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Abstract— Classifying human actions from varied views is
challenging due to huge data variations in different views. The
key to this problem is to learn discriminative view-invariant
features robust to view variations. In this paper, we address
this problem by learning view-specific and view-shared features
using novel deep models. View-specific features capture unique
dynamics of each view while view-shared features encode com-
mon patterns across views. A novel sample-affinity matrix is
introduced in learning shared features, which accurately balances
information transfer within the samples from multiple views
and limits the transfer across samples. This allows us to learn
more discriminative shared features robust to view variations.
In addition, the incoherence between the two types of features
is encouraged to reduce information redundancy and exploit
discriminative information in them separately. The discriminative
power of the learned features is further improved by encouraging
features in the same categories to be geometrically closer. Robust
view-invariant features are finally learned by stacking several
layers of features. Experimental results on three multi-view data
sets show that our approaches outperform the state-of-the-art
approaches.

Index Terms— Action recognition, autoencoder, multi-view
learning, view-invariant features.

I. INTRODUCTION

HUMAN action data are ubiquitous and are of inter-
est to machine learning [1], [2] and computer vision

communities [3], [4]. Generally, action data can be observed
from multiple views, for example, dynamic human actions
captured by multiple sensor views and various camera views,
etc, (Figure 1). Classification on such action data in cross-view
scenario is challenging as the raw data are captured by various
sensor devices at different physical locations, and may appear
completely different. For example, in Figure 1(b), an action
observed from side view is visually different from the one
observed from top view. Therefore, using the features extracted
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Fig. 1. Examples of multi-view scenarios. (a) Multi-sensor-view, where
multiple sensors (orange rectangles) are attached to torso, arms and legs,
and human action data are recorded by these sensors. (b) Multi-camera-view,
where human actions are recorded by multiple cameras at various viewpoints.

in one view is less discriminative for classifying actions in
another view.
A line of work has been studied to build view-

invariant representations for action recognition [5]–[9],
where an action video is considered as a time series of
frames. Approaches [5], [6] use a so-called self-similarity
matrix (SSM) descriptor to summarize actions in various
views and have shown their robustness in cross-view
scenarios. Information shared between views is learned and
transferred to each of the views in [7]–[9]. They assume
samples in different views contribute equally to the shared
features. However, this assumption is not valid as the cues
in one view may be remarkably different from other views
(e.g., the top view in Figure 1(b)) and should have lower
contribution to the shared features compared to other views.
In addition, they do not constrain information sharing between
action categories. This may yield similar features for videos
in different classes but are captured from the same view,
which would undoubtedly confuse classifiers.
We propose novel deep networks that learn view-invariant

features for cross-view action classification. The action data
used in this work are assumed to capture human actions.
We present a novel sample-affinity matrix (SAM) to measure
the similarities between video samples in different camera
views. This allows us to accurately balance information trans-
fer between views and help learn more informative shared
features for cross-view action classification. The structure of
SAM also limits information transfer between samples in
different classes, which enables us to learn distinctive features
in each class. In addition to the shared features, private features
are also learned to capture motion information exclusively
exists in each view that cannot be modeled using shared
features. We separately learn discriminative view-invariant
information from shared and private features by encouraging
incoherence between them. The performance of the proposed

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KONG et al.: DEEPLY LEARNED VIEW-INVARIANT FEATURES FOR CROSS-VIEW ACTION RECOGNITION 3029

Fig. 2. Overview of the proposed method.

approach can be further boosted using label information and
stacking multiple layers of features.
We formulate this feature learning problem in a marginal-

ized autoencoder framework (see Figure 2) [10], particularly
designed for learning view-invariant features. Our approaches
learn two types of features, the shared features across views
summarized by one autoencoder, as well as robust private
features particular for one view using a group of autoencoders.
Sample affinity encoded in SAM is elegantly incorporated in
the learning of shared features in order to weigh different
contributions of video samples. Different from the SSM [5],
SAM computes sample similarity while SSM focuses on video
frames. The incoherence between the two types of features is
realized by encouraging the orthogonality between mapping
matrices in the two categories of autoencoders. A Laplacian
graph is built to encourage samples in the same action cate-
gories to have similar shared and private features. We stack
multiple layers of features and learn them in a layer-wise
fashion. Extensive experiments on three multi-view datasets
show that our approach significantly outperforms state-of-the-
art approaches.
Our contributions are threefold: 1) a new SAM is introduced

to balance the contributions of samples in different views in the
learning of shared features; 2) both shared and private features
are learned to build robust view-invariant features; 3) extensive
results show that our approach achieves remarkably higher
results than existing approaches.

