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Abstract

The Large Synoptic Survey Telescope (LSST) will produce an unprecedented amount of light curves using six
optical bands. Robust and efficient methods that can aggregate data from multidimensional sparsely sampled time-
series are needed. In this paper we present a new method for light curve period estimation based on quadratic
mutual information (QMI). The proposed method does not assume a particular model for the light curve nor its
underlying probability density and it is robust to non-Gaussian noise and outliers. By combining the QMI from
several bands the true period can be estimated even when no single-band QMI yields the period. Period recovery
performance as a function of average magnitude and sample size is measured using 30,000 synthetic multiband
light curves of RR Lyrae and Cepheid variables generated by the LSST Operations and Catalog simulators. The
results show that aggregating information from several bands is highly beneficial in LSST sparsely sampled time-
series, obtaining an absolute increase in period recovery rate up to 50%. We also show that the QMI is more robust
to noise and light curve length (sample size) than the multiband generalizations of the Lomb—Scargle and AoV
periodograms, recovering the true period in 10%-30% more cases than its competitors. A python package
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containing efficient Cython implementations of the QMI and other methods is provided.
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1. Introduction

The next decade will see the rise of extremely large telescopes
(Tyson & Borne 2012), allowing astronomers to probe the sky
with unprecedented depth, resolution, and coverage. An emble-
matic example of this is the Large Synoptic Survey Telescope
(LSST; Ivezic et al. 2008; Abell et al. 2009). The LSST will begin
operations in 2022, capturing the whole southern hemisphere in six
bands (ugrizy) over 10 years. This translates into 500 PetaBytes of
images and 50 PetaBytes in catalogs, corresponding to 37 billion
astronomical objects. Robust and computationally efficient
methods are needed in order to process the sheer amount of light
curves (Feigelson & Babu 2012; Tyson & Borme 2012; Huijse
et al. 2014). In this work we focus on the task of period estimation
in multiband light curves such as those that will be produced by
the LSST. In what follows we describe the problem and review
some of the existing methods.

Variable stars are celestial objects whose brightnesses vary
through time due to intrinsic or extrinsic reasons (Percy 2007).
There are certain classes of variable stars, such as Cepheids,
RR Lyrae, and eclipsing binaries, whose brightnesses vary
regularly following periodical patterns. The periods of these
stars are key in cosmological research, as they can be used to
measure the distance to their host galaxies. The period of
variable stars is also important for asteroseismology research
and variable star classification (Richards et al. 2011).

The main tool to study variable stars is the light curve, a time-
series of stellar flux or magnitude. Light curves obtained from
Earth-based surveys are irregularly sampled due to observation
constraints and also have data gaps of different lengths. Light

curves are affected by several noise sources, e.g., photon noise, sky
background noise, and scintillation, which can be modeled as
uncorrelated (white) noise with variance that changes between
samples, i.e., light curves have heteroscedastic errors (Akritas
1997). Additionally, light curves are affected by correlated (red)
noise due to observations taken with changing air-mass and
atmospheric conditions, telescope tracking, and other systematics
(Pont et al. 2006). These characteristics make light curve analysis a
challenging task.

Conventional methods for period estimation, such as the Fast
Fourier Transform, cannot be directly applied due to the
irregular sampling. Several methods have been developed by
the statistics and astronomy communities to deal with the
analysis of unevenly sampled time-series (Graham et al.
2013a). These methods can be broadly classified as parametric
and non-parametric. The most widely used parametric method
is the Lomb—Scargle (LS) periodogram (Scargle 1982), which
equates to finding the best sinusoidal model fit to the light
curve in a least squares sense. The LS periodogram has been
generalized to take into account heteroscedastic errors
(Zechmeister & Kiirster 2009) and also more complex models
based on Truncated Fourier series (Palmer 2009).

Phase Dispersion Minimization (Stellingwerf 1978), Mini-
mum String Length (Clarke 2002), and the Analysis of
Variance (AoV) periodogram (Schwarzenberg-Czerny 1996)
are classical examples of non-parametric methods. These
methods do not rely on sinusoidal models for the data. Instead
they optimize a metric on the phase diagram of the light curve
{¢;, mi}i=1, .. N, Where m; are the magnitudes and the phases
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¢; are obtained from the time instants #; given a certain trial
period P as

mod(t;, P)

¢ = P

€ [0, 1], ey

where mod(-, -) stands for the division remainder operator. For
example, in the AoV periodogram the phase diagram is binned
and a ratio of the variance of the bins and the total variance is
computed. By minimizing this ratio over a set of trial periods,
an estimate of the true period is obtained. Non-parametric
methods that rely on information theoretic criteria have also
been proposed, e.g., The Conditional entropy (CE) period-
ogram (Graham et al. 2013b) and the Correntropy Kernelized
Periodogram (Huijse et al. 2012; Protopapas et al. 2015). In
Zucker (2016) a statistical criterion for independence using the
cumulative distribution of the folded light curve was proposed.
This criterion outperformed the LS in sparsely sampled non-
sinusoidal light curves.

