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ABSTRACT
Technologies such as Multi-Channel DRAM (MCDRAM) or High
Bandwidth Memory (HBM) provide significantly more bandwidth
than conventional memory. This trend has raised questions about
how applications should manage data transfers between levels.
This paper focuses on evaluating different usage modes of the
MCDRAM in Intel Knights Landing (KNL) manycore processors.
We evaluate these usage modes with a sorting kernel and a sorting-
based streaming benchmark. We develop a performance model for
the benchmark and use experimental evidence to demonstrate the
correctness of the model. The model projects near-optimal numbers
of copy threads for memory bandwidth bound computations. We
demonstrate on KNL up to a 1.9X speedup for sort when the problem
does not fit in MCDRAM over an OpenMP GNU sort that does not
use MCDRAM.
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1 INTRODUCTION
Datamovement and retrieval are key bottlenecks in high-performance
computing. Moving data is becoming relatively more costly than
arithmetic and logic operations, in terms of performance and energy
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efficiency, as machines approach exascale. This divergence is due
to the slow rate of improvement in memory bandwidth compared
to processing power of manycore compute nodes, as well as almost
no change in memory access latencies. More and more cores rely
on the similar limited number of DRAM channels.

One architectural solution is to implement multilevel memory
(MLM). Emerging architectures are supplementing traditional DDR
memory (typically packaged in separate DIMMmodules) with high-
bandwidth, “on-package” memory, logically positioned between the
main memory and the processor core cache hierarchy, as shown in
Figure 1. The Intel Knights Landing (KNL) processor [24] takes this
approach, incorporating 16GB of high-bandwidth Multi-Channel
DRAM (MCDRAM). MCDRAM is a 3D stack of memory where
multiple wide memory ports take the place of a single high speed
off-chip interface, offering higher bandwidth without a significant
change in latency. A standardized variant of MCDRAM called High
Bandwidth Memory (HBM) [3] is now in use with a variety of pro-
cessing chip types, from FPGAs to GPUs, e.g., the newest NVIDIA
Volta GPU architecture. We use the term multilevel memory to re-
fer to the general category of memory technologies that provide
high-bandwidth capabilities.

1.1 MCDRAMMemory Modes
The Intel Knights Landing (KNL) machine used in this paper uti-
lizes the Intel 7250 Xeon Phi processor with 68 four-way threaded
cores (for a total of up to 272 threads) in a single cache coherent
domain connected to 6 DDR4 channels and 8 MCDRAM stacks. The
MCDRAM is configurable through the BIOS to allow three modes
of operation: cache, flat, and hybrid.

In hardware cache mode the MCDRAM acts as a direct mapped
cache with 64B lines (consistent with the cache line size of the L1
and L2 caches). The main advantage of hardware cache mode is
the potential for performance gains with no direct effort on the
part of the application developer. The main disadvantage is that
MCDRAM, which offers no better latency than DDR, is not a natural
choice for cache. To use the high bandwidth effectively, algorithms
must stream through data rather than making random accesses.
Furthermore, thrashing is a common problem with direct-mapped
caches. Another potential downside of hardware cache mode is
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that some portion of the memory is reserved to hold the tags of the
cache, reducing the effective usable capacity.

In flat mode the MCDRAM serves as an extension to the address-
able memory (i.e., a “scratchpad”), and allocation into MCDRAM
can be handled by special API calls such as ‘hbw_malloc()’ function1
developed in the memkind library [8]. OpenMP support for com-
plex memory such as MCDRAM is anticipated for the forthcoming
5.0 specification [19].

In hybrid mode some portion of the MCDRAM is used as an
extension to main memory (requiring special allocations as in flat
mode), and the remaining portion acts as a direct mapped cache.
This configuration allows the programmer to explicitly allocate
data structures that are highly reused to be stored explicitly into
the flat memory space while allowing non-uniform access patterns
that still exhibit some degree of locality to benefit from the cache
portion. Since the total amount of MCDRAM is fixed, this mode
makes less space available for caching than hardware cache mode
and less space available for scratchpad use than flat mode.

Is MCDRAM just a very large cache, its own unique memory
space or a combination of cache and addressable memory? At least
for the last two options, explicit data movement may be required
to transfer the data between main memory and the MCDRAM.
Such an approach may not be feasible for large application suites
with millions of lines of code. However, we recognize a fourth
usage mode that leverages the KNL’s cache mechanism while still
adapting algorithms to MLM. We call this mode implicit cache mode
because while the code is modified, no explicit data movement is
required.

