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Abstract—SpMV, the product of a sparse matrix and a dense
vector, is emblematic of a new class of applications that are mem-
ory bandwidth and communication, not flop, driven. Sparsity and
randomness in such computations play havoc with conventional
implementations, especially when strong, instead of weak, scaling
is attempted. This paper studies improved hybrid SpMV codes
that have better performance, especially for the sparsest of such
problems. Issues with both data placement and remote reductions
are modeled over a range of matrix characteristics. Those factors
that limit strong scalability are quantified.
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I. INTRODUCTION

The product of a sparse matrix and a dense vector (SpMV)
is a key part of many codes from disparate areas. Numerically,
it makes up the bulk of the High Performance Conjugate
(HPCG) [1] code that has become an alternative to LINPACK
for rating supercomputers. It can also be used in machine
learning apps such as SVM computations via gradient descent.
When the matrix operations are changed from floating multiply
and add to other non-numeric functions that form semirings,
it becomes an essential part of many graph kernels [2], and
is a key function in the recently released GRAPHBLAS spec
[3]. There has even been a novel prototype hardware system
built around such sparse operations [4].

Motivating the work presented here was an earlier study,
[5], that looked at strong scaling of SpMV in a Message

Fig. 1: Speedup from seen for 4 Sparse Matrices. This chart was
generated using data seen in Table IV in [5].

Passing Interface (MPI) environment for a variety of matrices
of varying sparsity from a well-known repository. What caught
our interest was an observed significant dip, not increase,
in speedup versus number of processes (see Fig. 1 where
the numbers on each line is the average non-zeros per row)
that approached an order of magnitude for the sparsest cases,
and from which recovery was slow as the compute resources
increased. We have observed similar dips in other kernels and
wanted to explore this phenomena more closely. Our specific
goal was thus to explore the cause of the dip as a precursor for
developing codes that scale better for these very sparse cases.

In organization, Section II describes the generic hybrid
algorithm. Section III describes the spectrum of sparse ma-
trices considered. Section IV provides necessary background.
Section V discusses the code developed here. Section VI
evaluates the results. Section VIII concludes.

II. SPMV HYBRID ALGORITHM OVERVIEW

Algorithm 1 shows the simplest sequential implementation
of SpMV, consisting of two nested loops, the innermost of
which processes one non-zero at a time from a row in A.

Algorithm 1 Hybrid SpMV: c = Ax
A = mxm sparse matrix
m = number of rows to work over
c = result vector
x = dense input vector
a = vector of non-zero A element data values
index = non-zero column id’s
nnzrow = number of non-zero elements in the ithrow

1: procedure SPMV
2: for i← m do
3: for j ← nnzrow do
4: c[i]+= a[j] ∗ x[index[j]]

5: end for
6: end for

Double precision floating point numbers use 8 bytes, there-
fore the minimal memory required by generalized SpMV is
O(nnz + 2n), where n is the matrix dimension.

Estimating SpMV’s execution time requires knowledge
about the number of operations, their type, the amount of
memory accesses made, and some additional information



about the system architecture. Algorithm 1 performs 2 floating
point operations for every non-zero element in the sparse
matrix, along with three memory read accesses: one into
the index vector that identifies which column each non-zero
belongs in, one into the matrix, and one into the dense vector
x. This assumes each c[i] is kept in a register until the row is
complete. For most implementations there are very little cache
hits. If each index entry can be held in 4 bytes, the memory
traffic for each non-zero is approximately 8+4+8 = 20 bytes
for each two flops per non-zero. An analysis of SpMV within
the HPCG code [6] demonstrates that this ratio is correct,
and thus the core SpMV computations are totally memory
bandwidth bound, regardless of core flop capabilities.

If the arrays in Algorithm 1 are in shared memory, then
a multi-threaded implementation can compute separate rows
concurrently, allowing the memory system to be fully utilized,
and maximizing performance to the 2 flop per 20 bytes limit.

