recently used data and is evicted on a miss
(when the cache is full).

When a data block is loaded into cache at a miss, it may be reused for several times (hits) before
it is evicted. The eviction time is the time between the last access and the eviction. It is the duration
that the block moves from the top of the stack to the bottom for the last time. We call this period
of LRU movement an eviction process and the data block moving towards the bottom of stack the
evicting block. At an eviction at time ¢, looking backwards to the most recent time u when the
evicting block was referenced, the time interval ¢ — u is the eviction time. Notice that u could also
be the time the evicting block was brought in (a miss). In general, the eviction time is the last
segment of the residency time of the evicting block.

For example, for data block d in the example cache in Figure 2, it is loaded at time 3, last accessed
at time 5, and evicted at time 10. The eviction time is 5, shown by the shaded area. Eviction time

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:4 X. Hu et al.

Table 1. The Kinetic Model Illustrated by d’s Eviction in
the Shaded Area in Figure 2

Logical time 516|789 10
Position m 0[1|2]| 2] 3| evicted

Arrival time T, o|1]2|2]4 5

Current reusetime | 2 | 2 | 6 | 2 | 7 00

The arrival time T}, (third row) depends on the movement condi-
tion: whether the reuse time (Last Row) is greater than T,,. The
eviction time is Ty = 5.

is part of the residence time, which is 7 in this example and in general can be estimated using
queuing theory (as “response time,” Chapter 9 (Denning et al. 2015)). This observation motivates
us to derive the AET model using queuing theory in Section 2.4.

To model the eviction time, we need to model the progression that leads to the eviction. We
define the arrival time T, as the time it takes for an evicting block to reach stack position m (from
its last access). For size ¢ cache, the arrival time is a (subscripted) function T,,, m =0,...,c — 1.
Naturally, the eviction time is T, which is the time the evicting block leaves position ¢ — 1 and
arrives at the virtual position c. To illustrate, Table 1 shows the arrival time T, of d for size 4
cache. As m increments from 0 to 4, T,, increases from 0 to 5.

The movement of evicting block d depends on how other data are accessed. At each access in
the eviction process (shaded area in Figure 2), d either stays at its current position or steps down
one position. The condition of movement is simple: d moves down from a position m if and only
if the access is a miss, or if the stack position of the accessed data m’ is greater than m, that is,
the accessed data resides in the far side of the priority list, closer to the tail. We define Tj to be 0.
Obviously, T is always 1, since the access to any other block must bring it to stack position 0 and
dislodge d, as it happens at time 6 for d.

The condition of movement can be simplified, because we do not need the exact location of the
accessed data. It suffices to know the relative location. For a simpler test, we use the reuse time
rather than the stack location. We define the sojourn time S; at stack position i as the time the
evicting block has stayed at position i, since it arrived at the position. The following statement
summarizes the movement condition, which relates data movement and eviction time in the LRU
stack to reuse time.

When block z is accessed, and the evicting block d is at stack position m — 1, d moves down to position
m if and only if the reuse time of z is greater than d’s arrival time T,,—y plus its current sojourn time
Sim—1-

If the preceding condition is true, then z has not been accessed within T,,—; + Sp,—1, i.e., since
d’s last access, so it must reside behind d in the stack or not be present in the stack. An interesting
observation is that, when the movement condition is true and d moves, it arrives at position m at
time T,,—1 + S;;—1, which equals T,,,. Movement condition can thus be stated formally as:

Movement Condition: When block z is accessed, and the evicting block d is at stack positionm — 1,
d moves down to arrive at position m if and only if the reuse time of z is greater than T,,,.

The relation between the eviction time and the reuse time is illustrated by our example. The last
row of Table 1 shows the reuse time of each access during d’s eviction process. Block d moves to
next position (shown in the second row) whenever the reuse time (the last row) is greater than the
arrival time (the third row). At each position, the speed changes. The fastest speed is moving one
position at each access. The slowest speed is no movement.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:5

ALGORITHM 1: Reuse Time Histogram to Complement-Cumulative Distribution Function
(CCDF)

Require: rt[] // reuse time histogram (without cold misses)
Require: len // largest reuse time
Require: sum // number of accesses including cold misses
Ensure: : P[] // CCDF of reuse time

1: function CALcCCDEF(rt[], len, sum)

22 P[0] « 1.0

3 fori « 1..lendo

4: P[i] « P[i— 1] — rt[i]/sum
5 end for

6: end function

We next model the average eviction time for all data in cache. The arrival time T,,, will be defined
similarly as the average for all data. Individually, the arrival speed may slow down and then speed
up. On average, however, the arrival speed is non-increasing, as we discuss next.

2.2 Average Eviction Time (AET)

AET(c) is the Average Eviction Time for all data evictions in a fully associative LRU cache of size c.
It is the expected residence time for a data block since its last access. Our AET model is based on
the following hypothesis:

Cache Miss Probability Hypothesis: The probability that a reference with a reuse time larger
than AET is the probability that this data block is no longer in cache and results in a cache miss.

The cache miss ratio is actually the probability of an access that leads to a miss. The hypothesis
therefore can applied to predict the miss ratio as the the proportion of data reuses that have larger
reuse time than AET. This hypothesis is the foundation of our MRC prediction technique. The rest
of section derives AET.

For cache size c, let T,,, be the average arrival time for evicting data blocks to reach position m
(in their eviction processes). Obviously, Tp = 0 and AET(c) = T.. The movement condition is no
longer individual but now collective and depends on the reuse times of all data.

Let N be the total number of references and rt(t) be the number of references with reuse time
t. f(t) is the proportion of reuses with reuse time ¢, defined as follows:

ri(t)

> 1)

f(®)=
f(t) describes reuse-time distribution, which can be effectively sampled as we will discuss in
Section 3.1. For an access, P(t) is the probability that its reuse time is greater than t:

P = > f). (2)

i=t+1

P(t) is actually the Complement of the Cumulative Distribution Function (CCDF) of reuse time,
i.e,, P(t) is one minus the probability of reuse time less than or equal to ¢. Algorithm 1 implements
Equations (1) and (2) to convert reuse time histogram to CCDF. Next, we show that AET can be
derived from CCDF.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:6 X. Hu et al.

A
v(To)

V(Tm)
v(T)-£(T,)

v(T)

m+1

TO Tm Tm+1 m+1 Tc T

Fig. 3. As the average arrival time (T};,) increases along the x-axis, the y-axis shows the arrival speed v(T};,)
at each Ty,. The integral of of v over T gives the movement distance, which is the area under the curve. The
shaded area shows the increment of stack position (which is 1).

The movement condition is now a probability when examining average arrival time:

Movement Probability: The probability of an evicting block at position m — 1 to move to (arrive
at) position m is P(T,), where Ty, is the average arrival time to position m.

This can be interpreted as follows: in a unit time, the evicting block at position m — 1 moves by
1 position to arrive at position m with probability P(T;,). So the expected moving distance is P(T,)
in a unit time. To use a familiar concept, we call it the arrival speed. The arrival speed at position
m in logical time equals the probability P(T,,). Further, we track arrival speed with respect to the
relative clock of an eviction process:

v(Tm) = P(Tm), ®3)

when m > 0. A special case is v(Ty) = v(0), which is always one following the logical time, i.e., one
access at a time. correspondingly, P[T,] = P[0] = 1. Equation (3), hence, holds for all m. The arrival
speed v(T},) is monotone and non-increasing with position m. By definition, P(T},) is monotone
and non-increasing with m.

We now construct an equation to solve for T, and then AET(c). The equation connects three
metrics: arrival speed v(T,,), average arrival time T,,, and cache size c. This connection is shown
pictorially in Figure 3.

In Figure 3, the x-axis shows the average arrival time (T};,) as it increases. At each T,,, we use
Equation (3) to compute the arrival speed v(T,,), shown in the y-axis. The figure shows an ex-
ample curve, which is monotonically non-increasing. The integral of v over T gives the distance
of movement, i.e., the stack position it moves to. It is the area under the curve. The shaded area
shows the increment of the stack position (which is 1).

The three metrics are discrete functions. The subtle but critical problem is the difference in their
discrete units. When we measure the cache size and the data movement in cache, a single step is a
stack position. When we measure the reuse time, a single step is an access. We may call the former
the spatial unit and the latter the temporal unit. The two units are not the same. Figure 3 shows
that from the same base T,,, the temporal increment T, + 1 is less than or equal to the spatial
increment Tpp,.1.

We use the temporal-unit function of reuse time to derive the spatial-unit function of AET. Let’s
consider how the speed changes as a data block moves. From the monotonicity mentioned earlier,
the change must be a deceleration. Based on the arrival speed formula (Equation (3)), the following

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:7

gives the exact deceleration from T, to T,,, + AT:

T +AT

U(T +AT) = 0(Tn) =). f(2),)

t=Tpm+1

where AT stands for the time increase over T,,. The unit is temporal, so the minimal AT is one,
i.e., one access.

Now, we are ready to formulate the first kinetic equation, Distance Integration (DI). It combines
the temporal and spatial increments to compute the complete movements. First, let’s consider the
spatial increment. From T,,, to T,,+1, the data moves one stack position (the shaded area in Figure 3).
Second, we add the temporal increment as follows. For each spatial increment (m), we compute
the deceleration by integrating in the temporal unit (dx), given in Equation (4). Finally, we sum
over the spatial increment from 0 to cache size c. The result is the total distance moved, e.g., the
area below the example curve in Figure 3, which is the cache size ¢ when the arrival time reaches

T.:
c—1 Trms1 X
(0(Tm) - f#)dx =c. ()
T,
m=0 m

t=Tp+1

DI is an implicit equation. Its solution, as it turns out, is AET(c), i.e., T.. Consider the speed at
each time step x from 0 to AET(c), and the time it takes at each step, we have

AET(c)
f P(x)dx =c. (6)
0

This equation is, in fact, the same as Equation (5). The equivalence is proved as follows:

ﬁ‘ﬁmﬂmmr-fjfmmx

m=0 m t=Tm+1
c—1 Tt X

=3 [Ty - Y soa
m=0" Tm t=Tm+1

c-1 Tm+1
_ f‘ (P(Tn) — (P(Tyn) = P(x))) dx

T Ip
P(x)dx + f P(x)dx
To Tl

T,
+ f P(x) dx
Tc—l

AET(c)
= f P(x) dx.
0

From AET to MRC. Equation (6) shows that AET calculation only needs the CCDF of reuse time,
P(x), which can be calculated based on the reuse-time distribution or reuse time histogram (RTH),
and can be measured in linear time (see Section 3).

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:8 X. Hu et al.