The ideal usage model for an application developer would be a
hardware cache mode that exploits MCDRAM optimally. Although
we confirm impressive performance in hardware cache mode in this
paper, three factors make us skeptical that it is a general solution: (1)
the lessons of the long-studied disciplines of external-memory and
cache-friendly algorithms; (2) the overheads of treating MCDRAM

1http://memkind.github.io/memkind/
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Figure 1: Logical Multi-Level Memory Architecture.

as a cache, and, (3), the fact that unlike traditional CPU caches,
MCDRAM has latency similar to that of DRAM.

These factors suggest that targeted rewrites of kernels may be
necessary to exploit MCDRAM optimally in flat mode. We demon-
strate through a study of sorting that careful algorithmic work
can optimize performance in all memory modes. These redesigned
algorithms provide performance improvements well beyond that
of conventional algorithms.

1.2 Contributions
The following points summarize the contributions of this paper.

• We corroborate the simulation results of [4] with real KNL
runs.

• We give a muiltilevel memory sorting algorithm that lever-
ages MCDRAM to achieve speedups over the best current
algorithms run in hardware cache mode, and show that these
gains can be preserved without explicitly copying between
DDR and MCDRAM.

• We propose a model that predicts near-optimal numbers of
copy threads to use with a simple MLM benchmark algo-
rithm.

The organization of the rest of this paper is as follows. Section 2
discusses related work. Section 3 presents an approach to adapt
kernels to multilevel memory. Sections 4 and 5 discuss a new sort-
ing algorithm we call MLM-sort and streaming merge workloads,
respectively. Section 6 concludes the paper.

2 RELATEDWORK
The extensive literature relevant to multiple levels of memory in
general, and sorting in particular, fall into several categories:

• cache-friendly algorithms that deal with two levels of mem-
ory: processor cache and main memory, where only main
memory is explicitly addressable. This includes both cache-
oblivious and cache-aware algorithms.

• external memory algorithms that deal with two different
kinds of storage where both are addressable but with radi-
cally different access protocols: main memory and disk.

• multilevel memory algorithms that deal with a level of on-
package memory and a level of main memory, e.g., DDR,
where both are in some way in the same “address space.”

• performance analyses of KNL that characterize profitability
of MCDRAM for applications.

In this paper, we make extensive use of the multithreaded multi-
way merge and mergesort routines in the GNU parallel library [22,
23]. In our experience, these represent the current state of the art
in multithreaded sorting.

2.1 Cache-Friendly Algorithms
A cache-aware algorithm arranges its memory references to in-
crease cache hits. The algorithms described in later sections are
multilevel memory versions of simple cache-aware algorithms. The
“cache” in this case is MCDRAM on a KNL machine.

Previous work suggests that cache-oblivious versions of our al-
gorithms might work just as well without being parameterized by
the size of MCDRAM. The discipline of cache-oblivious algorithm
design was introduced in the classical work of Frigo, et al. [12],



Optimizing for KNL Usage Modes ICPP 2018, August 13–16, 2018, Eugene, OR, USA

which included a cache-oblivious sorting algorithm (“funnelsort”).
The main idea is to let the algorithm partition data recursively. A
carefully-engineered version of “Lazy Funnelsort” was eventually
shown to outperform the best quicksort implementations [6, 7].
This was a complicated effort, but its success suggests that cache-
oblivious versions of our simple algorithms might eventually per-
form as well without requiring tuning per machine. Finally, we
note that there is work on cache-adaptive algorithms that tolerate
changes to system resources during the run of the algorithm [5].
Funnelsort is shown to work optimally in their adaptive model. This
would be useful in a future in which high-performance computing
jobs must deal with fluctuating resource allocations.

2.2 External Memory Algorithms
External memory, or “out-of-core” algorithms were developed to
perform computation that could not fit on the DRAM of the system,
when the data is primarily stored in disk. These algorithms essen-
tially use a chunking technique to perform the data movement. The
theoretical model for external algorithm design is the “Disk Access
Model” (DAM), first introduced by Aggarwal [1].

Out-of-core algorithms are designed to accommodate much
larger latency on the slow storage. They sometimes exploit multiple
I/O channels as we do. A major difference is that the data move-
ment in our work is relatively fast, since latency is more nearly
equivalent for DDR and MCDRAM (versus DDR and disk). Copying
from disk to DDR tends to be much slower and time consuming.
In mergesort-based out-of-core sorting algorithms the multiway-
merge at the end is a slow and complex operation. Out-of-core
sorting algorithms are designed to handle larger datasets that can
only be stored on disk, whereas our in-memory sort can only sort
datasets that fit into the DDR memory.[20]