In contrast, the problems studied in this paper assume
that SpMV is applied over large sparse matrices that must
span multiple processes in a large distributed system. The
matrix must be partitioned and distributed, and the pieces put
back together to get a complete answer. A hybrid algorithm
would then combine a distributed implementation with multi-
threading within each process. This is the focus of this paper.

III. MATRIX BENCHMARK SUITE

We have chosen 25 matrices from the SuiteSparse Matrix
Collection1 [7]. Table I shows the dimensions, number of non-
zeros, sparsity, and average number of non-zeros per row for
the chosen matrices. The matrices were selected based on their
average nnzrow, in addition to overall non-zero structure. At
least two matrices from each nnz range were chosen with
similar size or nnz per row but different structure.

Fig. 2 highlights the structure disparity between two of
these matrices: atmosmodd and parabolic fem. The non-
zeros in atmosmodd cluster along the main diagonal, whereas
parabolic fem has a wider dispersion. We focused on struc-
tural differences to evaluate the impact of matrix structure on
communication volume and message size across different load
balancing methods. Additionally we chose matrices a quasi
logarithmic fashion to ensure a wide spectrum of sparsity.

IV. BACKGROUND

In this section we provide a brief overview on related work.
IV-A discusses matrix nnz structure and its effects on SpMV
performance. The importance of optimal load balancing along
with some current methods is elaborated on in IV-B. Finally,
in IV-C we look at some of the underlying implementation of
MPI and its potential effects on communication overhead.

A. Matrix Structure

As input matrix size increases, the desire to leverage larger
and more diverse systems facilitates the leap to distributed and
hybrid parallel implementations. In such cases, the distribution
of non-zero elements in the matrix has significant impact on

1Currently hosted at https://sparse.tamu.edu/

(a) atmosmodd (b) parbolic fem
Fig. 2: Varying Matrix Non-Zero Structure was selected for the
benchmark matrices chosen in our experiments. Distribution visu-
alization provided from [7].

matrix rows nnz nnz % nnz row Symmetry
atmosmodd 1270432 8814880 5.46E-06 6.93 non-symmetric
parabolic fem 525825 3674625 1.33E-05 6.98 symmetric
rajat30 643994 6174244 1.49E-05 9.58 non-symmetric
CurlCurl 3 1219574 13544618 9.11E-06 11.10 symmetric
offshore 259789 4242673 6.29E-05 16.33 symmetric
Fem 3D thermal2 147900 3489300 1.60E-04 23.59 non-symmetric
nlpkkt80 1062400 28192672 2.50E-05 26.53 symmetric
CO 221119 7666057 1.57E-04 34.66 symmetric
gsm 106857 589446 21758924 6.26E-05 36.91 symmetric
msdoor 415863 19173163 1.11E-04 46.10 symmetric
bmw3 2 227632 11288630 2.18E-04 49.59 symmetric
BenElechi1 245874 13150496 2.10E-04 53.48 symmetric
t3dh 79171 4352105 6.94E-04 54.97 symmetric
F2 71505 4294285 8.40E-04 60.05 symmetric
consph 83334 6010480 8.65E-04 72.12 symmetric
SiO2 155331 11283503 4.68E-04 72.64 symmetric
torso1 116158 8516500 6.31E-04 73.31 symmetric
dielFilterV3real 1102824 89306020 7.34E-05 80.97 symmetric
RM07R 381689 37464962 2.57E-04 98.15 non-symmetric
m t1 97578 9753570 1.02E-03 99.95 symmetric
crankseg 2 63838 14148858 3.47E-03 221.63 symmetric
nd24k 72000 28715634 5.54E-03 398.82 symmetric
TSOPF RS b2383 38120 16171169 1.11E-02 424.21 non-symmetric
mouse gene 45101 28967291 1.42E-02 642.27 symmetric
human gene1 22283 24669643 4.97E-02 1107.10 symmetric

TABLE I: Benchmark Matrix Suite

SpMV performance, and subsequently affects a myriad of
design decisions [8], [9], [10], [11], [12].

