PAY]JIT: Space-Optimal JIT Compilation and Its
Practical Implementation

Jacob Brock, Chen Ding
University of Rochester, USA
{ibrock,cding}@cs.rochester.edu

Abstract

Just-in-time (JIT) compilation in dynamic programming lan-
guages can improve execution speed in code with hot sec-
tions. However, that comes at the cost of increased memory
usage for the storage of compiled code and associated book-
keeping data, as well as up-front compilation time for the
hot code.

The current standard JIT compilation policy (used in both
Android’s JIT compiler and the HotSpot Java compiler) is
simplistic; any method that has reached a certain hotness, as
counted by invocations and loop iterations, is scheduled for
compilation. This would be fine if the cost/benefit of com-
pilation was the same for every method of a given hotness,
but that is not the case. In fact, compiling a large method
will likely result in less overall speedup than compiling a
smaller, equally hot method. This exposes an opportunity
for improvement. We propose the PAYJIT compilation policy
for method-based JIT compilers, which scales compilation
hotness thresholds with method sizes, and includes two-
point tuning, a mechanism for determining those hotness
thresholds. In this way, PAYJIT compiles more small meth-
ods, it compiles them sooner, and it nearly eliminates the
compilation of large methods that contribute little to overall
speedup.

Among 10 popular Android apps tested across 16 experi-
ments, the PAYJIT compilation policy decreases compilation
time by a maximum of 49.2%, with an average of 18.7%; ex-
ecution time by a maximum of 10.9%, with an average of
1.34% (for a geometric mean speedup of 1.46%); and code
cache size by a maximum of 41.1%, with an average of 15.6%.

CCS Concepts -« Software and its engineering — Just-
in-time compilers; Dynamic compilers; Runtime envi-
ronments;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC’18, February 24-25, 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

ACM ISBN 978-1-4503-5644-2/18/02...$15.00
https://doi.org/10.1145/3178372.3179523

Xiaoran Xu
Rice University, USA
xiaoran.xu@rice.edu

71

Yan Zhang
Futurewei Technologies, USA
yan.zhang@huawei.com

Keywords JIT Compilation, Method-Based JIT, Code Cache,
Dynamic Runtime, Android Runtime

ACM Reference Format:

Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang. 2018. PAYJIT:
Space-Optimal JIT Compilation and Its Practical Implementation.
In Proceedings of 27th International Conference on Compiler Con-
struction (CC’18). ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3178372.3179523

1 Introduction

Just-in-time (JIT) compilation in dynamic programming lan-
guages can improve execution speed in code with hot sec-
tions. However, that comes at the cost of increased mem-
ory usage to store JIT compiled code (and for the compiler
thread), as well as higher CPU and energy demand for com-
pilation. The Android Runtime system (ART) uses JIT com-
pilation, which can require megabytes for storage of code
and related data for a single app. Current state-of-the-art JIT
compilers (e.g., HotSpot, Android’s JIT compiler) determine
which methods merit compilation based on the amount of
time spent in them. As a proxy for that time, they use method
invocations plus loop iterations. This proxy is called hotness,
and each method that exceeds a universal hotness threshold
is compiled.

There is a serious problem with this approach, which we
solve. A single hot method often contains both hot and cold
code, and the larger the method is, the more likely this is to
be the case. In our experiments, neither hotness nor size is
evidently a good proxy for time spent in a method. In fact,
the reverse is true; per hotness event, less time is spent in
larger methods. Thus, compiling such methods results in
less time-savings per byte of memory. We solve this problem
with PAYFIT, a novel, data-driven compilation policy that
scales compilation thresholds based on the expected cost
and benefit of compiling and storing the method. PAYJIT
includes two-point tuning, which allows the system designer
to optimize compilation thresholds for methods of all sizes
by tuning the thresholds at only two sizes. We implemented
and tested PAY]JIT in the Android Runtime JIT compiler.

1.1 Resource Constraints in Android Devices

Due to the tightening resource constraints that Android
needs to operate under, there is a need for memory-efficient
and cycle-efficient code generation in ART. We chose to
implement PAYJIT in ART due to Android’s ubiquity and its

https://doi.org/10.1145/3178372.3179523
https://doi.org/10.1145/3178372.3179523
https://doi.org/10.1145/3178372.3179523

CC’18, February 24-25, 2018, Vienna, Austria

unique resource constraints. The Android operating system
has dominated the smartphone market since 2011. In the first
quarter of 2017, 86% of all mobile phones purchased ran on
Android [25]. Current low-end Android devices have tight
memory constraints; many have only 2 GB of RAM, and some
have only 1 GB. Moreover, cost-constraints in developing
markets mean that there is a market for devices with as little
as 512 MB (Google’s Android Go project is aiming to provide
a very-low memory Android platform for such devices [4]).

The Android OS itself uses much of the available RAM on
a device. For example, on our Google Pixel phone running
android-7.1.1_r26, the OS process already uses 656 MB
of RAM immediately after bootup. After about 45 minutes
of use, approximately 1.7 GB of RAM were in use. Even on a
new low-end device with 2 GB of RAM, each megabyte saved
would represent 0.3% of the remaining available memory;
on devices with 1 GB of RAM or less, a single megabyte of
savings would be much more valuable. Therefore, reducing
application memory usage can substantially ease pressure on
memory. This will be particularly true in future low memory
devices in developing markets. Additionally, most Android
devices are energy-constrained, and minimizing CPU de-
mand (by compiling less code, or by compiling hot code
sooner) will help extend battery life. While there has been
much research on improving JIT compiled code performance,
the tight memory constraints of Android devices present a
new problem. Our PAY]JIT policy decreases both memory
and CPU demand.

The main contributions of the work are as follows:

e A characterization of code size and execution frequency
for Android applications, a new metric called time per
hotness event to quantify the cost and benefit of mem-
ory use in the code cache, and a policy called PAYJIT
that makes optimal use of the code cache based on
oracular knowledge.

e A compile-time model to predict the cost and bene-
fit, and a non-linear variable-value hotness threshold
based on a technique called two-point tuning.

e An implementation in Android 7 and evaluation on 10
widely used mobile applications in the areas of social
networking, news, messaging, and online shopping,
with billions of downloads.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the Android Runtime (ART) system and its
JIT compilation policy; Section 3 motivates and introduces
PAYJIT, a new compilation policy that favors compilation
of smaller methods, saving both space and time; Section 4
describes our experiments and analyzes their results; Sec-
tion 5 outlines prior work in JIT compilation policies and
code caching; and finally, Section 6 concludes the paper.