II. RELATED WORK

Multi-view learning methods aim at finding mutual agree-
ment between two distinct views of data. Extensive attempts
have been made to learn more expressive and discrimi-
native features from low-level observations [2], [11]–[16].
Co-training approach [17] trains multiple learning algorithms
for each view and finds the consistent relationships between a
pair of data points across different views. Canonical correla-
tion analysis (CCA) was also used in [18] to learn a common
space between multiple views. The method in [19] learns two
projection matrices to map multi-modal data onto a common
feature space, in which cross-modal data matching can be
performed. Incomplete view problem was studied in [20]. They
assumed that different views are generated from a shared
subspace. A generalized multiview analysis (GMA) method
was introduced in [21]. GMA is proved to be a supervised
extension of CCA, and is a generalized instance of CCA,
bilinear model, and partial least square. Liu et al. [13] used

matrix factorization in multi-view clustering. Their method
regularizes factors representing clustering structures learned
from multiple views toward a common consensus. A col-
lective matrix factorization (CMF) method was presented
in [12], which captures correlations between relational feature
matrices. Ding et al. [16] proposed a low-rank constrained
matrix factorization model to address the multi-view learning
scenario when the view information of test data is unknown.

View-invariant action recognition methods aim at predict-
ing action labels given multi-view samples. Due to viewpoint
changes, large within-class pose and appearance variation
exist. Previous studies attempt to design view-invariant
features that are robust to viewpoint variations. The method
in [22] performs local partitioning and hierarchical classi-
fication of the 3D Histogram of Oriented Gradients (HOG)
descriptor to represent sequences of images. SSM-based
approaches [5], [23] compute frame-wise similarity matrix
in a video and extract view-invariant descriptors within a
log-polar block on the matrix. A multitask learning approach
was proposed in [6] to enhance the representation power of
SSM by sharing discriminative SSM features among views.
Sharing knowledge between views was investigated in [7]–[9]
and [24]–[28]. Specifically, MRM-Lasso method in [9]
captured latent corrections across different views by learning
a low-rank matrix consisting of pattern-specific weights.
Transferable dictionary pairs were learned in [7] and [8],
which encourage the shared feature space to be sparse.
Bipartite graph was adopted in [25] to co-cluster two
view-dependent vocabularies into visual-word clusters called
bilingual-words in order to bridge the semantic gap across
view-dependent vocabularies.

Comparisons: Different from existing multi-view learning
approaches [17]–[21], [29], the proposed approach allows us
to stack multiple layers of learners to learn view-invariant
features in a coarse to fine fashion. Private features are
also exploited in the proposed approach to capture complex
motion information that uniquely exists in specific views,
and are encouraged to be incoherent with shared features.
Compared with knowledge sharing approaches for view-
invariant action recognition [7]–[9], [24]–[26], [28], our
approach balances information sharing between views based
on sample similarities. This allows us to better differentiate
various categories if data samples appear similar in some
views. Different from [29], SAM Z directly captures with-in
class between-view information and between class with-in
view information, while [29] compute the between-class
and within-class Laplacian matrices. SAM Z in our work
measures the distance between two views of the same sample,
while [29] does not encode such distance.

III. DEEPLY LEARNED VIEW-INVARIANT FEATURES

The aim of this work is to build view-invariant features that
allow us to train the classification model on one (or multiple)
view(s), and test on the other view.

