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1

Cache Exclusivity and Sharing: Theory and Optimization

A problem on multicore systems is cache sharing, where the cache occupancy of a program depends on the

cache usage of peer programs. Exclusive cache hierarchy as used on AMD processors is an effective solution

to allow processor cores to have large private cache while still benefit from shared cache. The shared cache

stores the “victims”, i.e. data evicted from private caches. The performance depends on how victims of co-run

programs interact in shared cache.

This paper presents a new metric called victim footprint. It is measured once per program in its solo execution

and can then be combined to compute the performance of any exclusive cache hierarchy, replacing parallel

testing with theoretical analysis. The paper tests victim footprint on parallel mixes of sequential programs,

compares the accuracy of the theory with hardware counter results, and evaluates the benefit of exclusivity-aware

analysis and optimization.

Additional Key Words and Phrases: Cache Analysis; Cache Sharing; Exclusive Cache
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1 INTRODUCTION
In an exclusive cache hierarchy, the lower level stores the evictions of the upper level, and the content

of the two levels has no intersection. The exclusive cache hierarchy has long been the choice of

AMD multicore processors. It has several important benefits over an inclusive hierarchy.

First, there is no data duplication, and the cache space is better utilized. We call this effect

deduplication. Second, the lower level cache stores evicted data. It may be called the victim cache.

The sharing of the victim cache is between the evicted data from multiple programs. We call the

second effect filtering.

This paper presents a new theory to model an exclusive cache hierarchy. It first formalizes an

abstract cache architecture called a split LRU stack. Then it defines a new measure of program

locality called victim footprint and shows how it can predict the performance of the program on a

split LRU stack. With the performance prediction, it shows how to optimize the sharing of exclusive

cache.

The new theory of victim footprint solves mainly two problems in performance modeling. The

first is composable locality analysis. The victim footprint is measured once for each program and can

then be composed to compute the combined locality for any program group. The second is portable

prediction. The combined victim footprint can be used to predict the miss ratio in any shared cache

without rerunning these programs.

The new theory assumes fully associative LRU cache. With this assumption, the composition

and prediction techniques are entirely mathematical. Such mathematical operations are simple and

precise to present. In fact, the effect of sharing will be entirely shown in mathematical terms for

single-level (Eq. 13) and multi-level (Eq. 14) sharing.

The mathematical operations are parameterized across all program groups and cache sizes. Differ-

ent generations of multicore processors from different vendors can be modeled by simply changing
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1:2

these parameters but using the same victim footprint. The simplicity and portability make experi-

mental results more readily reproducible by others. More importantly, we show that the new theory

produces realistic results.

Cache modeling is an important but long standing problem to quantitatively explain and improve

cache performance. A common strategy is direct measurement, e.g. through hardware counters. For

shared cache, direct execution results for one program group on one machine are not predictive of

other groups or other machines. To be composable and portable, more theoretical models have been

developed. Early models are based on reuse distance [5, 41, 50], which was costly to measure. More

recent models, in particular StatStack [14, 15] and HOTL (higher order theory of locality) [53], use

reuse time, which can be measured much faster. The new theory of victim footprint is an extension

of the HOTL theory.

The paper first introduces the HOTL theory as the background (Section 2) and then presents the

new theory and its evaluation:

• Victim footprint formulation, which sets up the necessary formalism, including the definitions

of split LRU (Section 3.1), victim footprint and victim cache fill time, and their properties

especially the uniqueness theorem (Section 3.2).

• Composable analysis and portable prediction, which uses victim footprint to model data

sharing in different types of CPU cache designs such as AMD exclusive caches, Intel cache

allocation technology (CAT), and IBM transient loads (Section 3.3).

• Evaluation, which tests the victim footprint on three types of AMD and Intel machines for

performance prediction, optimization, and comparison with the previous theory and heuristic

solutions (Section 4).

The study has three more limitations. First, it uses the theory in postmortem analysis with the

full execution trace of each program. In practice, sampling can enable on-line analysis (shown

by prior work discussed in Section 5). Second, it models cache performance, i.e. the number of

accesses in main memory, not running time. It is oblivious of the processor architecture or the

effect of prefetching. Finally, while the HOTL theory (Section 2) is recently extended to model data

sharing [28], in this paper we assume no data sharing between co-run programs.

2 BACKGROUND: HOTL THEORY
The higher-order theory of locality (HOTL) defines a set of metrics and uses them to compute the miss

ratio in shared cache [53]. The most important metric is a locality profile called the footprint. The

footprint is defined by an integer function, and cache modeling consists of mathematical operations

on such functions. Next we review these definitions and operations.

The working set is the classic locality model defined by Denning [8]. In an execution trace, each

time window is represented by (t ,x), where t is the end position and x the window length. The

number of distinct elements in the window is the working-set size ω(t ,x). For each x , fp(x) is the

average working-set size of all windows of length x , i.e. the total working-set size divided by the

number of length-x windows as shown by the following equation:

fp(x) = 1

n − x + 1

n∑

t=x

ω(t ,x) (1)

where the parameter x is an integer time scale 0 ≤ x ≤ n, and n the trace length.

From the footprint, the HOTL theory computes two metrics for fully-associative LRU cache of

size c:

• miss ratio mr(c), computed as the derivative of the footprint.
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Cache Exclusivity and Sharing: Theory and Optimization 1:3

• fill time ft(c), which is the average amount of time for a program to access data equal to

cache size c, computed by the inverse of the footprint.1

Mathematically, we have:

mr(c) = fp(x + 1) − fp(x) where c = fp(x) (2)

ft(c) = x ⇐⇒ c = fp(x) (3)

The two metrics are mappings between the cache size and the window length, which Figure 1

illustrates by showing each as a line. The first line shows the cache size and equivalently, the footprint,

which is the data in cache.

∞

1

1

x

ft(c)

x+1

ft(c+1)fp(x) 

c

fp(x+1)

c+1

cache size window length

x

ft(c)

x+1

ft(c+1)fp(x) 

c

fp(x+1)

c+1

cache size window length

mr(c)

fp(x’) ft(c+mr(c))

x’

0

fp(x) 

h+lh l

fp(xh) vfp(h,x) 

0

ft(h+l) ft(h) vft(h,l) 

xh x

cache size window length

Fig. 1. Illustration of the footprint and fill time defined in the HOTL theory (Eq. 1 and 3). The left line
shows the cache size and the footprint, and the right line the window length and fill time. The former
also shows the mapping from time to space, and latter from space to time, with the mapping functions
underneath.

The second line in Figure 1 shows the window length and equivalently the fill time, i.e. the average

time it takes to fill an empty cache. It is the same as the average eviction time, i.e. the average time

before a data block is evicted from cache after its last access [22].

The miss ratio is the increase of the footprint from fp(x) to fp(x + 1). Given a window of length

x , its working set is expanded at the next access if and only if it is a miss. The footprint increase

from x to x + 1 is the increase of the average working-set size of all length-x windows. The HOTL

theory states that this footprint increase is the probability of a miss, i.e. the miss ratio. Formally, the

miss ratio is the derivative of the footprint, as stated by Eq. 2. This is a key link between locality and

cache performance, the one we will use to develop the victim footprint.