72

Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang

2 The Android Runtime JIT Compiler

This section describes the structure of the ART system with
respect to the execution of application code. In both our
description of the Android Runtime (ART) system, and in our
experiments, we use android-7.1.1_r26, a device-specific
version of Android Nougat for the Google Pixel.

2.1 History of ART

Until Android 5, Android executed applications from DEX
bytecode (which is compiled from Java application code) us-
ing the Dalvik virtual machine. Prior to Android 2.2 (FroYo),
the DEX code was only interpreted. Android 2.2 executed
DEX code using a combination of interpretation and trace-
based JIT compilation. Android 5 (Lollipop) introduced a new
execution model for DEX bytecode with the Android Run-
time, exclusively using ahead-of-time compilation whenever
possible. In Android 7 (Nougat), ART uses interpretation,
method-based just-in-time compilation, and ahead-of-time
compilation. Section 2.4 describes the structure of the run-
time system in Android 7. For the rest of this paper, when
saying ART, we are referring to ART in Android 7 (and more
specifically android-7.1.1_r26).

2.2 Method-Based JIT Compilation

JIT compilers may be classified as either method-based or
trace-based, depending on the granularity of compilation.
Method-based JIT compilers compile one method at a time
(though they may also use inlining). Trace-based JIT com-
pilers compile hot code paths that may begin and end in the
same or different methods. Inoue et al. [14] retrofitted the
IBM J9/TR Java method-based JIT [10] compiler with trace-
based compilation in order to compare the two techniques.
They found that the key advantage of trace-based JIT was
its ability to compile larger sections of code. However, the
trace-based execution model has higher overhead, so their
trace-based JIT compiler only achieved at 92.8%-95.5% of
the method-based JIT performance. The ART compiler is
method-based.

2.3 Code Cache Structure

After a method is JIT compiled, it is stored in memory, in a
structure called the code cache. The code cache is initialized
with a 64 kB capacity. It contains one 32 kB mspace' for code,
and another 32 kB mspace for associated data (stack maps
and profiling information). Each of these keeps a 32 kB limit
on the amount of space that may be acquired from the system,
although less space may be used. When the capacity of either
is reached, the code cache is garbage collected, removing code
that is no longer the entry point for its corresponding method
(e.g., because that method has been deoptimized, its class
has been unloaded, or it has been recompiled with different

The type mspace provides an interface for mallocing space, with limits on
total size.

PAY]JIT: Space-Optimal JIT Compilation and Its Practical Implementation

optimization based on profiling information), as well as the
data associated with these methods, and the capacities of the
code and data memory regions may be increased (in tandem),
up to a maximum of 32 MB each. The “size” of the code cache
is monitored as the sum of the spaces used by each method
(data is monitored separately).

2.4 Compilation Policy

When an app is first run, every one of its DEX methods is
executed by the interpreter. The Android Runtime measures
the hotness of each method as the number of invocations
plus the number of loop iterations. This has generally been
accepted as a proxy for time spent in the method (though
we argue that this metric is flawed). ART has three different
hotness thresholds at which the runtime acts: warm, hot, and
OSR (on-stack replacement is explained below). When the
warm threshold (5,000) is reached, the method is marked for
ahead-of-time compilation next time the device is idle and
charging, and profiling data is generated and placed in the
code cache. When the hot threshold (10,000) is reached, a new
JIT compilation task is created, and placed in a thread pool
for background compilation. When the method is compiled,
code cache space is allocated for its code, as well as for a
stack map for it. The OSR threshold (20,000) may be reached
during execution of a method if the method is in a hot loop.
In this case, a high priority compile task is created for the
method, and run in the background. Once compilation is
completed, execution may continue with the compiled code.
This mechanism is known as on-stack replacement (OSR).

3 The PAYJIT Compilation Policy

The PAYJIT compilation policy is designed to efficiently uti-
lize both memory space and processor time. This is done
by giving each method a different hotness threshold, based
on the expected cost of compiling and storing it, and the
expected benefit of having a compiled version to run (in-
stead of interpreting its DEX code). This section presents
evidence of shortcomings of the state-of-the-art approach
to JIT compilation, formulates the new PAYJIT policy which
solves them, and describes our implementation of it in ART.

3.1 Motivation for a New Policy

As detailed in Section 4, we performed 16 experiments using
ART’s default JIT compilation policy, each automating the
10 apps enumerated in Table 1 in succession. In these experi-
ments we see that there are a small number of large methods
which occupy a significant fraction of the code cache. These
larger methods cost more to compile and store, but do not
provide more performance improvement than smaller ones.
This section outlines our observations from these experi-
ments and shows the need for a smarter compilation policy.

Figure 1 shows two histograms from the experiments. The
blue histogram shows the percent of methods compiled by

73

CC’18, February 24-25, 2018, Vienna, Austria

Jitted Method Size Distribution (Default)

100 + 3.6
= Percent of Methods || 33
80 [Aggregate Size 3.0

60

40

Percent of Methods

OHRPHEENNNMNN
WONBROOWON®O®
Aggregate Bin Size (MB)

20

i]

0 0 é 1‘0 T;_‘ 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0
Size Bins (1 kB Wide)

Figure 1. A histogram showing the compiled sizes of JIT
compiled methods, on average, under the default compilation
policy. Blue bars (lower bars for all but the first if rendered
in black and white) show the percent of compiled methods
in each size class, and green bars show the total sizes of
all methods in each class. For example, in the average run,
almost 90% of compiled methods were under 1 kB, and their
sizes summed to about 3 MB.

ART’s default compilation policy that are between 0 and 1
kB, 1 and 2 kB, etc., after compilation. The green histogram
shows the total size of all methods in each size class. That
is, the green bars show the impact of each size class on the
code cache. The figure shows that significant space is used
by the very small proportion of methods that are larger than
a few kilobytes. E.g., only 1.4% of methods are over 4 kB, yet
they account for 24% of space (in contrast, 88% of methods
are less than 1 kB, accounting for 44% of space).

Due to space constraints, we omit individualized histograms
for each APK. Note, that facebook is responsible for most
methods larger than 20 kB in Figure 1, while wechat twitter,
airbnb and pinterest are each responsible for a few.

This space usage would be justified if the compilation of
larger methods resulted in a proportionate performance in-
crease, but that is not evidently so. We instrumented ART to
log hotness events? for each method, and we used a tracer
(detailed in Section 4) to measure the time spent in each
method. Using this instrumentation, we ran a short experi-
ment with the airbnb apk. Figure 2 shows the trend between
exclusive time® per hotness event and DEX code size in this
experiment. The blue dots show the average exclusive time
for each method in 64-Byte bins (we show the data in bins
to highlight the negative trend). Counterintuitively, we see
that methods with less DEX code typically take more time
per hotness event, and larger methods take less. We suspect
there are two reasons for this. First, a method can become

?Hotness events are events (method invocations and loop iterations) that
increase a method’s hotness count.