LSST (Ivezi¢ et al. 2008) will produce time-series in six
optical bands (ugrizy) with non-simultaneous observations, i.e.,
time intervals between bands will differ. The main observing
strategy consists of two exposures per night for a given field.
Fields will be revisited every three days on average considering
all bands. Single-band average revisit times are longer, e.g., 7-
band is revisited every 15 days. This means that single-band
data will be rather sparse. By the end of the first year, an
average of 18.4 points will be available in the r-band. Bands
will have different priorities, e.g., r-band and i-band will get
more visits than the rest. A reliable period detection algorithm
for LSST light curves must take into account non-simultaneous
observations from all available bands. In recent years
VanderPlas & Ivezic (2015) presented an extension of the LS
periodogram to sparsely sampled multiband light curves. The
multiband LS periodogram combines the single-band period-
ograms and also fits a term to take into account the variability
shared between bands. The AoV periodogram was generalized
in a similar way by Mondrik et al. (2015). The multiband AoV
is a normalized weighted average of the single-band AoV
periodograms. We propose a new period estimation method for
multiband light curves that is based on mutual information
(MI). We test this method using synthetic light curves
generated using the LSST Operations Simulator (OpSim) and
Catalog Simulator (CatSim) (Oluseyi et al. 2012; Connolly
et al. 2014; Delgado et al. 2014). The proposed method
achieves better period recovery rates than established methods,
especially in low sample and low signal-to-noise data.

2. Literature Review

In this work we make extensive use of the information
theoretic concept of MI. In a broad sense, MI measures the
reduction of the uncertainty of a random variable (RV) given
that we know a second RV. MI can also be seen as a measure
of dependence although, unlike correlation, MI is able to
capture nonlinear dependence between RVs. More formally,
MI is posed as the divergence (statistical distance) between the
joint probability density function (PDF) of the RVs and the
product of their marginal PDFs. Several definitions of MI exist
in the literature, Shannon’s MI being the most well known
(Gray 2011). Shannon’s MI for continuous RVs X and Y with
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joint PDF fy (-, -) is defined as

MIS(X, ¥) = DyeCfyyll/iy)
= /ffx,y logfy y dx dy
— [ferogfy dx— [floef v, @

where Dg; (-||) is the Kullback-Leibler divergence and
@ = [fy&ody, f, () = [fyy @ y)dx are the mar-
ginal PDFs of X and Y, respectively. Computing MI using
Equation (2) is a difficult task, as it requires estimating the
joint and marginal PDFs of the RVs. Ideally we want to
avoid posing assumptions on the PDFs, hence we focus on
non-parametric estimators. Two widely used approaches to
compute MI through PDF estimation are the kernel density
(KDE; Moon et al. 1995) and k-nearest neighbors (KNN;
Kraskov et al. 2004) estimators. A review of these and other MI
estimators using short data sets (50 samples) can be found in
Khan et al. (2007).

In this work we intend to avoid the estimation of the PDF by
using MI definitions arising from generalized divergences.
Such MI estimators have been proposed in the information
theoretic learning (ITL; Xu 1999; Principe et al. 2000; Principe
2010) literature. In what follows we present the derivation of
two MI definitions for continuous RVs from the ITL frame-
work. Starting from the Euclidean distance between PDFs

Den(fW)llgt) = [(£) — g(x))? dx,

the Euclidean distance quadratic MI (Xu 1999; Principe 2010)
between RVs X and Y is defined as

QMIgp(X, Y) = Dep(fy y (x, W |fx C)fy (7))
= f/f)%,y dx dy — fofx,yfxfy dx dy

+ ff,% dxffyz dy
=V, = 2Ve + Vi, (3)

where fy y (-, -) is the joint PDF of X and Y, while fx(-) and fy(")
are the marginal PDFs, respectively.

The terms V;, Vy,, and Vi correspond to the integrals of the
squared joint PDF, the squared product of the marginal PDFs,
and the product of joint PDF and marginal PDFs, respectively.
The ITL framework provides an estimator of these quantities
that can be computed directly from data samples. This
estimator is called the information potential (IP; Principe 2010)
of an RV and it corresponds to the expected value of its PDF.
Note that the expected value of a PDF is equivalent to the
integral of the squared PDF. Appendix A shows how the IP
estimator is derived. Assuming that we have {x;, y;}i=1, ..~
independent and identically distributed (iid) realizations of RVs
X and Y, and using the IP estimator, the following expressions
are obtained:

Y
Vu = IPxIPy = | — > G 3 — x))
N= =

| NN
“ |32 > G = | “4)

ij=1
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Vi =1Pxy = Z Z G an(xi —x)G 30 (y; — )y (5)
i=1 j=1
and
| N
VC:IPXXY—NZ Z S (X — x;)
1
X [=22Gan =y | (6)
N
where