A. Sample-Affinity Matrix (SAM)

We introduce SAM to measure the similarity between pairs
of video samples in multiple views. Suppose that we are given
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training videos of V views: {Xv , yv}V
v=1. The data of the v-th

view Xv consist of N action videos: Xv = [xv
1, · · · , xv

N ] ∈
R

d×N with corresponding labels yv = [yv
1 , · · · , yv

N ]. SAM
Z ∈ R

V N×V N is defined as a block diagonal matrix:

Z = diag(Z1, · · · , Z N ), Zi =

⎛
⎜⎜⎜⎝

0 z12i · · · z1V
i

z21i 0 · · · z2V
i

...
...

...
...

zV1
i zV2

i · · · 0

⎞
⎟⎟⎟⎠,

where diag(·) creates a diagonal matrix, and zuv
i is the distance

between two views in the i -th sample computed by zuv
i =

exp(‖xv
i − xu

i ‖2/2c) parameterized by c.
Essentially, SAM Z captures within-class between-view

information and between-class within-view information.
A block Zi in Z characterizes appearance variations in dif-
ferent views within one class. This tells us how an action
varies if view changes. Such information allows us to transfer
information between views and build robust cross-view fea-
tures. In addition, since the off-diagonal blocks in SAM Z are
zeros, it limits information sharing between classes in the same
view. Consequently, the features from different classes but in
the same view are encouraged to be distinct. This enables us to
differentiate various action categories if they appear similarly
in some views.

B. Preliminary on Autoencoders

Our approach builds upon a popular deep learning approach,
Autoencoder (AE) [10], [30], [31]. AE maps the raw inputs x
to hidden units h using an “encoder” f1(·): h = f1(x), and
then maps the hidden units to outputs using a “decoder” f2(·):
o = f2(h). The objective of learning AE is to encourage similar
or identical input-output pairs where the reconstruction loss is
minimized after decoding: min

∑N
i=1 ‖xi − f2(f1(xi ))‖2. Here,

N is the number of training samples. In this way, the neurons
in the hidden layer are good representations for the inputs as
the reconstruction process captures the intrinsic structure of
the input data.
As opposed to the two-level encoding and decoding in AE,

marginalized stacked denoising Autoencoder [10] (mSDA)
reconstructs the corrupted inputs using a single mapping W :
min

∑N
i=1 ‖xi − W x̃i‖2, where x̃i is the corrupted version of

xi obtained by setting each feature to 0 with a probability p.
mSDA performs m passes over the training set, each time
with different corruptions. This essentially performs a dropout
regularization on the mSDA [32]. By setting m → ∞, mSDA
effectively uses infinite many copies of noisy data to compute
the transformation matrix W that is robust to noise. mSDA is
stackable and can be solved in closed-form.

C. Single-Layer Feature Learning

The proposed model builds on mSDA. We attempt to learn
both discriminative shared features between multiple views
and private features particularly owned by one view for cross-
view action classification. Considering large motion variations
in different views, we incorporate SAM Z in learning shared
features to balance information transfer between views in order
to build more robust features.

We learn shared features and private features using the
following objective function:

min
W,{Gv } Q, Q = ‖W X̃ − X Z‖2F +

∑
v

[
α‖Gv X̃v − Xv‖2F

+ β‖WTGv‖2F + γTr(Pv Xv L XvTPvT)
]
,

(1)

where W is the mapping matrix for learning shared features,
{Gv}V

v=1 is a group of mapping matrices for learning private
features particularly for each view, and Pv = (W ; Gv ). The
above objective function consists of 4 terms: ψ = ‖W X̃ −
X Z‖2F learns shared features between views, which essentially
reconstructs an action data from one view using the data
from all the views; φv = ‖Gv X̃v − Xv‖2F learns view-
specific private features that are complementary to the shared
features; r1v = ‖WTGv‖2F and r2v = Tr(Pv Xv L XvTPvT)
are model regularizers. Here, r1v reduces redundancy between
two mapping matrices, and r2v encourages the shared and
private features of the same class and the same view to be
similar. α, β, γ are parameters balancing the importance of
these components. Details about these terms are discussed in
the following.
Note that in cross-view action recognition, data from all

the views are available in training for learning shared and
private features. Data from some views are not available only
in testing.

