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Robust Multiview Data Analysis Through
Collective Low-Rank Subspace

Zhengming Ding, Student Member, IEEE, and Yun Fu, Senior Member, IEEE

Abstract— Multiview data are of great abundance in real-world
applications, since various viewpoints and multiple sensors desire
to represent the data in a better way. Conventional multiview
learning methods aimed to learn multiple view-specific trans-
formations meanwhile assumed the view knowledge of training,
and test data were available in advance. However, they would fail
when we do not have any prior knowledge for the probe data’s
view information, since the correct view-specific projections
cannot be utilized to extract effective feature representations.
In this paper, we develop a collective low-rank subspace (CLRS)
algorithm to deal with this problem in multiview data analysis.
CLRS attempts to reduce the semantic gap across multiple
views through seeking a view-free low-rank projection shared
by multiple view-specific transformations. Moreover, we exploit
low-rank reconstruction to build a bridge between the view-
specific features and those view-free ones transformed with
the CLRS. Furthermore, a supervised cross-view regularizer is
developed to couple the within-class data across different views
to make the learned collective subspace more discriminative.
Our CLRS makes our algorithm more flexible when addressing
the challenging issue without any prior knowledge of the probe
data’s view information. To that end, two different settings
of experiments on several multiview benchmarks are designed
to evaluate the proposed approach. Experimental results have
verified the effective performance of our proposed method by
comparing with the state-of-the-art algorithms.

Index Terms— Low rank, multiview data, transfer learning.

I. INTRODUCTION

MULTIVIEW data analysis has attracted a great deal of
attention recently [1]–[10], since multiview data are

frequently seen in reality. Take face image as an example.
Various viewpoints would generate cross-pose face images
while different devices would generate different modalities,
e.g., low-resolution face taken by a cellphone or even collected
with near-infrared sensor. This results in the difficult issue that
face images could be from various viewpoints, even hetero-
geneous [1]–[4], [11]. Such data with large view divergence
would result in a challenging learning problem, in which data
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lying in different views show a large divergence, and therefore,
they cannot be directly compared. In general, different views
can be treated as different domains drawn from different
distributions. Therefore, it is the key to adapt one view to
another view to minimize the distribution divergences across
them. In this paper, we mainly focus on the specific multiview
learning problem, in which data have the same feature set but
different probability distributions, e.g., the multipose image
classification and multimodal image classification.
In general, three categories of techniques are proposed to

deal with the multiview data problems, i.e., feature adapta-
tion [12], [13], classifiers adaptation [14], and deep learn-
ing [15]. Specifically, feature adaptation methods are designed
to find a common view-free space, in which the multiview data
could be aligned well, while classifier adaptation approaches
tend to generalize classifiers trained on some specific views to
others. Deep learning algorithms focus on constructing deep
structures to extract more discriminative features shared by
different views to mitigate the view divergence. Our algorithm
follows feature adaptation fashion, specifically the subspace
learning scenario.
Conventional multiview subspace methods [2], [13] were

developed to seek many view-specific projections, which trans-
form different views into a common view-free space. Along
this line, canonical correlation analysis (CCA) [16] was the
most representative one, which learned two projections, each
for one view, to align two-view data into the shared space,
respectively. Furthermore, multiview CCA [17] was proposed
and extended to multiple view cases based on CCA. Following
this, Kan et al. [13] designed a multiview discriminant analy-
sis (MvDA) algorithm, which sought an effective shared space
by joining multiple view-specific linear projections learning
and Fisher constraint in a unified framework. One common
drawback is that those previous studies mainly dealt with
the multiview learning tasks by applying one labeled view
to predict another unlabeled view. Hence, we have to know
the view knowledge of training and test data ahead of time.
Only with view information at hand can the view-specific
projections be adopted to the exact views; therefore, we need
a lot of prior knowledge in real-world multiview learning
scenarios.
Unfortunately, we cannot always obtain the test data’s view

information in advance at many real-world scenarios, since
the test data are always accessible during evaluation. For
example, a face image could be captured at running time
with view-unknown camera so that we cannot get its exact
view knowledge. In such cases, conventional multiview learn-
ing methods cannot work, since they only built multiple view-
specific projections during training stage [2], [13], [16], which

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



DING AND FU: ROBUST MULTIVIEW DATA ANALYSIS THROUGH CLRS 1987

Fig. 1. Framework of our proposed CLRS algorithm. Here, we show three views (poses) and the same color represents the same view, while each view
consists of three classes (the same shape denotes the data with same label). (a) We still adopt multiple view-specific projections {P1, P2,P3} for three views
{X1, X2, X3} during the training stage. (b) Aiming to address the view-unknown testing data, we seek a surrogate by learning a low-rank shared transformation
P for data D with three mixed views. (c) To further uncover more shared knowledge across multiple views, we adopt low-rank sparse decomposition to make
the common P capture more shared information across those view-specific ones (Pi = P + Si , where Si is the sparse residue of the i-th view projection).
Furthermore, multitask low-rank reconstruction P�

i Xi = P� DZi + Ei is adopted to capture the classwise structures of the data so that the data projected
with view-specific projections P�

i Xi tend to be correlated to the mixed data drawn from the shared subspace P� D in a classwise fashion. To this end, our
proposed CLRS is able to uncover more view-invariant knowledge with the extra view information. With a supervised Fisher term �(P, Z) on reconstructed
clean data P� DZ = [P� DZ1, . . . , P� DZk ] ≈ [P�

1 X1, . . . , P�
k Xk ], our CLRS can well align cross-view data within the same class to make the learned

CLRS P more discriminative.