Gi(x) =

[
(N
N2mh p( 2h?
is the Gaussian kernel with bandwidth h. Note how the
integrals have been replaced by sums of pairwise differences
between data samples.
The second ITL quadratic MI that we consider in this work is

obtained by defining a divergence measure based on the
Cauchy—Schwarz inequality:

(Jfew d)C)2
Jr o2 dx fg@)? dx’

Then, the Cauchy—Schwarz quadratic MI (Principe et al. 2000;
Principe 2010) for continuous RVs X and Y is

QMlcs(X, Y) = Des(fy,y (6, W fx (Ofy ()
= log //f)?,y dx dy — 2log //fx’yfxfy dx dy
+1og [ £} ax [} dy
=logV; — 2log V¢ + log Vi,

Des(f (0)|g(x)) = —log

®)

where V,,, V;, and V¢ are computed using Equations (4), (5),
and (6), respectively. In the following sections we adapt these
quadratic mutual information (QMI) estimators for the case of
period estimation in light curves.

3. Methods
3.1. Generating Synthetic LSST Light Curves

In this section we describe the procedure to generate
synthetic light curves using the LSST Operation Simulator
(OpSim) and the Catalog Simulator (CatSim) tools. In its
normal operation regime the LSST will visit the same field
every three nights. Six bands will be available (ugrizy). The
single-visit 50 depth in the r-band will be approximately 24.5.
The actual cadence will depend on weather conditions, slew
and filter-change times, and downtime due to maintenance,
among other factors. The OpSim simulates these factors to
produce multiband pointings that are consistent with the LSST
scientific drivers.

The CatSim provides tools to generate different types of
sources. In our case we are interested in generating periodic
variable stars. CatSim requires the user to specify a normalizing
magnitude, spectral energy distribution (SED), and a template.
The template file sets the variability type and the period of the
resulting light curve. Templates of Cepheids (CEPH), ab-type
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RR Lyrae (RRab), and c-type RR Lyrae (RRc) are available,
among other models. The CatSim RR Lyrae models correspond
to Sesar et al. (2010) Stripe 82 Sloan Digital Sky Survey
templates. SEDs of modeled main sequence stars are also
available.

The procedure we use to generate a synthetic light curve is as
follows:

1. Select a variability model, e.g., CEPH, RRab or RRc.

2. Randomly select a template associated to the variability
type. This defines the period.

3. Randomly select a SED profile.

4. Randomly select a normalizing magnitude by drawing
from U0, 25), where U(a, b) is the Uniform
distribution.

5. Randomly select an MJD for the initial phase of the
template by drawing from U(59580, 60580).

6. Randomly select a position in the sky by drawing R.A.
from U(65, 75) and decl. from U(—30, —20).

7. Generate the object using CatSim StellarLightCurveGen-
erator class.

8. Generate a set of multiband pointings for the synthetic
object using OpSim according to its position in the sky.

As we are only interested in estimating period recovery, we do
not aim to model a realistic sky distribution of these variables.
A python code that executes this procedure and also the
resulting light curves used in this paper can be found at
github.com/phuijse/LSST_simulations. To run this code,
previous installation of the LSST simulations framework is
required.” We run this procedure to generate a set containing
1000 synthetic LSST light curves for each variability type.

This procedure generates a “clean” light curve {f;, m;, o;}°
with i = 1, ..., N, where ¢ corresponds to a time instant in
MID, m is the stellar magnitude, o is the photometric error, and
b denotes the band index. Bands may have a different number
of points N,. The photometric error is generated according to
Equation (4) of (Ivezi¢ et al. 2008).

The last step to produce a realistic light curve is to
contaminate the clean magnitude values m with the photometric
error o. This is done by drawing a standard normal RV {r;} of
length N, and then updating the magnitudes as 7; = m; + r0;.
For each of the “clean” light curves we draw 10 contaminated
light curves, thus increasing the size of the set to 10000 per
variability type. Figure 1 shows an example of a synthetic
RRab light curve before and after the contamination process.

3.2. Period Estimation by Maximizing Mutual Information

We propose to use MI estimators to detect the underlying
period in variable star light curves. In this section we present
the rationale behind this proposition. We start by applying the
epoch-folding transformation for a certain trial period
(Equation (1)) to the unevenly sampled time instants in order
to obtain the phase diagram {¢;, m;, 0;};=1, ... n. We assume
that the light curve is periodic with an unknown period. The
phases {¢;} correspond to our non-parametric model of the
periodicity, while {m;} correspond to our noisy observations.
As usual {o;} are the estimated errors on our observations.