3Exclusive time is the amount of time spent in a method, excluding time
spent in its descendants.

CC’18, February 24-25, 2018, Vienna, Austria

Average Time per Hotness Event

e e 64-Byte Bin Average
Fit Function Used

<
©
T

N o
B o

o
N

Exclusive Time per Hotness Event (us)

o
=

6000 8000 10000 12000

DEX Code Size (B)

4000

Figure 2. A plot of exclusive time per hotness event vs. DEX
code size for a short run of airbnb. Blue points indicate aver-
ages of all methods in 64-byte bins (in order to highlight the
trend). The red line indicates a fit function, which we use in
the evaluation of PAY]JIT.

Sizes of JIT Compiled Methods

50 | @ |Size| = 69472 m= 32 r= 0855 7
[n|= 124144 b= 00 r*= 0.732

40

)

=

&30

%)

@

©

S

£ 20

=

DEX Code Size (kB)

Figure 3. A scatter plot comparing the DEX-code and jitted-
code sizes of each method compiled by the default JIT compi-
lation policy, across all 10 APKs and all 16 experiments. Dots
are transparent to show the density of data points. The plot
shows a strong linear relationship (shown in the red line and
the numbers in the upper-right), indicating that a method’s
DEX-code size can be used as a proxy for the expected code-
cache usage in making the compilation decision.

hot even if only a small fraction of its code is heavily used.
Second, larger methods are more likely to have large condi-
tional statements, meaning that less of their code is actually
executed.

In summary, the default JIT compilation policy compiles a
small number of large methods which occupy more space, but
contribute less to overall speedup. We propose a compilation
policy that does not compile such methods until they reach
a higher hotness threshold that justifies the memory space

74

Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang

their compiled code will occupy. Of course, prior to compi-
lation, the compiled size of a method is unknown. Figure 3
shows that there is a correlation (r = 0.855) between the size
of a method’s DEX code (which is available at run-time) and
the size of that method after compilation. The PAYJIT policy
uses this relationship to predict the compiled size of each
method, and favor compilation of smaller methods.

3.2 Motivation for a Cost-Based Policy

In a system with multiple actors and multiple scarce re-
sources, such as an economy or a computer, it is useful
to have some means of comparing the value of different
resources. For example, if multiple businesspersons need
access to both limited storage space for their goods and the
limited time of a business consultant, there must be a way
to compare the cost of each resource, even though they are
very different things. In this scenario, the obvious solution
is money; each individual will decide for themself, based on
the prices and expected profit from acquiring the resources,
what quantity of each to purchase. We call models which
use a common unit (money or otherwise) to assign values to
different resources cost-based models.

A cost-based page replacement policy for main memories
called VMIN [21] assigned costs to both memory space and
time spent servicing page faults. Knowing the time between
the current page access and the next access to that same
page, VMIN keeps the page in memory if storage for that
duration of time is the least costly option, or removes it after
use if a page fault is less costly. In this way, it achieves the
lowest possible page fault rate for a given average memory
usage. The well-known Working Set page replacement policy
(WS) is analogous to VMIN, without requiring knowledge
of future page requests [6].* WS keeps a page in memory
after it is used until the maximum time for which the VMIN
model would hold it; at that point the page is marked eligible
for eviction. Note that in both VMIN and WS, the eviction
decision reduces to a single time threshold y.

In a dynamic-language runtime system, we can construct
a similar cost-benefit structure that boils down to a single
hotness threshold. In this case, we construct a simple two-
resource model from memory space and processor time. Each
method execution consumes processor time (more if it is
interpreted, and less if it is run from compiled code), each
compilation also requires processor time and memory, and
the storage of compiled code consumes space in memory.
Ideally, the cost of each resource would reflect its scarcity, i.e.,
the cost of memory should increase when more of it is in use,
and the cost of processor time should increase when there is
high processor demand or battery is low. Tracking resource
availability, however, would increase the complexity of a

4WS was shown that under the locality principle, the working-set policy is
very nearly optimal [7].

PAY]JIT: Space-Optimal JIT Compilation and Its Practical Implementation

JIT compilation policy. Therefore, in this work, we keep the
model simple by fixing the costs of each resource.

3.3 The PAY]JIT Policy for JIT Compilation

The fundamental question for the PAYJIT compilation policy
is how many times a method should be interpreted before
the runtime invests in compiling it. This is similar to the
ski rental problem, where a skier does not know how many
times they will ski, but must eventually decide whether to
purchase their own equipment. The canonical solution for
limiting the worst case is to buy skis just before you spend as
much money renting them as you would have spent buying
them in the first place. For example, if skis cost $10 to rent
and $100 to buy, you can limit your wasted money to $90 by
buying skis just before your tenth trip to the ski hill. PAYJIT
takes a similar approach: it compiles a method once once the
method’s hotness (and size) indicate that it would have been
cheaper to compile it in the first place than to interpret it as
many times as has been done.

We present two equivalent formulations for PAYJIT. In
the efficiency formulation, PAYJIT determines whether to
compile a method based on a expected cost/benefit analysis
of doing so. The profit formulation provides a model from
which the easily tunable threshold formulation is derived. In
the threshold formulation, PAYJIT compiles each method
only once it has reached a hotness threshold determined by
the size of its DEX bytecode (which is used as a proxy for
its compiled size). This threshold is the number of hotness
events for which the cost of interpreting the method exceeds
the cost of compiling, storing, and natively executing it.

3.3.1 Optimal PAYJIT

In order to construct our cost model, we first consider an
ideal case where the whole-program hotness of each method
is known a priori, and given that information, all methods are
either compiled before program execution or never compiled.
We present a policy called Optimal PAYFIT that uses the
least resources for a given amount of time spent executing
methods, and spends the least time executing methods for a
given resource usage.

Expressing the time per hotness event for an interpreted or
compiled method i as t]"* or t{ " respectively; the number
of hotness events for that method as h;; the size of that
method’s DEX code in bytes as d;; the abstract cost of storing
the compiled code for each byte of DEX code’ as o; and the
cost of compiling that method as y;, we can write the cost of
executing a program from start to finish as follows:

C= Z hitiint + Z(hjt;it + O'dj +)/j),
i€ uncompiled je compiled
Optimal PAYJIT minimizes this cost function by making the

3 A linear correlation between DEX code size and compiled code size, as is
demonstrated in Figure 3, is assumed.

75

CC’18, February 24-25, 2018, Vienna, Austria

least expensive compilation choice for each method. That is,
method i should be compiled if

hit{it + O'd,' +yi < hitiint, (1)
and not compiled otherwise. In the case where compilation is
free (e.g., it is performed in the background with plenty of re-
sources), Inequality 1 points to a particularly important kind
of optimality. Whatever cache size results from the choice
of which methods to compile, there is no policy that will
use the same amount of space but spend less time executing
methods. Likewise, whatever time Optimal PAYJIT policy
spends executing methods, there is no policy that will use
the same amount of time but use less space.