While the structure of a sparse matrix will undoubtedly
influence the efficiency of the storage format chosen, matrix
structure exhibits greater influence over communication [13],
[5], [14], [15], [16], [17], [18], [19]. Hybrid implementations
possess improved data locality, thread scalability, and data
reusability [15]. Elevated performance is not guaranteed how-
ever, as memory contention can occur with greater frequency
as thread counts increase [14]. In spite of this, the potential
for significant global communication reduction, by converting
much of it to local communication, has ever greater effects on
performance as system size is scaled up.

B. Work Distribution

An irregular memory access pattern is the root cause of
SpMV performance degradation in distributed memory sys-
tems [13]. Therefore as process and thread count increase,
given a matrix of arbitrary structure, the disparity in the
volume of work as well as the data locality of the individual
nnz elements being computed locally can change drastically



[13], [5], [14], [15], [16], [17], [18], [19]. Many studies
focusing on optimal work load balancing for distributed SpMV
have been performed [17], [20], [18], [21], [22], [19] in an
effort to obtain consistency in performance gains.

It should be intuitive to say that reducing communication
improves overall SpMV run time by limiting latency, memory
registration, and buffer copies to memory along with other
factors. Several studies have shown that the key to avoiding
excessive communication overhead is to determine the optimal
work load distribution for a given matrix [17], [20], [18],
[21], [22], [19]. These studies found that balancing work by
accounting for nnz location within the input matrix allowed
for reduced communication and message size.

Communication avoidance is a complex issue to resolve as
it is rooted in the system hardware, interconnection hardware,
as well as communication and user level protocols being used.

Furthermore, the optimal work distribution algorithm is
likely to be optimal for only a subset of the matrices being
evaluated. It then becomes necessary to find the appropriate
level of optimality and efficiency.

C. MPI Overhead

MPI overhead is a well researched area and continues to
be of importance as we look towards future HPC systems.
As hybrid and or heterogeneous implementations of SpMV
require communication at scale, message passing as well as
interconnect topologies and their user level libraries play a
vital role in their overall performance.

Message Volume, Size, and Latency. Message latency
when using MPI is dependant on many factors such as
message size, interconnect type, protocol selection, etc [23],
[24]. For small messages, the Eager protocol utilizes pre-
allocated buffer locations to perform communication between
the two processes [24]. There are no acknowledgements or
negotiation required by the Eager protocol, however it suffers
from relatively low bandwidth utilization [23], [24]. If message
size is greater than the threshold value in use, the Rendezvous
protocol is normally utilized. The Rendezvous protocol has ad-
ditional overhead costs due requiring allocation of appropriate
buffer memory to receive the message, as well as perform a
negotiation phase between the sender/receiver [24].

Message size varies with P (number of processes), changing
how messages are sent. Optimizations such as the use of
RDMA, buffer reuse, communication overlapping, and specu-
lation all have a point at which their performance enhancement
declines drastically if not disappears [23], [24].

Remote Direct Memory Access RDMA. RDMA per-
mits zero-copy transfers of data between MPI processes by
performing either an MPI Put or MPI Get operation[23],
[24]. RDMA eliminates the need for buffers and their costly
allocations, as well as the need to copy buffered data into its
final memory location after transmission completion [24].

Communication Overlapping, Offloading/Onloading.
Overlapping as well as offloading are designed to allow for
communication during a subsequent computation phase, and
are aided by the use of RDMA for increased bandwidth

utilization with decreased latency. In the case of Overlapping,
non-blocking MPI Isend or MPI Irecv are used to begin the
communication phase before proceeding onto computation.