If the light curve is periodic with period Py, then folding
with this period will yield the model that best explains

7 Instructions can be found at https: //confluence.lsstcorp.org/display /SIM/
Catalog-+Simulations+Documentation
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Figure 1. Synthetic ab-type RR Lyrae light curve with a period of 0.64698 days. The upper row corresponds to the clean light curve obtained using the LSST tools and
its respective phase diagram. The lower row corresponds to a contaminated realization of the original light curve. In the lower right plot the line corresponds to the

clean light curve.

our observations. This can be measured by calculating the MI
between phases and magnitudes, i.e., the amount of
information shared by the model and observations. We can
test several models (foldings) and find the one that maximizes
MI to detect the best period. Second-order methods (e.g.,
correlation) are limited to detecting linear relations. More
robust periodicity detection methods can be obtained using
MI, which overcomes this limitation. Note that MI requires
iid realizations of the RVs. Although light curves are time-
series and hence there exist serial correlations in time, these
correlations are broken in the phase diagram. Appendix B
refers to this issue in detail.

A second interpretation of using MI for periodicity
detection relies on MI’s definition as the divergence
(statistical distance) between the joint PDF and the marginal
PDF of the RVs. If the light curve is folded with the wrong
period, the structure in the joint PDF will be almost equal to
the product of the marginal PDFs, i.e., magnitudes are
independent of the phases. On the other hand, if the correct
period is chosen, the joint PDF will present a structure that is
not captured by the product of the marginals. By maximizing
MI we are maximizing the dependency between model and
observations.

Let’s denote M and ® as the RVs associated with magnitude
and phase, respectively. We can estimate the PDF of M, given
its realizations using KDE, as follows:

Sy (m) = Z Gm(m

2|~

1 1 (
=—) ———exp

NZ J2m(o? + h2)
where each sample m; has a bandwidth that incorporates the
KDE bandwidth #,, and its given uncertainty o;. As ® is a
periodic RV, we need a periodic kernel to appropriately
estimate its PDF. We consider a kernel arising from the

2
1 M) )
2 (0‘ + h,n)

Wrapped Cauchy (WC) distribution (Jammalamadaka et al.
2001) and estimate ®’s PDF as

N
1o(@) =+ 3 W (6~ 0)
P 1 — e
27N ; 1 + e 2o — 2¢7hocos2m(p — @)

(10)

where hg € (0, 00) is the scale of the Cauchy distribution. For
hy — oo the WC kernel behaves like the circular uniform
distribution, while for h, — 0 it concentrates on its mean. The
WC kernel is symmetric, translation-invariant, and closed
under convolution® (Jammalamadaka et al. 2001). Being closed
under convolution is desirable because it allow us to compute
information potentials efficiently. The joint PDF of ® and M is
estimated as

Jo (¢, m) m;) - WG, (¢ — ¢,).

Y

because the multiplication of valid kernel functions is also a
kernel.

Figure 2 shows the estimated joint and product of marginal
PDFs of a synthetic ab-type RR Lyrae for three different trial
periods, its real period (0.682 days), the sidereal day (0.9973
days), and a random period. By inspecting the PDFs we can see
that the difference between the joint (middle column) and
marginals (right column) is greater when folding with the true
period (first row).

In Section 2 we reviewed the quadratic MI estimators based
on the Euclidean distance (Equation (3)) and the Cauchy-—
Schwarz (CS) divergence (Equation (8)). These estimators

1 N
=52 O oz (m =
NS

8 The convolution of two WC kernels is a WC kernel.
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Figure 2. Folded light curve of a synthetic ab-type RR Lyrae light curve (first column). The light curve is folded using its real period (first row), the sidereal day
(second row), and a random period (third row). The second and third columns show the joint PDF and the product of the marginal PDFs of the phases and magnitudes
of the light curve. The fourth column is the absolute value of the difference between the joint and marginals. A correctly folded light curve produces a large statistical
distance between the joint and marginals.
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Figure 4. Rows corresponds to different bands (ugriz) of the same synthetic LSST RR Lyrae light curve. The first column shows the light curve folded with its true
period, where blue dots and orange crosses correspond to the first 10 and second 10 samples per band, respectively. The second and third columns correspond to the
QMIgp, using 10 samples (dots), and 20 samples (dots and crosses), respectively. For reference we include the Lomb—Scargle periodogram (twenty samples) in the
fourth column. The true period is shaded with a solid orange line, while the maximum of the periodogram is shaded with a dashed green line.

interest us because they are robust dependency measures and
are computed directly from the data, bypassing the estimation
of PDFs. Computing these estimators requires calculating the
information potentials given by Equations (4)—(6). If we use the
Gaussian kernel for the magnitudes and the WC kernel for

phases we obtain
1 N
Py, = FZ G fnzrorior (mi — m)), 12)

i=1 j=1
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where the Gaussian kernel is used for the magnitudes and the

| NN
[Py = N2 Z Z WCan,(¢; = s (13) wrapped Cauchy kernel is used for the phases. Through these
=1y=1 potentials we restate the QMI estimators as
Py = Nz Zl Zl G fizrotior i = m)WCa (¢ = ¢, (14) QMIgp(®, M) = TPy — 2IPg s + IPgIPy, (16)
i=1]
and and

. . QMlcs(®, M) = log IPg 3y — 210g IPs i
1 ! + log IPy + log 1Py, 17
IP@XM—NEZ:I N;G,/Zh,ﬁ-ﬁ-a%-&-(f%(mi_mj) . g Fe g Fm (17)

respectively.