Not having oracular knowledge at runtime, PAYJIT instead
uses past information on the methods’ usage, and predictions
of its post-compiled size, compilation cost, and time per
hotness event to calculate the cost function. PAYJIT then
takes a conservative approach to compilation; each method
is compiled only once it reaches the hotness proving it would
be compiled by Optimal PAYJIT.

3.3.2 Threshold Formulation

In this section we formulate a hotness threshold that is
unique to each method based on the size of its DEX bytecode.
As shown in Figure 2, there is a common trend between DEX
bytecode size and interpreted time per hotness event, which
we denote as f(d) = t;;. The correlation between DEX code
size and compiled size is implicit in the variable . The cost
of compiling is different for each method, but it is difficult
to predict a priori due to inlining. Therefore, we use the con-
stant y as a stand-in. Finally, we denote the average speedup
from compilation as S = tt’j'l’t’ . Rearranging Inequality 1 for A,
we get the hotness threshold T(d) as a function of the DEX
bytecode size:

Yy +od

PO a7

)

3.3.3 Two-Point Tuning

At this point, we have a compilation criterion with two free
variables: the compilation cost y, and the per-byte storage
cost 0. While we could conceivably set each of them based
on expected resource availability, this would require mon-
itoring that availability, so we leave that for future work.
Instead, we propose a technique we call two-point tuning.
Where the standard JIT compilation policy is tuned with
one compilation threshold, PAYJIT can be tuned with two
thresholds: one for small methods (e.g., methods approaching
zero bytes of DEX code), and another for large methods (e.g.,
methods with 1,000 bytes of DEX code). Setting T(0) = T
and T(d;) = Ty, we obtain

y =Tof(do)(1 - 1/S) 3)

CC’18, February 24-25, 2018, Vienna, Austria

and

5 = 1fld) —1/5) - Tof(do)(1 — 1/5)

n @

so that

diTof(0) +d (T1 f(d) — To f(0)) 5)
dif(d) '

Figure 4 shows the shape of the threshold curve we use in
our experiments, where T(0) =4,000 and T(1,000) =50,000
(as described in Section 4.2). The speedup S drops out of
Equation 5 because it is in both the numerator and denomi-
nator. This is a side-effect of fixing the thresholds Tj and Ty
instead of calculating them based on resource availability.
The value used for f(0) is 0.65 us, as shown in Figure 2, be-
cause this follows the trend. Two-point tuning can be used
to match the resource constraints of the system. For example,
in systems with limited CPU, compilation should be more
expensive. It is clear in Equation 3 that raising T, will achieve
this. Likewise, a memory constrained system would corre-
spond with high storage cost. From Equation 4, it can be
seen that raising the value of T; will do this.

T(d) =

3.4 Implementation

In order to test PAYJIT, we implemented it in ART. This
section describes a workaround that was necessary to do
so with minimal changes. In ART, the hotness counter for
each method, and the compilation thresholds, are stored as
uint16_ts. With the default JIT compilation policy, this is
sufficient, since OSR® compilation occurs when the counter
reaches 20,000. However, PAYJIT uses thresholds exceeding
216 (as shown in Figure 4), and there are complex side effects
of modifying the counter’s type (because member offsets are
fixed in the class that implements methods).

Instead of giving each method a different threshold, and
modifying the counter and threshold data types, we scaled
the frequency at which each counter was incremented. This
allowed us to use a single threshold, T’, for all methods.

We calculate the scaled threshold, T, from Equation 5,
and each increase in hotness count is made in proportion
to the method’s scaled threshold. For example, if the scaled
threshold is 2x the default one, and the hotness count is
supposed to increase by 10, PAYJIT only increases the hot-
ness by half of that (5). Alternatively, if the hotness count
is supposed to increase by 3, since the hotness cannot be
increased by 1.5, it is increased by 1 or 2 (randomly’). In

®0SR is one of the three hotness thresholds described in Section 2.4.

"The number is chosen randomly with the C standard library function
std::rand(). An informal experiment on the Pixel shows that it has an
overhead of 0.15 us per invocation, and it is invoked approximately 22.5
million times in a 2.5 minute experiment. This adds up to a total of ~3.4
seconds spent in the std: : rand() function. This is reasonable for our ex-
perimental implementation of PAYJIT, but a production implementation will
need to use a faster implementation of rand(), or track method thresholds
differently.

76

Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang

PAYJIT Threshold Curve

S 100}

JIT Compilation Threshol
w
o

(1,000, 50,000)

1070, 4,000
0
0 500

1000 1500 2000

DEX Method Size (B)

2500

Figure 4. Weighted thresholds used in the PAYJIT policy, as
calculated from DEX code size. The curve is determined by
any two points; we chose a minimum compilation thresh-
old of 4,000 (for DEX code sizes approaching zero), and a
threshold of 50,000 for DEX code size of 1,000 Bytes.

this way, the method’s hotness count only reaches T” after
T hotness events (T may be either greater than or less than
T’). This mechanism has the added benefit of affecting the
warm and OSR thresholds in the same way, so they also do
not need to be modified. E.g., if T = 27", the warm and OSR
thresholds are also doubled. The warm threshold should not
affect performance much, since it only indicates which meth-
ods should be compiled while the device is idle and charging,
but the change in the OSR threshold does affect compilation
during our experiments. All thresholds affect the code cache
size, since profiling information is generated and stored in
the code cache when the warm threshold is crossed, and
code is generated when the other thresholds are crossed.

4 Experiments
4.1 Workloads

We tested PAYJIT with ten different APKs: airbnb,
aliexpress, amazon, ebay, facebook, instagram,
magicseaweed, pinterest, twitter, and wechat, as shown
in Table 1. These apps were chosen because they are all
widely used, they all have user interfaces that are simple
enough to automate for a short time (2-4 minutes), and
they all have a significant number of JIT compiled methods
(performance-sensitive apps, such as games, often ship with
pre-compiled code). All but magicseaweed are mass-market
apps. magicseaweed was chosen because we expected a
lower-budget app to have fewer in-house optimizations and
possibly less code overall.