are not helpful for each view-known test data. Another phe-
nomenon is that the test images can be in the same distribution
with the training data or totally different distributions from
the training data. This leads to two scenarios: “traditional
multiview learning” and “multiview transfer learning.” When
fighting off the multiview data with no prior knowledge either
view information or label knowledge or both, we can ask help
from an auxiliary multiview sources to facilitate the learning
problem. In this scenario, transfer learning [18] has shown
appealing performance in dealing with such a challenge. Along
this line, feature adaption is a popular strategy in transfer learn-
ing, which aims to extract effective domain invariant features
to reduce the domain shift so that the source knowledge could
be transferred to the target [19]–[21].
Furthermore, low-rank modeling [22]–[24] has been well

exploited in transfer learning [20] and robust subspace learn-
ing [25], [26] in the recent years. Low-rank constraint origi-
nally helps uncover the global structure of the data and detect
noise or outliers. Robust subspace learning unifies low-rank
modeling and dimensionality reduction to a framework by
leveraging the merit of both [25], while low-rank transfer
learning algorithms aim to uncover the intrinsic structure
across source and target domains, which means each cluster in
source domain is only reconstructed by one cluster in the target
domain [20], [21]. To this end, marginal and conditional dis-
tribution discrepancy across source and target domains would
be mitigated. Therefore, low-rank transfer learning can be an
appealing data alignment tool for different distributions. In this
way, low-rank reconstruction can build a bridge between view-
known data and mixed view data, either in robust subspace

learning or transfer learning scenario when addressing the
multiview challenge.
In this paper, we develop a novel multiview learn-

ing algorithm, named collective low-rank subspace (CLRS),
to deal with the challenge where the view knowledge of
the test data is unavailable during the learning task (Fig. 1).
Following conventional multiview subspace learning algori-
thms [2], [13], [17], we also learn the view-specific transfor-
mations for view-known training data to project the data into
a latent view-free space in the training stage. Since we do not
know the probe data’s view information, we need to find a
surrogate to preserve as much class information as possible,
meanwhile reducing the impact of view divergence for mixed
view-unknown test data, either in the same distribution or dif-
ferent distributions. On the account, the multiple view-specific
projections all preserve the within-class knowledge for its
specific view. In other words, those view-specific projections
should have the similar discriminability for classification in
different views. In other words, it is essential to find the
consistent knowledge across multiple view-specific projections
for view-unknown test data. This is also the core idea and
uppermost contribution of this paper.

A. Our Contributions

To seek a more effective projection for view-unknown test
data, we employ a collective low-rank projection to uncover
most of the compatible structure across multiple view-specific
projections, which are decomposed into the common part and
sparse unique parts. To this end, our proposed algorithm is
more flexible to solve real-world multiview problems when we
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cannot have the view or even label information for the probe
data at hand. Finally, we summarize our key contributions in
three folds.
1) A CLRS is built through multiple view-specific projec-
tions by integrating unique parts into sparsity, so that our
CLRS uncovers more shared information across different
views. With low-rank constraints employed between the
view-specific transformed data and commonly projected
data under a multitask scheme, our method digs out more
intrinsic information by gathering cross-view data within
the same class together.

2) A cross-view discriminative regularizer is incorporated
to align new representations of view-specific data from
different tasks. This regularizer aims to align within-
class data across multiple views by making full use of
the supervised information at hand, therefore, our model
can learn a more discriminative and robust collective
subspace for multiview data analysis.

3) CLRS is a general method, which could be simply
generalized to various learning problems (for example,
conventional multiview learning and multiview transfer
learning), by adapting different inputs. Two scenarios
of experiments on several multiview benchmarks are
conducted to evaluate the performance of our algorithm.

The remaining parts of this paper are presented as follows.
In Section II, we provide a brief review of the related works
and discuss the difference between theirs and ours. We present
our novel CLRS algorithm in Section III, as well as the
solution and complexity analysis of our method. Experimental
analyses on two different scenarios are shown in Section IV,
followed with the conclusion in Section V.

II. RELATED WORK

In this section, we first briefly review several related works,
and then, we highlight the difference of this paper to the related
ones.
Conventional multiview data analysis assumes that the view

knowledge of the test data is known ahead. Therefore, its set-
ting is usually using one or more views with labels to predict
another view. Those are the popular topics belonging to this
scenario: cross-pose image recognition, heterogeneous image
recognition, and domain adaptation/transfer learning. Gener-
ally, there are three strategies: feature adaptation [12], [13],
classifiers adaptation [14], and deep learning [15].
The most popular way is adapting feature space, which is

usually achieved by seeking for a shared space, through either
subspace learning [12], [13] or dictionary learning [27]. For
instance, Kan et al. [13] designed a discriminative multiview
analysis model by seeking multiple view-specific projections
under Fisher criteria. Zheng and Jiang [27] presented an
approach to jointly build a set of view-specific dictionaries
and a common dictionary, where view-specific sparse features
and the view-shared sparse features are well aligned to trans-
fer knowledge across multiple views and mitigate the view
divergence.
Many methods attempt to adjust the classifier or boundary

to fit the target data. A straightforward way is to model a
shared classifier among different tasks, i.e., multitask learning.

Recently, SVM has been widely discussed on transfer learning
problems, such as remote sensing, images recognition, and
video analysis, where either loss function or regularizer of
SVM, or both of them are reformulated according to the
specific problem. Hoffman et al. [28] presented a novel
multi-domain model with mixed transformations, which then
developed a constrained hierarchical clustering strategy to
successfully uncover latent domains.
A deep structure for nonlinear representation learning

is capable of disentangling different explanatory factors
of variation behind data [29], which has been applied
to formulate novel learning framework for multiview data
analysis [30], [15]. Zhu et al. [30] aimed to recover the
canonical view of face images by selecting a representative
image for each identity, which is taken in the frontal view,
under neutral lighting condition and with high resolution.
Zhu et al. [15] designed a novel deep neural network to
untangle the identity and view features.
However, we cannot always know the view information

of the test data in reality. This paper is the extension to
our previous conference work [12]. Specifically, our previous
work [12] is a weakly supervised algorithm, which means we
only need to know the view knowledge of the training data.
It then builds multiple view-specific projections for training
data, meanwhile a shared low-rank projection decomposed
from them. Furthermore, the view-specific projections and the
common one are integrated into a unified low-rank reconstruc-
tion framework. In the extension, we propose a supervised
algorithm by making full advantage of the label information
and the view information. The major difference is a novel
cross-view supervised regularizer, which is developed to align
multiple views to capture more discriminative information.
As a result, another difference is the solution to those two
algorithms. Specifically, in our previous work, we stacked
multiple view-specific projections together as one to achieve
the common projection, which is more stable, since there are
less variables to be optimized. However, this solution may
cost more computation, especially when involving more views’
data. In the extension, we adopt multitask learning technique
to solve the problem. Therefore, we can optimize multiple
view-specific projections in a parallel manner to avoid a higher
dimensional subspace optimization. However, it would intro-
duce more variables to be optimized so that it becomes more
flexible to achieve the local optimal solutions. Furthermore,
we exploit a gradient descent strategy to optimize P instead
of two-separate way. In the journal extension, we present more
experimental results to verify our proposed algorithm on more
data sets.