3 VICTIM FOOTPRINT THEORY
This section first defines cache exclusivity using an abstract cache architecture called the split LRU

stack and then develops the theory of victim footprint.

3.1 Split LRU Stack
An LRU stack is the classic cache model defined by Mattson et al. [31] A split LRU stack divides

an LRU stack into two parts, the upper partition, H , which includes the first h stack positions

(storing more recently accessed data), and the lower partition, L, which includes the rest of the stack.

Figure 2(a) shows a split LRU stack.

Data evicted from the H partition are called victims. A victim is first stored in the lower partition

until it is accessed again, when it is moved to H , or it is evicted. Since the L partition stores victims,

we call it the victim cache.

The victim cache may be shared. Fig. 2 (b) shows an example where the lower partition serves the

victims from two programs. On an AMD multicore processor, programs have private L1, L2 caches

1Xiang et al. called it volume fill time vt(c) [53].
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h

l

(a)

h1 h2

l

Prog. 1 Prog. 2

Shared
Cache

(b)

H

L

H1 H2

L

Prog. 1

Fig. 2. Illustration of split LRU stacks. Two-level exclusive cache hierarchy used by (a) one program
with a private victim cache (b) two programs sharing a victim cache. The symbols H,L mean physical
caches and h,l their size.

but share one L3 cache [1]. The private higher partitions would be the L2s, and the victim cache

would be the shared L3.

Fig. 3 simulates an LRU stack for a given access trace. The stack positions are numbered top

down, with the top position storing the most recently accessed datum. At each position, the sequence

of accesses form a trace.

Trace a b c d d c b a
(1) a b c d d c b a
(2) a b c c d c b
(3) a b b b d c

LRU
Stack

(4) a a a a d

Fig. 3. LRU stack simulation for a given access trace. The sequences at stack positions 2,3,4 are
victim traces, with evictions marked in red (when viewed in color).

Generally in the split LRU stack, each row is a trace. The trace at the top position is the access
trace. All others, the bottom three rows in Fig. 3, are eviction traces or victim traces. Each row

shows the “access” to the victim cache for h = 1, 2, 3 respectively. In the victim cache, the content

changes when there is an eviction. All evictions are marked in red in Fig. 3.

The split LRU stack defines the abstract cache architecture that we will model. In this abstract

definition, all two-level, exclusive caches are specified by two parameters: the sizes of the two

partitions h, l . Either can be any integer that is zero or larger.

In this section, we have defined the exclusive cache as the split LRU stack. Next, we solve the

problem of modeling split LRU. First, we define the victim footprint for a victim trace. Second, we

compute the effect of sharing in the victim cache.

3.2 Victim Footprint
The section defines the victim footprint and shows its relation with the miss ratio.

3.2.1 Victim Footprint and Victim Fill Time. The victim footprint is defined from the footprint

fp(x) and with one extra parameter h, the size of the H partition. Mathematically, the victim footprint

is vfp(h,x) for h,x ≥ 0,

vfp(h,x) = fp(xh + x) − h where fp(xh) = h (4)

and its inverse function victim fill time vft(h, c) for victim cache size c.

vft(h, c) = x when vfp(h,x) = c (5)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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Cache Exclusivity and Sharing: Theory and Optimization 1:5

These two victim metrics are illustrated in Fig. 4. Like the HOTL metrics in Fig. 1, the victim

metrics are also mappings between the footprint size (left line) and the window length (right line),

but each line is now divided into the segments corresponding to a split LRU stack.

∞

1

1

x

ft(c)

x+1

ft(c+1)fp(x) 

c

fp(x+1)

c+1

cache size window length

x

ft(c)

x+1

ft(c+1)fp(x) 

c

fp(x+1)

c+1

cache size window length

mr(c)

fp(x’) ft(c+mr(c))

x’

0

fp(xh+xl) 

h+lh l

fp(xh) vfp(h,xl) 

0

ft(h+l) ft(h) vft(h,l) 

xh

cache size window length

xl xh+xl

Fig. 4. The illustration of the victim footprint and victim fill time. They are similar to the footprint and fill
time in Fig. 1 except that the two lines are divided into the segments corresponding to the split LRU
stack, and the victim metric is the second segment on each line.

In the first graph in Fig. 4, the footprint is divided between the two cache partitions. The lower-

partition footprint is the total footprint minus the upper-partition footprint, fp(xh + xl ) − fp(xh). We

define this lower-partition footprint as the victim footprint vfp(h,xl ).
In the second graph in Figure 4, the fill time is divided into the time to fill the upper partition and

the time to fill the lower partition. We define the latter time as the victim cache fill time, or formally

vft(h,xl ) = ft(h + l) − ft(h).
From Figure 4, a reader can observe the inverse relation between l and xl in the two victim metrics,

i.e. l = vfp(h,xl ) on the left and xl = vft(h, l) on the right.

As a derived function, the victim footprint differs from the footprint in two aspects. The first

change is the function value. The victim footprint is l , while the footprint is h + l . The second change

is the function parameter. The time window of the victim trace is xl , while the time window of the

access trace is xh + xl .
The metrics are defined for all h, l ≥ 0 and therefore all split LRU stacks. If we generalize and

model any lower partition by using x instead of xl and recognize fp(xh) = h, we obtain the definition

in Eq. 4. The parameters in vfp(h,x) represent the general case when h is given, and l is unknown.

3.2.2 Victim Cache Miss Ratio. Consider a split LRU stack with two partitions H ,L of sizes

h, l . We define vmr(h, l) as the miss ratio of the lower partition:

• The Victim cache miss ratio vmr(h, l) is the number of misses in the lower partition divided

by the number of all accesses.

Note that the denominator of vmr(h, l) counts not just the misses of the higher partition but all

accesses (to the higher partition).

Following the HOTL theory that the miss ratio is the increase of the footprint, we compute the

victim cache miss ratio vmr(h, l) as the increase of the victim footprint:

vmr(h, l) = vfp(h,x + 1) − vfp(h,x) (6)

where h is the size of H , vfp(h,x) is the victim footprint, and vfp(h,x) = l , the size of L. The equation

is identical to Eq. 2, except that we substitute the cache size by l and footprint by victim footprint.

The computed miss ratio is the fraction of all accesses in the trace.

3.2.3 Correctness and Uniqueness. We formalize the requirement for any model of the

split LRU stack and then derive the victim footprint as the one and only solution that satisfies this

requirement.
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Consider the split LRU stack H ,L of sizes h, l . When both partitions are used by a single program

and not shared, the miss ratio of the split LRU stack should be identical to a single cache of the

combined size h + l . Since both partitions serve the same program, they should behave collectively

as a single, unified cache.

We state the Victim Cache Requirement (VCR) as follows. When only one program uses the

exclusive cache hierarchy, the miss ratio of the victim cache must equal to the would-be miss ratio of

a single cache with the combined space. Mathematically, the requirement means that

vmr(h, l) = mr(h + l) (7)

for all h, l ≥ 0. We call Eq. 7 the Victim Footprint Requirement Equation (VCR Equation). The

VCR equation is a single equation, but it is parameterized — the equality must hold for every pair of

h, l ≥ 0.