ALGORITHM 2: From CCDF of Reuse Time to MRC
Require: P[] // CCDF of reuse time
Require: M //largest cache size
Require: len // largest reuse time
Ensure: MRC[]// miss ratio curve
1: function CALcMRrc(P[], M, len)
2 integration < 0
3 I« 0
4 forc «— 1..M do
5: while (integration < c and t < len) do
6
7
8
9

integration < integration + P[t]
te—t+1
end while
MRCJc] « P[t —1]
10: end for
11: return MRCJ[]
12: end function

Based on the cache miss probability hypothesis, the miss ratio mr(c) at cache size c is the prob-
ability that a reuse time is greater than the average eviction time AET (c):

mr(c) = P(AET(c)). (7)

Algorithm 2 implements Equations (6) and (7) to calculate MRC based on the CCDF of reuse time.
During the integration of Equation (6) from 0 to the maximal reuse time, the miss ratio of all cache
sizes can be computed together in linear time, O(N). Note that line 7 can be executed at most
len + 1 times where len is less than N as the largest-possible reuse time of a trace of size N is
N — 1. In practice, we merge Algorithm 1 and Algorithm 2 into one function and replace the array
P by a scalar to save space.

Impact of Cold Misses. In a program execution, the first access to any data block should be a
cold miss. Because every cold miss will insert a new data block at the head of the LRU priority
list, it will push down all the data in the list by one position. In the kinetic equation, no matter
where the data is, the cold misses always contribute a fixed share of probability that moves the
data. Therefore, in AET model, we define the reuse time of every cold miss to be infinite, and we
count the number of cold misses in the oo bin of the reuse time histogram (RTH), as in the example
shown in Figure 4.

2.3 Correctness

The conversion from AET to miss ratio is not always correct. The correct miss ratio for cache size
c is the proportion of reuse distances d > c.

The inverse of the AET function is in fact an estimation of reuse distance. For a reuse time ¢, the
reuse distance d is the distance the data block moved down the cache stack, so t = AET(d) and

d=AET™'(¢). (8)

AET conversion is equivalent to first estimating the reuse distance and then using the estimated
reuse distance:

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:9

log,(number of reference)

% 20000 40000 60000 80000 100000 0
reuse time

Fig. 4. RTH and cold miss example.

_ Xt>agr(c) rd(AET (1))
B N

B 2> AET(c) Tt(t)

- N

= P(AET(c)),

where rd(x) is the number of references with reuse distance x. Therefore, AET is correct for all
cache sizes if its estimation of reuse distance is correct. We give a correctness condition as follows:

Correctness Condition For All Cache Sizes. The AET-based conversions are accurate for all
cache sizes if the number of reuse times rt(t) of time t is the same as the number of reuse distances

rd(AET~1(t)) of distance AET~'(t), for all t > 0.

When the two are equal, using the AET conversion is the same as using reuse distance for all
cache size ¢ > 0. The condition is a reiteration of Equation (8) but shows the connection mathe-
matically as a function composition, rd and AET™!.

Next, we give the correctness condition for individual cache sizes. For a cache of size ¢, every
access with a reuse time rt > AET(c) will be predicted as a cache miss by AET model. This pre-
diction is inaccurate if the reuse distances of some reuses are equal to or smaller than ¢, which
means they are hits. We define this error as “miss-prediction error” or MPE. For every access with
a reuse time rt < AET(c), AET predicts a hit. We define the “hit-prediction error” or HPE as the
reuses that predicted as hits but are misses, because their reuse distances are larger than c.

More specifically, we use a matrix to present the distribution of reuse time and its correspond-
ing reuse distance. As shown in Figure 5, element X, ,4 stands for the number of accesses with
reuse time rt and reuse distance rd. Note that the elements when rt < rd are 0, because reuse
distance is always equal to or smaller than reuse time. For cache size ¢, we use two dashed lines to
divide the matrix into four parts. The upper left (UL) area in the matrix are elements with equal or
smaller reuse time than AET (¢) and equal or smaller reuse distance than ¢ (rt <= AET(c),rd <= c).
They represent the reuses that AET predicts as hits and are truly hits. The lower right (LR) area
are elements with larger reuse time than AET(c) and larger reuse distance than cache size ¢
(rt > AET(c),rd > c). They represent the reuses that AET predicts as misses and are truly misses.
Both UL and LR parts are correct predictions in AET model. However, the upper right (UR) area,
which are the reuses with equal or smaller reuse time than AET (c) but larger reuse distance than

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:10 X. Hu et al.

C
UL . UR
— 1 —
’ 0 o
1
2,1 X2,2 0 : -0
1
1
1
AET(Q) — - 2202 [Treed | Taemoul
. 1 .
XN-1,1XN-1,2XN-1,é” : Y XN-1,M
-] —J
LL ! LR

Fig. 5. The reuse time-reuse distance matrix, divided into four quadrants as labeled: UL, LL, UR, and LR.
Xoo, 00 is NOt presented.

¢ (rt <= AET(c),rd > c). This part represents the hit-prediction error, because AET predicts them
as hits but they are actually misses. On the other hand, the lower left (LL) area in the matrix rep-
resents miss-prediction error. They are the reuses that AET predicts as misses but actually are
hits (rt > AET(c), rd <= c). Please note that the number of cold misses (Xw,) is not presented in
this matrix. In AET model, the first access to any data is predicted as cache miss. This prediction
is always correct under any cache sizes.

Now, we can conclude that the error of AET model at certain cache size is brought by the dif-
ference between MPE and HPE. Obviously, the number of MPE is the sum of elements in LL:

N-1 c
IMPE = > > X,)
i=AET(c)+1 j=1

where N is the total number of accesses. Similarly, the number of HPE is the sum of elements in
UR:

AET(c) M AET(c) M
LERIDIDIETEIDIPIPE (10
i=1 j=c+1 i=c+1 j=c+1

where M stands for the data size of the program.

If IMPE| and |HPE| are equal, then they cancel each other and then the AET prediction is accurate
at this cache size. If IMPE| is larger than |HPE|, then the predicted miss ratio should be higher than
the real miss ratio. Conversely, if |MPE| is smaller than |HPE|, then the predicted miss ratio should
be lower than real miss ratio. Now, we have the absolute error E(c) of AET prediction under cache

size c:
||HPE| — | MPE|| || HPE| — |MPE||

(c) = =
N-1 M
im1 2j=1Xi,j T Xoo 00 N

(11)
In Figure 6, we run a simple trace over a cache of size 3 to exemplify the two types of prediction

error. The data reference stream is constructed by two cycles:
(ABCCBA)'(MNPQ)?. (12)

Each cycle has a unique reference pattern with different number of iterations. The first cycle
iterates for 100 times while the second cycle twice. The entire trace has 608 references generated
from 7 distinct elements. In Figure 6, we give the reuse time and reuse distance of each reference
starting from the second iteration in the first cycle, as well as the hit/miss prediction using AET

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:11

Address A B C C B A)*” M N P Q M N P Q
Reuse Time 1 3 5 1 3 5 +o0 +o0 +o0 +00 4 4 4
Reuse Distance 1 2 3 1 2 3 400 400 +o00 +o0 4 4 4 4
l(’;;d;e;izr; hit hit miss hit hit miss | miss | miss | miss | miss hit hit hit hit
Actual hit hit hit hit hit hit miss | miss | miss | miss | miss | miss | miss | miss
Error Type - - MPE - - MPE - - - - HPE | HPE | HPE | HPE

Fig. 6. An example trace to show different types of prediction error in a 3-block cache (Iteration 1 of the first
cycle is skipped due to space.)

model. With a 3-block cache, the average eviction time can be derived as follows:

f04P(x)dx

= P(0) + P(1) + P(2) + P(3) + P(4)
409 409 210 206

+—t—+—+—
608 608 608 608
= 3.03.

The above equation gives the average eviction time, AET(3) = 4. Any reference with a reuse
time larger than 4 is predicted as cache miss. The first C and the second A in the first cycle from
iteration 2 and beyond have a reuse time of 5, AET model predicts them as misses. However, the
reuse distance of these two references is 3, which means they are actually cache hits. These two
references are the miss prediction errors (MPEs) in AET model. In the second iteration of the
second cycle, all the references have equal reuse time 4 and the same reuse distance 4. AET model
predict them as hits, but their reuse distances are larger than cache size, which denotes they are
actually misses. This type of error is the hit prediction error (HPE).

In this example, AET predicts 206 misses versus 11 misses by the accurate reuse-distance model
due to the extremely-skewed access pattern. However, in our evaluation, we observe that the num-
bers of the two types of prediction error are typically small and close to each other in most cases.
The differences between them are evident only under extreme unstable access pattern. Here, we
give the correctness condition for cache size c.

Correctness Condition For One Cache Size. For cache size c, the AET-based conversion is accurate
if the number of reuses whose reuse time is larger than AET(c) but reuse distance smaller than or equal
to ¢, is equal to the number of reuses whose reuse time is equal to or smaller than AET(c) but reuse
distance larger than c.

2.4 Consistency with Queuing Theory

In queuing theory, a classical discipline within the mathematical theory of probability, Little’s law,
is a theorem by John Little that states: The long-term average number of customers in a stable
system, L, is equal to the long-term average effective arrival rate, A, multiplied by the average
time a customer spends in the system, W; or expressed algebraically: L = AW (Allen 2014). This
relationship is not influenced by the arrival process distribution, the service distribution, and
service order. A caching system can also be viewed as a queuing system. New data and missed
data arrive from the lower level of memory hierarchy. The cached data stays in cache for some
time before it leaves cache (eviction).

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:12 X. Hu et al.

In this section, we will infer AET model from Little’s law. AET model is under the assumption
that all reuses with a reuse time larger than the average eviction time is a cache miss. Since cache is
a queue system, we want to present cache miss ratio using Little’s law under the same assumption
as AET model. The first part of Little’s law is the average time a data object stays in cache, which
we call the average residence time of data objects. It is the average time for all data objects from
entering cache to their eviction or departure. Assume we have a cache of size c, for any reuse time
t, if it is smaller than or equal to AET(c), the data has resided in cache for ¢ since its last access. If ¢
is larger than AET(c), then it means the data had resided in cache for AET(c) and was then evicted
from cache from since last access. If this access is a cold miss (t = o), then the data object has
never been cached before. However, after the last reference of each object, it will stay in cache for
AET (c) and get evicted. Since the number of cold misses is equal to the number of last references,
we can assume every cold miss to have residence time of AET(c).