1N The period of a light curve is estimated by maximizing the
<y 2 Z WCa (9; — &) |- (15) QMI for a range of trial periods. This yields a QMI
Jj=1 periodogram. As an example, in Figure 3 we compute the



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 236:12 (14pp), 2018 May

12 samples
0.5 1 —— QMIgp
QMg
0.4 1 -+- AOV
3 -+- GLS
= 0.3 1
—
= 0.2+
0.1+
__________ }-===s-—>-
0.0 4= ==
T T T T T
<21 [21,22] [22,23] [23,24] > 24
I mag
36 samples
1.0 Hee—
N\
Ee———
S~o
0.8 1 """"1\\\\
© NI
) \\
= 0.6 1 \
= AR
—— QMg N
QMIg \‘\\
047 =f- AOV Xy
-+- GLS Y
T T T T T
<21 [21,22] [22,23] [23,24] >24

r mag

Hit rate

Hit rate

Huijse et al.

24 samples
1.0
\\ —— QMI,
Ml g
0.8 N QMles
k\x\ \ _J|'- AOV
F~o_ | =#- GLS
0.6 1 ~N
\
/”l\\\\\
~
0.4 1 I__,—#’ \§\\\
0.2 A AN ]
AN
AN
N
0.0 T T T T T
<21 [21,22] [22,23] [23,24] >24
r mag
48 samples
10—
————f \
Qg‘h__—4~_:—+__~i
3 -
\\\\ ‘\
0.8 1 5N
\
%
0.7 T
\
—— QMIgp W\
0.6 QMI,g W |
|
- ()Y )
0.5 4 1
<71 -+- GLS N
T T T T T
<21 [21,22] [22,23] [23,24] >24

r mag

Figure 7. Average hit rate for different period detection methods as a function of the r-band magnitude. Each plot corresponds to a different light curve length. All
light curves correspond to ab-type RR Lyrae. LSST will produce an average of 18.4 samples per year in the r-band.

QMlIs and QMlIgp and plot them as a function of frequency
for the same light curve used to obtain Figure 2. In both cases
the underlying period corresponds to the global maximum. In
the following section we discuss how to apply the QMI in
multiband light curves.

3.3. Period Estimation in Multiband LSST Light Curves Using
Quadratic MI

LSST light curves are characterized for being randomly
and sparsely sampled. Methods for period detection that
do not aggregate data from all the available bands are likely
to fail, especially when few samples per band are available.
In this section we show that the QMI periodogram can
be easily extended to the case of multiband light curves. An
efficient way to take advantage of the multiple bands is
simply to combine the QMI obtained for every single band.
But, an average QMI periodogram requires the individual
periodograms to be on the same scale. As explained in
Principe (2010) the QMI lacks a consistent absolute
interpretation because it depends on its parameters, the
kernel bandwidths. From Principe (2010) we extract the
following conditions regarding comparisons between
QMI values: (a) the kernel bandwidth has to be selected
to be proportional to the dynamic range of the data and (b)
the kernel bandwidth has to be a function of the number of
samples and the QMI has to be normalized by its upper

bound. The upper bound of the QMI estimators will be
studied in the future. In the following experiments we use the
same number of samples per band, hence the upper bounds
can be ignored.

In our case we have two parameters k4 and h,,. The former
is associated to the phases that are always constrained to [0,
27], i.e., the dynamic range of this variable is fixed. QMI is
not too sensitive to h, as long as it is not extremely small or
large. We have found empirically that A, = 1 is a good
choice and we keep it constant to make comparisons between
QMI values easier. The second bandwidth 4,, is more
difficult to set, as the dynamic range of the magnitudes is not
known a priori. We consider the plug-in rule from Silverman
(1986),

hy = 0.9 - min(y VAR[m], IQR[m]/1.349) - N=1/5, (18)
where VAR[m] is the variance of the magnitudes, IQR[m] is
the interquartile range of the magnitudes, and N is the number
of samples. To avoid overestimation of 4,, we use the weighted
versions of variance and IQR, with weights w; = ai_z
1, ..., N. Equation (18) complies with the conditions mentioned
before. We also explored the Sheather—Jones recurrent
estimator (Sheather & Jones 1991) and the more recently
proposed diffusion estimator (Botev et al. 2010), but their
performance was not better than Equation (18) and their

ai:
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Figure 8. Average hit rate for different period detection methods on each band (ugriz) as a function of the number of samples per band. The lower right plot
corresponds to the periodograms using all the bands. Each dot is an average of 10,000 synthetic c-type RR Lyrae light curves.

computational cost is higher. In the future, local plug-in
estimators will be tested.