2.3 Multilevel Memory Algorithms
Bender, et al. discussed the problem of algorithm design for general
multi-level memory comprising a main memory and a high band-
width ‘near memory’ [4]. They introduced a theoretical model sim-
ilar to the DAM model, designed and analyzed a sorting algorithm
using that model, and used simulation to predict the performance
of a simplified version of that algorithm on KNL before the hard-
ware was available. They predicted that using a secondary, higher
bandwidth level of memory would improve sorting performance
by 30%, and reduce the DDR memory traffic by 2.5x. Our results
in Section 4.1 largely corroborate those predictions. They also ex-
pressed a simple technique suggested by Marc Snir for determining
whether a computation is memory bandwidth-bound or not. For
large core counts, they predicted that sorting can indeed be memory
bandwidth-bound, and hence stands to gain from MCDRAM. [4]

2.4 KNL and MCDRAM Performance Analyses
MCDRAM and HBM represent only a subset of the MLM on mod-
ern machines. The Graphics Processing Units (GPUs) now widely
used in high-performance computing usually require a fast “device
memory” that supplements the main memory of the host processor.
Data must be transferred to and from the host memory either im-
plicitly (as in the case of NVIDIA’s unified memory) or explicitly via
user-written functions. The MCDRAM found on KNL can support

both, but it presents a serious challenge to application developers:
how best to utilize the extra memory level. We focus on the funda-
mental choice of which developer usage model to use. This decision
informs whether and how to rewrite kernels of application codes.

Previous work has also considered the impact of MCDRAM on
the performance of applications on KNL. The work of Li et al. [16]
examines the performance of a wide variety of scientific kernels on
KNL using MCDRAM in flat, hardware cache, and hybrid modes.
However, their use of the flat mode does not entail chunking data
sets larger than the MCDRAM capacity. Instead, they use the set-
ting exposed through the ‘numactl’ tool that simply allocates data
in DDR memory once the MCDRAM is full. Doerfler et al. [11]
apply the roofline performance model to flat and hardware cache
modes. Denoyelle et al. [10] derive a general “cache-aware” roofline
model and apply it to MCDRAM on KNL. The Interactive Code
Adaptation Tool (ICAT) [2] uses profiling to recommend the MC-
DRAM mode to use when porting an application to KNL. Ramos
and Hoefler [21] characterize KNL memory performance with a
focus on distinguishing among common application bottlenecks:
memory bandwidth, latency, and cache coherence traffic. Their
model predicts that bitonic sort should not benefit from MCDRAM.
This work operates off the conjecture that the problem size is small
enough so that all data is stored in MCDRAM.

3 REDESIGNING KERNELS FOR MLM
“Chunking” is a technique to take advantage of multilevel memory
systems. The concept behind chunking is to migrate a portion of
the data, a “chunk,” from the “far memory” into the “near” memory.
The necessary computation is then performed on this chunk of data.
Once the computation is complete, the current chunk is moved back
from the near memory to the far memory and the next chunkmoved
into near memory. The program repeats these steps for each chunk.
Once all the chunks have been operated upon there may still be a
need for some merge step that aggregates the result. Ideally, moving
the data closer to the processor should considerably speed up the
computation even with the additional cost of explicitly copying
data in and out.

In KNL flat mode, chunking has the added overhead of perform-
ing the data movement between MCDRAM and DDR. The common
solution to this problem is referred to as “buffering”. Buffering al-
lows the movement of chunks in and out of near memory to be
pipelined. This is done by overlapping the memory transfers with
the computation. The lack of user-programmable direct memory ac-
cess (DMA) facilities on a KNL processor requires that one or more
of the application’s threads perform the transfers. The implementa-
tion of buffering for KNL thus typically requires allocating three
separate thread pools, a large pool for performing the computation,
then another pool to perform the “copy-in” and finally, a third pool
to perform the “copy-out.” This arrangement has the disadvantage
of higher contention for resources. Using more threads to perform
the copying operations results in fewer available threads to perform
the compute. Using a buffered technique also has the disadvantage
that 2/3 of the MCDRAM will be used by the copy threads. The
copy threads use both MCDRAM and DDR bandwidth, as well as
on-die resources such as network-on-chip bandwidth, so, the use
of too many copy threads may lead to contention with compute
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Figure 2: Chunking and buffering.

threads and result in lower aggregate performance. Another prob-
lem that arises from using buffering is there are three active buffers
in MCDRAM at any given time (one for each of the thread pools).
This limits the maximum chunk size which can have a significant
impact on performance.

3.1 MLM Optimization in MCDRAM Modes
Kernels adapted for MLM can target any of the KNL MCDRAM
usage modes, but the effort required and the impact on performance
may vary. Flat mode offers the most potential for optimization since
the user has complete control of the MCDRAM. However, it also
requires the most effort since explicit data movement is required.
Hardware cache mode still may be preferable for developers of
large applications. Adapting a small portion of code in a large
application to use chunking may not warrant a transition to flat
mode. This is especially true if the rest of the application could
utilize the hardware cache well. Hybrid mode attempts to serve as
a compromise between flat mode and hardware cache mode, but
optimal use still requires explicit data movement. We outline the
use of a chunking approach on each of these modes, in addition to
the implicit cache mode that we propose as as an alternative.