Now, we know the relationship between reuse time and residence time of the data from its last
access time. If we have the reuse-time distribution of all data references, then we can easily get
the total residence time of all data objects. Assume rt(x) is the number of references with a reuse
time x as used in Equation (1). The total residence time all_time can be represented as follows:

all_time =rt(1) +rt(2) « 2+ rt(3) « 3+ --- + rt(AET(c)) * AET(c)
+ rt(AET(c) + 1) = AET(c) + rt(AET(c) + 2) %« AET(c) + - - - + rt(co) * AET(c)

AET(c) o
= Z re(x) = x + Z rt(x) = AET(c).
x=1 x=AET(c)+1

Now, we have the total residence time of all data objects. To get the average residence time of
all arriving data, we need to know how many data objects have arrived in the cache. With eviction
time assumption, the cache miss ratio is the probability of a reuse with reuse time larger than
AET(c), i.e., P(AET(C)). The number of data objects entering cache all_arrival is the number of
all reference times the miss ratio of this cache:

all_arrival = Z rt(x) = P(AET(c)). (13)
x=1
With the above discussion, we can get the average residence time W:
It
W= all_time (14)

all_arrival’

Note that the data arrival rate A in logical time is equal to the miss rate as only a miss can
introduce a new object into the queue (cache). With Little’s law, the product of data arrival rate A
with average data residence time W is equal to cache size c:

c =AW
. . all time
= miss_ratio ¥ ———————
all_arrival
AET o
St e + 2 AT ()1 TH(X) * AET(c)
>, rt(x) = P(AET(c))
AET(c o
St e x + 2t ABT (¢ TH(¥) * AET(c)

x=1
Diemy E(x)

= P(AET(c)) *

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:13

Do rHx) + YT, rt(x) o+ Z;":AET(C)H rt(x)
Doy Tt(x)
D rt(x) X, rt(x) ' 2t AET (c)1 THX)

= + +o 4
Y rt(x) Y, rt(x) Doy TH(x)
=P(0) +P(1) +---+ P(AET(c))

AET(c)
= f P(x) dx.
0

From the above analysis, we can conclude that under the same eviction time assumption, AET
model is consistent with Little’s law. In other words, Little’s law can help derive AET model.

2.5 AET in Shared Cache

When sharing a cache, a set of co-run programs interact with each other. We consider the case
where co-run programs have disjoint datasets. Each time a reference is executed by one of the
program, the accessed block is brought to the most recently used (MRU) position in the cache.
After cache is filled up, any program’s newly inserted data can evict the data that belongs to
other program. This cache sharing situation is popular and exists in many system design. We
want a composable model to derive the composite effect on shared cache from individual solo-run
locality analysis. Ding et al. (2014) define composability as follows: a locality metric is composable
if the metric of a co-run can be computed from the metric of solo-runs. AET is composable: given
the solo-run AETs of individual programs, we can derive the co-run AETs in the shared cache.
There are n + 1 co-run AETs for n co-run programs: one for each program and one for the group.
We derive them by solving another AET equation. Equation solving has two basic questions:
Does a solution exist, and if so, is the solution unique?

For any data block in the shared cache, once it is no longer accessed, it will move from the MRU
position toward the LRU position in the shared cache. Because each evicted data has traveled the
same LRU stack shared by all programs, no matter which program the data block belongs to, all
evicted data should have identical expected eviction time. Hence, we have the equation for the
eviction-time equalization assumption: when n programs share a cache of size c, all n co-run AETS,
AET;(c) for each program i, and AET(c) for the group, are the same:

AET (c) = AET,(c) = --- = AET,(c) = AET(c). (15)

We now show that this equation has one and only one solution.

To explain the derivation, we start with the symmetrical case, where n co-run programs are iden-
tical. For program i, let rs,;,,; be its access rate, rt;o/,,; (t) be the reuse-time histogram, Ps,,, i (t) be
the CCDF, defined as in Section 2.2. The aggregate access rate is naturally rco, = nrgo0,;. We de-
fine the co-run logical clock. The co-run clock runs n times faster, with one out of every n ticks
for each program. For program i, the co-run reuse time rt., ;(nt) = rtsoi0,i(t), or equivalently
Tteo,i(t) = rtsolo,i(t/n). Because of the time change, the probability function under co-run clock
of program i becomes Py, ; (t) = Pso10,i(t/n). The aggregate probability is the weighted sum of the

group:
P(t) = 3" Peoi(t)/n =) Poto,i(t/m)/n = Psoto,s(t/n). (16)

i=1 i=1
From P(t), we use the distance-integration equation (Equation (6)) to derive the co-run AET:

AET(c)
f P(x)dx =c. (17)
0

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:14 X. Hu et al.

ALGORITHM 3: Compose Aggregate CCDF of Reuse Time, P[], from Individual CCDF of Reuse
Time

Require: Ps,;,[][] // CCDF of reuse use of every co-run program
Require: num // number of co-run programs
Require: r[] // access rate of every program
Require: len // largest reuse time
Ensure: P[] // aggregate CCDF, P[]
1: function MERGE(Ps,j0[][], num, r[], len)
2: R « getsum(r[])
3 P[0] « 1.0
4 fort « 1..len do
5 P[t] « 0
6: for i « 1..num do
7 P[t] « P[t] + Psoro[i][t + r[i]/R] * r[i]/R
8 end for
9 end for
10: return P[]
11: end function

The equation looks the same as Equation (6), but P(x) is the aggregate probability, x is the co-run
time, and AET(c) is average eviction time of the shared cache.

In the shared cache, any access by any program is a miss if and only if its reuse time is greater
than AET(c). The group miss ratio is therefore mr(c) = P(AET(c)), and the portion of this miss
ratio contributed from the ith program is mr¢, ;(c) = Pco,i(AET(c))/n. This contribution is the
same from every program, so mr,_;(c) = mr(c)/n. The solutions of the co-run AET and miss ratio
for this symmetric case are unique.

Note that the co-run miss ratio of the ith program mr., ;(c) is the ratio of the miss count in the
ith program divided by the number of accesses of all programs. In other words, it is the individual
miss ratio defined on the co-run clock. This definition enables us to add miss ratios of different
programs directly. It can also be easily converted to the conventional miss ratio.

We now consider the general case. It differs from the previous, symmetric case in two ways:
each program i may have a different access rate 5., ; and a different reuse time histogram and
hence the CCDF, P;,y,,;(t). Let the total access rate be r = }}%", rs010,;. For program i, the co-run

Tsolo,i

reuse time rtco,i(t) = rtsolo,i(t=%>*). The CCDF of program i under co-run clock becomes

Pca,i(t) = Psolo,i (trwlo’i) . (18)
The aggregate P(t) is the weighted sum of P, ;(t) by their access rates:
" Tsoloi Fsolo,i \ T'solo,i
P(t) _ ZPco,i(t) solo,i _ ZPsolo,i (t solo,t) solo,i . (19)
r r r
i=1 i=1

Algorithm 3 implements Equation (19), which converts the CCDF’s of individual programs to the
co-run CCDF. The shared-cache distance-integration equation (Equation (17)) can now compute
AET(c) for the general case as implemented in Algorithm 2.

We now investigate the relationship between the co-run miss ratio and the miss ratio contributed
from each individual program. The group miss ratio is mr(c) = P(AET(c)), and the portion of the

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:15

Program 1 Program 2
(XY) * (ABCD) *
rsolo, 1$‘ co-run 4 2 = 2

(XABYCD)*

X A B Y Cc D

rt . 2 4 4 2 4 4
solo, i

rt_ . 6 6 6 6 6 6
co, i

Fig. 7. An example to show co-run reuse time is composed from solo reuse time.

miss ratio contributed from program i is

mrco,i(c) = Pco,i(AET(C)) (20)

Tsolo,i
r

The contribution is now individualized and differs depending on the individual access rate rsoj,, ;
and reuse time histogram rt,;,, ; (t). Below is the co-run miss ratio of the group as the sum of the
co-run miss ratio of each individual. These solutions are unique for each program group:

mr(©) = PAETO) = 3 mreas@ = 3 Peai(AET(e) 222 (21)
i=1 i=1

To help the reader understand how co-run reuse-time distribution rt., ; can be composed from
individual reuse-time distribution rt,j,,;, We give a co-run example in Figure 7 to show how reuse
time changes. Assume there are two programs running together. Program 1 only accesses X and Y
in a circular pattern while program 2 accesses A, B, C and D in the same way. Assume their access
rate ratio is =22 = 2, and the co-run trace is

Tsolo,1
(XABYCD)". (22)

As shown in Figure 7, the co-run reuse time of every access in the combined trace is 6. It can be
derived from individual reuse-time distribution. For program 1, the solo reuse time of every access
under its own clock is 2. Under co-run clock, the co-run reuse time of every access from program
1is

Iteo,1(6) = I'tsolo,1 (6 * &) = rtsolo,l(z)- (23)
I'solo,1 + T'solo,2

For program 2, all accesses under its own clock have reuse time 4. Therefore, their co-run reuse

time is composed as

T'solo,2

rtc0,2(6) = I'tsolo,2 (6 *) = rtsola,2(4)' (24)

T'solo,1 T Tsolo,2

From the above example, we demonstrate how co-run reuse-time distribution rt., ;(t) can be
composed from individual reuse-time distribution rt,, ;(t) and access rate rsoj,, ;-

Composition Invariance. The aggregated miss ratio can be computed using AET in two ways:
directly using the aggregate P(t) or indirectly as the sum of individual miss ratios. Mathematically,
the two results are the same, as shown by Equation (21). We call this mathematical equivalence
the composition invariance. A composable model has this invariance if the group miss ratio is the
same whether it is composed from the individual (solo-run) locality or added together from the
individual (co-run) miss ratio. Early composable models used reuse distance and footprint and

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:16 X. Hu et al.

DRAM
demote
promote
promote
5
SSD HDD

Fig. 8. Exclusive Cache.

had only one way to compute the group miss ratio (Chandra et al. 2005; Suh et al. 2014; Xiang
et al. 2011a, 2011b). Recent models used footprint and the higher order theory of locality (HOTL)
to obtain composition invariance (Xiang et al. 2013; Wang et al. 2015; Brock et al. 2015). As
an alternative model of cache sharing, Brock et al. treated the shared cache as the partitioned
cache, where each program is “imagined” to occupy a natural partition (Brock et al. 2015).
Unlike the “imagined” natural partition in Brock et al., eviction-time equalization by AET is a
real property of the shared cache. Because the two methods have very different formulation,
a direct comparison is difficult, which we leave as future work. In this article, we will validate
our assumption of AET equalization and show the effectiveness of shared cache AET model in
Section 4.3.

2.6 AET in Multi-Level Exclusive Cache

Multi-level caches exist in a lot of storage systems and architectures (Kgil and Mudge 2006; Canim
et al. 2010; Yadgar et al. 2008). With the unit price (in $/byte) of NAND flash memory goes down,
solid state drives are added as a secondary cache between DRAM and HDD to improve I/O through-
put and response time of a storage server. This DRAM-SSD-HDD hybrid storage hierarchy is a
compromise between speed and cost. In this section, we will show how to model the secondary
cache using AET model. For simplicity, we will refer DRAM as L1 cache, and SSD as L2 cache in
this section.