We prove the VFP Theorem, which states that the victim footprint is not only correct, i.e. it satisfies

the VFP Equation, but also unique, i.e. no other solution exists that satisfies the VFP equation.

THEOREM 3.1. (VFP Theorem) The victim footprint in Eq. 4 is a unique solution that satisfies
the victim cache requirement in Eq. 7.

PROOF. We prove that any other solution vfp′(h,x) must be equal to vfp(h,x), by induction. In

the base case, when the victim-trace window size is 0, both of vfp and vfp′ naturally should be 0 :

vfp(h, 0) = vfp′(h, 0) = 0

For the inductive case, given that vfp(h,x) = vfp′(h,x) for some x ≥ 0, we show that vfp(h,x+1) =
vfp′(h,x + 1).

Let l = vfp(h,x) = vfp′(h,x). According to VCR, the derivative of vfp′(h,x) must be equal to the

miss ratio of the unified cache of size h + l . Hence, we have:

vfp′(h,x + 1) − vfp′(h,x) =mr (h + l) (8)

From Eq.4, we have:

vfp(h,x + 1) − vfp(h,x) = (fp(x + 1 + th) − h) − (fp(x + th) − h)
= fp(x + 1 + th) − fp(x + th)
= mr(fp(x + th))

Again from Eq.4, we have fp(x + th) = vfp(h,x) + h = l + h, so we have

vfp(h,x + 1) − vfp(h,x) = mr(fp(x + th))
= mr(h + l) (9)

Combining Eq.8, Eq.9, and the inductive assumption, we see that the inductive case holds and

therefore vfp′(h,x) = vfp(h,x) for all x ≥ 0, and the solution to the VCR Equation is unique. �

The proof of the VFP Theorem is effectively the construction of vfp(h,x) from x = 0. It can be

equally used as the derivation of Eq. 4.

3.3 Composition Analysis of Cache Sharing
When sharing the cache, a set of co-run programs interact. We want a composable model to derive

the composite effect from individual solo-run locality. We first consider the sharing of victim cache

on AMD processors and then two other types of sharing on Intel and IBM processors.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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3.3.1 Sharing Exclusive LLC. On AMD processors, each program has a private L2, and they

all share the L3 cache (last-level cache LLC). L3 is the victim cache of all the L2s. Let the L2 size be

c2 and L3 size be c3. Let the co-run group be д = {1, . . . ,p} and their victim footprints be vfpi (h,x),
i = 1 . . .p. In this paper, we consider only independent programs that do not share data.

To explain the derivation we start with a symmetric case, where a group G consists of p identical

co-run programs are executed together with uniform interleaving. The original footprint is defined

by the individual logical clock, where a program makes a data access at every time tick. We first

normalize the time to the co-run logical clock, where each program makes a data access at one out of

every p ticks.

Because of the time change, the co-run victim footprint of each program is the original victim

footprint “stretched” by a factor of p. For program i, the co-run footprint is vfpGi
(c2,x) = vfpi (c2, xp ).

For the rest of this section, we use the letter G in the subscript position to symbolize a footprint in

the co-run logical clock, i.e. after “stretching.”

After normalizing the time, the aggregate victim footprint, vfpG (c2,x), is simply p times the

individual victim footprint:

vfpG (c2,x) = p vfpGi
(c2,x)

The victim-cache (L3) miss ratio is the derivative of the group victim footprint.

vmrG (c2, c3) = vfpG (c2,x + 1) − vfpG (c2,x) (10)

where vfpG (c2,x) = c3.
We now consider a general group G, which differs from a symmetric group in two ways. First,

each program i may have a different victim footprint vfpi (h,x). Second, in the parallel execution,

each program may have a different access rate ari . An access rate is the number of loads and stores

per second.

Group Miss Ratio. The aggregate access rate is arG =
∑

i ∈G ari . The victim footprint of program

i is “stretched” by ari
arG

:

vfpGi
(c2,x) = vfpi (c2,

x ari
arG

) (11)

The group victim footprint is their aggregation:

vfpG (c2,x) =
∑

i ∈G
vfpGi

(c2,x) (12)

Finally, the group miss ratio is computed the same way as in Eq. 10.

The way the access rate is used here is the same as in StatStack developed by Eklov et al. [14].

Brock et al. used to term stretched footprint [4] and called co-run logical clock common logical
time [46].

Individual Miss Ratio. The miss ratio of individual programs in the shared cache is the derivative

of the individual victim footprint taken at the point where the group victim footprint is the cache size.

vmrGi
(c2, c3) = vfpGi

(c2,x + 1) − vfpGi
(c2,x) (13)

where vfpG (c2,x) = c3.
In the shared cache, a program is affected by its peers. We can now show the effect of this

interaction in precise mathematical terms. The miss ratio of the solo-use exclusive cache was given

in Eq. 6. Comparing this earlier equation with Eq. 13, we see that both take the derivative of the

, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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individual victim footprint. The difference is where this derivative is taken. The solo-use cache stores

only self data, so differentiation happens when the individual victim footprint equals to the cache

size. The shared cache is shared, so differentiation happens when the group victim footprint equals

to the cache size.

Composition Invariance. The group miss ratio can be computed in two ways: directly from the

victim footprint of the group (Eq. 10) or indirectly as the sum of individual miss ratios (Eq. 13).

Composition invariance states that the two results be the same:

vmrG (c2, c3) =
∑

i ∈G
vmrGi

(c2, c3)

The proof of composition invariance is straightforward with simple re-arrangement of the terms

in Eqs 10, 12 and 13. It relies on a mathematical property of victim footprints, which is that the

two steps, taking the sum (composition) and taking the derivative (conversion to miss ratio), are

commutative.

In the symmetric case, the composition invariance means that p identical programs sharing the

cache is the same as them evenly partitioning the cache.

Early composable models used reuse distance and footprint and had only one way to compute the

group miss ratio [5, 41, 51, 52]. Recent models are composition invariant, first from the higher order

theory of locality (HOTL) [4, 46, 53] and recently based on the average eviction time (AET) [22].

The effect of cache sharing is computed differently. Previously in HOTL and presently in VFP, it is

computed as the group footprint equals to the cache size. In AET, the quality means that all co-run

programs have the same average eviction time.

3.3.2 Multi-level Sharing. AMD Bulldozer processors use cluster-based multi-threading (CMT),

where each core (or module) has two clusters. The new Zen processors use simultaneous multi-

threading (SMT) [32]. The two have the same effect of multi-level cache sharing. For example, a

quad-core AMD processor can run 8 programs in 4 pairs where each pair share a separate L1 and L2,

and all pairs share L3.

Victim footprint can be used to model multi-level sharing as follows. The sharing of L1 is solved

by HOTL (Section 2). In particular, we use the recent result by Brock et al., who showed that

HOTL implies the existence of a cache partition, called the natural cache partition (NCP), whose

partitioned-cache performance equals to that of cache sharing [4]. The natural partition of a program

is its effective occupancy in the shared cache.