Fig. 2 illustrates how MCDRAM is often used for a pipelined
chunking algorithm in flat mode. The operations are performed by
three separate thread pools, copy-in, copy-out, and compute. In the
first step a single chunk of data is copied into the MCDRAM. In the
second step a second chunk of data is copied in while computation
occurs on the first chunk. The third and later steps then also include
a copy-out of the data computed in the prior step. Each subsequent
step repeats all three stages concurrently until the end of the data
set is encountered. At the penultimate step, no copy-in is needed. In
the final step, neither copy-in nor computation occur. If there is no
interaction between phases, the time for each step is determined by
the longest of the components. Ideally the copy time would overlap
completely with the compute time. The data movement in terms of
MCDRAM is shown in in Figure 3.

The hybrid mode performs the chunking in the same manner
as flat mode. The hybrid mode is more limited in the maximum
chunk size because of the smaller addressable MCDRAM memory.
MCDRAM cache is often polluted by the copy-in and copy-out data,
making it less effective. The data movement of the hybrid chunked
algorithm is shown in Fig. 4.

We refer to the use of chunking while the MCDRAM is config-
ured in cache mode as implicit cache mode. In implicit cache mode
all available threads are dedicated to performing the compute. A
single chunk is computed upon at a time. Initial accesses cause the
MCDRAM caching mechanism to bring data into the MCDRAM
implicitly. The downside of relying on the caching mechanism is
that the bandwidth suffers at the start of each chunk. Data has to

be transfered into the MCDRAM cache by the system on initial
accesses, i.e., cold misses, which are expensive to service. The data
movement using implicit cache mode is shown in Figure 5.

Bender, et al. developed preliminary guidance for application de-
velopers whomust decide whether to rewrite certain computational
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Figure 3: Chunked flat using sort as an example
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Figure 4: Chunked hybrid mode using sort as an example
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Figure 5: Implicit chunking using sort as an example. The
red arrows denote user-controlled scratchpad transfers; the
green arrows denote system-controlled transfers. In “im-
plicit mode” the algorithm designed for flat mode is run in
hardware cache mode.
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kernels in order to optimize performance on systems with such
high-bandwidth intermediate level memory [4]. Using a divide-
and-conquer approach in which the chunks effectively fit into the
high-bandwidthmemory, the study showed that significant speedup
is possible in theory and in simulation. This paper corroborates
this result and demonstrates for a real system that such transfers
can improve performance.

3.2 Model for Buffering MLM Algorithms
Choosing the ideal number of copy threads is typically not obvious
without a great deal of experimentation, particularly in cases where
execution behavior is affected by problem size or input data com-
plexity. In such cases, choosing the number of copy threads is often
critical to optimizing performance but would require significant
user benchmarking.

To better understand how to choose the ideal number of copy
threads we derive a model based on the following simplifying as-
sumptions: the MCDRAM is configured in flat mode using up to
three thread pools, one pool to perform the computation, one to
copy data into MCDRAM, and one to copy data back from MC-
DRAM. The copy-in and copy-out pools are equal in size and have
equivalent workloads. Compute threads use strictly MCDRAM,
while the copy threads use both DDR and MCDRAM. Thus, our
model must consider the bandwidth limitations of DDR and MC-
DRAM and the bandwidth each thread pool can supply.

Starting from a high level, consider that the total time, Ttotal
for the entire execution is limited by the copy time, Tcopy, and the
compute time, Tcomp. Hence the following equation.

Ttotal = Max(Tcopy,Tcomp) (1)

Let Tcopy be the data set size in GB. The copy time,
Tcopy, is the time to transfer Bcopy twice (into MCDRAM and back
out to DDR). Withpin threads used to copy data in andpout threads
used to copy data out, the following equation gives the copy time.

Tcopy =
2 ∗ Bcopy

(pin + pout) ∗Ccopy
(2)

The coefficient Ccopy represents the copy rate in GB/s for a single
thread. The value of this coefficient depends on whether the max-
imum DDR bandwidth, DDRmax, has been reached. For a small
number of copy threads, each additional thread contributes to an in-
creased aggregate copy rate. Let Scopy be that maximal per-thread
contribution. If the number of threads is large enough to saturate
the DDR bandwidth, each additional thread merely reduces the
per thread share of the available bandwidth rather than increas-
ing the aggregate copy rate. The following equation expresses this
conditional function.

Ccopy =


Scopy, if (pin + pout) ∗ Scopy ≤ DDRmax

DDRmax
pin+pout

, otherwise
(3)

The compute time reflects a streaming algorithm requiring the data
set to be both read and written over some number of passes. If
pcomp threads are used, each computing at a per-thread rate of

Ccomp, the following equation gives the compute time.