Exclusive cache is one of the most popular multi-level cache design (Gill 2008; Wong and Wilkes
2002; Chen et al. 2003). We propose to model exclusive cache behavior using AET model. An ex-
clusive cache requires that a datum should only exist in one cache level. As shown in Figure 8, data
request will first check L1 cache, if the data is not in L1 cache, then it will check L2 cache instead.
If the data is cached by L2, then it will be deleted from L2 and promoted in L1. If the data is not in
L2, then it will be fetched from HDD into L1. When L1 is full, the new data will cause a demotion
and evict a victim to L2. The cache hierarchy keeps the most recently used data in L1, while it uses
L2 as backup to store the next most recently used data.

2.6.1 Dedicated L1 and Dedicated L2. We start with a simple case where both L1 and L2 are
dedicated to a single service. Assume the sizes of L1 cache and L2 cache are ¢; and c,, respectively.
On an L1 cache miss, the missed data will be fetched from the lower-level cache and inserted to
the MRU position of L1 cache. The evicted data from the LRU position of L1 cache will be inserted
to the MRU position of L2 cache. With this observation, we can consider L1 and L2 caches as a
unified LRU cache of size ¢; + c;. The only difference is the reference latency of the front part (L1)
is smaller than the rear part (L2).

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:17

Table 2. The Reuse Time t and Its Categories

L1 hit | L1 miss & L2 hit | L1 miss & L2 miss
t < AET(cy) *
AET(c;) <=t < AET(cq + ¢3) *
t >= AET(c1 + ¢3) *

Private L1
Cache
(DRAM)

Public L2
Cache
(SSD)

I

Fig. 9. Shared L2 cache with private L1 cache.

Now, we can characterize the behavior of this unified cache with AET model. Once we get the
reuse-time distribution, the average eviction time from position 0 to ¢; can be estimated, as well as
the AET from 0 to ¢; + cz. In Table 2, we show the relationship between the ranges of reuse time
and the expected hits or misses.

For reuse time ¢, if it is smaller than AET (¢;), the data should be located between position 0
and cy, it is an L1 hit. If ¢ is between AET(c;) and AET(c; + ¢3), then the data should be located
between position ¢; and ¢; + ¢z, which means the data is in L2 cache but not in L1 cache. When ¢
is larger than AET(c; + c2), the data is in neither level of cache. Therefore, it is an L1 and L2 miss.
Using the above ideas, the L1 and L2 cache miss ratio can be estimated with a simple extension to
Algorithm 2.

2.6.2 Dedicated L1 and Shared L2. Now, we consider n co-run programs where each program
has its own private L1 and all programs share L2 as shown in Figure 9. Each program may have
a different L1 size, d;, and the total L1 size is the DRAM size c;. For program i, the L1 cache miss
ratio is the proportion of reuses with a reuse time larger than the program’s solo-run AETq ;(d;):

L1 miss ratio of Program i = P,y i(AET1,i(d;)), (25)

where d; is the L1 cache size of program i and AET; ;(d;) is computed by the integration in
Equation (6). This solution is exactly the AET model for private cache. There is no cache shar-
ing yet.

The L2 miss ratio is the proportion of reuse time larger than the common shared cache AET,
which we call CT:

L2 miss ratio = P(CT), (26)

where P(CT) is the aggregate probability. To compute CT, we need to consider both the filtering
effect of L1 and the sharing of L2. Under sharing, each service may take different L2 cache occu-
pancy. We can regard each service’s data in L1 cache and L2 cache as organized in a unified LRU
list. Assuming that d; is the size of L1 cache of Service i, o; is the size of its occupancy in the shared
L2 cache, and CT is the common eviction time of all services (in global time), the expected eviction

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:18 X. Hu et al.
distance of service i is

or Tsolo, i
Peo,i(x) * — dx=di+o, (27)
0

where the notations are defined in Equation (18). Note that P, ; can be derived from from indi-
vidual P, ;’s using Equation (18). The eviction distance of Service i is the travel distance in the
LRU list including its L1 cache and L2 cache occupancy. When L2 cache is shared by n services,
the sum of their individual eviction distances is their total L1 and L2 cache usage. Obviously, the
sum of eviction distances of all services minus their L1 cache sizes is the L2 cache size:

< or T'solo, i
Do P dr - = (28)
i=1 V0

r

where ¢; = Y7 diandc; =)1 05

For any L2 cache size, we can find CT in linear time. Therefore, the L2 cache occupancy of
different services under various L1 cache configuration can be predicted, as well as the L2 miss ratio
of each service. Algorithm 4 implements Equations (18) and (28) to calculate shared L2 cache MRC’s
for each individual co-run programs using individual CCDEF, Ps,/,,; as input. It is possible that one
of the services may not utilize all L1 cache, because its current working set size is smaller than the
L1 cache. The algorithm checks for this possibility and will exclude this service in computing L2
sharing (not counted in Equation (28)).

The model of two-level sharing subsumes the model of single-level sharing in Section 2.5. The
single-level problem is solved by the two-level solution by setting the private cache sizes, i.e., d;’s
in Equation (28), to 0.

With reuse-time distributions of individual services, the two-level cache of any size combination
can be modeled in linear time. This technique can be used to predict multi-level cache behavior
and guide the allocation of cache resource to improve performance or guarantee quality of service
for high priority services.

3 REUSE TIME HISTOGRAM (RTH) SAMPLING

For efficiency, AET-based MRC profiling can use sampled RTH instead of real RTH. Since it is only
the probability distribution that it cares about, if the sampled RTH maintains the same distribution
as the real RTH, the estimated AET will be accurate. By sampling a small fraction of references,
the space overhead can be largely eliminated. This section presents efficient MRC analysis through
AET sampling.

3.1 Sampling Techniques

To capture the distribution of the real RTH, all the references have to be sampled with equal
probability. This seems to be an easy target, but it is not the case in real applications. Next, we
list four sampling techniques and discuss their strength and weakness.

Set Sampling. The set sampling requires monitoring a fixed subset of the working set. It is known
as hold-and-sample and has been used in measuring reuse distance (Zhong and Chang 2008; Schuff
etal. 2010; Tam et al. 2009; Cascaval et al. 2005) or reuse time (Beyls and D’Hollander 2006). During
sampling phase, all the references to the subset will be recorded in sampled RTH. This technique is
simple and easy to implement, and only a fixed hash table is required. However, in a real program,
references are not evenly distributed on every data object. Large portion of accesses may focus on

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:19

ALGORITHM 4: Calculating Shared L2 Cache MRC for Every Program

Require: Pg,[][] // CCDF of every co-run program

Require: num // number of co-run programs

Require: r[] // access rate of every program

Require: len // largest reuse time in co-run

Require: d[] // private L1 cache size of each

Require: M //largest L2 cache size

Ensure: MRCI][] // L2 cache miss ratio curve of every program
1: function SHARELASTLEVELCACHEMRC(Ps010[1[], num, r[], len, d[], M)
2: R « getsum(r[])

3 for i < 1..num do // computing Equation (18)
4 P.o[i][0] « 1.0

5: for j « 1..len do

6: P, [l] [.]] <« Psolo[i][i * r[l]/R]

7 end for

8 end for

9 integration[] < 0

10 sum <« 0

11: <20

12: for ¢y, — 1.M do

13: while (sum < ¢;) do // computing Equation (28)
14: sum «— 0

15: for i « 1..num do

16: integration[i] « integration[i] + P.,[i][t] = r[i]/R
17: if integration[i] > d[i] then

18: sum+ = integration[i] — d[i]
19: end if

20: end for

21: te—t+1

22: end while

23: fori « 1..num do

24: if integration[i] > d[i] then

25: MRCTi][c2] « Peoli][t — 1]

26: end if

27: end for

28: end for

29: return MRC[][]
30: end function

a small subset. In this case, the RTH collected from a small portion of working set may not reflect
the real reference pattern. This will lead to imprecise estimation of AET.

Fixed Interval Sampling. To avoid the bias of set sampling, the fixed interval sampling collects
a subset of references instead of a subset of the working set. After every m references, it places the
current accessed data into the monitoring set. At the next reference of the data, the reuse time is
recorded into RTH, and the data is deleted from the monitoring set. By this design, the reuses are
sampled by the same probability, which provides a better RTH approximation than set sampling.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:20 X. Hu et al.

However, the accuracy of fixed interval sampling may be influenced by another problem. Since
the sampling rate m is a fixed value, if the reference pattern of some data shows a different
distribution at the chosen interval, the sampled RTH cannot reflect the actual distribution of this
pattern.

Random Sampling. The random sampling can overcame the problem we mentioned in interval
sampling and set sampling. Instead of using fixed sampling rate m, the distance between two
adjacent monitoring points is a random value. In a real application, we can set the random value
to a certain range to control the number of references sampled for RTH. We have tested the above
three sampling techniques and found that the random sampling achieved the highest stability
and accuracy. This form of random sampling for MRC analysis is pioneered by StatStack (Eklov
and Hagersten 2010).

Reservoir Sampling. The space used to store sampled data grows linearly with respect to dataset
size. To bound the space cost, reservoir sampling technique (Vitter 1985) was used by Beyls and
D’Hollander (2006) for locality analysis. Let the number of entries in the monitoring set (reservoir)
be k. When the ith sampled data arrives, reservoir sampling keeps the new data (tagged as “un-
sampled”) in set with probability min(1, k/i) and randomly discards an old data block when the
set is full. Every time a monitored data block is reused, its reuse time will be recorded. This data
block will be tagged as “sampled” and all of its following reuses will not be recorded. This design
ensures even sampling and avoids the access distribution problem we have in set sampling. When
the sampling is over, the RTH is updated based on the “sampled” data entries remaining in set.
The “unsampled” entries are those data objects with no reuse after being inserted. They are cold
misses, which we will discuss in Section 3.3. Reservoir sampling reduces the space complexity of
RTH sampling from O(M) to O(1).

3.2 Adaptive Phase Sampling

A program may have time-varying behavior, and its reuse-time distribution may vary across dif-
ferent phases. If we use the RTH of the entire trace to model MRC by AET, then we are actually
using the average behavior of all phases to model the miss ratios in individual phases. This will
cause mis-prediction, because the access patterns we record in RTH is not the behavior in each
phase. In this section, we present an adaptive phase sampling technique for AET calculation, which
can reduce the miss prediction caused by phase behavior.

One solution of phase analysis is to divide a program into fixed length intervals (Duesterwald
et al. 2003). However, even-division cannot distinguish the length of each phase, as well as the bor-
der of each phase. Instead, we propose to adaptively detect phase changing. For every w accesses,
which we refer to as a “monitoring window,” we compare the RTH collected in this window with
last window to determine if the two windows have different access pattern. For 10 systems, we
use Euclidean distance of two RTHs to present their similarity:

d(RTH1,RTH2) = J i (p1(x) — p2(x))?, (29)
x=1

where p1(x) stands for the probability of a reference with a reuse time x in RTH1. If their distance
is above the threshold we set, then we can say they represent different patterns.