Offloading and Onloading work similarly. In Offloading
communication is pushed onto the interconnect hardware for
completion thereby allowing the process to continue. Con-
versely with onloading; communication overhead is handled
by a selected number of threads, cores, or sockets in an effort
to alleviate the impact of high bandwidth communication on
the NIC or interconnect interface [24]. Onloading is becoming
more common as many-core architectures such as Intel Xeon
Phi (formerly Knights Landing) see greater use [25].

Collectives. MPI Collectives allows multiple processes to
partake in a single communication event such as a reduction
or gather. Several studies [26], [27], [28] have evaluated the
performance and behaviour of MPI collectives in addition to
implementing optimization methods. Collectives dramatically
reduce communication volume and latency along with increase
bandwidth utilization [26], [27], [28]. Enhanced RDMA has
proven useful for such operations.

V. EXPERIMENTAL IMPLEMENTATION

To evaluate MPI overhead for our hybrid SpMV solver we
implemented two different work distribution schemes. The
first method distributes work to each process based on the
unmodified nnz positioning of A, and is hereafter known as
the ”naive” method. In contrast the ”balanced” method creates
a near uniform work load amongst all MPI processes. Section
V-A elaborates upon the sparse matrix storage format we have
to chosen utilize. Section V-B briefly discusses OpenMP and
MPI as they pertain to our implementations. Subsequently
sections V-C and V-D elaborate upon the naive and balanced
work distribution methods respectively.

A. SpMV Storage Format

While many storage methods for sparse matrices have been
devised, each has drawbacks, whether it be increased mem-
ory footprint, communication requirements, or implementation
complexity [8], [29], [30], [9], [10], [11], [12]. Compressed
Sparse Row (CSR) format is a commonly used method in
which the non zeros within a given matrix are kept in three
one-dimensional vectors or arrays: row, column, and data.
CSR features a relatively simple structure and is therefore
easily implemented and adapted for hybrid applications uti-
lizing both MPI and OpenMP. Furthermore, nearly all other
formats compare themselves to CSR [8], [9], [10], [11], [12].
While some formats may enable greater memory efficiency
or communication reduction, the added implementation and
algorithmic complexities are drawbacks that should not be
overlooked. Therefore CSR was chosen here; however we
acknowledge that some performance impact might be gained
via the use of different storage formats.

B. Hybrid Design

Two widely known parallel methodologies, distributed
memory and shared memory, offer the potential for increased



performance at the expense of elevated code complexity. MPI
makes use of the distributed memory model by dispersing
application functionality across different processes, thereby
allowing for strong scaling through increases in system size.
Increased system size comes at the expense of added commu-
nication requirements due to added intra/inter-process message
count. The shared memory model has potential for localized
performance enhancements from increased cache utilization
and performance. Hybrid codes, typically MPI and OpenMP,
take advantage of both models by implementing the shared
memory model within each distributed memory element.

Our code utilizes MVAPICH2 with Infiniband support and
OpenMP 4.5. Our cluster has 72 nodes, each with two 8-
core Xeon E5-2650v2 @ 2.6GHz, and connected via Mellanox
FDR Infiniband in non-blocking configuration. Each node is
assigned two MPI processes, one per socket, with each MPI
process creating one OpenMP thread per core. We insured
process and thread affinity by binding processes to their
assigned socket, and OpenMP threads to their respective cores.

(a) Send to Column Masters (b) Send to Rows

(c) MPI Reduce (d) MPI Gatherv
Fig. 3: Work Distribution Communication Pattern: (a) Work for each
process column is sent to that columns process master, (b) each
column master then sends each process in its column their own work
portion. (c) The Naive method, described in Section V-C and [5],
utilizes MPI Reduce across each process row to compile calculated
row values at the row master process. (d) In contrast, the Balanced
method, described in Section V-D, uses a variable gather compile
computed values on the global master process.

C. Work Load Distribution: Naive

Our first work load distribution method, based on [5], splits
the matrix A into P sub-matrices Āij , each of which is
assigned to a corresponding process Pij in the process matrix.
The master process, P00, sends the column master process in

each process column the data for all processes within that
process column. Column masters, P0j , distribute row, col, and
data vector information to each process they govern.