1) Shared Features: Humans can recognize an action from
one view and imagine what will the action look like if we
observe from other views. This is possibly because we have
observed similar actions before from multiple views. This
motivates us to reconstruct an action data from one view
(target view) using the action data from all the views (source
view). In this way, information shared between views can be
summarized and transferred to the target view.
We define the discrepancy between the data of the v-th

target view and the data of all the V source views as

ψ =
N∑

i=1

V∑
v=1

‖W x̃v
i −

∑
u

xu
i zuv

i ‖2 = ‖W X̃ − X Z‖2F , (2)

where zuv
i is a weight measuring the contributions of the

u-th view action in the reconstruction of the sample xv
i of

the v-th view. W ∈ R
d×d is a single linear mapping for

the corrupted input x̃v
i of all the views. Z ∈ R

V N×V N

is a sample-affinity matrix encoding all the weights {zuv
i }.

Matrices X, X̃ ∈ R
d×V N denote the input training matrix and

the corresponding corrupted version of X , respectively [10].
The corruption essentially performs a dropout regularization
on the model [32].
The SAM Z here allows us to accurately balance informa-

tion transfer between views and helps learn more discrimina-
tive shared features. Instead of using equal weights [7], [8],
we reconstruct the i -th training sample of the v-th view using
the samples from all V views with different contributions.
As shown in Figure 3, a sample of side view (source 1) will
be more similar to the one also from side view (target view)
than the one from top view (source 2). Thus, more weight
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should be given to source 1 in order to learn more descriptive
shared features for the target view. Note that SAM Z limits
information sharing across samples (off-diagonal blocks are
zeros) as it cannot capture view-invariant information for
cross-view action recognition.

2) Private Features: Besides the information shared across
views, there is still some remaining discriminative informa-
tion that exclusively exists in each view. In order to utilize
such information and make it robust to viewpoint variations,
we adopt the robust feature learning in [10], and learn
view-specific private features for the samples in the v-th view
using a mapping matrix Gv ∈ R

d×d :

φv =
N∑

i=1
‖Gv x̃v

i − xv
i ‖2 = ‖Gv X̃v − Xv‖2F . (3)

Here, X̃v is the corrupted version of the feature matrix Xv

of the v-th view. We will learn V mapping matrices {Gv}V
v=1

given corresponding inputs of different views.
It should be noted that using Eq. (3) may also captures some

redundant shared information from the v-th view. In this work,
we reduce such redundancy by encouraging the incoherence
between the view-shared mapping matrix W and view-specific
mapping matrix Gv :

r1v = ‖W TGv‖2F . (4)

The incoherence between W and {Gv} enables our approach to
independently exploit the discriminative information contained
in the view-specific features and view-shared features.

3) Label Information: An action data captured from various
views may have large motion and posture variations. There-
fore, the shared and private features extracted using Eq. (2)
and Eq. (3) may not be discriminative enough for classifying
actions with large variations. We address this problem by
enforcing the shared and private features of the same class and
same view to be similar. A within-class within-view variance
is defined in order to regularize the learning of the view-shared
mapping matrix W and view-specific mapping matrix Gv :

r2v =
N∑

i=1

N∑
j=1

[
‖Wxv

i − Wxv
j ‖2 + ‖Gvxv

i − Gvxv
j‖2

]

= Tr(W Xv L XvTWT) + Tr(Gv Xv L XvTGvT)

= Tr(Pv Xv L XvTPvT), (5)

Here, L ∈ R
N×N is the label-view Laplacian matrix:

L = D − A. D is the diagonal degree matrix with D(i,i) =∑N
j=1 a(i, j ). A is the adjacent matrix that represents the label

relationships of training videos. The (i, j)-th element a(i, j ) in
A is 1 if yi = y j and 0 otherwise.
Note that we do not require features from different views in

the same class to be similar as we have implicitly used this idea
in Eq. (2). In learning the shared feature, features of the same
class from multiple views will be mapped to a new space using
the mapping matrix W . Consequently, the projected features
of one sample can be better represented by the features from
multiple views of the same sample. Therefore, the discrepancy
between views is minimized, and thus makes within-class
cross-view variance in Eq. (5) not necessary.