For every monitoring window, we compare its reference pattern with the last window by cal-
culating the Euclidean distance or changing of miss ratios. If a phase change is detected, then we
use the RTH collected in the preceding windows to model the MRC of the last phase. Then, the
RTH is reset to record the reuse times of the next phase. With this design, each phase may have a

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:21

different length (number of windows). The MRC of the entire program is the weighted miss ratio
of each phase at each cache size. Specifically, assume the length of the ith phase is L;. If the MRC
calculated at the ith phase is MRC;(c), then the MRC of the entire program is

?:1 L,' * MRCl (C)
n Li :

i=1

MRC(c) =

(30)

There is an additional detail we should mention. Not every sampled datum in the monitoring
set will see its reuse in the same phase. Before entering the next phase, the monitoring set will not
be cleaned, the next phase still keeps track of these data until they are reused and then deleted
from the monitoring set. We use the backward reuse time, so the inter-phase reuse time is added
to the RTH of the current phase.

Wang et al. recently developed adaptive bursty footprint sampling (ABF) for CPU cache MRC
monitoring, which compares the difference between the real miss ratio and the predicted value to
adaptively activate new phase sampling (Wang et al. 2015). ABF predicts miss ratio by footprint
analysis. It gives similar suggestion that phase behavior should be modeled separately to increase
MRC prediction accuracy.

3.3 Cold Miss Handling

As we mentioned in Section 2.2, the co bin of RTH counts the number of cold misses. Therefore,
we should set the infinite reuse-time bin of the sampled RTH to the number of cold misses in all
sampled references. However, in random sampling, we cannot tell if a sampled access is the first
reference to an address. As we know, in a trace of finite length, any referenced address has its first
access and last access. It means the number of cold misses is equal to the number of the references
that have no reuse (last access). Because the chances to meet these two kinds of access are equal,
we use the number of references with no reuse in all sampled references to revise the number of
cold misses in the sampled RTH. In random sampling, they are the data objects that are still in the
monitoring set after sampling is complete. In reservoir sampling, they are the data objects that are
tagged “unsampled.”

4 EVALUATION

In this section, we evaluate the AET model by comparing it with two recent techniques: Counter
Stacks (Wires et al. 2014), SHARDS (Waldspurger et al. 2015). The two techniques are current
best MRC technique designed for storage workloads. We also present the evaluation of shared
cache AET and Multi-level Cache AET. The adaptive phase sampling technique is only evaluated
individually in Section 4.3. We do not enable this technique in other sections, because we want to
make a fair comparison.

We use a Dell PowerEdge R720 with ten-core 2.50GHz Intel Xeon E5-2670 v2 processors and
256GB of RAM. Benchmark traces are read from RAMDisk to avoid the IO bandwidth delay.
We have implemented these techniques in C++. To save memory and make a fair comparison,
we record the reuse time histogram (AET) and reuse distance histogram (Counter Stacks,
SHARDS) using the compressed representation by Xiang et al. (2011b). Each histogram is an
array that is binned in logarithmic ranges. Each (large enough) power-of-two range is divided
into (up to) 256 equal-size increments. This representation requires less than 100KB for all our
workloads.

4.1 AET vs Counter Stacks

Counter Stacks is a recent algorithmic breakthrough by Wires et al. to finally solve the open
problem of reducing the asymptotic space complexity of MRC analysis to below M, the size

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:22 X. Hu et al.

roj
1 hm 1 proj 1 srcl
0.4 0.8y 0.8
0.6 0.4 % 0.4
0.4 0.4 0.4
0.9 0.9 0.9
08605 10 15 20 O 350 700 1050 1400 O 63 126 189 252 Od00 0.13 0.26 039 052 Real
3y mds prxy) src2 1 usr v AET sampling
B e, ’ T | mm=—=—= Cs-high
0.9 0.8 ‘ 0.
0.6 0.6 0.6

1 web
0.4 0.4 (7 S — :
0.2 0.2 0.2 0.8
0.5———7——5—3 0 o 0.4
® 23 4 6 » 05 10 15 20 O 0 20 30 a0 O 300 600 900 1200 |
1 prn . rsrch . stg '

0.2
0. 0.9 0.8
08 oo o 0 20 40 60 80
0.4 g 0.4 0.4)
0.2 0.2 0.2
0 20 40 60 8o %80 02z 07 06 o8 O 7346 69 92

Fig. 10. The predicted miss ratio (y-axis) over cache size (GB, x-axis) by AET sampling and high-fidelity
Counter Stacks.

of data (Wires et al. 2014). It uses probabilistic counters to estimate the reuse distances. While
other reuse distance measurement techniques consume linear space overhead, the HyperLogLog
counter (Fusy et al. 2007) used by Counter Stacks only requires extremely small space while
maintaining an acceptable accuracy. Every d references and every s seconds, Counter Stacks starts
a new counter to record the number of distinct data accessed from the current time. During the
execution, the number of active counters keeps growing. Counter Stacks periodically writes the
results of active counters to the disk. The data in the disk is used to compute the reuse distance
distribution and construct MRC. To reduce the number of live counters, Counter Stacks uses a
pruning strategy to delete a younger counter whenever its value is as least (1 — §) times the older
counter’s value. Obviously, Counter Stacks can balance between accuracy and the number of
counters.

We compare AET model with Counter Stacks using the same storage traces released by
Microsoft Research Cambridge (MSR) (Narayanan et al. 2008), as used by Counter Stacks. The
traces are configured with only read requests of 4KB cache blocks. We test Counter Stacks under
two different fidelities. The experimental parameters follow those used in Wires et al. (2014), with
high fidelity (d = 1M, s = 60, § = 0.02) and low fidelity (d = 1M, s = 3600, § = 0.1). For AET, we
use random sampling at a rate of one per 10* accesses, and reservoir sampling where the number
of entries in the hash table (32-bit address) is limited to 16K.

Figure 10 shows the MRCs profiled by AET random sampling and high-fidelity Counter Stacks
(CS-high) as well as the real MRCs calculated using precise reuse distances. As we can observe,
AET sampling and CS-high both approximate the real MRCs well. As for CS-low and AET reservoir
sampling, we only list their absolute prediction error in Table 3 for comparison.

Table 3 shows two types of averages, arithmetic and weighted. The ones marked with a “*” are
weighted by the working set size, which is the length of MRC. The weighted average prediction
errors, AET random sampling (RAN, 0.96%) and AET reservoir sampling (RES, 1.12%), are in be-
tween of high-fidelity Counter Stacks (0.77%) and low-fidelity Counter Stacks (1.26%) but much
higher throughput (arithmetic average) and much lower space overhead (weighted average) than
both methods of Counter Stacks.

AET uses reuse time histograms while Counter Stacks uses reuse distance histograms. With
the compression technique we use for the histograms, the size of both histogram structures are

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:23

Table 3. The Comparison Between Counter Stacks (CS) and AET

Prediction Error (%) Memory (KB) Throughput (Mregs/s)
WSS AET CS AET CS AET CS
(GB) | RES | RAN [high | low | RES | RAN | high | low | RES | RAN [high | low
proj |1238.9| 0.76 0.74 0.93 1.04 | 384 584 8384 1376 | 31.01 26.10 1.32 3.94
usr |1035.1| 0.79 037 0.24 031 | 384 501 7744 1376 | 30.22 30.67 136 3.87
srcl | 312.7 | 3.09 2.90 1.54 4.78 384 176 5408 1088 | 30.17 44.88 1.86 4.88
mds | 86.9 | 0.85 0.70 1.81 1.82 384 114 2848 832 | 79.82 77.08 3.16 6.17
stg 85.7 | 0.09 1.01 1.11 1.11 384 114 4256 928 | 78.90 51.99 223 6.30
web | 783 | 3.81 3.65 1.00 2.92 384 111 6464 1120 | 56.00 70.67 1.50 5.60
pm | 775 | 228 2.08 031 057 | 384 110 4960 960 | 60.81 71.17 1.28 5.79
src2 | 39.9 | 1.09 1.02 0.57 2.19 384 94 4704 960 | 84.49 7144 248 6.66
hm 2.0 0.90 0.77 1.01 1.31 384 79 3680 608 | 65.74 67.62 033 6.87
prxy 2.0 0.20 0.04 1.62 1.69 | 384 79 2112 576 |31.43 76.77 3.40 7.23
rsrch | 0.7 290 092 0.30 2.84 | 384 78 2720 416 | 82.55 82.55 1.22 7.26
ts 0.5 1.51 204 041 0.78 | 384 78 1920 640 | 88.02 74.12 1.08 5.80
wdev | 0.2 262 121 020 0.11 | 384 78 864 352 | 86.81 86.81 1.28 5.75
avg” - 1.12° 0.96* 0.77° 1.26% | 384" 452 7363 1,292*| 61.99 63.99 173 5.86
sum | 2,960 - — — - 4,992 2,196 56,066 11,232 — — - —

comparable. Consequently, the key difference in space between the two techniques is the hash
table used by the AET algorithm and the Hyperloglog counters used by Counter Stacks. In AET
random sampling, the number of hash table entries is the number of data blocks being monitored
at this time. The theoretical upper bound is the working set size times the sampling rate. In AET
reservoir sampling, the space is constant, i.e., a hash table of a fixed size. In Counter Stacks,
the space used by probabilistic counters grows when more counters are used. Therefore, the
space overhead of Counter Stacks is not constant. In Table 3, we also list the memory consumed
by the hash table and Hyperloglog counters for MSR traces. The results show that the actual
memory usage of AET random sampling is much lower than Counter Stacks. In fact, the total
space consumption (not including the histogram array) of all 13 traces by AET random sampling
is 2.2MB, while low- and high-fidelity Counter Stacks require 11MB and 56MB for Hyperloglog
counters, respectively. In AET reservoir sampling, the space overhead is fixed at 384KB for each
trace. Although the overall space consumption (5MB) is larger than random sampling, its weighted
average space overhead is less than random sampling. Reservoir sampling reduces the space cost
of random sampling only in proj and usr. They are the traces with the largest working set sizes.
The remaining traces have smaller working sets. For these traces, reservoir sampling incurs a
higher error even when it uses more space than random sampling. As we mentioned in Section 3.1,
reservoir sampling only uses the remaining entries in hash table to update RTH and does not
delete the data entry after the reuse is sampled (to measure the cold miss ratio). The actual number
of reuses in RTH of reservoir sampling is less than random sampling under the same sampling
rate.

It takes Counter Stacks O(log M) time to update the counters at each reference and O(N log M)
for the entire trace. AET is linear time in O(N). Table 3 shows that in our implementation, the
throughput of AET random sampling is 37 and 11 times of the throughput of high- and low-fidelity
Counter Stacks, respectively. AET reservoir sampling shows a similar throughput as AET random
sampling does.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:24 X. Hu et al.

mem Real
0.8 === SHARDS
i AET
2o
©
_
%]
204
g Y61,
0.2
0.0 ‘ ‘ s ‘ .
0 500 1000 1500 2000 2500 3000

cache size(GB)

Fig. 11. MRCs predicted by AET sampling and SHARDS for the master trace.