PAY]IT is based on the correlation between DEX size and
exclusive time per hotness event. We found that the relation
was similar across applications, that is, all programs were
similar to airbnb, which is shown in Figure 2. Therefore, we
trained using only airbnb and tested on all ten applications.
For all experiments, the thresholds Ty and T; were pinned at

PAY]JIT: Space-Optimal JIT Compilation and Its Practical Implementation

Table 1. APKs used in experiments, along with the dates
they were available.

APK Version Date

airbnb 17.03.2 Jan. 20, 2017
aliexpress 5.3.4 June 19, 2017
amazon 12.0.1.100 May 26, 2017
ebay 5.11.1.1 June 19, 2017
facebook 100.0.0.20.70 Oct. 18, 2016
instagram 10.25.0-60813718 | June 9, 2017
magicseaweed | 3.3 Mar. 31, 2017
pinterest 6.23.0-623023 June 23, 2017
twitter 7.1.0-7120079 June 19, 2017
wechat 6.5.7 (1041) April 20, 2017

4,000 and 50,000, respectively (Figure 4). These thresholds
were tuned in preliminary experiments to maximize code
cache space reduction with little or no slowdown.

4.2 Experimental Setup

Tests were run on a Google Pixel phone, using the APKs
listed in Table 1. The Pixel contains a Qualcomm Snapdragon
821 64-bit quad-core processor, which implements the ARM
big.LITTLE architecture. Two cores have frequency scaling
from 0.31 GHz - 1.59 GHz, and the other two scale from
0.31 GHz - 2.15 GHz. Certain architectural details of the
processors, such as cache structure, are unavailable.

The execution time is sensitive to thread-core configu-
ration/binding and to frequency scaling. In order for our
experimental results to be repeatable and reproducible, we
disabled the two “little” cores and pinned the two big cores
to 1.5 GHz prior to each experiment.

In order to maximize repeatability, we used the mon-
keyrunner® user interface automation tool, a component of
Android Studio, to script interactions with each test work-
load [9]. In one APK (airbnb), it was necessary to manually
log into the app prior to starting the monkeyrunner script,
but in all others, the launch and running of the app were
entirely automated. In order to handle experimental noise
due to network and server variability, we performed a total
of 16 experiments. In each, we flashed the default build of
the operating system to the device, installed all 10 APKs,
logged into the airbnb app, and initiated the series of ten
monkeyrunner scripts, which were run in alphabetical order
by APK name (starting with airbnb). Since airbnb needed
to be logged into manually, we began profiling only after
login (along with the start of the monkeyrunner script). Each
monkeyrunner script launched an app, and automated user
interface inputs for between 185 and 217 seconds, depending
on what was possible to do in the app (the time was con-
sistent across runs of the same app). Example user inputs

8The monkeyrunner tool is designed for automated application/device
testing

77

CC’18, February 24-25, 2018, Vienna, Austria

include scrolling through a feed and selecting some items
to open and view, and typing a message. We carried out
this procedure using the default JIT compilation policy and
PAY]JIT, in alternating experiments.

4.3 Profile Collection

Method profiles were collected with Android Studio’s activity
manager, using the sampling profiler, at an interval of 1,000
us. The sampling profiler pauses the virtual machine at each
sampling interval, and analyzes the stack trace, obtaining
an estimate of the amount of time spent in each method
(excluding time spent in children of that method). We only
count the thread time, or the time during which the method’s
thread was scheduled by the Java run-time environment (this
is akin to “user time”). We do not measure app responsiveness.
Additionally, we instrumented the Android build to log both
the pre-compiled (DEX code) and compiled (jitted code) sizes
of each compiled method, and the compilation time for each
method (including its inlined methods).

PAY]JIT was trained using only the profile of airbnb, al-
though the profile of all applications was measured and ex-
amined in the study, as mentioned in Section 4.1.

4.4 Sources of Noise

There were several unavoidable sources of noise in our exper-
iments. These include variability in quality of service from
the WiFi network, as well as from the servers the apps were
communicating with. Additionally, the data served differed
from one run to the next. For example, facebook’s news
feed had different posts from one experiment to the next;
many posts contained images, and some contained videos
that played automatically. Since it was impossible to control
the data being served to any of the apps, we performed 16 ex-
periments and took averages (Figures 6 and 7 and sections 4.5
and 4.5 show 95% confidence error bars).

4.5 Results

In this section, we show the results of 16 pairs of experi-
ments’. Figure 5 shows histograms of the percent of meth-
ods compiled by the PAYJIT policy which occupy between 0
and 1 kB, 1 and 2 kB, etc., as well as the sum of the sizes of
those methods (like Figure 1). The figure demonstrates that
PAY]JIT eliminates the high-cost compilation and storage of
larger methods; the largest compiled method was 12.0 kB (as
compared to 52.4 kB with the default policy).

9There were actually more than 16; in several instances the total time for a
single APK was significantly (~10x) less than the average. This occurred
in runs using both the default and PAY]JIT policies, and for multiple APKs.
This was due to unavoidable factors external to the compilation policy
(e.g., content not loading due to poor QoS, and unexpected pop-up win-
dows preventing monkeyrunner from interacting with the app as scripted).
These data points are not relevant to the research question. We omit every
experiment in which this occurred for any APK.

CC’18, February 24-25, 2018, Vienna, Austria

Jitted Method Size Distribution (PAY]IT)

100 + 3.6
I Percent of Methods | [35
80 [Aggregate Size 3.0

[=)]
o

Percent of Methods
B
o

OCQOFKFKFEFEFEFRFEFNNNNN
omoONBOO®ONDO®
Aggregate Bin Size (MB)

20

—————T——T—T——T—T——
CoooOoH =t N
ISENES

0 é 1‘0
Size Bins (1 kB Wide)

Figure 5. A histogram showing the compiled sizes of JIT
compiled methods, on average, under the PAYJIT compilation
policy. Blue bars (lower bars if rendered in black and white)
show the percent of compiled methods in each size class, and
green bars show the total size of all methods in each class.
For example, in the average run, ~95% of compiled methods
were under 1 kB, and their sizes summed to about 3.5 MB.

Figure 6 compares final code cache sizes between the de-
fault policy and PAYJIT. Code and data are shown separately;
between the two, and across all APKs, PAYJIT reduces the
total code cache size by an average of 2.02 MB, or 17.0%.

Figure 6a shows the average quantity of code in each
APK’s code cache at the end of an experiment. For every
APK except twitter, PAYJIT decreases the average code
size. Across all experiments and all programs, the code size
is decreased by an average of 84.3 kB (13.9%). The maximum
average decrease is in facebook, where PAYJIT reduces the
code cache size by an average of 307.3 kB. The maximum av-
erage percentage decrease occurs in wechat, in which PAYJIT
reduces code cache size by an average of 37.5%.