Consider the two-program group G = {a,b} that share L1 and L2, where L2 is the victim cache

of L1. According to Brock et al., the effect of L1 sharing is equivalent to a partition of L1 into two

parts of size c1,a , c1,b , where c1,a + c1,b = c1 the L1 size.

To compute the effect in L2, we use the solution of Section 3.3.1. It has three steps: footprint

stretching in Eq. 11, footprint composition in Eq. 12 and miss ratio conversion in Eq. 10. The only

change is the second step. Previously, each sharer program has the full (private) L2. Now, a,b have

their natural partition of L1 as c1,a , c1,b . The second step then becomes:

vfpG (c1,x) = vfpGa
(c1,a ,x) + vfpGb

(c1,b ,x) (14)

Finally, Eq. 10 computes the co-run miss ratio from this group footprint.

In multi-level sharing, the program interaction at one level affects their interaction at the next

level. We can now show this effect in precise mathematical terms. The footprint aggregation of

single-level sharing was given in Eq. 12. Comparing this earlier equation with Eq. 14, we see that

the difference lies in the first parameter of the victim footprint, the size of the upper partition. In

single-level sharing, the upper-level cache is private, so the size is constant in the earlier equation. In
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multi-level sharing, the upper-level cache is shared, so the size is a fraction of the total size. In the

victim footprint, this first parameter can be any non-negative integer, so it can model any effect of

sharing in the previous level.

We model cache sharing in any number of levels by applying the equations level by level. On

AMD processors, all three levels of cache are exclusive and can be shared. We compute the natural

cache partition of L1,L2. Then L3 sharing can be modeled the same way as L2 has been in this

section.

Mathematically, the footprint is the victim footprint whose first parameter is 0, i.e. fp(x) = vfp(0,x).
Hence, the equations of the victim footprint give the general solution for any cache hierarchy, inclusive

or exclusive.

Last, the Victim Cache Requirement (VCR) in Section 3.2.3 applies here. Since a,b share L1, L2,

their co-run miss ratios in L2 should be the same as if they share just one cache of the combined

size. Using the formalism of natural cache partition [4], we can prove that this multi-level VCR is

satisfied by the victim footprint.

3.3.3 Cache-way Sharing. In set-associative LRU cache, each cache set is an LRU stack. We

can collect the per-set footprint (and hence victim footprint) by taking the sequence of accesses for

each cache set. The split LRU stack defined in Section 3.1 can be used to model two additional cache

designs.

• Intel’s cache allocation technology (CAT): Data of a program may be restricted (allocated)

to use just a continuous group of cache ways [24]. When two CAT allocations partially

overlap, there are three segments, as shown in Fig. 5(a). The first two segments are the

two partitions of the split LRU for the first program, and the last two segments are the two

partitions of the split LRU stack for the second program. The first L partition and the second

H partition share the same cache space.

• IBM’s transient loads: Memory loads have two types: normal loads and transient loads [23].

The data loaded normally go to the MRU (most recently accessed) position, while the data

of transient loads go to the LRU position, as shown in Fig. 5(b). The design can be viewed

as a case of CAT, where normal loads are allocated all cache ways, and transient loads only

the last cache way.

Dedicated

Shared

Dedicated

P

Q
transient
load/store

(a) Cache Allocation Technology (b) Transit Access

MRU

LRU

MRU

LRU

Dedicated
non-transient
load/store

Shared

Fig. 5. Two designs of cache-way sharing:(a) cache-way allocation technology (CAT) on recent
models of Intel processors, and (b) transient loads on IBM Power processors. In (a), the middle two
ways are shared between programs P ,Q. In (b), the last cache way is shared between non-transient
loads/stores and transient loads/stores of the same program.

Victim footprint can be extended to model both types of cache-way sharing. Here we sketch only

the basic ideas:

• Intel’s CAT: In Fig. 5(a), the middle segment is shared between two programs. The

interaction happens between the victim footprint of the first program and the footprint of the
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second program. The natural cache partition (NCP) is computed for the middle segment, and

the effective occupancy for the second program determines the h parameter for its victim

footprint for the third segment.

• IBM’s transient loads: The last cache way in Fig. 5(b) is a special case of the middle

segment in Fig. 5(a), which can then be solved accordingly.

3.4 Correctness
As formalized in the HOTL theory, the conversion from footprint to miss ratio by Eq. 2 is not always

correct. The correct miss ratio is given by reuse distance, i.e. for cache size c, the proportion of

reuse windows whose reuse distance d > c. The footprint conversion is correct if the reuse window
hypothesis holds, which states: the footprint in all reuse windows has the same distribution as the

footprint in all windows, for every window length [53].

As the correctness condition for the HOTL theory, the reuse window hypothesis is the condition of

correctness for victim footprint when modeling split LRU.

The reuse window hypothesis may or may not hold in practice. The accuracy of footprint

conversion has been tested in empirical studies for the miss ratio of CPU caches [53], storage

caches [13, 48], and the partitioning of software cache called Memcached [21]. These studies show

that footprint is accurate in most of these widely used benchmarks.

One known problem of the footprint conversion is program phases. The miss ratio prediction

can be misguided when taking the average footprint across phases with radically different locality.

Drudi gave an example trace that has distinct phases, for which the average footprint gives the

incorrect miss ratio on some cache sizes [13]. A solution is to detect locality phases (e.g. using reuse

distance [37]) and then use the footprint analysis in each phase. The interaction between program

phases in a co-run group depends on the alignment of co-run executions. This type of performance

variation has been modeled by Sandberg et al. [34]

In practice, online footprint analysis and composition may be necessary to analyze cache sharing.

Since victim footprint is mathematically derived from footprint, they have identical measurement

costs, which can be made very low by sampling (0.1 second overhead per program as reported

in [46, 53]). The remaining question is whether the victim footprint can accurately model cache

exclusivity. This section gives the theoretical answer. In the evaluation section, we will measure the

accuracy of the victim footprint on real machines.

4 EVALUATION
The VFP theory makes the idealistic assumption of fully-associative LRU cache, so it is vital to

validate its real relevance. This section presents a lengthy evaluation with 5 experiments: 1) the

accuracy of VFP prediction of exclusive cache sharing, 2) comparisons between VFP and heuristics,

3) symbiotic scheduling for the exclusive cache, 4) main causes of VFP prediction errors, and 5) the

effect of non-LRU replacement policy. All experiments use actual machines. There is no simulation.

4.1 Methodology
An unusual aspect of the experimental design is shown in Table 1, where VFP is measured on an

old model Intel machine (first release 2013) and then used to predict performance on three other

machines, two models of AMD (server and high-end desktop, both 2011) and a recent model from

Intel (released mid-2016), all with different processor architectures and cache hierarchies. The AMD

cache is exclusive, while the Intel cache (on a Broadwell processor) is inclusive. The cross-machine

prediction demonstrates the generality and machine independence of the victim footprint.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Cache Exclusivity and Sharing: Theory and Optimization 1:11

Table 1. Machines used: one VFP is used to predict for all machine types

Intention Profiling
2 benchmark 3/4 benchmark CAT

co-run co-run prediction

Vendor Intel AMD AMD Intel

Model i7-4770 Opteron 4226 FX-8120 E5-2630 V4

OS Fedora 17 Ubuntu15.04 Ubuntu14.04 Ubuntu 16.04

GCC 4.7.2 5.1.0 4.8.4 5.4.0

L2 256KB 2M 2M 256KB

L3 8M 8M 8M 25MB

Implementation. VFP is derived from footprint. To measure the footprint, we profile an execution

trace using the binary rewriter Pin [27] and collect three histograms: the inter-reference time of all

reuses and the time of first and last access of all data blocks. The three histograms are then used to

compute the footprint using the Xiang formula [52]. The measurement is identical to the one used

by HOTL and has similar costs, i.e. on average 20 times slowdown [53]. Several techniques can

measure the footprint in near real time using sampling [22, 46, 53]. We do not use sampling since it

complicates the experimental setup, and the results would have depended on sampling parameters.