If Equation (18) is used for every single band, then the QMI
periodograms can be averaged. Figure 4 shows the QMI
periodograms for the ugriz bands of a synthetic RR Lyrae light
curve. The first column corresponds to the folded light curve.
The second and third columns are the Euclidean QMI
periodograms using the first 10 points and the first 20 points,
respectively. Note how, using 10 points, the true period cannot
be found in any of the bands. When using twenty points the
period is found in the g and r bands only. For reference, we
show the LS periodogram for the case of 20 points in the fourth
column. Figure 5 shows the averaged Euclidean QMI for 10
and 20 samples per band. In both cases the true period
corresponds to the global maximum of the periodogram. This
shows that even if the period is not the maximum in the single-
band periodograms it can still be found in the combination. The
explanation for this is that the true period is likely to appear in
all bands, although not necessarily as a high peak. Spurious
periods due to sampling will not be shared between bands and
are de-emphasized in the average periodogram. In the next
section we show through extensive experiments that a large
gain in performance can be obtained by combining the QMI
periodograms.

4. Results

In this section we test the proposed method using synthetic
multiband LSST light curves. We generate variable star light
curves of type ab RR Lyrae (RRab), type ¢ RR Lyrae (RRc),

and Cepheids (CEPH) following the procedure described in
Section 3.1. We consider five bands (ugriz) in order to match
the original bands of the variability templates. Ten noisy
realizations are obtained per generated light curve. This yields a
total of 10,000 light curves per variability type.

The QMI estimators are compared to the multiband
generalizations of the LS and AoV periodograms. The
multiband QMI and AoV methods are implemented in
Cython’ and distributed as a python package called P4J."”
For the multiband LS we use the gatspy'' python package.
All periodograms are run from 0.0 to 4.0 [1/days], with a
step size of 10°* [1/days]. The kernel bandwidth #,, is set
using Equation (18) and h, = 1 in all the experiments. The
AOV and generalized LS (GLS) implementations allow for
multiharmonic models. We present results using three
harmonics,'? as this configuration obtains a higher hit rate.
For the multiharmonic GLS, a conservative regularization
term was considered to avoid singularities. All routines are
single-core and parallelization is done at a time-series level.
Details on how to set the periodograms using P4 J are given
in Appendix C.

We consider the period associated with the global maximum
of the periodogram as the detected period Pp. The ability to
recover the true period P is measured in terms of hit rate (HR).

® hitp://cython.org/
10 Available at github.com/phuijse/P4J and through PyPL
1 hep: //www.astroml.org/gatspy/

12 Truncated Fourier series model with fundamental frequency fo, 2 times fo,
and 3 times f; terms.


http://cython.org/
http://github.com/phuijse/P4J
http://www.astroml.org/gatspy/
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Figure 9. Average hit rate for different period detection methods as a function of the r-band magnitude. Each plot corresponds to a different light curve length. All

light curves correspond to c-type RR Lyrae.

We follow Oluseyi et al. (2012) and define HR as the number
of cases where

|Pp — Pr|
P;

rel —

< tol,

divided by the total number of light curves. Tolerance (tol)
decreases as a function of P7. Detecting a harmonic or an alias
of the true period is considered a failure. In all experiments the
tolerance is set to le — 3.

In addition to the multiband periodograms, we also evaluate
the results on each of the five ugriz bands independently. The
robustness against the length of the light curves, i.e., the
amount of samples required to detect the period, is also studied.
Each light curve is evaluated using its first 12, 24, 36, and 48
samples, respectively. Figure 6 shows the results of this
experiment in the case of RRab templates. Each plot
corresponds to one of the ugriz bands, while the lower right
plot corresponds to the multiband result. In the single-band
tests all methods yield a similar performance, but in the
multiband test the two information theoretic estimators outper-
form second-order methods. In all tests the difference between
the Euclidean and Cauchy—Schwarz QMI hit rates is less than
1% (their difference is barely noticed in the plots). All methods
benefit when aggregating data from the five bands with respect
to the best single-band result. Information theoretic (IT)

10

methods yield the largest absolute increase in hit rate when
aggregating the data (up to 40%). Single-band best results are
obtained in g, which is expected, as RR Lyrae are inherently
more variable in this filter.

Figure 7 shows the multiband hit rates averaged over
different ranges of the magnitude in the r-band. Each plot
corresponds to a different light curve length (sample size). The
signal-to-noise ratio (S/N) decreases with magnitude. As
expected, HR increases with light curve length and decreases
with magnitude for all methods. Both QMI estimators have a
similar performance, except in the 12-sample case where the
Euclidean QMI performs better than CS QMI, suggesting that
the former might be more robust to low sample size. QMI
estimators outperform second-order methods in all cases. This
is more noticeable for shorter light curves, with the absolute
HR margin growing from 10% to 30% (Euclidean QMI versus
multiband GLS). This shows that QMI estimators can detect
the true period faster (in survey time) than second-order
methods. The multiband AoV performs slightly better than the
multiband GLS in the 48-sample case. On the other hand, GLS
performs considerably better than AoV at shorter light curve
lengths and brighter magnitudes. In the 24-sample case the
performance of AoV decreases with S/N, and AoV tends to
recover the harmonics of the true period more frequently in this
regime. In all cases, the difference in hit rate between methods
decreases when approaching the r-band 5o limit of 24.5.
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Figure 10. Average hit rate for different period detection methods on each band (ugriz) as a function of the number of samples per band. The lower right plot
corresponds to the periodograms using all the bands. Each dot is an average of 10,000 synthetic Cepheid light curves.