Figure 6b shows the results for data (profiling info and
stack maps). Average data size is decreased for all APKs.
Across all experiments and programs, the data is decreased
by 122.4 kB (20.1%) on average. Both the maximum total
decrease and the maximum percentage decrease occur in
wechat, whose code cache data footprint is decreased by an
average of 377.6 kB, or 44.2%.

Figure 7 shows the average total size of all code-cache
garbage collections that occurred during the execution of
each APK. In 6 out of 10 cases, the quantity of compiled
code collected is decreased with PAYJIT, and in 7 of them,
data collection is decreased. Over all experiments, PAYJIT
reduces code collection from the code cache (Figure 7a) by
402.5 kB, and data collection (Figure 7b) by 1.09 MB. The
quantity of code and data collected is important because
this represents memory space that is in use at some point
during the program run, though not at the end. Additionally,
garbage collection of code indicates that the code was only
useful for a limited time, not for the duration of the program.

78

Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang

Table 2. Improvements due to PAYJIT over the default JIT
compilation policy. The bottom row shows aggregate savings
for code cache and build time reduction, and geometric mean
for thread time speedup. APK names are abbreviated.

Code Cache Code Cache GC
Reduction (%) |Reduction (%)
Thread %ol;lzplle
apk |Code Data Total|Code Data Total|Time .
Speedup Reduction
(%)
air 43 108 7.7| 20.1 7.3 12.1 1.016 6.6
ali 6.1 90 7.6] 10.0 114 109 0.950 7.7
azn 25 72 49]-140-11.2 -123 1.001 -0.4
eba 7.9 11.1 9.5/-56.4 -19.0 -31.8 0.993 5.9
fbk | 23.8 27.9 25.9| 64.2 66.7 66.0 1.070 49.2
ins 27.7 32.4 30.2| 24.7 38.8 34.8 1.023 42.5
msw| 13.6 14.2 13.9|-71.1 2.3 -11.6 1.122 9.0
pin 7.8 17.1 12.1] 14.8 13.0 13.6 1.001 18.0
twi -0.2 6.8 3.0/-123 -85 -99 0.995 3.0
wcet | 375 442 41.1| 415 56.7 51.6 0.984 45.7
agg | 13.9 20.1 17.0| 30.1 39.7 36.6 1.015 26.9

Figure 8a shows the amount of user time spent executing
the main process for each APK (not including spawned pro-
cesses such as services), per minute of execution'’. Only in
one case (facebook) do the error bars not overlap, indicat-
ing a high degree of certainty that there is speedup. In all
other cases, there is insufficient difference to conclude there
is speedup or slowdown (though there are several where
speedup or slowdown appear likely). Across all APKs, the
geometric mean speedup is 1.46%.

Figure 8b illustrates the total CPU time of the compiler
thread. Comparing these numbers to those shown in Figure 6
demonstrates that there is some correlation between total
compilation time and total compilation size, even though
it is difficult to predict an individual method’s compilation
time from its size (due to inlining). airbnb appears to be an
exception in this trend, but that is because some code (~250
kB) had already been compiled prior to the start of profiling.

Table 2 shows the code cache reductions, speedups, and
compilation time reductions in Figures 6 to 8.

5 Prior Work
5.1 Code Caches

Robinson et al. [22] propose, simulate, and implement sev-
eral code cache replacement policies in the Java HotSpot VM
using profiling and online heuristics to predict cold methods
and remove them when space is needed. Zhang and Krintz
[27] propose periodically marking JIT compiled methods
for eviction if they have not been used in the last profiling
interval. Hazelwood and Smith [13] propose a generational

10We display thread time per minute of execution so that comparison be-
tween apps is meaningful.

PAY]JIT: Space-Optimal JIT Compilation and Its Practical Implementation

JIT Code Cache Sizes (Code)

CC’18, February 24-25, 2018, Vienna, Austria

1408 . . 1408 ‘ ‘ ‘ JIT dee Céche S‘IZES (I?ata) ‘
1280 || Default 1280 | |l Default
1152 | B PAY)IT 115 || PAY)IT
g 1024} @ 1024
N 896 g 896
o 768 9 68
3 2
S sa0p S e40f
& g
g 512 :
%’ 384 g
256
128
0

Figure 6. Average end-of-experiment code (a) and data (b) in code cache for each APK over all experiments using the default
and PAYJIT compilation policies. Error bars show 95% confidence intervals.

Total JIT Code Cache GC (Code)

1408 T T 1408 T T
1280 || Default 1280 || Il Default
1152 || PAY)IT 1150 | | PAY)IT
1024 + 1024 -

640 -

Average Total Code Collected (kB)

Total JIT Code Cache GC (Data)

896 |-
768 -
640 |-
512+
384 |
256 |
1281

Average Total Data Collected (kB)

(b)

Figure 7. Average total size of collected code (a) and data (b) for each APK over all experiments using both compilation policies.
This indicates memory that was in use during the experiment, but not at the end. Error bars show 95% confidence intervals.

approach to code caching, with three FIFO queues (nursery,
probation, and persistent) storing “superblocks”. Hartmann
et al. [12] propose a segmented code cache for dynamic multi-
tiered compilation systems. The cache is divided into three
parts: code that is known to last the entire lifetime of the run-
time environment, shorter-lifetime code that is inexpensive
to generate, and highly optimized code, which is typically
larger and more expensive to generate. Dividing the code
cache in this way reduces fragmentation from recompilation,
and cache sweep (GC) times.

5.2 JIT Compilation Policy

Several groups have studied tiered JIT compilers, which com-
pile many methods with low optimization (e.g., at a low
threshold), and then recompile the ones that become the

79

hottest with high optimization. This technique can achieve
both fast startup and high steady state performance [2, 15,
20, 26]. Arnold et al. [2] makes recompilation (at higher op-
timization level) decisions based on compilation cost and
expected speedup, but ignoring code-cache impact. Kulkarni
[18] tested the effects of various compilation policy param-
eters on the HotSpot JVM, in single-core and multi-core
machines, including level of compiler multithreading, compi-
lation threshold values, and compiling from a priority queue.
This study finds that the choice of compilation threshold
had a significant effect on both program execution time and
compilation time. Jantz and Kulkarni [16] extend this work,
testing the performance of 57 benchmarks in the HotSpot
JVM with varying compilation thresholds and numbers of
compiler threads, and including tiered compilation. They find

CC’18, February 24-25, 2018, Vienna, Austria

APK Thread Times (Per Minute of Run)

Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang

Compile Times (Whole Run)

| |l Default
|| = PAYIT

Time (s)

| Default
[PAYIT

Figure 8. Average thread time per minute of execution (a), and average total CPU time of the compiler thread (b), for each
APK over all experiments using the default and PAYJIT compilation policies. Error bars show 95% confidence intervals.

that the right degree of compilation aggressiveness depends
on both the program and the available resources. Several
publications also address compilation order [5, 8, 18, 24].
While PAYJIT uses method size to predict the space-utility
of compiling a method, Fu et al. [8] use method size and loop
count to predict compilation cost (absent inlining), which is
then used to prioritize methods in the HotSpot server JIT
compiler’s compile queue. Kulkarni et al. [17] propose guar-
anteeing a minimum utilization to the compilation thread.