III. ROBUST MULTIVIEW DATA ANALYSIS

In this part, we briefly present our motivation, and
then provide our CLRS for robust multiview learning.
Finally, we design the optimization solution and complexity
analysis.

A. Motivation

Research efforts on multiview learning are exploited to
seek a shared view-free representation by seeking multiple
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view-specific projections, so that the view divergence in the
observed space could be well mitigated [2], [13]. However,
conventional works only build multiple view-specific pro-
jections, since they all assume that the training and test
data’s view knowledge is already accessible. Unfortunately,
we could confront such challenges in which the probe data’s
view knowledge is unknown ahead of time. For this reason,
conventional multiview learning algorithms cannot work in
such cases, because only multiple view-specific transforma-
tions are learned, which would be invalid for the view-
unknown test data.
Fortunately, data collected from various views share the

same class information, and therefore, each view-specific
projection should have similar discriminability to separate
different classes for individual view. Kan et al. [13] mentioned
that the structure of each projection for multiview data is
similar, that is, view consistency. In this way, it is reason-
able to consider that the multiple view-specific projections
should share a lot of consistent information [29]. Furthermore,
Zhu et al. [15] provided an observation that “the identity
representations of the same category tend to be similar, even
though the data are collected in very different views, while
the view representations of images in the same view are close,
although they are across various identities.”
To that end, we attempt to seek a collective projection to

uncover more common intrinsic knowledge across multiple
views. Therefore, in this paper, we assume that the multiple
view-specific projections share a lot of consistent information,
constrained to be low rank. Hence, the common low-rank
projection can be well generalized to the view-unknown test
data. Moreover, some recent works [20], [25] were designed
to build a robust subspace through low-rank reconstruction
to make merit from both techniques. Thus, it is helpful to
incorporate low-rank reconstruction to mitigate the distribu-
tion shift between the view-specific features and the shared
features. In other words, low-rank reconstruction would guide
that the view-specific features from the same category tend to
be correlated to the view-free features within the same class.
Such strategy would capture the global structure of the data
with the help of extra prior view knowledge.

B. Collective Low-Rank Subspace

Assume we have k-view training data as X = [X1, . . . , Xk ],
and each view Xi ∈ R

d×m contains the same c classes with
m data samples. The view-specific transformation P̄i ∈ R

d×d

would be learned for the i th view Xi following the conven-
tional multiview learning [13]. Hence, each P̄i represents the
basis to expand the space of each view Xi , i.e., P̄i = Xi Ai ,
where Ai is the weight matrix [13]. As discussed before,
multiple view-specific projections have the similar discrim-
inability in their own view so that they should have a lot of
shared knowledge. Then, we manage to seek as many common
bases as possible across multiview data so that such common
basis can be generalized to view-unseen test data. To this end,
we adopt a collective low-rank transformation P̄ ∈ R

d×d to
uncover such consistent knowledge that it can be extended to
work for view-unknown test data. Specifically, we exploit low-
rank sparse decomposition by assuming each P̄i is combined

of P̄ and their unique sparse residue S̄i ∈ R
d×d , so more

common knowledge could be uncovered. Finally, the objective
function for low-rank sparse decomposition is defined in the
following:

min
P̄,S̄i ,P̄i

rank(P̄) + λ0

k∑
i=1

‖S̄i‖1

s.t. P̄i = P̄ + S̄i , i = 1, . . . , k (1)

in which rank(·) denotes the rank operator of a matrix, while
‖ ·‖1 is l1-norm that calculates the maximum absolute column
sum of a matrix. λ0 > 0 is the tradeoff to balance two
parts. So far, we seek a low-rank common basis without
dimensionality reduction. That is, we find all the d bases for
feature learning.

Remark: There are already research activities on low-rank
sparse decomposition, for example, Xia et al. [31] aimed
to seek an optimal low-rank clustering matrix from multiple
clustering results. Although the objective function is similar,
the methodology, technical idea, and applications behind are
very different. Specifically, Xia et al. [31] first achieved
multiple clustering results for each view, and then they
assumed that such multiple clustering results could generate
a low-rank common clustering result, which is treated as the
final optimal result. Therefore, they adopted low-rank sparse
decomposition to multiple clustering results to obtain the low-
rank optimal one. However, we assume that multiple view-
specific transformations share a lot of information so that we
adopt low-rank sparse decomposition to learn a CLRS for the
challenge that the view knowledge of multiview test data is
unavailable. Considering view consistency in multiview data,
the collective low-rank projection can capture most common
structure shared by multiple view-specific transformations.
That is, the deviation error matrix tends to be sparse. Further-
more, we also evaluate different types of error, e.g., sparse
norm and Frobenius norm, and we found that the results are
almost the same. That is, even we do not know what types
of the error across multiple views, we can still apply sparse
norm to model it.

C. Multiview Low-Rank Subspace Learning

Since P̄ is low rank, there are many bases very similar,
resulting in much redundant information within P̄. Assume
the rank of P̄ is p (p � d), hence, we can adopt the p
bases to extract effective features from multiview data, which
could help well deal with the curse of dimensionality. Hence,
we could transform the original problem into a fixed rank
problem as

min
P,Si,Pi

λ0

k∑
i=1

‖Si‖1

s.t.Pi = P + Si , i = 1, . . . , k, P� P = Ip (2)

where P ∈ R
d×p , Pi ∈ R

d×p , and Si ∈ R
d×p are the

p columns of P̄, P̄i , and S̄i , respectively, and we add an
orthogonal constraint P� P = Ip (Ip ∈ R

p×p is an identity
matrix) to make the P with the full rank of p.
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Recently, low-rank modeling has been broadly studied in the
global structure with the multiclass data [22]. Furthermore,
low-rank representation has been integrated into dimension-
ality reduction framework to build a robust subspace for
effective feature learning [20], [25]. Following the idea of low-
rank subspace learning, we desire to exploit low-rank repre-
sentation to build a bridge across the view-specific features
and the shared features (Fig. 1). Hence, knowledge across
multiple view-specific transformations could be transferred to
the common subspace. Due to that the real-world data are
always noisy, we design a sparse error term to figure out
the noise or outliers. Finally, the objective function can be
achieved by integrating (2) and low-rank reconstruction into a
unified framework as

min
P,Zi ,Ei ,Si ,Pi

k∑
i=1

(rank(Zi ) + λ0‖Si‖1 + λ1‖Ei‖2,1)

s.t. Pi
� Xi = P� DZi + Ei , Pi = P + Si

i = 1, . . . , k, P� P = Ip (3)

where Zi ∈ R
m̄×m is the i th low-rank reconstruction coef-

ficient. Ei ∈ R
p×m is the error term and ‖ · ‖2,1 is the

L2,1-norm, i.e., ‖Ei‖2,1 = ∑p
k=1 (

∑m
j=1([Ei ]kj )