Xiang et al. showed that cache conflicts could be estimated using the Smith formula [20, 29, 38]

but observed that the effect is negligible on modern large, highly associative CPU caches (for the

benchmarks we describe next) [53]. In all experiments, we use the prediction for fully associative

cache and ignore set-associativity in all prediction calculations.

Benchmarks. The evaluation uses SPEC CPU2006 (version 1.1) benchmarks [40], which is as

far as we know the benchmark suite that has the most diverse representation of the cache behavior

in sequential programs. We do not use dealIII, because it cannot be successfully compiled. The

remaining 28 programs are all used. The same input, reference, is used in both profiling and testing.

Postmortem analysis avoids the inaccuracy of sampling. However, it takes the average across the

whole trace and therefore does not distinguishing phases. For programs with strong phase behavior,

periodic sampling can predict the miss ratio more accurately [46].

We classify the benchmarks into 3 categories of roughly equal size based on their memory intensity
measured on the Opteron machine. The memory intensity is measured as the L3 miss ratio (misses

per load/store). The miss ratios are 2.5% to 8.0% for 9 memory intensive benchmarks, 0.05% to

2.5% for 10 memory moderate benchmarks and below 0.005% for 9 memory light benchmarks. The

definition of memory intensity follows Zhuravlev et al. who defined cache intensity as L2 misses per

million instructions [59].2 Table 2 shows the three memory-intensity categories.

Exhaustive Co-run Testing. For complete testing and to avoid any bias due to sampling, we test

all 2-program (duet) runs, which is numbered
(
28

2

)
= 378. For 3- and 4-program (triplet and quartet)

runs, we select 4, 4 and 2 benchmarks respectively from the three categories and in each category

select the programs in alphabetic order. The selection favors intensive and moderate programs, so

cache is a more significant factor in performance. Table 2 shows the names of these 10 programs in

bold font. The total numbers of triplet and quartet tests are
(
10

3

)
= 120 and

(
10

4

)
= 210 respectively.

Co-run benchmarks are bound to cores that do not share the L2 cache, more specifically, cores #0

and #2 in 2 benchmark co-runs, and #4, #6 in 3 and 4 benchmark co-runs.

2We have ranked the programs in two other ways. The classification is exactly the same when using miss rate (misses per

second) and differs by 2 programs when using L3 MPKI.
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Table 2. 28 SPEC CPU 2006 benchmarks grouped by memory intensity (L3 miss ratio). 10 programs
(name in bold) are used in 3- and 4-program tests.

Intensive (9 Programs)
bwaves GemsFDTD lbm leslie3d libquantum

mcf milc soplex omnetpp

Moderate (10)
astar cactusADM calculix gcc gobmk

sjeng sphinx wrf xalancbmk zeusmp

Light (9)
bzip2 gamess gromacs h264ref hmmer

namd perlbench poveray tonto

The benchmarks have different running times. In co-run tests, we run each program repeatedly for

20 minutes and measure the performance events when it overlaps with the partner programs. The

method has been used in previous work [26, 39, 53, 56]. It produces stable results and avoids the

problem of run-to-run performance variation. Such variability has been shown by Sandberg et al.[34]

Metrics and Measurement. The miss ratio is defined as the number of LLC cache misses divided by

the number of memory accesses(unfiltered by L1/L2 caches). LLC cache misses and memory accesses

are measured by the hardware counters as reported by the lightweight performance monitoring tool

likwid [44]. The following events are counted. They include both on-demand accesses and
prefetches. We do not disable hardware prefetcher in experiments, in order to evaluate the model in a

fully realistic environment.

Event Event ID Mask

DATA_CACHE_ACCESSES 0x040 N/A

UNC_L3_CACHE_MISS_ALL 0x4E1 0xF7

The miss ratio is computed as follows[12]:

MissRatio =
UNC L3 CACHE MISS ALL

DATA CACHE ACCESSES
.

VFP predicts both individual and group miss ratios in the shared cache. We test the accuracy of

only the total miss ratio of a co-run group (UNC L3 CACHE MISS ALL), which is per socket and includes

the events of all the cores of the socket.3

4.2 VFP Prediction Accuracy
This section evaluates co-run groups by their intensity categories. Each category is labeled mInMkL
and includes all co-run groups withm memory intensive, n moderate and k light programs in Table 2.

The lexicographical order of the category label coincides with the order of intensity. Of duet-run

categories for example, 0I0M2L is least intense, and 2I0M0L most intense. For lack of space, only

duet and triplet tests are shown. Quartet results will be shown in the next section.

Fig. 6 shows measured and predicted miss ratios and the absolute errors of prediction for duet

groups (upper graph) and triplet groups (lower graph). The graphs divide 378 duet groups into

6 categories and 120 triplet groups into 9 categories and show the average in each category. The

average miss ratio increases from 0.029% to 4.90% in duet categories and from 0.24% to 4.34% in

triplet categories. The increase is monotonic in the order of group intensity.

3Per-program prediction can be tested when per-core counters are available, as it has been done in previous work [53].
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Fig. 6. Actual and predicted miss ratios and the absolute error for each category ordered by intensity.
The absolute error is lower than 0.5% in all categories, except 0.58% at 0I3M0L.

In all categories except the most intense 3I0M0L, the average predicted miss ratio is lower than

the actual, showing that VFP under predicts more than it over predicts. VFP under predicts in 281

out of 378 duet groups and over predicts in the remaining 97 groups. It under predicts in 100 out

of 120 triplet groups and over predicts in the rest. The tendency does not depend on the miss ratio.

The average miss ratio of the under predicted groups is lower in duet groups ( 1.38% vs. 2.37%) but

higher in triplet groups (2.27% vs. 1.85%).

Prefetching is a reason for the tendency of VFP to under predict. A prefetcher estimates likely

misses and may prefetch unnecessarily. A second reason is the effect of phases, which we will

discuss in Section 4.5.

The absolute error of VFP prediction is lower than 0.50% in all categories, except for 0.58% at

0I3M0L. A relative error is not as important in practice, i.e. when a miss ratio is very small. Still, to

fully evaluate the theory, we should examine the relative error.

Fig. 7 shows the average relative error in all duet and triplet categories ordered (together in one

graph) by intensity. The first 6 least intense categories, i.e. those with 0 intensive programs, have the

highest relative errors, ranging between 44.7% to 61.5%. Their miss ratios are low, on average 0.03%

and 0.55% for duet and triplet groups respectively, so cache performance is unlikely the performance

bottleneck, and these high relative errors are unlikely a problem in practice.