Splitting up A in this manner is not only conceptually
simplistic, but also limits the nnzrow per process that any
process can receive. Any process in the process matrix will
receive at most m

p rows, with at most m
p columns per row.

Within each Pij , multiple OpenMP threads are initialized and
work over the process’s work allotment concurrently. Once
each process has completed its work allotment, all processes
participate in an MPI REDUCE with MPI SUM. This is
possible since each process in a given process row computes
a sub sum of the entire row in A. The row masters, Pi0, now
have the final result for their respective row.

Fig. 3 (a)-(c) visualizes the naive work distribution method
we used. The reduction step, seen in Fig. 3c, illustrates that
during the final step there are

√
p concurrent reductions, each

with
√
p participating processes. Given that the default reduc-

tion algorithm for MPI has a time complexity of O(log2(p)),
the naive method experiences the same complexity due to its
use of MPI Reduce to gather computation results.

We now look at the quality of work load distribution
generated by this method. As mentioned previously the naive
method is tied directly to the structure of A. It is thus possible
for a process, or multiple processes, to be assigned no work
to perform during the SpMV computation phase. To evaluate
the quality of work load distribution between the naive and
balanced methods, several metrics were employed. It is well
known that the standard deviation can experience issues in
illuminating the true nature of a distribution if it is not
Gaussian. The balanced distribution method is designed with
the intent of generating a near uniform distribution, as will
be discussed in greater detail in the following section, and is
therefore not Gaussian. Instead the Mean Absolute Deviation
(MAD) [31] was chosen to indicate the distribution quality.

A perfectly uniform distribution would have a MAD of
0.0, meaning that the average deviation from the mean is
0.0. A higher MAD indicates a distribution with much greater
variation from the mean and indicate process load imbalance.
MAD values were normalized and represent % of total number
of nnz for each A. The min, max, and median MADs observed
for the selected matrices were 6.0E-03, 3.2E-01, 7.1E-02 and
respectively. These values while appearing small are in fact
relatively large, indicating significant imbalance.

D. Work Load Distribution: Balanced

The goal of the balanced method is to create a uniform
work load distribution across all P MPI processes, thereby
minimizing communication and message size. The optimal
amount of nnz per process is calculated as being ω = nnz

m ,
where m is the dimension of A. It is worth noting that ω may
be less than ideal for computation due to cache performance.
However it does allows for a quasi-uniform work distribution
based on a matrices’ internal structure. Where possible entire
contiguous rows are assigned to a single process so that cache
misses may be reduced where possible. For very large matrices



it is possible that the number of nnz in a given row may
exceed that of ω, therefore ω is used as the break point for
maximum row size. Should nnzrowi > ω, rowi is split and
a new row containing all nnz of rowi after the ωthnnz, is
created with the same row id.

Once we insure that there are no rows exceeding ω, all
rows were then sorted by length. An efficient greedy bin
packing algorithm assigns the sorted rows to MPI processes
from largest to smallest, based on a process’s current nnz
assignment. Due to the desire to maintain rows in their largest
possible contiguous form we allowed for the possibility of
over/under assignment of work to any given process. Clearly
this can generate sub-optimal work distributions. While op-
timal bin packing would be ideal, it is known to be an NP-
complete problem [32], [33], therefore efficiency and ease of
implementation took precedence in our study. The quality of
distribution produced by our method is discussed later.

Similar to the naive method, once work load distribution
has been determined, the master process, P00, sends all work
for a given process column to that column’s column master
P0j (Figure 3a). Each P0j then distributes the work assigned to
each individual process within in its process column (Fig. 3b).
Computation is then performed within all OpenMP threads
of Pij like the naive method, yet now each process may
have differing number of rows assigned to them. MPI Reduce
requires all participating processes to a send buffer of equal
size potentially requiring superfluous message padding.