2)1/2, which
aims to detect and remove outliers. In addition, λ1 > 0 is
the tradeoff to balance two parts. With the collective low-
rank projection, we can alleviate the multiview learning by
extracting effective features for the test data whatever view
the data are. Since rank minimization problem is an NP-hard
problem in (3), recent researches adopt nuclear norm as a
good surrogate [22].
In the above objective function, D ∈ R

d×m̄ denotes the data
with mixed k views, which has different definitions in different
scenarios. In feature learning setting, D means the dictio-
nary (m̄ is the atom size of dictionary) [22], which usually
adopts the data itself X for simplicity. In this paper, we also
directly use X as the basis. While in transfer learning setting,
D denotes the unlabeled target domain and X represents
the well-labeled source domain. We can easily understand
that we are dealing with an unlabeled multiview data set by
adapting the information from a well-learned source. Objective
function (3) would help facilitate the target learning with the
view/label knowledge of source domain.

D. Supervised Cross-View Alignment

To better utilize the label information in the training stage,
we employ a supervised graph regularizer to align cross-
view data within the same class. Model (3) only utilizes the
view information of the training data so that it works in a
same weakly supervised fashion to our previous work [12].
Moreover, model (3) exploits a multitask scheme, that is, data
from each view are reconstructed by the commonly projected
data in an individual manner. It is very important to align
different views to make the learned collective subspace more
discriminative. We first denote the projected low-dimensional
data of each view Yi = P�

i Xi (P� DZi ∈ R
p×m can be

treated as its clean version), so the multiview projected data
Y = [Y1, . . . , Yk] ≈ P� DZ = P� D[Z1, . . . , Zk] ∈ R

p×km .

Since the fact that data from multiple views are from c
different classes, these samples should be lying in c different
subspaces. Hence, each view coefficient matrix Zi tends to
be low rank. Namely, the coefficient vectors within each
view corresponding to samples within the same class should
be highly correlated. For multiview learning, it is of great
importance to couple within-class data across different views.
We propose a supervised regularization �(P, Z) based on
Fisher criterion as

�(P, Z) = tr(Sw)

tr(Sb)
(4)

where tr(M) is the trace of matrix M. Sw and Sb are the
within-class and between-class scatter matrices on P� DZ ,
respectively, defined as

Sw =
c∑

i=1

ni∑
j=1

(yi
j − μi )(yi

j − μi )
�,

Sb =
c∑

i=1
ni (μi − μ)(μi − μ)�

in which μi is the mean of the i th class in Y , μ is the overall
mean of Y , ni is the size of the i th class, and yi

j is the j th data
in the i th class of Y . With Fisher criterion, the low-dimensional
cross-view data from different classes should be far apart,
while those from the same class should be close to each other.
To better solve this problem, we convert trace-ratio problem
into a trace difference problem [25]. Furthermore, we involve
a regularization term to guarantee the convexity of �(P, Z)
to Z and reformulate (4) as

�(P, Z) = tr(Sw) − tr(Sb) + η‖P� DZ‖2F
= tr((P� DZ )(Ikm − Lw)(P� DZ)�)

− tr((P� DZ )Lb(P� DZ )�) + η‖P� DZ‖2F
= tr((P� DZ )((1+ η)Ikm − Lw − Lb)(P� DZ )�)

(5)

where η is usually a small positive value (generally, we set
η = 10−3) and ‖ · ‖2F is the matrix Frobenius norm.
Ikm ∈ R

km×km is an identity matrix. The elements of Lw

and Lb are defined as

Lw[i, j ] =
⎧⎨⎩
1

nc
, if yi and y j belong to class c

0, otherwise

Lb[i, j ] =

⎧⎪⎨⎪⎩
1

nc
− 1

km
, if yi and y j belong to class c

− 1

km
, otherwise.

Finally, we come up with the final formulation for multiview
data analysis as

min
P,Zi ,Ei ,

Si ,Pi

k∑
i=1

(‖Zi‖∗ + λ0‖Si‖1 + λ1‖Ei‖2,1) + λ2�(P, Z)

s.t. P�
i Xi = P� DZi + Ei , Pi = P + Si ,

i = 1, . . . , k, P� P = Ip (6)

where λ2 is the parameter to balance the weakly supervised
multiview parts (3) and discriminative terms (5). ‖·‖∗ denotes
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the nuclear norm of a matrix, which calculates the sum
of singular values of a matrix. To sum up, we design a
unified multiview learning framework by jointly building a
discriminative collective subspace from multiple view-specific
transformations and uncovering the data’s global structure
through low-rank reconstruction.

1) Discussion: Current multiview learning meth-
ods [2], [13] adopted multiple view-specific transformations
to project the original data into a view-free space so that the
view divergence across different views would be mitigated.
It can be observed that such multiple view-specific projections
are designed to preserve the similar discriminability for the
same class across different views, and therefore, there exists
a lot of common knowledge across multiple view-specific
projections, which are independent of view variance [29].
Here, we exploit low-rank decomposition to seek a low-rank
common projection, which aims to uncover most shared
knowledge across different view-specific projections. Our
collective low-rank projection could make our model more
flexible in handling the challenges that we cannot achieve the
view information of the probe data. Furthermore, a cross-view
alignment term is incorporated into our framework to make
our collective subspace more discriminative and robust.
We further discuss two most low-rank subspace learning

algorithms, which are supervised regularization based robust
subspace (SRRS) [25] and low-rank transfer subspace
learning (LTSL) [20]. Specifically, SRRS focuses on seeking
robust and effective features by integrating low-rank repre-
sentation and linear discriminative analysis (LDA)-like dis-
criminative regularizer into a unified framework. Differently,
LTSL adopts low-rank subspace for transfer learning, aiming
to transfer well-labeled knowledge from source data to the
target one through locality aware reconstruction. LTSL aims to
seek a domain-invariant subspace by adapting the knowledge
of source to the target. Furthermore, LTSL incorporates gen-
eral subspace learning algorithms, e.g., principle component
analysis (PCA), LDA, and locality preserving projection (LPP)
into the transfer learning framework. Compared with SRRS,
LTSL and our CLRS both exploit the low-rank constraint
using the low-dimensional features, and thus, we could save
computational cost during the model training. Moreover, our
algorithm is developed to deal with the challenging prob-
lem where the prior view information for the test data is
unavailable.