In the 4 most intense categories, the relative error is within 10% except for 10.7% in 2I2M0L. The

most intense category has the lowest relative error of 4.7%, corresponding to an absolute error of

0.2% (out of 4.34% shown in Figure 6).
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Fig. 7. Relative prediction errors of all categories, ordered by memory intensity.

4.3 Theory vs. Heuristics
As discussed at the outset, the exclusivity has two effects. The first is deduplication which increases

the effective size of the shared cache. The second is interaction of the “victims” in the shared cache.

Both effects are magnified by large private L2s on AMD, 2MB L2 vs. 8MB L3.4

We compare VFP theory with HOTL theory (exclusivity unaware) and three heuristics. All five

methods are analytical and can compute the cache performance for all program groups and all shared

cache sizes without exhaustive testing.

(1) HOTL, which models sharing of a single LLC of the combined size including all private

caches, i.e. 12MB, 14MB, 16MB in 2, 3 and 4 benchmark co-runs. HOTL models the

deduplication effect but not victim-cache sharing.

(2) Even, which assumes each co-run program uses an equal partition of the combined size.

HOTL is used to compute the miss ratio. Chen et al. developed this heuristic for GPU

caches [6].

(3) Proportional(MissRatio) and Proportional(MissRate), which are similar to Even but the

cache occupancy is proportional to its solo-run miss ratio (misses per hundred access) and

miss rate (misses per second) respectively.

Fig. 8 compares the cumulative distribution (CDF) of absolute prediction errors for all duet, triplet

and quartet tests, one in each graph. From the results, we draw the following conclusions.

Fig. 8. The cumulative distribution of absolute prediction errors of 378 duet groups (left), 120 triplet
groups (middle) and 210 quartet groups ( right). The dotted lines show the median errors (50%) of
VFP: 0.16%, 0.27% and 0.32% respectively.

4L1,L2 are also exclusive, so the effective L2 size is 2MB + 64KB.
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HOTL is clearly worse than VFP, which shows that an exclusive cache hierarchy is not equivalent
to a single, larger LLC. The average errors of HOTL are high and grow rapidly, 37%, 76% and 85%

higher than those of VFP, for duet, triplet, and quartet tests. The increasing errors are due to the

increasing combined cache size used by HOTL (because of deduplication). It is clear that victim

cache sharing differs from cache sharing.

Even partitioning is an effective heuristic. It is highly accurate in our tests. The average errors are

0.36%, 0.43% and 0.53%, and the median errors are 0.17%, 0.37% and 0.43%. Still, VFP reduces

them by 17%, 23%, 38%, 6%, 27%, and 26%. Even partitioning is a simple heuristic, although it

still needs the footprint.

VFP is most accurate, and its advantage increases with the group size. This can be seen visually

in Fig. 8, where VFP is the curve that is highest, i.e. left-most, and its gap with other curves increases

with the group size. The average errors are 0.30%, 0.33% and 0.33%, and the medians are smaller

0.16%, 0.27% and 0.32%.

Proportional partitioning is incorrect when understanding cache sharing. The two heuristics are

worst performing, the one based on miss rate marginally better than the other based on miss ratio.

Beckmann et al. observed that the access to shared cache by a program is effectively random due to

the filtering by private cache. Models of cache have been developed with different assumptions of

randomness ([2, 3, 18, 38, 47] as discussed in [11]). Our results suggest such effect but no obvious

solution: even partition works well, but proportional partitioning does not.

4.4 Program Symbiosis in Victim Cache
The term “symbiotic scheduling” was coined by Snavely and Tullsen [39]. We use the methodology

developed by Wang et al. to evaluate the quality of symbiosis [46]. In this test, a symbiotic scheduler

evenly divides a set of 2p programs into 2 co-run groups to run on a p-core processor. In each group,

each program i runs repeatedly, long enough to obtain a stable average of co-run time, tдroup (i).
The performance is measured by the aggregate slowdown defined as follows. It is the sum of the

slowdown of each program i, which is the extra time due to co-run divided by the sequential running

time tsolo(i). The average of this aggregate, s
2p

, is equivalent to Average Normalized Turnaround

Time (ANTT) [16].

s =

2p∑

i=1

tдroup (i) − tsolo(i)
tsolo(i) (15)

We compare the following four techniques:

• OPT : Test the running time of all
(
2p
p

)
group assignments and select the best.

• VFP : Compute the miss ratio of all group assignments using VFP and choose the best.

• HOTL by Wang et al. [46]: Similar to VFP but using the HOTL model.

• DI (Distributed Intensity) by Zhuravlev et al. [59]: Sort programs by their solo-run miss

rates (misses per 1 million instructions) and assign programs round-robin into groups. DI

was shown to be effective and robust on both Intel and AMD processors. The benefits on

Intel processors have been independently confirmed [46].

We first examine p = 3 and test all
(
10

6

)
= 210 problems for triplet symbiosis. Each problem has

(6
3
)
2
= 10 ways to divide 6 programs into two groups. The left graph of Fig. 9 shows the cumulative

distribution (shown on y-axis) of the 210 aggregate slowdowns (shown on x-axis) obtained by each

technique.

The median of the 210 aggregate slowdowns is 129.2% for VFP, shown by the vertical line in

Fig. 9. The median is 126.8% for OPT, 133.3% for HOTL, and 138.1% for DI. If we use these

median to measure how the three techniques compare to OPT, DI is 9% worse than OPT, and HOTL
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Fig. 9. The cumulative distribution of aggregate slowdowns of (left) 210 tests of triplet symbiosis
and (right) 45 tests of quartet symbiosis by three techniques and optimal. The dotted lines show the
median slowdowns (50%) of VFP: 129% and 240% respectively.

and VFP are 5% and 1.9% worse. Hence, HOTL closes half of the gap between DI and OPT, and

VFP closes more than half of the remaining gap between VFP and OPT. The numbers of optimal

symbiosis out of 210 problems are 12 for DI, 24 for HOTL, and 50 for VFP. HOTL is optimal twice

as often as DI, and VFP is optimal more than twice as often as HOTL.

VFP outperforms HOTL for 60% of the 210 problems and DI for 74% and ties with HOTL and DI

for 14% and 12% of the problems respectively.

4-Program Co-runs. We also examine p = 4 and test all
(
10

8

)
= 4 problems for quartet symbiosis.

Each problem has
(8
4
)
2
= 35 ways to divide 8 programs into two groups. The fact that an exclusive

cache hierarchy cannot be modeled as an inclusive cache hierarchy is shown most clearly by the

results of quartet symbiosis in Fig. 9. HOTL, which was the second best in triplet symbiosis, becomes

the worst in quartet symbiosis, because it fails to model the filtering effect. DI, however, performs

well when scheduling programs under high cache contention.