Tcomp =
2 ∗ Bcopy ∗ Passes
pcomp ∗Ccomp

(4)

The remaining task is to derive the coefficientCcomp. Again, band-
width limitations apply. Each additional compute thread adds to the
aggregate compute rate, until the MCDRAM bandwidth is saturated.
Let Scomp be that maximal per-thread contribution. However, both
the compute threads and the copy threads must share the MC-
DRAM bandwidth. When the number of combined compute and
copy threads is large enough to demand more than the available
MCDRAM bandwidth, Ccomp is limited to a per-thread share of
that available bandwidth. The following equation expresses this
conditional function.

Ccomp =



Scomp,
if (pcomp ∗ Scomp) + (pin + pout) ∗ Scopy)
≤ MCDRAMmax)

MCDRAMmax−(pin+pout)∗Ccopy
pcomp , otherwise

(5)

Note that this model neglects to consider the cases in which some
of the thread pools are unoccupied. While the first chunk is being
copied in, all threads are designated to perform the copy. Once the
first chunk is in MCDRAM, the copy out threads can either join the
copy-in or compute thread pools. Unless the number of chunks is
small this simplification has a negligible effect on the performance
of the model.

We shall return to these equations in Section 5. There we demon-
strate their use to determine the optimal number of threads for
executions in MCDRAM flat mode on KNL. Next, however, we ex-
amine a concrete example of an algorithm adapted to multilevel
memory: sort.

4 SORTING USING MULTILEVEL MEMORY
Sort is an extensively studied problem in computer science with
diverse applications [9, 14, 15]. For large problems it is often per-
formed at scale on distributed clusters, e.g., running Hadoop, where
performance is greatly affected by the number of secondary stor-
age units available. This approach is fast and efficient, but in this
work we focus on how quickly a single KNL node can sort in mem-
ory without swapping to disk. A previous winning entry in the
‘Terasort’ competition demonstrated early use of GPUs for gen-
eral purpose computation [13]. Similarly our work uses the KNL
MCDRAM memory to provide speedups.

We first consider a basic algorithm that simplifies the sorting
approach of Bender, et al.: Divide the data into chunks of equal size,
sort each chunk, and then perform a multi-way merge between all
the chunks [4].

The chunked-sorting phase of this basic algorithm is modeled
in Section 3. To sort N elements with a chunk size of w , divide
the data into chunks of size N /w . Sort each chunk using the best
available multithreaded sorting algorithm (GNU parallel sort at
the time of this writing [22]), and merge the sorted chunks using
the best available multi-way merge (again GNU parallel [22]). The
final multi-way merge does not use the chunking mechanisms or
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even explicitly take advantage of the MCDRAM. The multi-way
merge is a small portion of the computation time and exploits
prefetching well for the caches on the KNL cores. Therefore, we
find that refactoring the multi-way merge to utilize the MCDRAM
is unnecessary.

Bender, et al. used simulations to predict roughly a 30% advantage
for thisMCDRAM-aware chunking algorithm on KNL [4]. Although
GNU parallel sort, when run in hardware cache mode, was expected
to realize some portion of this 30% performance boost as well,
Bender, et al. did not simulate this mode.

We implemented the basic algorithm described above and ini-
tially confirmed that the predicted KNL speedups of roughly 30%
can be realized. However, we found that this algorithm yields no
advantage over GNU parallel sort run in hardware cache mode.

In order to better demonstrate the potential of chunking algo-
rithms for multi-level memory resources such as KNL nodes, we
designed a new algorithm which we refer to as “MLM-sort.” Unlike
the basic algorithm, MLM-sort does not rely on thread-scalability
of multithreaded algorithms (to hundreds of cores) when sorting
in high-bandwidth memory. Instead, MLM-sort relies on the best
available serial sorting algorithm for the sorting of chunks. At a
high level, MLM-sort is identical to the basic chunking algorithm:
it divides the input array into MCDRAM-sized “megachunks,” sorts
each megachunk, then uses multi-way merge to finish the global
sort. The difference is that before sorting, MLM-sort divides each
MCDRAM-resident megachunk into maximally-sized chunks such
that each thread gets one chunk. Each thread sorts its chunk in
serial, then a parallel multi-way merge (from MCDRAM to DDR)
finishes the sort of the megachunk.

Section 4.1 shows our experiments with MLM-sort and GNU
parallel sort. MLM-sort offers significant speedup over GNU parallel
sort run in hardware cache mode. Furthermore, almost all of this
performance advantage is retained by a variant we call “MLM-
implicit.” This version runs MLM-sort with no explicit copying to
or from MCDRAM, instead relying on hardware cache mode.