E. Solving Objective Function
Since objective function (6) has many variables to be

optimized, we adopt the popular alternating direction method
of multipliers (ADMMs) algorithm [32] to address the prob-
lem (6). Recent studies show that ADMM converges well even
with some variables nonsmooth. First of all, we introduce sev-
eral relaxation variables, Ji and Qi , and then reformulate (6)
into its equivalent minimization problem as

min
P,Z ,Ei ,Si ,

Pi ,Ji ,Zi ,Qi

k∑
i=1

(‖Ji‖∗ + λ0‖Si‖1 + λ1‖Ei‖2,1) + λ2�(P, Z)

s.t. P�
i Xi = P� DQi + Ei , Pi = P + Si , Zi = Ji ,

Zi = Qi , P� P = Ip, i = 1, . . . , k (7)

whose augmented Lagrangian function is

k∑
i=1

(‖Ji‖∗ + λ0‖Si‖1 + λ1‖Ei‖2,1 + 〈Ui , Zi − Ji 〉

+ 〈ϒi , Pi
�Xi − P� DQi − Ei 〉 + 〈Vi , Pi − P − Si 〉

+ 〈Ri , Zi − Qi 〉 + μ

2

(‖Pi
� Xi − P� DQi − Ei‖2F

+ ‖Pi − P − Si‖2F + ‖Zi − Qi‖2F + ‖Zi − Ji‖2F
)

)

+ λ2tr((P� DZ)L(P� DZ)�)

where ϒi , Ui , Ri , and Vi are Lagrange multipliers and μ is
the positive penalty parameter. L = (1 + η)Ikm − Lw − Lb.
〈, 〉 denotes the inner product operator of two matrices.
As it can be seen, it is hard to jointly update the variables

in objective function (7). Fortunately, we can achieve the
optimization solution by iteratively updating each variable.
Specifically, we alternately optimize the following variables
Ji , Zi , Qi , Si , Ei , Pi , Si , Z , and P in a leave-one-out strategy.
Moreover, assume that Ji,t , Zi,t , Qi,t , Ei,t , Pi,t , Pt , Si,t , Zt ,
ϒi,t , Ri,t , Vi,t , Ui,t , and μt are the solutions of the tth iteration,
and hence, the solutions in the t+1 iteration are shown in the
following.

Updating Ji :

Ji,t+1 = argmin
Ji

1

μt
‖Ji‖∗+ 1

2

∥∥∥∥Ji −
(

Zi,t + Ui,t

μt

)∥∥∥∥2
F

. (8)

Updating Qi :

Qi,t+1 = (D� Pt P�
t D + Im̄)

−1Qi,t (9)

where Qi,t = D� Pt (P�
i,t Xi − Ei,t )+ Zi,t + (D� Ptϒi,t + Ri,t )

/μt and Im̄ ∈ R
m̄×m̄ is an identity matrix.

Updating Ei :

Ei,t+1 = argmin
Ei

λ1

μt
‖Ei‖2,1

+ 1

2

∥∥∥∥Ei −
(

P�
i,t Xi − P�

t DQi,t+1+ ϒi,t

μt

)∥∥∥∥2
F

. (10)

Updating Pi :

Pi,t+1 = (Xi X�
i + Id )−1

(
Xi (Q�

i,t+1D� Pt + E�
i,t+1)

+ P Pt + Si,t+1 − Xiϒ
�
i,t + Vi,t

μt

)
. (11)

Updating Si :

Si,t+1 = argmin
Si

λ0

μt
‖Si ‖1+ 1

2

∥∥∥∥Si −
(

Pi,t+1− Pt + Vi,t

μt

)∥∥∥∥2
F

.

(12)

Updating P:

Pt+1 = argmin
P

F(P), s.t. P� P = Ip (13)

where F(P) = ∑K
i=1 μt/2(‖Pi,t+1 − P − Si,t+1 +

Vi,t+1/μt‖2F + ‖Pi,t+1�Xi − P� DQi,t+1 − Ei,t+1 + ϒi,t

/μt‖2F ) + λ2tr((P� DZt+1)L(P� DZt+1)�) and this
optimization is a nonconvex problem. To fight off the
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challenging nonconvex problem (13) caused by the orthogonal
constraint, we adopt a gradient descent optimization procedure
with curvilinear search for a local optimal solution [33].
Generally, we first calculate the gradient of F(P) with respect
to P as ∂F(P)/∂ P = μt (P − (Pi,t+1 − Si,t+1 + Vi,t+1/μt )+
(DQi,t+1)(Q�

i,t+1D� P − (Pi,t+1� Xi − Ei,t+1 + ϒi,t /μt )
�)

+2λ2DZt+1L(DZt+1)� P . Then, we calculate skew-
symmetric matrix and optimize P until Armijo–Wolfe
conditions [34] meet. In this case, we need more
iterations (τ > 1) to update P compared with our conference
version, i.e., two-step strategy [12].

Updating Z:

Zt+1 + λ2(D� Pt+1P�
t+1D)Zt+1L − Gt = 0

⇒ Zt+1L−1 + λ2(D� Pt+1P�
t+1D)Zt+1 = GtL−1 (14)

where Gt = [G1,t , . . . , Gk,t ] and Gi,t = 1/2(Qi,t+1+ Ji,t+1−
Ui,t + Ri,t /μt ). When Zt+1 is learned, we could split it
into Zi,t+1.
Specifically, (14) is a conventional Sylvester equation [35].

Nuclear norm in (8) can be addressed with singular value
thresholding [36]. Equations (10) and (12) are two sparse prob-
lems, which can be solved by the popular soft-thresholding
operator [37]. To make it clear, we list the detailed steps of
the optimization in Algorithm 1.

Algorithm 1 Solving Problem (7) by ADMM
Input: Xi (i = 1, . . . , k), D, λ0, λ1, λ2
Initialize: Ji,0=Qi,0=Ei,0=Si,0=ϒi,0=Ui,0=Vi,0=0,
Z0=0, μ0=10−5, ρ=1.3,maxμ =108, ε=10−5, t =0.
while not converged do
1. Optimize {J/Q/E/P/S}i,t+1 in parallel.
1-1 Optimize Ji,t+1 via Eq. (8) by fixing others.
1-2 Optimize Qi,t+1 via Eq. (9) by fixing others.
1-3 Optimize Ei,t+1 via Eq. (10) by fixing others.
1-4 Optimize Pi,t+1 via Eq. (11) by fixing others.
1-5 Optimize Si,t+1 via Eq. (12) by fixing others.