Figure 8 shows the results obtained using the RRc templates.
Again we can see that single-band results are only marginally
different between methods. As with RRab, single-band best
results are obtained in the g-band. The lower right plot shows
the multiband results. In the multiband case the QMI based
methods see an increase in hit rate between 15% and 40% with
respect to single-band best results, outperforming second-order
methods. Figure 9 shows the multiband results in more detail.
The QMI methods perform better than second-order methods in
all cases, and the difference in HR grows for shorter light
curves. Both QMI estimators perform similarly, except in the
12-sample case where the Euclidean estimator performs better.

Figure 10 shows the results obtained with the CEPH templates.
QMI estimators outperform their competitors in the multiband
case, but perform worse in the single g- and r-band cases.
Interestingly, there is little gain when aggregating bands for the
AoV periodogram. On the other hand, QMI methods see an
absolute increase in HR from 10% to 50%. The Euclidean QMI
performs slightly better than the CS QMI in all tests. Figure 11
shows the multiband results in greater detail. The Euclidean QMI
performs better than the CS QMI when sample size decreases.
QMI methods perform better than second-order methods, and
again this is more evident when sample size decreases (shorter
light curves). The GLS performs better than AoV, except in the
48-sample case. Once again, we note a strong tendency of AoV to
recover a harmonic of the true period for brighter magnitudes and
smaller sample sizes.

Table 1 shows the computational time required to calculate a
complete periodogram using our library, on time-series of
different lengths (time is an average of 100 repetitions).

11

Computational time is measured on an Intel i5-4460 CPU at
3.20 GHz. Computational time is on the same order of
magnitude, but due to the increased computational complexity
of QMI estimators, they scale worse with the number of
samples. We are working on approximations of the information
potential estimator to reduce the computational time in the case
of dense light curves.

5. Conclusions and Future Work

In this paper we have proposed an estimator of the QMI
for estimating periods in light curves. By maximizing the QMI
between the phases and the magnitudes of a light
curve, the underlying period can be estimated. Contrary to
second-order methods, the QMI extracts information from the
whole PDF, is not restricted to linear relations between
variables and is more robust to non-Gaussian (heavy-tailed)
noise. Efficient Cython implementations of the methods
presented in this paper are freely available through github
and PyPI.

We have applied the QMI for period estimation in sparse
multiband light curves of variable stars generated with the LSST
simulation tools. The OpSim and CatSim tools allow us to build a
database of realistic synthetic light curves with multiband
pointings, cadence, and noise distribution as expected by the
LSST. Our results show that the QMI outperforms the multiband
generalizations of the LS and AoV periodograms for all variability
types. The QMI is efficient at aggregating data from several
sparsely sampled bands, presenting an absolute hit rate increase up
to 50% with respect to the best single-band results. We have
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Figure 11. Average hit rate for different period detection methods as a function of the r-band magnitude. Each plot corresponds to a different light curve length. All

light curves correspond to Cepheids.

Table 1
Computational Time (seconds) Using P4J to Compute a Periodogram on a
Single Time-series (Averaged over 100 Repetitions)

Number of Samples Euclidean QMI AOV

12 0.074 £ 0.012 0.078 £ 0.011
24 0.185 £+ 0.013 0.123 £ 0.017
36 0.298 + 0.031 0.167 £ 0.018
48 0.492 + 0.028 0.225 £ 0.025

Note. AoV is computed with three harmonics.

observed that the performance gap with second-order methods is
more noticeable when the length of the light curve decreases
(smaller sample sizes). The multiband QMI is more robust to
noise and it can detect the true period faster (survey time) than
second-order methods.

In our proposition we combine the single-band QMI period-
ograms, allowing us to detect the period even when individual
periodograms cannot. However, this does not exploit the
interaction between bands directly. We recognize an extension
to this proposition that involves calculating QMI cross-products
between bands. Although we note that this would increase the
computational complexity, we have preliminary results that
show that using these cross-products allows for even more
robustness against low sample size and noise.
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One weakness of the proposed estimator is that it scales
quadratically with the number of samples, making it expensive
to compute for dense data (more than 100 samples per band).
We plan to include a Fast-Gauss transform implementation of
the information potential estimator in our library in the near
future to partially solve this. We will also study new ways to
estimate MI that might be more efficient, such as the
propositions in Giraldo et al. (2015).