Even though MLM-sort executes on a single manycore compute
node, it is natural to think of it as primarily a distributed rather than
a multithreaded algorithm. The serial sorts are like single-node com-
putations within a distributed-memory algorithm. Communication
logic in the latter (typically stitching together subproblem results)
corresponds to the multithreaded multi-merge steps in MLM-sort.
If the subproblems are large enough so that communication does
not dominate, then we leverage perfect speedup through hundreds
of cores on the subproblem computations.

Secondly, MLM-implicit is directly motived by complicated De-
partment of Energy (DOE) application workloads in which KNLs
will always be booted into hardware cache mode. All but the most
specialized computations will rely on hardware cache mode for any
performance boosts due to MCDRAM.

MLM-implicit allows megachunk sizes greater than MCDRAM.
Initially, we assumed that it would never make sense to specify
such large chunks. Doing so would seem to encourage thrashing in
high-bandwidth memory. However, the serial sorting operation run
by each thread is itself a divide-and-conquer process (a quicksort
variant for std::sort). The superior performance of MLM-implicit in
most of our experiments is likely explained as follows. Each serial
divide-and-conquer sort focuses on one subproblem at a time, and

during most of the run these are small enough such that every
thread can have its active set in MCDRAM.

The success of MLM-sort and MLM-implicit is encouraging, and
we suggest exploring distributed-style design options for single-
node computations on manycore

4.1 Performance Comparison for Sort
In Figure 6 we present speedups over GNU parallel sort in DDR
(“GNU-flat”) for “GNU-cache” (GNU parallel sort in hardware cache
mode, “MLM-ddr” (MLM in DDR only), and our main results: “MLM-
sort” and “MLM-implicit” (described above). study considered var-
ious chunk sizes, numbers of OpenMP threads, and MCDRAM
modes (flat, hardware cache, hybrid, “implicit” cache). However,
we present only the highest performing options for MLM-sort and
MLM-implicit. For MLM-sort, this is: 256 threads, and megachunk
size of 1.5 billion elements for the runs with six billion elements.
For all other problem sizes we use megachunk sizes of one billion
elements. For MLM-implicit, we use megachunk size equal to prob-
lem size. Each result is the average of ten runs, and the raw data is
shown in Table 1.

Note that reversed input arrays have structure that ourMLM-sort
variants exploit more effectively than the stock GNU algorithms.
Also, note that MLM-ddr makes no use of the MCDRAM; our other
MLM-sort variants exploit all of the memory (DDR and MCDRAM).

These results provide answers to some key questions:
• If algorithms designed for use of the MCDRAM in flat mode,
e.g., processing the data in chunks, are used with the MC-
DRAM configured in cache mode, significant performance
gains over an unchunked implementation can be obtained.

• For data sets that exceed the MCDRAM capacity, algorithms
that explicitly place data into the MCDRAM in flat mode can
improve on the performance observed from simply using the
provided system-managed cache mode.

We observed superior performance with the machine in hardware
cache mode using MLM-implicitwith megachunk size equal to the
overall problem size. It is likely that this performance was possible
only because the serial divide-and-conquer algorithms solve our
subproblems. The chunked MLM-sort algorithm performed best
when the machine was used in flat mode. For some other algorithms,
this mode may offer the best peformance. In fact, we see this in
sorting reversed arrays of six billion elements, though is it not clear
why MLM-implicit lagged in that case.

Whether chunking is implicit or not, we find that rewriting the
sorting kernel for high-bandwith memory rather than running
existing library routines in hardware cache mode yields significant
speedups. We expect that this will hold for many bandwidth-bound
algorithms.

4.2 The Impact of Chunk Size
To execute a chunked algorithm efficiently, the chunk size needs to
be as large as the near memory will allow. While running in flat,
implicit or hybrid the chunk size is ultimately limited by the size of
theMCDRAM. The choice of chunk size also impacts the final merge
step, and its performs best with only a small number of chunks to be
merged. Fig. 7 shows the performance of the different configuration
with a fixed problem size and thread count but varying chunk size.
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Figure 6: (a) Performance of sort in various MCDRAM configurations on randomized input arrays. (b) Performance of sort in
various MCDRAM configurations on reverse sorted input arrays.

 10

 100

 100000  1x10
6

T
im

e
(s

)

Megachunk Size/1000

Implicit
Flat

Figure 7: Performance of the chunked sort implementation
(6 billion int64 elements) using different MCDRAM configu-
rations and varying the chunk size. Note that MLM-implicit
can continue improving as megachunk size exceeds MC-
DRAM.