2. Optimize Pt+1 via Eq. (13) by fixing others.
3. Optimize Zt+1 via Eq. (14) by fixing others.
4. Optimize the multipliers ϒi,t+1,Ui,t+1,Vi,t+1,Ri,t+1 via

ϒi,t+1 = ϒi,t + μt(P�
i,t+1Xi − P�

t+1DQi,t+1 − Ei,t+1);
Ui,t+1 = Ui,t + μt(Zi,t+1 − Ji,t+1);
Ri,t+1 = Ri,t + μt(Zi,t+1 − Qi,t+1);
Vi,t+1 = Vi,t + μt(Pi,t+1 − Pt+1 − Si,t+1);

5. Optimize μt+1 via μt+1 = min(ρμt ,maxμ).
6. Check the convergence conditions

‖P�
i,t+1Xi − P�

t+1DQi,t+1 − Ei,t+1‖∞ < ε;
‖Zi,t+1 − Ji,t+1‖∞ < ε, ‖Zi,t+1 − Qi,t+1‖∞ < ε;
‖Pi,t+1 − Pt+1 − Si,t+1‖∞ < ε.

7. t = t + 1.
end while
output: Zi,Qi, Ji,Ei,Si,Pi,P,Z.

So far, it is still difficult to guarantee the convergence
of ADMM with three or more blocks [22]. Recent research
efforts are exploited to prove the convergence for nonsmooth
and nonconvex optimization problem [38], [39]. However,
our problem is much more complex, especially, we have an

orthogonal constraint on P , so we did not prove the conver-
gence theoretically. We will show the convergence analysis
in the experimental part. Furthermore, the parameters μ0, ρ,
ε, η, and maxμ are set empirically, while the three tradeoff
parameters λ0, λ1, λ2, p, and τ can be selected through cross-
validation strategy. Besides, Pi and P are randomly initialized.

1) Discussion: We propose a different objective func-
tion and optimization scheme, comparing with our confer-
ence version [12], which applies the low-rank constraint
as X̃ = P� DZ + E and X̃ = [P�

1 X1, . . . , P�
k Xk]. In [12],

we assume the new representations Z of multiview data
together to be low rank, while here we constrain the new
representation Zi of each view data to be low rank. In our
previous conference version [12], we stack multiple view-
specific projections to a large new projection, so is the
collective projection. When we employ low-rank constraint on
the common subspace, we previously would need much more
computational time and space than our current one.
Furthermore, we adopt a multitask low-rank framework to

reconstruct view-specific projected data with mixed-view data
in the collective subspace. Hence, variables Ji , Qi , Ei , Si ,
and Pi in each task can be solved in a parallel scheme,
i.e., Steps 1-1 to 1-5. Therefore, we can save much time to
solve those variables with new parallel techniques. However,
we adopt a gradient descent strategy to update P , which
would cost higher computational cost than our conference
version [12]. Besides, we relax the low-rank constraint on big
Z [12] to each small Zi , while developing a novel cross-view
alignment regularization to couple multiview data to take full
advantage of label information. Another thing is we can only
achieve local minimal solutions for both versions. In addition,
we have more variables to be optimized in this journal version
so that we may not achieve more optimal solutions than our
conference version [12] when λ2 = 0. We will show this
phenomenon in the experiments.

F. Complexity Analysis

In this section, we provide a detail complexity analysis
of our algorithm. Suppose Xi ∈ R

d×m and D ∈ R
d×m̄ ,

where d is the original dimensionality of data, m is the size
of the i th view data Xi , and m̄ is the size of view-mixed
data D. In addition, we assume that Pi and P are all d × p
matrices, where p is the reduced dimensionality of subspace.
The major time-consuming parts of Algorithm 1 are: 1) SVD
operation in Step 1-1; 2) matrix inverse and multiplication
in Steps 1-2 and 1-4; 3) subspace optimization in Step 2; and
4) Sylvester equation in Step 3.
We now discuss each part in detail. Since k � m,

O(m) ≈ O(m̄). For simplicity, Ji , Qi , and Z can be treated as
m × m matrices, for Pi and P are p × d matrices. First of all,
nuclear norm in Step 1-1 costs O(m3) through SVD operation.
Fortunately, according to [22, Th. 4.3], the SVD for Zi could
be speeded up to O(p2m) where p is usually a small one.
Second, we calculate the matrix multiplication and inverse.
Step 1-2 would cost about O(m3), while Step 1-4 will each
approximately take O(d3). Step 2 would cost O(τd3), since
there are τ iterations within Step 2. Finally, Step 3 generally
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TABLE I

RECOGNITION PERFORMANCE (%) OF TEN ALGORITHMS ON THE ORIGINAL IMAGES FROM CMU-PIE FACE DATA SET,
IN WHICH CASE 1: {C02, C14}, CASE 2: {C02, C27}, CASE 3: {C14, C27}, CASE 4: {C05, C07, C29},

CASE 5: {C05, C14, C29, C34}, AND CASE 6: {C02, C05, C14, C29, C31}

Fig. 2. (a) Face samples from different views of one individual in
CMU-PIE Cross-Pose Face data set. It can be observed that the dissimilarity
across different views of the same individual. (b) Object samples of COIL-100
object database, where the red rectangle shows two views of COIL1, while
the blue one mean two views of COIL2.

takes O(m3) to optimize Z ∈ R
m×m̄ in Sylvester function.

To sum up, we conclude that the time complexity of CLRS is
O(d3 + m3).

IV. EXPERIMENT

In this section, we first introduce the real multiview data
sets (e.g., cross-pose and cross-modality data) and experi-
mental settings. Then, we compare with the state-of-the-art
algorithms in two different scenarios. Finally, we evaluate
some properties of our proposed CLRS.