The correctness of AET-based MRC is based on the assumption of stable distribution reuse
distances. This brings inaccuracies to those workloads that violate the assumption. As we can
observe in Figure 10 the AET-based MRC of web mispredicts the knee at around 50GB, but
Counter Stacks perfectly models every detail of the curve, since it makes no assumption about
the data distribution at all. Now, we can clarify the trade-off between the two techniques: AET
makes a statistical assumption, offering good accuracy in most cases in O(N) time. Counter
Stacks makes no statistical assumption, delivering good accuracy in all cases in O(N log M) time.
Later in Section 4.3, we show that adaptive phase sampling mitigates this problem of AET.

4.2 AET vs SHARDS

SHARDS (Spatially Hashed Approximate Reuse Distance Sampling) is recently developed
by Waldspurger et al. (2015). It uses hash-based spatial sampling and a splay tree to track the
reuse distances of the sampled data. It limits the space overhead to a constant by adaptively
lowering the sampling rate. SHARDS outperforms Counter Stacks in both memory consumption
and throughput for the merged “master” MSR trace (created by Wires et al. (2014)), which is a
2.4 billion-access trace combining all 13 MSR traces by ranking the time stamps of all accesses.
Following them, we use the master trace for evaluation. For fairness comparison, we let AET
and SHARDS both use 8K buckets hash table (64-bit address) for sampling. The pointers and
variables in our implementation are all 64-bit sizes. Figure 11 shows the MRC profiled by AET
random sampling with a sampling rate of one per one million accesses. The Mean Absolute Error
(MAE) is 0.01. SHARDS gives a lower MAE of 0.006 with 8K samples. We check the peak resident
memory usage at run time, AET random sampling consumes 1.7MB memory while SHARDS
consumes 2.3MB memory. The throughput of AET and SHARDS are 79.0M blocks/s and 81.4M
blocks/s, respectively. For the same trace, Counter Stacks is most accurate, with an MAE of 0.003.
However, it consumes 80MB memory, and the throughput is relatively low, 2.3M blocks/sec (Wires
et al. 2014). AET reservoir sampling (8K) has 1.4MB resident memory usage and 66.6M blocks/s
throughput, for an MAE of 0.01, same as AET random.

SHARDS and AET sampling have same time and space complexity, and their run time and
memory usage are close in our test. However, the applicability of SHARDS is not limited to miss
ratio prediction of LRU caches. Waldspurger et al. (2015, 2017) showed that the hash-based spatial
sampling technique of SHARDS can be used to perform efficient scaled-down simulations for
non-LRU caching algorithms such as ARC (Megiddo and Modha 2003). AET model assumes LRU

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:25

1.0
0.81
R
0.6
—
7))
w 0.4 Real
€ —— no phase
0.2{ == adapt phase
even phase
0.0~ ‘ ‘ ‘ ‘
0 20 40 60 80

cache size(GB)

Fig. 12. The miss ratio versus cache size (GB) shown for adaptive phase AET and no-phase AET, compared
with actual miss ratios.

Table 4. HPE and MPE Count of web at 70GB

MPE | HPE | # Samples | Error (%)
no phase 5 1,336 8,117 16.4
even phase 831 155 8,117 8.3
adaptive phase | 531 371 8,117 2.0

replacement policy so it currently cannot be used for a non-LRU cache. The strength of AET
model is composability, which can be used to model shared cache as we will show in Section 4.4.
But this is not a property of SHARDS.

4.3 Adaptive Phase Sampling

As mentioned in Section 3.2, adaptive phase sampling can improve the analysis accuracy for
programs with phase behavior. In the MSR test, the AET-based MRC of web dose not predict the
knee at around 50GB. We believe this prediction error is brought by the phase behavior of web
trace. Therefore, we use adaptive phase sampling technique to evaluate if this error can be revised.

We divide web trace into monitoring windows of length 5 * 10°. The Euclidean distance of two
windows is calculated using the compressed reuse time histogram representation, which is efficient
in time and space. We set the phase changing threshold to 0.5, which divides web in to 10 uneven
phases. Figure 12 shows the MRCs of no-phase and adaptive phase AET (random sampling at rate
10 * —4) compared with the real MRC. As we can observe, adaptive phase AET successfully predicts
the knee that is missed by no-phase AET. The MAEF of adaptive phase AET is 1.17%, which is 70%
reduction compared to no-phase AET (3.81%). We also show the MRC plotted by even-phase AET
that divides the trace into 10 equal length phases to model the AET. The fixed length phase MRC
does not match real MRC as good as adaptive phase MRC, which proves the necessity of adaptive
phase detection. For other MSR traces, the same Euclidean distance does not predict phase changes,
and adaptive phase AET performs the same as no-phase AET.

In Table 4, we list the numbers of MPE and HPE of no phase, even phase, and adaptive phase
AET sampling at the cache size of 70GB. We sampled 8,117 data references for the web trace. No
phase AET has 1,331 more HPEs than MPEs. It gives a 16.4% lower miss ratio than the real miss
ratio. Even phase AET has 676 more MPEs than HPEs and yields a 8.3% higher miss ratio prediction
than the real miss ratio. Adaptive phase AET is most accurate with 160 more MPEs than HPEs and
a prediction error of only 2%.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:26 X. Hu et al.

2000 [Correct 800 [Correct
v—3 HPE - ° [Z HPE
2 1500 0 6001 [e—] MPE
2 =4 MPE =
S o
=] °
%1000 g400< .
ful t o
L EOon °
o b LA LI 0 -
123 456 7 8 910 12 3 456 7 8 910
adaptive phase even phase

Fig. 13. The MPE and HPE distribution of adaptive and even phase AET for web.

Figure 13 shows the MPE and HPE distribution across individual phases for both even phase
AET and adaptive phase AET. As we can observe, major MPEs and HPEs are located in only one
phase of web, which indicates that this part of trace exhibits extremely skewed access behavior
that cannot be predicted using average. With phase sampling, it can only influence the average
behavior estimation for its own phase instead of all data in the long trace. Adaptive phase sampling
further reduces the prediction error by accurately detecting the duration of a skewed phase.

4.4 Shared Cache AET

As we discussed in Section 2.5. AET is a composable metric that can be adopted to model shared
cache. With the individual AETs of co-run programs, we can predict their combined MRC in the
shared cache. This technique is useful in task scheduling in a system where shared caches (CPU
cache and storage cache) are deployed. To verify our shared AET modeling technique, we test all
combinations of two-trace, four-trace and six-trace co-run groups using six MSR traces: hm, mds,
prn, src2, stg, web.

To measure the real MRC, we generate an interleaved trace from all the traces in each group.
Consider their different lengths, the access rate in each combination is proportional to the inverse
of their individual length. This makes all traces finish at the same time. To make the synthesized
trace closer to the characteristics of real world traces, we randomly interleave the traces. When we
choose the next access, a random value is generated to determine which trace to reference instead
of uniform interleaving. For example, if trace a and trace b are merged with access rate ratio 1:3.
For every access, we generate a random value r in [0, 1]. Then a is referenced if 0 < r <= 0.25 and
b is referenced if 0.25 < r <= 1.0. Our results show that our model delivers similar effectiveness
when compared to applying it to uniformly interleaved traces.

Figures 14, 15, and 16 show the shared cache MRCs of two, four, and six traces groups composed
from the individual AET model of each trace, as well as the real MRCs calculated by accurate reuse
distance tracking for the combined trace. For each group, we show the measured solo-run MRC
for each program and the predicted and measured co-run MRCs for the group. Here, we use the
same random sampling technique as Section 4.1. Hence, the overhead for individual modeling
of two to six traces are the same as Table 3 shows. Combining their modeling results to derive
shared cache MRC does not require extra space cost. The additional time cost is to combine all
reuse-time distributions as we presented in Equation (19), which is negligible. In the figures, the
MRCs by shared AET match the real MRCs well, giving an MAE of 0.01 for all (Z) + (Z) + (g) =31
combinations. It means that the shared cache modeling by AET is accurate.

We observe different shape patterns in the figures. When low MRC traces is combined with high
MRC traces, the shared cache MRC usually lies between the two individual MRCs, showing the
effect that the combined MRC has the average intensity of the cache intensive and non-intensive
traces. Another observation from these figures is the shift of MRC “cliffs” or “knees.” For instance,

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache

12:27

10 hm+prn 10 mds+web 1o hm+stg
wmms Shared AET

o008 = = Real 008 008
B oel: — hm B B osl:
© 0.6 | © 0.6 © 0.6 |
Hoaf, Hoa Hhoaf,
EO.Z ‘ EO.Z "assmmmmEmas EO.Z ‘

0975710 20 30 40 50 60 70 80 007535 50 75 100 135 150 0020 40 60 80

cache size(GB) cache size(GB) cache size(GB)
10 prn+src2 10 hm+web

“ama

EO.Z fessmmmmEmE®
007535 50 75 100 135 150 007620 40 60 80 100 130 0075710 20 30 40 50 60 70 80
cache size(GB) cache size(GB) cache size(GB)
prn+web mds+src2 hm+mds
10 10 10 LELE NN
008 oco08] o08|
£ 0.6 £ 0.6 EO-Gi
EO.Z “F . sasmmmman EO.Z EO.Z |
0.0 0.0 0.0

0 20 40 60 80100120140160
cache size(GB)

0 20 40 60 80 100 120
cache size(GB)

0 20 40 60 80
cache size(GB)

10 mds+stg 1o src2+web
o 0.8 K 0.8
-+t -t
©0.6 ©0.6
Hoa Hoa
EO.Z EO.Z "EasmmmEm
0.0 0 20 40 60 80 100 120 0.0 0 25 50 75 100125150175 0.0 0 20 40 60 80 100 120
cache size(GB) cache size(GB) cache size(GB)
Lo RSOy, mds+prn L0 e SIC2
0038 008 _ 008 -
®©o.6 \‘-_ Tos{ % §o.6i
80,4 Tt AN — 80_4 e £0_4_
€02 €02 €02l
o S . EE——— E—
0.0 0. 0.0

0 20 40 60 80 100120140160
cache size(GB)

075 25 50 75 100 135 150
cache size(GB)

0 10 20 30 40
cache size(GB)

Fig. 14. The predicted miss ratio (y-axis) over cache size (GB, x-axis) for two-program combinations by

Shared AET.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:28

Lo AMFprstg+web

A W Shared AET === prn

o 0.8 5 == Real == stg

= = web
©0.6

Hhoa

S 0.2
0.0

0 50 100 150 200 250
cache size(GB)

hm+mds+prn+stg

0.0 0 50 100 150 200 250
cache size(GB)
Lo hm+mds+prn+web
K 0.8
© 0.6
Boafl™"
1S 0.2
0.0 0 50 100 150 200 250
cache size(GB)
1o hm+mds+src2+stg
o 0.8
)
©0.61,
$H04q.
€02 |
0.0