The chart shows that in both flat and implicit the larger the chunk
size the better the performance. We have run in hybrid mode using
our sorting algorithm, but do not report specific results here. The
hybrid mode shows near identical performance to flat, given a
chunk size. Since we prefer large chunk sizes, and the chunk size in

hybrid cannot be as large as the chunk size in flat mode, we obtain
our best results in either flat or implicit mode.

5 ANALYSIS OF A STREAMING BENCHMARK
Although our MLM-sort algorithm differs from the basic triple-
buffered approach described at the beginning of Section 4, we note
that the chunking and buffering approach of the latter is likely to
be a common approach to multilevel-memory algorithm design.
We now evaluate the model introduced in Section 3.2 to provide
guidance on the sizes of compute and copy thread pools in that
context.

In general, as the computation time gets larger the need for
copy threads is decreased. This assertion contrasts with prior work
that found a need for multiple copy threads to optimize MCDRAM
buffering for benchmarks with short compute phases [18].

To test our hypothesis, we developed a simple “merge” bench-
mark and analyzed it through empirical evaluation. The concept is
simple: using the generic multilevel approach from Section 3, we
designate the compute stage to be a simple merge. The data in each
chunk is evenly dispersed among the threads. Each thread chops
its portion in half and performs a merge on each of the two halves.
We allow the merge to be repeated as a parameter. We refer to the
number of times merge is performed as the number of ’repeats’.
The data is brought in/out of only MCDRAM once, but the amount
of work in the compute stage is dictated by the number of repeats.
The repeat parameter allows adjustment of the amount of work to
be done in the compute stage while keeping the amount of work to
be done in the copy stage to be constant.

The merge benchmark enables a more complete understanding
of the relationship between amount of work available and the ef-
fectiveness of adding additional copy threads. As we expressed in
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Elements Input Order Algorithm Mean(s) Std. Dev.(s)
2,000,000,000 random GNU-flat 11.92 0.1662
2,000,000,000 random GNU-cache 9.73 0.1777
2,000,000,000 random MLM-ddr 9.28 0.0043
2,000,000,000 random MLM-sort 8.09 0.0072
2,000,000,000 random MLM-implicit 7.37 0.0186
4,000,000,000 random GNU-flat 24.21 0.1638
4,000,000,000 random GNU-cache 19.76 0.1892
4,000,000,000 random MLM-ddr 18.74 0.0113
4,000,000,000 random MLM-sort 16.28 0.0080
4,000,000,000 random MLM-implicit 14.56 0.2288
6,000,000,000 random GNU-flat 36.52 0.2565
6,000,000,000 random GNU-cache 29.53 0.3412
6,000,000,000 random MLM-ddr 18.74 0.0113
6,000,000,000 random MLM-sort 22.71 0.0099
6,000,000,000 random MLM-implicit 21.66 0.3154
2,000,000,000 reverse GNU-flat 7.97 0.2446
2,000,000,000 reverse GNU-cache 7.19 0.2069
2,000,000,000 reverse MLM-ddr 4.79 0.0049
2,000,000,000 reverse MLM-sort 4.46 0.0128
2,000,000,000 reverse MLM-implicit 4.10 0.0183
4,000,000,000 reverse GNU-flat 16.06 0.3832
4,000,000,000 reverse GNU-cache 14.27 0.1739
4,000,000,000 reverse MLM-ddr 9.53 0.0130
4,000,000,000 reverse MLM-sort 9.02 0.0129
4,000,000,000 reverse MLM-implicit 8.31 0.0098
6,000,000,000 reverse GNU-flat 23.94 0.5884
6,000,000,000 reverse GNU-cache 21.85 0.3622
6,000,000,000 reverse MLM-ddr 14.48 0.0200
6,000,000,000 reverse MLM-sort 12.56 0.0086
6,000,000,000 reverse MLM-implicit 12.76 0.0159

Table 1: Raw sorting performance (averages of 10 runs each).
The best runs in flat mode (MLM-sort) and hardware cache
mode (MLM-implicit) are highlighted.

our model, the overall time to execute a step of the algorithm is
the maximum of the compute time and the copy time. An efficient
implementation would use the minimum number of copy threads
needed to keep copy time as close as possible to the compute time.
Thus, the expected behavior of the benchmark is that as the com-
putational workload increases, fewer copy threads are required to
overlap computation and data transfer.

The simplicity of the merge benchmark makes it an ideal target
to demonstrate the effectiveness of the model discussed in Sec-
tion 3.2. We obtained values for these parameters from system
measurements and problem characteristics. The values for the pa-
rameters and their descriptions are shown in Table 2. To ensure the
correctness of the coefficients, we used actual execution times from
the benchmark as a validation of our model.

Empirical results from the benchmark are shown in Figure 8(b).
As predicted, increasing the number of repeats drives down the
optimal number of threads to perform the compute. These results
only contain data from runs that use 1, 2, 4, 8, 16 or 32 copy threads.
Often the optimal number of threads is somewhere nearby the
observed optimal.