A. Data Sets and Experimental Setting

CMU-PIE Face data set [45] totally consists of 68 subjects
with different poses. There are 21 different illumination vari-
ations for the samples of each subject. Specifically, we adopt
such different poses, which show large view variances within
the same subject across different poses [Fig. 2(a)]. In the
experiment, we select different numbers of views to build
various evaluation scenarios. For each pose, we randomly
choose ten samples for training while the left for testing.
Furthermore, we crop faces into the size of 64×64 and adopt
the gray-scale value as the input.
COIL-100 object database1 includes 100 categories

[Fig. 2(b)]. Images of each object were taken 5° apart as
the object is rotated on a turntable and each object has
72 gray images. It is partitioned into two subsets: “COIL1” and
“COIL2” [4]. COIL1 has all images taken in View 1 [0°, 85°]
and View 2 [180°, 265°] while COIL2 contains those in
1http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

View 3 [90°, 175°] and View 4 [270°, 355°]. The pixel values
with 64× 64 with 20% random corruption are applied.
ALOI object database2 includes 1000 categories. In addi-

tion, we choose the first 100 categories with 7200 images as
ALOI-100. Samples of each object were captured 5° apart so
that each object contains 72 gray images in total. We apply
the same setting with COIL-100 to four views of ALOI-100.
The pixel values with 96 × 72 with 20% random corruption
are used.
BUAA VIS-NIR Face data set [46] contains 150 different

individuals, and every individual has two modalities, i.e., near-
infrared (NIR) faces and visible (VIS) faces. Specifically, there
are nine face images per modality per individuals. We further
crop the faces and resize them to the size 200 × 200. The
gray-scale value is used as the input feature.

B. Feature Representation Setting
In our experiment, we address the challenging problem,

where the view knowledge of the probe data is unavailable.
Thus, conventional multiview methods [2], [13] would fail.
Therefore, we mainly compare with PCA [40], LDA [41],
LPP [42], rotated sparse regression (RSR) [43], transformed
fixed-rank representation (TFRR) [44], SRRS [25], robust
multi-view subspace learning (RMSL) [4], and low-rank
common subspace (LRCS) [12]. Specifically, LDA, RSR,
SRRS, RMSL, and ours are five supervised algorithms; and
PCA, LPP, TFRR, and LRCS are four unsupervised methods.
Furthermore, we compare with one conventional multiview
subspace learning algorithm, MvDA [13], by providing it extra
view knowledge of the probe data to verify the effectiveness
of our approach.
In this setting, we conduct experiment on the CMU-PIE

Face data set and two object databases: COIL-100 and
ALOI-100. The nearest neighbor classifier (NNC) is adopted to
testify the final classification results. For CMU-PIE, we choose
ten images per individual per pose to build the training set,
and the remaining data are used for testing. We do five random
selections and report the average performance. Tables I and II
represent recognition performance on the original images and
10% corrupted images, respectively. Besides, we also evalu-
ate their recognition performance under different dimensions
in Figs. 3 and 4. For object databases, we choose one from
COIL1 (ALOI1) and one from COIL2 (ALOI2) to construct
two-view training set, while the left data are adopted for
testing. In total, we have four cases for training. The results
are presented in Fig. 5.

2http://aloi.science.uva.nl/
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TABLE II

RECOGNITION PERFORMANCE (%) OF TEN ALGORITHMS ON THE CORRUPTED IMAGES FROM CMU-PIE FACE DATA SET,
IN WHICH CASE 1: {C02, C14}, CASE 2: {C02, C27}, CASE 3: {C14, C27}, CASE 4: {C05, C07, C29},

CASE 5: {C05, C14, C29, C34}, AND CASE 6: {C02, C05, C14, C29, C31}

Fig. 3. Recognition performance of seven algorithms on the original images of CMU-PIE Face data set over different dimensions, which shows the performance
of Case 2 and Cases 4–6, from left to right. We can only obtain at most 67 dimensions for the LDA-based algorithms (LDA, RSR, SRRS, and MvDA)
(here we only present 60 dimensions for them).

Fig. 4. Recognition performance of seven algorithms on the corrupted images of CMU-PIE Face data set over different dimensions, which shows the
performance of Case 2 and Cases 4–6, from left to right. We can only obtain at most 67 dimensions for the LDA-based algorithms (LDA, RSR, SRRS,
and MvDA) (here we only present 60 dimensions for them).

Fig. 5. Recognition results of seven methods on four cases of the 20% corrupted COIL-100 data set (left) and ALOI-100 one (right), where
Case 1: View 1 and View 3; Case 2: View 1 and View 4; Case 3: View 2 and View 3; and Case 4: View 2 and View 4.

1) Discussion: Results demonstrate that our method out-
performs others in most cases, except MvDA and RMSL.
However, we can see that our algorithm could achieve compet-
itive performance with MvDA, or even better in some cases.
This demonstrates that our algorithm is an effective compro-
mise when we are inaccessible to the view information for

the evaluation data. However, when there are more views,
MvDA has a superiority in performance, since multiple
view-specific transformations could well fit each specific view
data. Besides, MvDA is one kind of traditional subspace
learning methods, which cannot work well in corrupted cases
even though the view knowledge of the probe data is available.
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Our algorithm unifies low-rank reconstruction and dimension
reduction together, and therefore, it could well handle the
corrupted data in reality.
With more poses involved, we could observe that all the

algorithms suffer a decrease in terms of recognition perfor-
mance. However, we notice that the performance of LDA
and RSR decreases much faster, which shows that conven-
tional subspace learning algorithms, e.g., LDA, would fail in
multiview learning. For two-view scenarios (i.e., Cases 1–3),
all the methods can obtain very similar results, which represent
that the divergence across any two views is very similar.
As we can see, these three cases effectively show the supe-
riority of our model. This denotes that the collective low-
rank common subspace, decomposed from two view-specific
transformations, can uncover the most intrinsic information
from the data. Moreover, for three-view case (Case 4), our
model cannot improve with a large margin, and the reason we
consider is that three views are relatively frontal faces. When
involving more views (e.g., Cases 5 and 6), our proposed
algorithm can still perform better than others.
Another observation is that low-rank-based algorithms

(i.e., TFRR, SRRS, LRCS, RMLS, and ours) can work better
than the other algorithms, especially when dealing with cor-
rupted cases. The reason, we consider, is that low-rank-based
algorithms are able to capture the data’s intrinsic classwise
structure. Another phenomenon is each pose show 21 different
lighting variations in CMU-PIE Face data set and, therefore,
PCA has the similar results in the original and randomly
corrupted images.
Compared with our previous conference version, our CLRS

works a little worse in two cases. The reason, we consider,
is the solution to the objective function, since our current one
is supervised. We adopt multitask learning technique to solve
multiple view-specific transformations in parallel, which could
make the optimal solutions more flexible, compared with our
conference solution. This phenomenon is discussed more in
Section IV-D2 parameter analysis.
Moreover, we notice that low-rank models work better

than traditional subspace algorithms from the results of two
corrupted object databases (Fig. 5). The reason is that ran-
dom corruption would significantly hinder the conventional
algorithms’ recognition task. Besides, our CLRS performs
best, since our method introduces the supervised cross-view
alignment to make full use the label information, and therefore,
our CLRS can achieve a more robust and discriminative
subspace.