0 50 100 150
cache size(GB)

hm+mds+src2+web

0 50 100 150
cache size(GB)

X. Hu et al.

10 hm+mds+stg+web 10mds+prn+src2+stg
o 0.8 o 0.8
- -t
© 0.6, © 0.6
o4, Hhoa
£ 0.2 1S 0.2
0.0 0 50 100 150 200 250 0.0 0 50 100 150 200 250 300
cache size(GB) cache size(GB)
10 hm+prn+src2+stg) 0mds+prn+src2 +web
o 0.8
)
© 0.6
(0.4
1S 0.2
0.0 0 50 100 150 200 0.0 0 50 100 150 200 250
cache size(GB) cache size(GB)
10 hm+prn+src2+web 10 mds+prn+stg+web
Orzor)
o 0.8 o 0.8
© 0.6 © 0.6
1S 0.2 1S 0.2
0.0 0.0
0 25 50 75100125150175200 0 50 100 150 200 250 300
cache size(GB) cache size(GB)
10 hm+mds+prn+src2) 0mds+src2+stg+web
o 0.8 o 0.8
-t -t
©o6f, ©0.6
$H04q. hoa
1S 0.2 1S 0.2
0.0 0 50 100 150 200 0.0 0 50 100 150 200 250 300
cache size(GB) cache size(GB)
hm+src2+stg+web prn+src2+stg+web

0 50

100 150
cache size(GB)

0 50 100 150 200 250
cache size(GB)

Fig. 15. The predicted miss ratio (y-axis) over cache size (GB, x-axis) for four-program combinations by

Shared AET.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:29

10‘@ SharedAET
IS § B D B § . . . —-Real
08‘[m hm
o ™ m— mds
) | «-mm EEEEEEEEEEEEENS == prn
906 _F: == oSrc2
wn 1.-,*‘ —stg
.20.4" EEEEEEEEEEEEEEEEEEESN web
c .
0.21 |
VIS S D S S § S -
0.0

0 100 200 300
cache size(GB)

Fig. 16. The predicted miss ratio (y-axis) over cache size (GB, x-axis) for six-program combination by Shared
AET.

the individual MRCs of web and src2 have cliffs. When they co-run with other traces, the cliff will
shift right, since the individual occupancy of the shared cache is smaller than the cache capacity.
In the meanwhile, the height of a cliff in an individual MRC will be shorter in the shared cache
MRC because of the effect of averaging.

The composability of AET is a key advantage over SHARDS, since SHARDS cannot character-
ize shared cache without co-run testing. The comprehensive co-run trace tests and their results
confirm that the shared cache prediction by AET is accurate.

4.5 Multi-Level Cache AET

We present the exclusive multi-level cache modeling in Section 2.6. In this section, we evaluate the
accuracy of the model using MSR traces.

We use a multi-service two-level cache simulator to acquire real L2 cache MRC where each ser-
vice has its private L1 cache and share the L2 cache with other services. We compare the simulation
result with prediction using AET model.

We select eight pairs of MSR traces that have close scale of working set size. We simulate their
sharing under same L1 cache size, which is close to one-fifth of their working set size. We test
different L2 cache size varies from 2 to 60 times of L1 cache size. The MSR traces combination and
their private L1 cache size and range of L2 cache sizes are listed in Table 5.

Figure 17 shows the real L2 cache miss ratio curves and the predicted curves using two-level
shared AET model. The prediction well-captures the shared L2 cache MRC with an MAE of 0.005.
This technique can be used to manage multi-level cache system. When L1 and L2 caches are both
configurable, especially under sharing, AET model can give the performance prediction of different
configurations. Multi-level AET model can provide guidance for cache allocation or partitioning
for better utilization or quality of service guarantee.

5 RELATED WORK

In 1972, Denning and Schwartz (1972) gave a linear-time, iterative formula to compute the average
working-set size from reuse times (inter-reference intervals). Mathematically, the AET calculation
is the same as the average working-set size computed by the Denning-Schwartz formula. In their

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:30 X. Hu et al.

Table 5. Sizes of L1 Cache

L1 cache size (GB) | L2 cache size range (GB)
proj&usr 20 40-1200
mds&stg 1.6 3.2-96
mds&web 1.6 3.2-96
mds&prn 1.6 3.2-96
stg&web 1.6 3.2-96
stg&prn 1.6 3.2-9
prn&web 1.6 3.2-9
hm&prxy 0.04 0.08-2.4
1. proj+usr 1. mds+prn 1. web+prn
« proj_real e e
0.8 v usr_real 0.8 -
! —— proj_AET ’ :
e usr_AET
0.6 _— 0.6 0.6
o e S 0.4 " 0.4
v mds_real wo web_real
1 prn_real v prn_real
0.2 0.2 = mds_AET 0.2 - web_AET
m= prn_AET wmes prn_AET
0‘00 200 400 600 800 1000 1200 0. 0 20 40 60 80 100 0'00 20 40 60 80 100
1. mds+stg 1. stg+we;b 1. hm+prxy
N v hm_real
0.8 0.8 0.8 1 proy_real
— hm_AET
— AET
0.6 0.6 0.6 oy
0.4 0.4
v mds_real o stg_real
1 stg_real wn web_real
0.2 = mds_AET 0.2 = stg_AET
e stg AET m== web_AET
0.0 0. 0.8
0 20 40 60 80 100 0 20 40 60 80 100 .0 05 1.0 15 20 25
1. mds+web 1. stg+prn
« stg_real
0.8 0.8 v prn_real
: ! — stg_AET
e prn_AET
0.6 0.6
0.4 0.4 %
v mds_real
1 web_real
0.2 = mds_AET 0.2
m— web_AET
0.0 0.
0 20 40 60 80 100 0 20 40 60 80 100

Fig. 17. The predicted miss ratio (y-axis) over cache size (GB, x-axis) by multi-level AET modeling.

formulation, Denning and Schwartz assumed infinite traces generated by a stationary process.
Later work applied the Denning-Schwartz formula on finite-length traces to compute the average
working-set size (Slutz and Traiger 1974) and LRU stack distance (Denning and Slutz 1978). AET is
a new formulation showing that the Denning-Schwartz formula is the solution to AET equations,
which are the properties of cache eviction time of all program traces, finite or infinite. Previous
work did not address shared cache, which AET can easily model based on eviction-time equal-
ization. Finally, AET is used in sampling analysis of MRC. Sampling was not studied in previous
work. However, the previous work modeled arbitrary data size (Slutz and Traiger 1974; Denning
and Slutz 1978) and optimal caching policies (Denning and Slutz 1978), which we do not consider
in this work.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:31

Table 6. The Space and Time Complexity of MRC Analysis Techniques as Well as Their Memory
and Time Consumption Measured in Master Trace

Time Space

complexity complexity | Memory | Runtime | Composability | Correctness

Stack Processing O(NM) O(M) 10GB >1 day No accurate

Search Tree O(Nlog M) O(M) 21GB 482s No accurate
Scale Tree O(N loglog M) O(M) 17GB 333s No bounded err
Footprint O(N) O(M) 17GB 50s Yes conditional
Counter Stacks O(N log M) O(log M) 80MB 1034s Yes bounded err
SHARDS O(N) 0(1) 2.3MB 29.6s No conditional
AET model O(N) O(1) 1.7MB 30.5s Yes conditional

We started this article by reviewing the progress of MRC analysis over the past four and half
decades. We now give a more comprehensive comparison in Table 6, including the asymptotic
complexities, the actual space and time cost (when measuring the merged MSR trace, Section 4.2),
the composability (Section 2.5), and correctness properties. We have implemented all listed tech-
niques using our test machine (Section 4) in C++ except Scale Tree.? The space cost is the peak
resident memory usage at run time. AET uses random and reservoir sampling to reduce space cost
in practice. In Table 6, the runtime and space overhead of AET for the merged MSR trace is the
lowest among all these techniques.

As a baseline technique, Stack Processing (Mattson et al. 1970) tracks the reuse distance by
simulating an LRU stack for the trace. For each access, the algorithm needs O(M) time in the
worst case to check all the data in the stack, which is the longest possible reuse distance. Hence,
the overall time complexity of this technique is O(NM) with O(M) space cost.

Search Tree (Olken 1981b; Almasi et al. 2002) is an improvement to the Stack Processing tech-
nique. It maintains a balanced binary tree to store all the addresses sorted by their age (last access
time). For each reference, the number of nodes that have smaller ages than the accessed data is
the reuse distance of this reference. It needs a hash table to record the recent access time for every
data object. Each access will take O(logM) time for searching and updating the search tree. There-
fore, the overall time complexity of the Search Tree technique is O(NlogM) while the space cost
remains O(M). Scale Tree (Zhong et al. 2009) is another form of search tree. It combines several
data objects in to a single node in the search tree to accelerate the search speed for every access.
Since all data objects in the same node are considered to have the same age, the accuracy of reuse
distance tracking is bounded by the maximum number of data objects allowed in each node. Scale
Tree trades accuracy with smaller tree size and hence yields lower time complexity.

Footprint theory (Xiang et al. 2013) is a technique for linear time MRC profiling. It is a trace-
driven algorithm that models the average data set size for any time window. Footprint algorithm
tracks the reuse-time distribution like AET model. It also requires an O(M) space to record the
first and last access time for every data block in the trace. Footprint analysis takes O(1) time to
measure the reuse time of each access, resulting in time complexity of O(N).

As for composability, AET, Footprint, and Counter Stacks are the only three techniques that
can model shared cache without co-run testing. Counter Stacks presents joining operation to
model merged workload. It can produce MRC for the joined traces by merging the individual
time-stamped counter stack streams. As evaluated earlier, counter stack streams cause larger space
overhead than AET.

2The memory and runtime of scale tree are estimated according to Zhong et al. (2009).

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

12:32 X. Hu et al.

In terms of correctness, Stack Processing and Search Tree measure reuse distance accurately, and
Scale Tree guarantees the relative precision. Counter Stacks also guarantees a bounded error based
on the correctness of Hyperloglog counters. SHARDS uses sampling, and the result is correct if the
sampled accesses are representative. The correctness of Footprint-based MRC is conditional based
on the reuse-window hypothesis. The correctness of AET is conditional as discussed in Section 2.3.

MRC Applications. MRC profiling techniques are widely used in different applications. Several
studies use on-line MRC analysis for cache partitioning (Suh et al. 2001; Zhang et al. 2009), page
size selection (Cascaval et al. 2005), and memory management (Zhou et al. 2004; Kim et al. 1991).
The memory cache prediction (Bjornsson et al. 2013) also uses on-line MRC detection for storage
workload. In high-throughput storage systems, fast MRC tracking is always beneficial.