Future work should also include a more profound analysis of the
differences between the Euclidean and Cauchy—Schwarz QMI, and
should study the upper bounds of these estimators. We expect to
develop relative QMI estimators that allow us to compare results
between different light curves, which is key to developing
statistical criteria based on the QMI distribution to avoid the cost
of case-by-case bootstrap analysis. In this work we focused on
quadratic (order 2) entropy and MI estimators. In the future we will
test MI estimators of different orders and study their properties.
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Appendix A
Information Theoretic Learning

ITL (Principe et al. 2000; Principe 2010) is a framework to
bring information theoretic criteria into machine-learning (ML)
methods. Traditionally, ML methods are trained via optimizing
a second-order loss function, e.g., the mean square error and
correlation. In ITL these quantities are replaced by information
theoretic criteria that describe the PDF, e.g., entropy and MI.
ITL criteria extract more information from data, improving the
performance of the methods. By going beyond the second-
order moment ITL criteria gain robustness in realistic scenarios
where the Gaussianity assumption does not hold, e.g., under the
presence of heavy-tailed noise and outliers.

In ITL a strong emphasis is given to the estimation of these
quantities directly from data in a non-parametric way. As an
example, consider the ITL estimation of Renyi’s second-order
generalization H, (X) of Shannon’s entropy (Principe 2010) of
a continuous RV defined as

H(X) = —log f fo ()2 dx, (19)
where fx(x) is the RV’s PDF. Assuming that we have
{x;}i=1, ... n realizations of the RV, its PDF can be computed
using a kernel density estimator (KDE)

(20)
where Gy(-) is the Gaussian kernel with bandwidth h. By
replacing Equation (20) in Equation (19) and then using the

[|x —x,||

1 N
fX(X):N;Gh(x*xi)—N\/—hZe p( o
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Gaussian convolution property'® we obtain
N N
[ 323 Gutx = 50 Gutx — 3 di,

i—1j—1

ZZG«/_I’[(XL -

i=1 j=1

1
HZ(X) = 710gm

= flog xj) = —log 1Py,

21

where IPy is the Information Potential (IP), an estimator of the
expected value of the PDF of X (Principe 2010), although it is
estimated directly from the data samples, bypassing the
estimation of the PDF. Other symmetric and translation-
invariant kernels can be used, but it is convenient to use kernels
that are closed under convolution.

Appendix B
Testing the iid Hypothesis in the Phase Diagram

For the estimation of MI we assume that the samples from our
joint PDF f(®, M) are independent and identically distributed, i.e.,
all realizations come from the same continuous distribution and no
serial correlations exist between realizations. Light curves are time-
series, so we expect to find temporal correlations, although
sampling is pseudo-random and does not obey Nyquist’s theorem
(Eyer & Bartholdi 1999). Phase is a function of time and period,
and several periods are tested per light curve. If the period is not
related to the underlying periodicity of the data, the phase diagram
is filled uniformly and serial correlations in the joint space are
broken. This is shown in Figure 12 for a periodic light curve. The
plot on the left shows that for most frequencies (foldings), the
slotted autocorrelation drops very fast. Assuming that the light
curve is stationary (no trends) we can partition the phase-magnitude
space in equally sized bins and compute a two-dimensional
Kolmogorov-Smirnov (KS) test (Fasano & Franceschini 1987)14 to
consider the null hypothesis that the binned distributions are equal.
Figure 12 (right) shows the logarithm of the average p-value as a
function of frequency. In the majority of cases we cannot reject the
null at 10% significance. We evaluate a subset of 1000 light curves
with different periods and found these results to be consistent. This

'3 The convolution of two Gaussian functions is also a Gaussian.
14 Implemented at github.com/syrte /ndtest.


http://github.com/syrte/ndtest
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explains why MI works well in practice when applied to the
folded data.

Appendix C
Using the P4J Python Library

Listing 1 demonstrates how to compute the QMI periodogram
using the python P4]J library (github.com/phuijse/P4J). The data
used for this paper and multiband evaluation scripts based on
P4J can be found at github.com/phuijse/LSST_simulations.

Listing 1. “P4J demonstration”

import P4J

# Assuming that mjd, mag and err are N-length numpy arrays

# Using the Euclidean QMI periodogram
my_per=P4].periodogram(method="“"QMIEU”, debug=False)

# By default silverman’s rule is used and hp=I

my_per.set_data(mjd, mag, err, whitten=False)
my_per.frequency_grid_evaluation(fmin=0.0, fmax=4.0, fresolution=1e-4)
# You may want to finetune the estimations around the maxima
my_per.finetune_best_frequencies(fresolution=1e-5, n_local_optima=10)
# If you want the whole periodogram

freq, per~=~my_per.get_periodogram()

# If you only want to retrieve the best frequencies

fbest, pbest~=~my_per.get_best_frequencies()

# Other available methods are QMICS, MHAOV, PDM1 and LKSL
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