A number of JIT policies are adaptive. Arnold et al. [3] use
a cross-run repository to select the best policy for each in-
put. A similar approach is taken by Mao and Shen [19], who
adopt more sophisticated learning methods with confidence
measures to guard against misuse. A cross-run repository
would be useful for PAY]JIT if the application behavior, i.e.,
the time per hotness event (show for example in Figure 2),
changes based on the program input. Since the time pattern
is based on method size, not method identity, it is possible
to make cross-application predictions. We have found that
the pattern does not vary significantly for our workloads
(see Section 4.1). Previous work has studied desktop and
server applications, where PAYJIT may benefit from cross-
run adaptation especially when PAYJIT could be run with
more computing and memory resources than are available
on a mobile device. Gu and Verbrugge [11] adjust the compi-
lation policy based on program phase. We have not examined
how the time-per-hotness-event pattern changes during an
execution. This is complementary to PAYJIT and may be
used in conjunction with it, especially if phase tracking can
be done efficiently on a mobile device. Agosta et al. [1] pro-
pose heuristics for identifying hot code statically with byte
code analysis, and dynamically with profiling.

Targeting performance, but not code cache size, Schilling
[23] identifies a weak positive correlation between method

80

size and interpreted execution time in SPEC JVM98 bench-
marks, and advocates compiling larger methods in case they
are extraordinarily time consuming. PAYJIT, in contrast, is
based on an observed negative trend between method size
and interpreted execution time per hotness event, and targets
code cache size. The difference in the observed trends may
be due to differences between the workloads, the metrics
(tight loops in larger methods causing hotness count to in-
crease out of proportion with execution time), or both. To our
knowledge, PAY]JIT is the first compilation policy to formally
optimize the code cache size vs. performance trade-off.

6 Conclusions and Future Work

This work identified a shortcoming in the standard compi-
lation policy in method-based JIT compilers; the hotness of
a method is not a good proxy for the value of compiling it.
We proposed the PAYJIT compilation policy to preferentially
compile smaller methods, because per-byte their compila-
tion contributes more to the speedup of the program as a
whole. By identifying the trend between DEX bytecode size
and time spent in methods for just one APK (airbnb), we
were able to decrease code in the code cache by an average
of 13.1% (for a total savings of 842.8 kB of code), and data by
an average of 18.1% (totaling 1.2 MB). Additionally, PAYJIT
cut compilation time by 18.7% and main-thread times by
1.3% on average. Future work can sample method time per
hotness and resource availability online to determine thresh-
olds heuristically. This may be done either for the purpose
of hitting a resource usage target (e.g., code cache size), or
a performance target (e.g. decreasing thresholds for more
aggressive compilation). Cost models for systems with multi-
ple agents (e.g. users, processes) and multiple resources can
provide decision making tools for resource allocation.

PAY]JIT: Space-Optimal JIT Compilation and Its Practical Implementation

References

(1]

(4]
(5]

(8]

(10]

(11]

(12]

(13]

(14]

G. Agosta, S. Crespi Reghizzi, P. Palumbo, and M. Sykora. 2006. Se-
lective Compilation via Fast Code Analysis and Bytecode Tracing.
In Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC ’06). ACM, New York, NY, USA, 906-911. https://doi.org/10.1145/
1141277.1141488

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F. Sweeney. 2000. Adaptive Optimization in the JalapeNO JVM. In
Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA °00). ACM,
New York, NY, USA, 47-65. https://doi.org/10.1145/353171.353175
Matthew Arnold, Adam Welc, and V. T. Rajan. 2005. Improving vir-
tual machine performance using a cross-run profile repository. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 297-311.
https://doi.org/10.1145/1094811.1094835

John Callaham. 2017. Android Go: Everything you need to know.
(2017). http://www.androidauthority.com/android-go-773037
Simone Campanoni, Martino Sykora, Giovanni Agosta, and Stefano
Crespi Reghizzi. 2009. Dynamic Look Ahead Compilation: A Tech-
nique to Hide JIT Compilation Latencies in Multicore Environment.
In Proceedings of the 18th International Conference on Compiler Con-
struction: Held As Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009 (CC *09). Springer-Verlag, Berlin,
Heidelberg, 220-235. https://doi.org/10.1007/978-3-642-00722-4_16
Peter J. Denning. 1968. The working set model for program behaviour.
Commun. ACM 11, 5 (1968), 323-333.

Peter J. Denning. 1970. Virtual Memory. Comput. Surveys 2, 3 (1970),
153-189. https://doi.org/10.1145/356571.356573

Jie Fu, Guojie Jin, Longbing Zhang, and Jian Wang. 2016. CAOS:
Combined Analysis with Online Sifting for Dynamic Compilation
Systems. In Proceedings of the ACM International Conference on Com-
puting Frontiers (CF ’16). ACM, New York, NY, USA, 110-118. https:
//doi.org/10.1145/2903150.2903151

Google. 2017. monkeyrunner | Android Studio. (2017). developer.
android.com/studio/test/monkeyrunner

Nikola Greevski, Allan Kielstra, Kevin Stoodley, Mark G Stoodley, and
Vijay Sundaresan. 2004. Java Just-in-Time Compiler and Virtual Ma-
chine Improvements for Server and Middleware Applications.. In Pro-
ceedings of the USENIX Virtual Machine Research and Technology Sympo-
sium (VM °04). 151-162. https://www.usenix.org/legacy/publications/
library/proceedings/vmo04/tech/full_papers/grcevski/grcevski_html/
Dayong Gu and Clark Verbrugge. 2008. Phase-based adaptive re-
compilation in a JVM. In Proceedings of the 6th Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO
’08). 24-34. https://doi.org/10.1145/1356058.1356062

Tobias Hartmann, Albert Noll, and Thomas Gross. 2014. Efficient
Code Management for Dynamic Multi-tiered Compilation Systems.
In Proceedings of the 2014 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools (PPP} ’14). ACM, New York, NY, USA, 51-62.
https://doi.org/10.1145/2647508.2647513

Kim Hazelwood and Michael D. Smith. 2006. Managing Bounded Code
Caches in Dynamic Binary Optimization Systems. ACM Trans. Archit.
Code Optim. 3, 3 (Sept. 2006), 263-294. https://doi.org/10.1145/1162690.
1162692

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani.
2011. A Trace-based Java JIT Compiler Retrofitted from a Method-
based Compiler. In Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO ’11).
IEEE Computer Society, Washington, DC, USA, 246-256. http://dl.