C. Transfer Learning Setting

In this part, experiments are conducted to evaluate
the algorithms in transfer learning setting. We have six
comparisons, i.e., joint domain adaptation (JDA) [50],
LTSL [20], geodesic flow kernel (GFK) [48], domain
adaptation via subspace alignment (DASA) [49],
TSL [47], and LRCS [12]. In addition, we compare
with some conventional dimensionality reduction techniques,
e.g., PCA [40], LDA [41], and LPP [42]. For those methods,
we apply them on source and target data together (except
LDA, which is supervised, so only source data are used) to

learn the projection in the training stage, and then predict
the unlabeled target samples. Finally, the NNC is utilized to
testify the effectiveness for target domain.

1) Group 1: To construct two domains, we first split CMU-
PIE with 68 individuals into two subsets, each with 34 dif-
ferent individuals. To make source and target with different
distributions, we utilize low-resolution process for the source
domain. In target domain, we adopt the original 64 × 64
images. In source domain, the 64×64 images (high resolution)
are resized to 16×16, and resized back to the original size (low
resolution). The MATLAB function imresize() with default
setting is used. We choose different poses in the same previous
setting to “feature representation setting.” Since there is no
label overlap across two domains, therefore, we randomly
choose two reference face images per view in the target
domain in the evaluation stage, while other samples are used
for evaluation. We randomly select ten times and report the
average performance.

2) Group 2: we split the BUAA NIR-VIS into two subsets,
one as source and the other as target. In this data set, we con-
duct two different cases. Case 1: choosing 50 individuals as
source and the left 100 individuals as target; Case 2: choosing
75 individuals as source and the left 75 individuals as target.
Every individual contains two modalities. Note that no identity
overlap exits across source and target. To further differentiate
source and target, we exploit down-sampling procession to
source. Finally, we randomly select two target samples per
individual as the reference, while the left target samples are
used for evaluation. We randomly select for nine times, and
then calculate the average results.

3) Discussion: It can be seen from Tables III and IV that
our proposed model achieves better performance than others.
Since we seek multiple view-specific transformations on the
well-labeled source domain, our proposed algorithm could
effectively transfer such multiview knowledge to the unlabeled
target domain by coupling various views properly with the
collective low-rank projection. Moreover, we could observe
that low-rank-based algorithms, i.e., LTSL, LRCS, and ours,
outperform the other algorithms. Furthermore, we could notice
that the effectiveness of CLRS is significant in Group 1, but
not obvious in Group 2. The reason may be that the domain
divergence is larger in Group 1.

D. Property Evaluation

In this section, we evaluate several properties of our pro-
posed algorithm, i.e., convergence analysis and parameter
sensitivity.

1) Convergence Analysis: In this part, we mainly analyze
the convergence of our model. Specifically, we evaluate on
robust feature learning setting and use CMU-PIE database with
Case 2 {C02, C14}. The convergence curve of our algorithm
with different runs is shown in Fig. 6(a). From the results,
we observe that our method converges well after 50 iterations.

2) Parameter Analysis: Moreover, we have three parameters
λ0, λ1, and λ2. Among them, λ0 and λ1 are two parameters to
constrain the sparse errors parts for subspace decomposition
and outliers noises. These two parameters are usually set as
small values [22]. In our experiments, we set λ0 = λ1 = 10−2.



1996 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 5, MAY 2018

TABLE III

RECOGNITION PERFORMANCE (%) OF TEN ALGORITHMS ON GROUP 1 OF CMU-PIE DATA SET, IN WHICH
CASE 1: {C02, C14}, CASE 2: {C02, C27}, CASE 3:{C14, C27}, CASE 4: {C05, C07, C29},

CASE 5: {C05, C14, C29, C34}, AND CASE 6: {C02, C05, C14, C29, C31}

TABLE IV

RECOGNITION PERFORMANCE (%) OF TEN ALGORITHMS ON GROUP 2 OF BUAA NIR-VIS FACE DATA SET

Fig. 6. (a) Convergence curve of CLRS for Case 2 {C02, C14} of CMU-PIE
Face data set, where p = 200, λ0 = λ1 = 10−2, and λ2 = 101. (b) Influence
of parameter λ2 on the case of {C05, C14, C29, C34}. The value of x-axis
from 1 to 10 represents [0, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104].

On the other hand, λ2 is used to constrain the discriminative
term. In this section, we mainly evaluate it on one four-view
case [Fig. 6(b)]. From the results, we notice that λ2 slightly
influences the final recognition performance. Without the loss
of generality, we set λ2 = 10 in our experiments.

Remark: When λ2 becomes zero, the proposed method
degenerates to our conference version, i.e., LRCS [12].
However, we apply multitask learning technique to solve
the problem in the journal extension to speed up the opti-
mization, which is different from our conference version.
When we adopt multitask learning technique, multiple view-
specific projections are optimized in an individual way, which
results in more variables needed to be updated. Since we
can only achieve local minimum solutions through ADMM,
more variables may produce more flexible optimization, and
therefore, the proposed approach may not find better optimal
solutions than our conference version, where multiple view-
specific projections are stacked together and optimized as a
whole. These are the cases when the proposed method fails to
outperform our conference version, i.e., λ2 = 0.

V. CONCLUSION

In this paper, we developed an effective CLRS framework
to solve multiview learning problem. Our proposed model
was designed to address the challenging case where the
view knowledge of testing data is unavailable. Specifically,
we built a CLRS shared by multiple view-specific projections.
Moreover, our designed approach obtained a discriminative

subspace through a supervised cross-view alignment and low-
rank reconstruction. Furthermore, our method was easily
generalized to different cases by adapting the input of our
algorithm. Experiments were evaluated on several multiview
databases in two different settings. The experimental results on
several multiview benchmarks demonstrated that our algorithm
achieved better performance than other comparisons.
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