In the balanced distribution method it is not guaranteed
and highly unlikely that all processes in each process row
would posses portions of the same rows from the sparse
matrix. Therefore in an effort to reduce message size we
decided to implement a variable gather in the balanced method
(Fig. 3d), as it would allow P00 to receive the exact number
of row solutions assigned to a given process. This elimi-
nates the padding necessary for implementing MPI Reduce.
MPI Gatherv requires a mapping of sorts so that MPI knows
the incoming buffer size for each process. This mapping was
generated during work load determination and kept for use
during the gather phase. Our implementation of MPI Gatherv
was such that all results were gathered at the master and a
post gather insertion into the result vector was performed.

Given that the exact algorithm utilized by MVAMPICH2 for
a collective is dependent on message size and other factors,
we assume the variable gather implemented has a complexity
of O(log2p), similar to a gather utilizing the binomial tree
algorithm.

As mentioned previously it is possible for the final work
distribution to be less than perfectly uniform thanks to our
greedy implementation. Inspection of the MADs produced by
our balanced distribution show a min, max, and median of
2.7E-08, 6.7E-03, and 4.74E-06 respectively. This indicates
that we achieve a very high level of uniformity. Therefore our
balanced work method can be utilized to create message sizes
of greater uniformity for all processes in P as intended.

Fig. 4: Observed SpMV computation time for single MPI process
with varying OpenMP thread counts. Each line represents a different
benchmark matrix from the chosen suite discussed in Section III.
Single node multithreaded tests include no communication since
OpenMP uses a shared memory model and only one node is in use.

VI. EVALUATION

A. Multithreaded SpMV Performance

To show the impact that communication from a distributed
memory model has on Hybrid SpMV, we first analyzed
1 MPI process running on a single node, with increasing
numbers of OpenMP threads. Fig. 4 shows that as thread
count increases SpMV computation time decreases, up to a
point. Each additional thread makes more memory references
needed to perform additional useful computation. However,
for most matrices evaluated, computation time reduction slows
or stagnates completely after some value of P . This occurs
approximately when the number of threads exceeds those
supported by a single socket, and is likely due to cross-socket
coherency traffic. Given relative best performance seen at 1
thread per core, subsequent experiments used a single MPI
process per socket, and utilized all cores on that socket for
computation.

B. MPI Communication Overhead

MPI communication, whether it be intra-node or inter-node,
can dramatically outweigh the time requirement for useful
computation. Fig. 5 shows MPI communication time as well
as SpMV time for each matrix and P examined. Note that for
1 process there is no communication time. After the utilization
of 4 processes MPI Reduce time is nearly always larger than
SpMV computation time, and often several times as long.

Fig. 5 clearly indicates that distributed communication, even
in a hybrid implementation, is extremely high for SpMV ap-
plications. In general SpMV computation time decreases with
strong scaling, and as P increases, the number of elements
to be communicated by each process decreases as m

p . Fig. 6
shows the ratio of communication time to computation time
from Fig. 5. On average, for a given matrix, as the number of
processes increases, the ratio of comm-to-comp time increases



Fig. 5: Observed MPI Reduce times using the naive distribution method. Communication time sits atop spmv computation time for
comparison with differing MPI process counts. Benchmark matrices are shown in ascending order by avg nnz per row.

Fig. 6: Communication-to-Computation Time Ratio: This chart shows the ratio of communication time to SpMV computation time for the
evaluated process counts. Matrices are listed in order ascending according to nnzrow. Matrices with the lowest nnzrow experience the worst
comm
comp

ratio, while higher nnzrow matrices see considerably less.

as well. Additionally we notice that the matrices with fewer
nnz per row experienced some of the highest ratios, while
matrices with higher avg nnz per row experienced some of
the lowest. Furthermore, in an effort to eliminate the impact of
cluster node selection on communication paths all tests were
run 50 times with the averaged results used in analysis.