81

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

CC’18, February 24-25, 2018, Vienna, Austria

acm.org/citation.cfm?id=2190025.2190071
Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani.

2012. Adaptive Multi-level Compilation in a Trace-based Java JIT Com-
piler. In Proceedings of the ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA ’12).
ACM, New York, NY, USA, 179-194. https://doi.org/10.1145/2384616.
2384630

Michael R. Jantz and Prasad A. Kulkarni. 2013. Exploring Single and
Multilevel JIT Compilation Policy for Modern Machines 1. ACM Trans.
Archit. Code Optim. 10, 4, Article 22 (Dec. 2013), 29 pages. https:
//doi.org/10.1145/2541228.2541229

Prasad Kulkarni, Matthew Arnold, and Michael Hind. 2007. Dynamic
Compilation: The Benefits of Early Investing. In Proceedings of the 3rd
International Conference on Virtual Execution Environments (VEE °07).
ACM, New York, NY, USA, 94-104. https://doi.org/10.1145/1254810.
1254824

Prasad A. Kulkarni. 2011. JIT Compilation Policy for Modern Machines.
In Proceedings of the 2011 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA ’11).
ACM, New York, NY, USA, 773-788. https://doi.org/10.1145/2048066.
2048126

Feng Mao and Xipeng Shen. 2009. Cross-Input Learning and Discrimi-
native Prediction in Evolvable Virtual Machines. In Proceedings of the
7th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO ’09). 92-101.

Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
hotspotTM Server Compiler. In Proceedings of the 2001 Symposium
on JavaTM Virtual Machine Research and Technology Symposium -
Volume 1 (JVM’01). USENIX Association, Berkeley, CA, USA, 1-1. http:
//dl.acm.org/citation.cfm?id=1267847.1267848

Barton G. Prieve and R. S. Fabry. 1976. VMIN-An Optimal Variable-
space Page Replacement Algorithm. Commun. ACM 19, 5 (May 1976),
295-297. https://doi.org/10.1145/360051.360231

Forrest J. Robinson, Michael R. Jantz, and Prasad A. Kulkarni. 2016.
Code Cache Management in Managed Language VMs to Reduce Mem-
ory Consumption for Embedded Systems. In Proceedings of the 17th
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools, and
Theory for Embedded Systems (LCTES 2016). ACM, New York, NY, USA,
11-20. https://doi.org/10.1145/2907950.2907958

Jonathan L. Schilling. 2003. The Simplest Heuristics May Be the Best
in Java JIT Compilers. SIGPLAN Not. 38, 2 (Feb. 2003), 36—46. https:
//doi.org/10.1145/772970.772975

Lukas Stadler, Gilles Duboscq, Hanspeter Mossenbdck, and Thomas
Waiirthinger. 2012. Compilation Queuing and Graph Caching for Dy-
namic Compilers. In Proceedings of the Sixth ACM Workshop on Virtual
Machines and Intermediate Languages (VMIL ’12). ACM, New York, NY,
USA, 49-58. https://doi.org/10.1145/2414740.2414750

Statista. 2017. Mobile OS Market Share 2017.
(2017). https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems
Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Ko-
matsu, and Toshio Nakatani. 2001. A Dynamic Optimization Frame-
work for a Java Just-in-time Compiler. In Proceedings of the 16th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA °01). ACM, New York, NY, USA,
180-195. https://doi.org/10.1145/504282.504296

Lingli Zhang and Chandra Krintz. 2004. Profile-driven Code Unloading
for Resource-constrained JVMs. In Proceedings of the 3rd International
Symposium on Principles and Practice of Programming in Java (PPP¥
’04). Trinity College Dublin, 83-90. http://dl.acm.org/citation.cfm?id=
1071565.1071581

https://doi.org/10.1145/1141277.1141488
https://doi.org/10.1145/1141277.1141488
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/1094811.1094835
http://www.androidauthority.com/android-go-773037
https://doi.org/10.1007/978-3-642-00722-4_16
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/2903150.2903151
https://doi.org/10.1145/2903150.2903151
developer.android.com/studio/test/monkeyrunner
developer.android.com/studio/test/monkeyrunner
https://www.usenix.org/legacy/publications/library/proceedings/vm04/tech/full_papers/grcevski/grcevski_html/
https://www.usenix.org/legacy/publications/library/proceedings/vm04/tech/full_papers/grcevski/grcevski_html/
https://doi.org/10.1145/1356058.1356062
https://doi.org/10.1145/2647508.2647513
https://doi.org/10.1145/1162690.1162692
https://doi.org/10.1145/1162690.1162692
http://dl.acm.org/citation.cfm?id=2190025.2190071
http://dl.acm.org/citation.cfm?id=2190025.2190071
https://doi.org/10.1145/2384616.2384630
https://doi.org/10.1145/2384616.2384630
https://doi.org/10.1145/2541228.2541229
https://doi.org/10.1145/2541228.2541229
https://doi.org/10.1145/1254810.1254824
https://doi.org/10.1145/1254810.1254824
https://doi.org/10.1145/2048066.2048126
https://doi.org/10.1145/2048066.2048126
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://dl.acm.org/citation.cfm?id=1267847.1267848
https://doi.org/10.1145/360051.360231
https://doi.org/10.1145/2907950.2907958
https://doi.org/10.1145/772970.772975
https://doi.org/10.1145/772970.772975
https://doi.org/10.1145/2414740.2414750
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://doi.org/10.1145/504282.504296
http://dl.acm.org/citation.cfm?id=1071565.1071581
http://dl.acm.org/citation.cfm?id=1071565.1071581

	Abstract
	1 Introduction
	1.1 Resource Constraints in Android Devices

	2 The Android Runtime JIT Compiler
	2.1 History of ART
	2.2 Method-Based JIT Compilation
	2.3 Code Cache Structure
	2.4 Compilation Policy

	3 The PAYJIT Compilation Policy
	3.1 Motivation for a New Policy
	3.2 Motivation for a Cost-Based Policy
	3.3 The PAYJIT Policy for JIT Compilation
	3.4 Implementation

	4 Experiments
	4.1 Workloads
	4.2 Experimental Setup
	4.3 Profile Collection
	4.4 Sources of Noise
	4.5 Results

	5 Prior Work
	5.1 Code Caches
	5.2 JIT Compilation Policy

	6 Conclusions and Future Work
	References