Private Cache vs. Memory Bandwidth vs. Shared Cache. There is much greater contention when

the group size increases from 3 to 4, evident by the greater scale in the x-axis of the right-hand graph

of Fig. 9. The aggregate slowdowns are nearly doubled when triplets become quartets. This suggests

a saturation of memory bandwidth and controller resources, which Zhuravlev et al. showed as having

a greater effect than cache sharing [59]. DI was developed as a heuristic solution (to balance the

“intensity”). The cache models, VFP and HOTL in this case, predict the miss counts and enable

optimization. The quartet results show that while the heuristic of DI is especially effective at high

contention, model-based optimization still improves over the heuristic. But to do so, the model must

be exclusivity aware.

Heuristic vs Theory. For co-run grouping for throughput, DI is effective and robust. However, DI

does not predict the co-run miss ratio, i.e. not applicable in the evaluation in Section 4.3 especially

Fig. 8. In comparison, VFP predicts individual co-run miss ratios, which is more useful for providing

QoS guarantee beyond finding the best symbiosis. In addition, it is unclear how DI should be applied

in multi-level sharing as described in Section 3.3.2, where the “intensity” of co-run programs in LLC

depends on how the higher level is shared. In comparison, VFP predicts the effect of multi-level

cache sharing.

The overhead of prediction is small, O(P ∗ loдloдN ) for exclusive cache, where P is the number of

co-run programs and N is the length of the trace. In our experiments, it takes 0.67 seconds for all

378 duet tests in exclusive cache and 0.22 seconds for all 120 triplet tests.
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Fig. 10. Average co-run miss ratio, VFP co-run prediction error, and HOTL solo-run prediction error
for each program. The VFP co-run prediction error correlates with the HOTL solo-run prediction error
but not with the co-run miss ratio.

Fig. 11. Phase variation in working-set size of four programs in the period between 1 and 2 billion-th
accesses. The regularity of phase variation correlates with the VFP prediction accuracy shown in
Figure 10.

4.5 VFP Error Analysis
The error of VFP is small, 0.30% 0.33% and 0.33% on average across three group sizes. The primary

source of this error comes from the HOTL theory. We demonstrate this using the results of duet tests.

Figure 10 shows the per-program the error of VFP prediction for each of the 28 programs in all

its 27 duet groups. For ease of viewing, Figure 10 connects discrete data points into curves. The

28 programs are sorted in the descending order by the absolute error of VFP, starting from the least

accurate programs which are the focus of this analysis. In addition to VFP errors, the figure shows

the average miss ratio of each program in its duet groups and the error of the prediction by HOTL for

a solo program execution.

The VFP error correlates more with the solo-run HOTL error than with the co-run miss ratio. The

linear correlation co-efficient (r ) is 88.83% between VFP co-run error and HOTL solo-run error.

The main reason for HOTL errors is program phases. HOTL measures the average working-set

size (Eq. 1). When a program has different phases, the overall average differs from per-phase average.

This has been shown by a contrived example by Drudi [13] and empirical results by Wang et al. on

SPEC benchmarks especially mcf [46]. However, our results indicate that the effect of phases is

more subtle — the error of HOTL (and VFP) is caused not so much by phases but by the irregularity

of phases.

To visualize phase behavior, we plot the working set size (WSS) in every 1 million accesses in the

period between 1 billion-th and 2 billion-th instructions. Fig. 11 shows the WSS in four benchmarks.

The four graphs are ordered by the per-program (in)accuracy as in Fig. 10. The first two, gcc and

soplex, have highest errors, 1.84% and 2.46%. It is visually striking that the first two graphs are

highly irregular. In comparison, the next two programs, lbm and wrf, have large but regular phase
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variation. Their per-program errors are much smaller, 0.32% and 0.09%. Hence, phase behavior

itself does not necessarily reduce VFP accuracy.

4.6 Prediction of Intel CAT
We evaluate the prediction on an Intel machine with an E5-2630V4 (codenamed “Broadwell-EP”)

processor and 64GB memory. It has a unique cache hierarchy, shown in Table 1. Most distinct is the

Intel Cache Allocation Technology [19], which we use to run a program with 20 cache sizes, from

1.25MB to 25MB at 1.25MB increments.

We use events MEM_UOPS_RETIRED:ALL_LOADS, MEM_UOPS_RETIRED:ALL_STORES
and OFFCORE_RESPONSE_1:ANY_REQUEST:L3_MISS. The first two counts the number of

accesses of loads and stores respectively, the last one counts the number of L3 misses. All of them

count both on-demand accesses and prefetches. Note that the new measurement is entirely for

validation and not for prediction, which uses the same footprint as used in previous experiments.

Figure 12 shows the measured and predicted miss ratios (using HOTL) for 28 SPEC CPU 2006

benchmark programs for all 20 cache sizes. The logarithmic scale is used since the 560 miss ratios

span many orders of magnitude. The average prediction error is 0.52% in (absolute) miss ratio. The

highest happens in gcc with 1.25MB cache. The measured miss ratio is 5.46%, while the prediction

is 0.77%. For a single program across all 20 cache sizes, the highest average error (2.20%) happens

at libquantum, where the measured miss ratios are from 4.2% to 5.4%, and the prediction is from

7.39% to 7.40%. The only other program with 2% or higher average error is milc, which is just 2.0%.

Fig. 12. Predicted and measured miss ratios of 28 programs each on 20 cache sizes from 1.25MB to
25MB, with 1.25MB increments, on an Intel Broadwell processor.

Modern Intel processors manage their caches using an adaptive replacement policy similar to

Re-Reference Interval Prediction (RRIP) [25] and Dynamic Insertion Policy (DIP) [33]. Both RRIP

and DIP can detect the effect of streaming accesses and modify LRU replacement to cache none or

only a part of the streaming data.

For similar cache sizes, 7.5MB and 8.75MB on Intel and 8MB on AMD, the miss ratios on two

machines are similar for most programs, but there are several differences, and they suggest RRIP/DIP

like benefits. For libquantum, HOTL predicts 7.4%, while the actual is 6.8% on AMD but between

4.2% and 5.4% on Intel. HOTL over predicts bzip2 and leslie3d on Intel but not on AMD, likely

because they have streaming accesses, and caching is improved by an adaptive insertion policy. For

other programs, the Intel results are similar to AMD. On both machines, the largest error happens on

gcc because of the irregular phase behavior as explained before. For cactusADM, HOTL predicts

relatively well on the first 5 cache sizes but around 10
−5 miss ratio at 7.5MB or higher, while the

actual miss ratio is around 0.4%, on both Intel and AMD.
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As Figure 12 shows, the miss ratios of 560 SPEC CPU 2006 executions span multiple orders of

magnitude by different programs. Overall, the HOTL prediction tracks the reality closely for most

programs in most cache sizes.

4.7 Review of Results
The section has presented five experiments. The first evaluated VFP in modeling the shared exclusive

cache, including 378 duet, 120 triplet, and 210 quartet tests on two types of AMD processors. It

requires 28 sequential runs (to obtain all predictions) and 708 parallel runs (for validation). In all test

categories, the absolute error in miss ratio is within 0.6% (or 0.5% except for one category). The

absolute error does not increase for programs with a higher miss ratio, so the relative error decreases.

In the most memory intensive category, the relative error is within 5%, corresponding to an absolute

error of 0.2%.