While Fig. 5 and 6 prove that communication time is high,
these charts only include data for our tests over Mellanox
Infiniband interconnects. Infiniband’s performance increases
over Ethernet are well documented and beyond the scope of
this paper. We did however examine the communication time
for the entirety of the benchmark suite using both distribution
methods, and observed comm-to-comp ratios of 10x or more.

The balanced method is designed to reduce communication
by providing a balanced workload. Fig. 7 shows the comm-
to-comp ratios observed using the Infiniband interconnect. It
illustrates the same pattern in which matrices with low average
nnz per row experience higher comm-to-comp ratios while the
most dense matrices received the lowest ratios. In Fig. 7(b)

at P = 81 there is a considerable jump in communication
overhead somewhere in the range of 10x compared to P = 64.
Our system consists of 72 dual socket nodes, connected to
two Inifiband switches. The jump from 64 to 81 processes
corresponds with a jump in total node utilization as well.
At 81 processes our system size now spans two switches
meaning that messages accross the additional hardware will
have increased latency. This is the reason for the observed
increase, as after this initial threshold communication times
increase at a log2(p) rate similar to P < 81.

It is clear that as P increases MPI communication becomes
the dominant factor in overall runtime, even for the densest
matrices in the benchmark suite.

C. Communication Overhead Impact
To compare communication time against theoretical expec-

tations Fig. 8 plots the normalized observed time against a
log2(p) curve. The solid line beginning at 1 represents log2(p),
the simplified time complexity for MPI Gather [26], while
the second solid line beginning at 81 represents γlog2(p)



Fig. 7: Ratio of observed communication time to observed SpMV computation time for the balanced distribution method. (a) Illustrates the
calculated ratio for all benchmark matrices using between 0 and 64 MPI processes. (b) Shows the same ratio using 36 to 121 MPI processes.
Benchmark matrix results are in ascending order left-to-right based on the average nnz per row.

in which γ is the observed scaling factor caused by our
network hardware layout. Some variance was expected when
producing the fit shown in Fig. 8 as a single latency and
effective bandwidth value was calculated for the two regions,
P = 0 − 64 and P = 81 − 121. A tighter fit is possible if
latency and effective bandwidth are accounted for each value
of P when normalizing and plotting.

What can be seen is that for most P , the observed
MPI communication time is in the range of the expected
MPI Gather time complexity. However for 36-49 processes
there are significant dips in the communication time for nearly
all matrices. In fact when each matrices values were plotted
and fit individually, we noticed a similar dip for all matrices.

The message being transmitted is the computed value for
a particular row, or multiple rows depending on the amount
assigned to any arbitrary process. As P increases m

P decreases,
meaning the number of rows that must be sent per process
decreases correspondingly. MPI implements a message size
threshold with which it determines when to utilize the Eager or
Rendezvous protocol for sending messages. Once message size

drops below this threshold MPI will select the Eager protocol,
which experiences very low latency due to the elimination of:
memory buffer allocation, negotiation between processes, and
message receipt acknowledgements.

While there are other causes for this communication perfor-
mance increase, such as cache effects or better work balancing,
we believe that the transition between protocols provides the
greatest impact at these values of P . Shortly after these
local minima, we saw an increase in communication time
as P increased. This was expected due to the nature of
the default communication algorithm for MPI Gather. Similar
results were found when we analyzed the naive distribution
method, which also has time complexity of O(log2(p)).

After evaluating communication time for larger process
counts, we then sought to evaluate the overall performance
by combining SpMV computation time with its corresponding
communication time. As can be seen in Fig. 9 the speedup seen
for all matrices can be split up into three general performance
bands. Obtaining the best performance are those matrices with
the highest nnz per row, receiving an increase in performance



Fig. 8: Observed MPI Collective Times: shows the normalized time
measurements for MPI Gatherv used within the balanced method
plotted along the expected O(log2(p) curves for both small and large
values of P . Each circle represents a different benchmark matrix
evaluated at the given process count.