Parameter Value Description
Bcopy 14.9 GB Data size
DDRmax 90 GB/s Maximum DDR bandwidth, as mea-

sured by the STREAM bench-
mark [17].

MCDRAMmax 400 GB/s MaximumMCDRAM bandwidth, as
measured by the STREAM bench-
mark [17].

Scopy 4.8 GB/s Per-thread data transfer speed be-
tween MCDRAM and DDR when
not bandwidth-limited

Scomp 6.78
GB/s

Per-thread computation speed
when not bandwidth-limited

Table 2: Parameters for the model introduced in Section 3,
based measurements of the system and the merge bench-
mark problem.

Optimal Number of Copy Threads For Merge Benchmark
Number of Repeats Model Empirical (Powers of 2)

1 10 16
2 10 16
4 10 8
8 8 4
16 3 2
32 2 2
64 1 1

Table 3: Optimal number of copy threads for both themodel
and empirical results.

The performance predictions of the model are shown in Fig 8(a).
The purpose of the model is to estimate the optimal number of
compute and copy threads. Table 3 shows both the optimal numbers
of copy threads from the empirical results and the numbers that the
model predicts to be optimal. The numbers do not match exactly,
and in particular note that we only tested powers of two number of
threads in the empirical evaluation. Generally these results show
that our model’s predictions provide appropriate decisions of the
number of copy threads to use.

6 CONCLUSION
A primary challenge when porting applications to Knight’s Landing
and similar architectures is to decide if the application can signif-
icantly benefit from using multilevel memory. Applications tend
to use a mix of different algorithms. Some algorithms are memory
bandwidth bound, while others are compute bound or memory
latency bound. This unpredictability may prompt many application
developers to rely solely on the cache mode of KNL or similar archi-
tectures, or to employ a hybrid mode with some high-bandwidth
memory used as a cache. Algorithms to utilize flat mode can be dif-
ficult to design, especially when explicit copying between memory
levels is performed. Issues such as buffer sizes, the ratio of copy
to compute threads, and overlapping of the operations all must be
worked through.
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Figure 8: (a) Estimated execution times for the merge benchmark based on the model for buffering MLM algorithms from
Section 3.2. The minimum time for each number of repeats yields a prediction for the optimal number of copy-in threads
(with the same number of copy-out threads. (b) Empirical Execution Time for the merge benchmark for 1 to 64 repeats with
varying copy threads.

Our work demonstrates the effectiveness of using chunking and
buffering for MCDRAM in the context of a largely bandwidth-
constrained sort kernel. These methods provide a performance
benefit for all configurations studied, with the greatest benefit be-
ing observed in flat mode. We observe performance speedup of
approximately 1.6-1.9X (depending on input order) times that of
using the non-chunking GNU sort without MCDRAM.

What is striking is that optimal or near-optimal performance
(usually dominating the best flat mode results, see Figure 6 and
Table 1) can be achieved in hardware cache mode using a simple
chunking algorithm. The chunking algorithm removes explicit data
transfers, and simply accesses the original data from higher level
memory. This observation is particularly useful to developers of
large applications wishing to adapt their codes to use the KNL.

Fig. 7 indicates that at least for sorting, chunk sizes of 1-1.5GB are
sufficient to provide near-minimal execution times. Knowing this
number for real applications provides insight into how to manage
MCDRAM for complex problems that employ multiple kernels
where other data should remain in MCDRAM. We leave as future
work the question of buffering in our MLM-sort algorithm. At the
moment, we require all threads during the multiway merges of
chunks into megachunks. However, a slightly different approach
might allow hiding the copy-in latency of the next megachunk.

We also analyzed a simple merge benchmark to explore the inter-
play between the amount of computation in each step of a buffering
implementation and the allocation of threads for computation and
copying. The model constructed here is based on the rate at which
an individual thread can make demands on the different levels of

memory. This provides a convenient basis for estimating in flat
mode the optimal number of copy threads to perform transfers.

Finally, this work considers different MCDRAM usage models
in a single KNL node for bandwidth-driven kernels. Future work
will extend this to multiple KNL nodes. Another level of memory is
also conceivable, e.g., high capacity storage based on non-volatile
memory such as 3D-XPoint. The larger memory capacity of such
architectures will accommodate a much larger problem size, but
now there may be double levels of chunking to consider. In addition,
we intend to examine more complex benchmarks and applications
that exhibit non-uniform data access patterns for which a chunking
approach is not obvious. Lastly, using a variation of the model,
we will explore alternative configurations that may be possible in
future technologies, in hopes of suggesting more optimal design
points for both hardware and applications.
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