The second experiment compared VFP with HOTL and three heuristics. It tested 4 additional

modeling methods for each of the 708 co-run tests from the first experiment. Ranked by accuracy,

we have VFP > the best heuristic > HOTL > and the other two heuristics. The theory considering

exclusivity is the best. The average prediction error of HOTL (which models deduplication but not

filtering) is near twice that of VFP in triplet and quartet tests. Interestingly, the best heuristic also

outperforms HOTL, although other heuristics perform poorly.

The third experiment is exclusivity-aware program co-location for shared cache. For 210 problems

of triplet and 45 problems of quartet symbiosis, it compared VFP, HOTL, a heuristic model DI,

and optimal which required 2,100 triplet runs and 1,575 quartet runs for exhaustive testing. HOTL

surpasses over DI at low contention, and DI over HOTL at high contention. VFP improves over both,

closing near 80% of the gap between the prior work and the optimal. Furthermore, VFP predicts

individual miss ratios (and hence can ensure QoS), but DI cannot. In both cases, exclusivity modeling

is necessary.

The fourth experiment showed that the error of VFP largely comes from HOTL. It showed high

correlation between VFP prediction errors in 708 co-run tests and HOTL prediction errors in 28

sequential tests. The last experiment was a first study of HOTL on Intel CAT and tested 20 cache

sizes each for 28 programs. The main sources of error in HOTL are two: the weakness of average

program statistics and the lack of support for non-LRU replacement policies. However, among the

28 programs tested, the limitations impact just 3 or 4 programs each, and most of these errors are

marginal. Furthermore, if HOTL becomes more accurate, VFP will be more accurate. The HOTL

problems are orthogonal to exclusivity modeling.

5 RELATED WORK
We focus on analytical techniques which predict performance for all cache sizes and shared cache

optimization that uses analytical models.

Analytical Models of Cache Sharing. The working-set theory by Denning was the first to convert

between the working-set size and the number of page faults [8–10]. The recent theory by Xiang et al.

defines a new type of working-set size called footprint and shows the conversion between footprint,

miss ratio curve and reuse distance [53], as reviewed in Section 2. In both theories, the mathematical

properties, monotonicity and concavity, are important for the metrics conversion. Neither theory has

considered cache exclusivity.

Thiebaut and Stone [43] coined the term cache footprint. Falsafi and Wood [17] redefined the

footprint as the set of unique data blocks a program accesses. Both studies computed what is

essentially the single-length window footprint, where the length is the CPU scheduling quantum [43].
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On multicore processors, programs interact in shared cache at all times. The problem of all-window

footprint was computationally difficult, because the number of windows is quadratic to the length of

the trace. Approximate solutions were pioneered by Suh et al. [41] for choosing the best scheduling

quantum, Chandra et al. [5] and Eklove and Hagersten [14, 15] for multicore cache sharing, and

Shen et al. for fast reuse distance analysis [36]. The equations in previous work were not completely

constrained, so the solution was not unique and depended on modeling assumptions. Xiang et al.

defined the footprint which is precise and deterministic and gave a linear-time algorithm to measure

it [52].

While previous theories, e.g. HOTL, can model deduplication, victim footprint is the first theory

to fully model cache exclusivity. The original footprint is now a special case of victim footprint, and

the composition of victim footprint gives the general solution for any cache hierarchy, inclusive or

exclusive (see Section 3.3.2). The analysis is composition invariant (see Section 3.3.1). VFP the first

model of victim cache to have this property.

Online Locality Measurement. Initial theories were complex and too expensive to use in real-time

solutions. Xie and Loh [54] noted that the model by Chandra et al. (mentioned earlier) “is fairly

involved; the large number of complex statistical computations would be very difficult to directly

implement in hardware.” This model was not used in the comparison study of Zhuravlev et al. [59],

because it was not “computationally fast enough to be used in the robust scheduling algorithm.”

Reuse distance is accurate and not affected by phase behavior discussed in Section 4.5. It has been

used to model cache sharing for independent [35] and multi-thread programs [35, 49].

For virtual memory management, reuse distance can be measured in real time in software [55, 58].

On CPU cache, Xiang et al. showed a model that converts the footprint into reuse distance, so it no

longer needs to measure the reuse distance [53]. It takes 0.1 second per program to measure footprint

with adaptive bursty sampling [46]. The efficiency has been further improved in SHARDS [45] and

AET [22]. SHARDS measures reuse distance directly, based on reuse distance sampling [35, 57].

Sampling can also be supported in hardware as in RapidMRC and StatStack [15, 42]. AET analysis

used random sampling pioneered by StatStack and found it to provide highest stability and accuracy.

A recent CounterStack algorithm asymptotically reduced the space complexity of reuse distance

measurement [48]. Efficient analysis of reuse distance can be used by victim footprint by first

converting it to footprint using the HOTL theory [53]. With victim footprint, all these efficient

techniques can potentially be used in online modeling of exclusivity, as well as other cache designs

mentioned in Section 3.3.3, with little additional cost.

Contention-aware Scheduling. Contention-aware scheduling may also be called program symbiosis

and job co-location. For shared cache, it can improve the total throughput or ensure quality of service

(QoS). DI is a simple and effective heuristic [59]. Its performance in practice has been independently

verified for inclusive caches ([46]) and exclusive caches (Section 4.4). However, it does not predict

the co-run miss ratio and as a result cannot be used for predictive optimization or miss-ratio-based

QoS. In addition, its measurement is machine dependent. A related system, Paragon, is based on

machine learning and has similar limitations [7]. Another method, Bubble-up, predicts the co-run

performance (not just miss ratio) [30]. Still, its measurement is machine dependent (and probe

dependent). A fourth technique, PORPLE, is a tool developed for GPUs (for data “symbiosis” rather

than task) [6]. It is predictive, its measurement is machine independent, but it assumes even partition

of shared cache. Section 4.3 has adapted this model to predict co-run miss ratio and found its

assumption fairly effective in practice.
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These techniques do not consider the effect of exclusive cache hierarchy. Victim footprint is

the first model that is exclusivity aware, and as a result, it is more accurate in both prediction and

optimization than the techniques we have tested.

6 SUMMARY
This paper has presented the theory and techniques to model the performance of exclusive cache

hierarchies. The formalism includes the split LRU stack, victim footprint and victim cache fill time,

and their properties especially the uniqueness theorem. The techniques are composable analysis and

portable prediction for any program groups sharing any types of AMD exclusive caches, Intel cache

allocation technology (CAT), and IBM transient loads.

In evaluation, the victim footprint is measured in a single set of 28 sequential executions and

used to predict the miss ratio in 4383 parallel executions on 2 models of AMD machines and 588

sequential executions on an Intel machine. The results show that VFP outperforms the previous

theory HOTL and all heuristics solutions that were tested. For the AMD exclusive cache hierarchy,

the VFP prediction has on average less than 0.2% absolute errors and 5% relative errors when

predicting high miss ratios and when used for shared-cache program symbiosis, removes near 80% of

the gap between the prior work and the optimal. Hence, we conclude that the new theory is practical

on real systems, and exclusivity modeling is necessary for its accuracy and benefit.
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