Fig. 9: Combined performance for SpMV computation and Com-
munication of result, in GFlops. Each line represents a different
benchmark matrix for the given number of MPI Processes, using
the balanced distribution method.

until 16 processes. Matrices with approximately 10 to 100
nnz per row form the center band exhibiting mild speedup
until 4 processes before flattening out. Here any additional
performance gains seen as process count increases is likely
offset by the accompanying increase in communication over-
head. Finally the lower band consisting of matrices with fewer
than 10 nnz per row never experience an increase speedup.

Regardless of overall matrix sparsity or nnz distribution
pattern, all matrices tested exhibited similar behavior as pro-
cess count increased. The dip in performance seen between 25
and 36 processes is likely due to crossing the switch capacity
boundary for the Inifiband fat tree configuration. The peak
at 49 processes corresponds to a switch between the Eager
and Rendezvous message transfer protocols within MPI thus

providing a boost in performance as message size decreased
below the threshold. Degradation in performance after 49
processes is due to several factors including compounding
switch latency, rapidly declining number of non-zeros per
process, and increased message volume.

Another important observation is one of maximum peak
performance. From Fig. 9 it is obvious that some matrices
drastically outperformed others. In general, the more dense a
matrix, the higher its maximum performance, while the ma-
trices with higher sparsity experienced performance flattening
for lower values of P . The results suggest an upper bound
for performance based on communication overhead and its
accompanying process count.

VII. FUTURE WORK

While our work has shown that performance degradation
created by communication overhead exists for extremely
sparse problems on conventional computing clusters, further
exploration is needed. Sparse problems will be evaluated on
additional architectures such as GPUs and Intel’s Xeon Phi, as
will the communication impact these architectures experience
in a multi-node environment. Similarly we would like to
investigate resource over-subscription in an effort to further
explain potential NUMA effects brought on by the cross socket
coherency traffic complexities we believe were seen in Fig 4.

Our tests thus far have required that the entirety of a sparse
matrix and its accompanying dense vector fit on a single
node. The issues associated with larger data sets incapable
of residing on individual nodes, as well as the ability for
streaming updates to the sparse matrix and or the dense vector
are also of interest. These concepts are worthy of further
analysis as they will likely generate communication issues for
work load distribution and computation.

Also, as mentioned in the Introduction, SpMV-like kernels
have key use in non-numeric applications such as GraphBLAS.
A valuable study would be to generalize the algorithm for non-
floating point operation suites and data, such as might be found
in calculations around adjacency matrices. In addition, new
data compression methods will be evaluated in an attempt to
further reduce communication between processes and nodes.
Finally, it would be of significant value to explore variations
in the x vector, from being sparse itself, to multiple vectors,
to matrices (both dense and sparse).

VIII. CONCLUSIONS

This study evaluated hybrid SpMV implementations with
particular focus on strong scaling where the problem is fixed
and additional computing resources are added. We demonstarte
that dingle process performance does improve as thread counts
increase, but flattens out once the memory system is saturated,
with some degradation in performance once the process covers
more than one socket. In addition, this paper demonstrates that
overall scalability in a message passing environment is driven
by its communication pattern. Our findings suggest SpMV
possesses an inability to strong scale beyond some point, even
with cutting edge network interconnects such as Inifiniband,



and that this scaling limit is tightly tied to the level of sparsity
in the matrix. Further, the current focus in the literature on
reducing SpMV computation time (such as by smart partition-
ing) does not address this dominant communication overhead
factor at scale. Manycore architectures are thought to be the
answer to this issue, however our studies show that as P −→∞
communication overhead is the dominant factor and cannot be
discarded. For extremely sparse matrices we saw an impact
due to inter-node communication with as few as 2 nodes (4
processes). This would suggest a need to shift efforts away
from reducing SpMV computation time in favor of attempting
to mitigate or eliminate conventional communication within
such applications. Alternative schemes for remote aggregation
will be central for new algorithms that perform better than the
current paradigm.
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