Our earlier work used footprint-based MRC to optimize memory allocation in the key-value
store called Memcached (Hu et al. 2015). Previous solutions, e.g., those of Facebook and Twitter,
were based on heuristics. We showed that MRC-based optimization was superior in steady-state
performance, the speed of convergence, and the ability to adapt to request pattern changes. It
achieved over 98% of the theoretical potential. The fast MRC analysis was important, since it affects
the throughput of Memcached. We used footprint, which was time efficient but consumes a large
amount of space (as it is also evident in Table 6). AET sampling should solve the space problem,
and it is even faster than footprint.

The reuse-distance based techniques except Counter Stacks in Table 6 are not composable, so
they cannot be used in symbiotic optimization. AET is composable, and it can drastically reduce
the time and space overhead of shared-cache optimization.

6 SUMMARY

In this work, we present the AET theory, a kinetic model for workload modeling of LRU caches. Us-
ing average eviction time (AET) measured by sampling, the AET model consumes linear time and
extremely low space for MRC profiling. In storage workloads, AET outperforms Counter Stacks
in throughput and space overhead and achieves performance comparable to SHARDS. At last, we
show how AET model can be used to characterize shared cache without actual co-run testing. This
is an essential strength of AET model. AET models MRC for a cache using the LRU replacement
policy. There are other policies, such as FIFO, LIRS (Jiang and Zhang 2002), ARC (Megiddo and
Modha 2003), and OPT (Coffman and Denning 1973). A recently published policy, EVA (Beckmann
and Sanchez 2017), uses a similar assumption that a single cache line’s behavior can be predicted
using all cache lines’ hit-time distribution and eviction-time distribution. The question of how to
extend AET to model MRC for those polices is remained for our future work.

REFERENCES

Arnold O. Allen. 2014. Probability, Statistics, and Queueing Theory. Academic Press.

George Almasi, Calin Cascaval, and David A. Padua. 2002. Calculating stack distances efficiently. In Proceedings of the ACM
SIGPLAN Workshop on Memory System Performance. Berlin, Germany, 37-43.

Nathan Beckmann and Daniel Sanchez. 2017. Maximizing cache performance under uncertainty. In Proceedings of the 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA’17). IEEE, 109-120.

Kristof Beyls and Erik H. D’Hollander. 2006. Discovery of locality-improving refactoring by reuse path analysis. In Pro-
ceedings of High Performance Computing and Communications. Springer. Lecture Notes in Computer Science, Vol. 4208.
220-229.

Hjortur Bjornsson, Gregory Chockler, Trausti Saemundsson, and Ymir Vigfusson. 2013. Dynamic performance profiling of
cloud caches. In Proceedings of the 4th Annual Symposium on Cloud Computing. ACM, 59.

Jacob Brock, Yechen Li, Chencheng Ye, and Chen Ding. 2015. Optimal cache partition-sharing: Don’t ever take a fence down
until you know why it was put up—Robert Frost. In Proceedings of the International Conference on Parallel Processing.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

Fast Miss Ratio Curve Modeling for Storage Cache 12:33

Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A. Ross, and Christian A. Lang. 2010. SSD buffer-
pool extensions for database systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1435-1446.

Calin Cascaval, Evelyn Duesterwald, Peter F. Sweeney, and Robert W. Wisniewski. 2005. Multiple page size modeling and
optimization. In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques. 339-349.

Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. 2005. Predicting inter-thread cache contention on a chip multi-
processor architecture. In Proceedings of the 11th International Symposium on High-Performance Computer Architecture
(HPCA’11). IEEE, 340-351.

Zhifeng Chen, Yuanyuan Zhou, and Kai Li. 2003. Eviction-based cache placement for storage caches. In Proceedings of the
USENIX Annual Technical Conference, General Track. 269-281.

Edward Grady Coffman and Peter J. Denning. 1973. Operating Systems Theory. Vol. 973. Prentice-Hall Englewood Cliffs, NJ.

Peter J. Denning. 1968. The working set model for program behavior. Commun. ACM 11, 5 (1968), 323-333.

Peter J. Denning. 1980. Working sets past and present. IEEE Trans. Software Eng.1 (1980), 64—84.

Peter J. Denning, Craig H. Martell, and Vint Cerf. 2015. Great Principles of Computing. MIT Press.

Peter J. Denning and Stuart C. Schwartz. 1972. Properties of the working-set model. Commun. ACM 15, 3 (1972), 191-198.

Peter J. Denning and Donald R. Slutz. 1978. Generalized working sets for segment reference strings. Commun. ACM 21, 9
(1978), 750-759.

Chen Ding, Xiaoya Xiang, Bin Bao, Hao Luo, Ying-Wei Luo, and Xiao-Lin Wang. 2014. Performance metrics and models
for shared cache. Journal of Computer Science and Technology 29, 4 (2014), 692-712.

Zachary Drudi, Nicholas J. A. Harvey, Stephen Ingram, Andrew Warfield, and Jake Wires. 2015. Approximating hit rate
curves using streaming algorithms. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 40. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. 2003. Characterizing and predicting program behavior and its variability. In
Proceedings of the International Conference on Parallel Architecture and Compilation Techniques. New Orleans, Louisiana.

David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling of LRU caches. In Proceedings of the 2010 IEEE Inter-
national Symposium on Performance Analysis of Systems & Software (ISPASS’10). IEEE, 55-65.

Eric Fusy, G. Olivier, and Frédéric Meunier. 2007. Hyperloglog: The analysis of a near-optimal cardinality estimation algo-
rithm. In Proceedings of the 2007 International Conference on Analysis of Algorithms (AofA’07).

Binny S. Gill. 2008. On multi-level exclusive caching: Offline optimality and why promotions are better than demotions. In
Proceedings of the 6th USENIX Conference on File and Storage Technologies. USENIX Association, 4.

Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin Wang. 2015. LAMA:
Optimized locality-aware memory allocation for key-value cache. In Proceedings of USENIX Annual Technical Conference.

Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-reference recency set replacement policy to improve
buffer cache performance. ACM SIGMETRICS Perform. Eval. Rev. 30, 1 (2002), 31-42.

Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen. 2010. Is reuse distance applicable to data locality analysis on
chip multiprocessors? In Compiler Construction. Springer, 264-282.

Taeho Kgil and Trevor Mudge. 2006. FlashCache: A NAND flash memory file cache for low power web servers. In Proceed-
ings of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems. ACM, 103-112.

Yul H. Kim, Mark D. Hill, and David A. Wood. 1991. Implementing stack simulation for highly-associative memories. In
Proceedings of the International Conference on Measurement and Modeling of Computer Systems. 212-213.

R. L. Mattson,]J. Gecsei, D. Slutz, and 1. L. Traiger. 1970. Evaluation techniques for storage hierarchies. IBM Syst. 7. 9, 2
(1970), 78-117.

Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A self-tuning, low overhead replacement cache. In FAST, Vol. 3.
115-130.

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-loading: Practical power management for
enterprise storage. ACM Trans. Storage (TOS) 4, 3 (2008), 10.

Frank Olken. 1981a. Efficient Methods for Calculating the Success Function of Fixed-space Replacement Policies. Technical
Report. Lawrence Berkeley Lab, CA.

F. Olken. 1981b. Efficient Methods for Calculating the Success Function of Fixed Space Replacement Policies. Technical Report
LBL-12370. Lawrence Berkeley Laboratory.

Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. 2010. Accelerating multicore reuse distance analysis with sampling and
parallelization. In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques. 53-64.

Xipeng Shen, Jonathan Shaw, Brian Meeker, and Chen Ding. 2007. Locality approximation using time. In ACM SIGPLAN
Notices, Vol. 42. ACM, 55-61.

Donald R. Slutz and Irving L. Traiger. 1974. A note on the calculation working set size. Commun. ACM 17, 10 (1974), 563-565.
DOI : https://doi.org/10.1145/355620.361167

G. Edward Suh, Srinivas Devadas, and Larry Rudolph. 2001. Analytical cache models with applications to cache partitioning.
In Proceedings of the 15th International Conference on Supercomputing. ACM, 1-12.

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

https://doi.org/10.1145/355620.361167

12:34 X. Hu et al.

G. Edward Suh, Srinivas Devadas, and Larry Rudolph. 2014. Analytical cache models with applications to cache partitioning.
In Proceedings of the 25th Anniversary International Conference on Supercomputing Anniversary Volume. ACM, 323-334.

David K. Tam, Reza Azimi, Livio Soares, and Michael Stumm. 2009. RapidMRC: Approximating L2 miss rate curves on
commodity systems for online optimizations. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems. 121-132.

Jeffrey S. Vitter. 1985. Random sampling with a reservoir. ACM Trans. Math. Software (TOMS) 11, 1 (1985), 37-57.

Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park. 2017. Cache modeling and optimization using
miniature simulations. In Proceedings of USENIX ATC. 487-498.

Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad. 2015. Efficient MRC construction with
SHARDS. In Proceedings of the 13th USENLX Conference on File and Storage Technologies (FAST’15). USENIX Association,
95-110.

Xiaolin Wang, Yechen Li, Yingwei Luo, Xiameng Hu, Jacob Brock, Chen Ding, and Zhenlin Wang. 2015. Optimal footprint
symbiosis in shared cache. In CCGRID.

Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, Andrew Warfield, and Coho Data. 2014. Characterizing
storage workloads with counter stacks. In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation. USENIX Association, 335-349.

Theodore M. Wong and John Wilkes. 2002. My cache or yours? Making storage more exclusive. In Proceedings of the USENLX
Annual Technical Conference, General Track. 161-175.

Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and Trishul M. Chilimbi. 2011a. All-window profiling and composable
models of cache sharing. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming. 91-102.

Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. 2011b. Linear-time modeling of program working set in shared cache.
In Proceedings of the 2011 International Conference on Parallel Architectures and Compilation Techniques (PACT’11). IEEE,
350-360.

Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: A higher order theory of locality. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems. 343—-356.

Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. 2008. Mc2: Multiple clients on a multilevel cache. In Proceedings
of the 28th International Conference on Distributed Computing Systems (ICDCS 08). IEEE, 722-730.

Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards practical page coloring-based multicore cache management.
In Proceedings of the 4th ACM European Conference on Computer Systems. ACM, 89-102.

Yutao Zhong and Wentao Chang. 2008. Sampling-based program locality approximation. In Proceedings of the International
Symposium on Memory Management. 91-100. DOI : https://doi.org/10.1145/1375634.1375648

Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality analysis using reuse distance. ACM Trans. Program.
Lang. Syst. (TOPLAS) 31, 6 (2009), 20.

Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan Zhou, and Sanjeev Kumar. 2004. Dynamic
tracking of page miss ratio curve for memory management. In ACM SIGOPS Operating Systems Review, Vol. 38. ACM,
177-188.

Received February 2017; revised January 2018; accepted January 2018

ACM Transactions on Storage, Vol. 14, No. 2, Article 12. Publication date: April 2018.

https://doi.org/10.1145/1375634.1375648