4) Discussion: Using label information in Eq. (5) results
in a supervised approach. We can also remove this term and
derive an unsupervised one by making γ = 0. We refer to
the unsupervised approach as Ours-1 and the supervised
approach as Ours-2 in the following discussions.

D. Learning

We solve the optimization problem in Eq. (1) and optimize
parameters W and {Gv}V

v=1 using a coordinate descent algo-
rithm. More specifically, in each step, one parameter matrix
is updated by fixing the others, and computing the derivative
of Q w.r.t. to the parameter and setting it to 0.

1) Update W: Parameters {Gv}V
v=1 are fixed in updating W .

W can be updated by setting the derivative ∂Q
∂W = 0, deriving:

W =
[∑

v

(βGv GvT + γ Xv L XvT + I )
]−1

·(X Z X̃T)[X̃ X̃T + I ]−1. (6)

It should be noted that X Z X̃T and X̃ X̃T are computed by
repeating the corruption m → ∞ times. By the weak law of
large numbers [10], X Z X̃T and X̃ X̃T can be computed by their
expectations E p(X Z X̃T) and E p(X̃ X̃T) with the corruption
probability p, respectively.

2) Update Gv : Fixing W and {Gu}V
u=1,u �=v , parameter Gv

is updated by setting the derivative ∂Q
∂Gv = 0, deriving:

Gv =
(
βW WT + γ Xv L XvT + I

)−1

·(αXv X̃vT)[α X̃v X̃vT + I ]−1 (7)

Similar to the procedure of updating W , Xv X̃vT and
X̃v X̃vT are computed by their expectations with corruption
probability p.

3) Convergence: Our learning algorithm iteratively updates
W and {Gv}V

v=1. The problem in Eq. (1) can be divided into
V + 1 subproblems, each of which is a convex problem with
respect to one variable. Therefore, by solving the subproblems
alternatively, the learning algorithm will guarantee to find an
optimal solution to each subproblem. Therefore, the algorithm
will converge to a local solution.

E. Deep Architecture

Inspired by the deep architecture in [10] and [33], we also
design a deep model by stacking multiple layers of feature
learners proposed in Section III-C. A nonlinear feature map-
ping is performed layer by layer. More specifically, a nonlinear
squashing function σ(·) is applied on the output of one layer:
Hw = σ(W X) and H v

g = σ(Gv Xv ), resulting in a series of
hidden feature matrices.
A layer-wise training scheme is used in this work to train the

networks {Wk}K
k=1, {Gv

k}K ,V
k=1,v=1 with K layers. Specifically,

the outputs of the f -th layer Hkw and H v
kg are used as the

input to the (k + 1)-th layer. The mapping matrices Wk+1 and
{Gv

k+1}V
v=1 are then trained using these inputs. For the first

layer, the inputs H0w and H v
0g are the raw features X and Xv ,

respectively. More details are shown in Algorithm 1.
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Algorithm 1 Learning view-invariant features

Fig. 3. Learning shared features using weighted samples.

IV. EXPERIMENTS

We evaluate Ours-1 and Ours-2 approaches on three multi-
view datasets: multi-view IXMAS dataset [34], Northwestern-
UCLA Multiview Action 3D (NUMA) dataset [35], and the
Daily and Sports Activities (DSA) dataset [1], all of which
have been popularly used in [1], [7]-[9], [24], and [25].
We consider two cross-view classification scenarios in this

work, Many-to-One and One-to-One. The former one trains
on V − 1 views and tests on remaining one view, while the
latter one trains on one view and tests on the other view.
For the v-th view that is used for testing, we simply set
the corresponding Xv used in training to 0 in Eq. (1) during
training. Intersection kernel support vector machine (IKSVM)
with parameter C = 1 is adopted as the classifier. Default
parameters are α = 1, β = 1, γ = 0, K = 1, p = 0 for
Ours-1 approach, and α = 1, β = 1, γ = 1, K = 1, p = 0
for Ours-2 approach unless specified. The default number of
layers is set to 1 for efficiency consideration.

IXMAS and NUMA are multi-camera-view video
datasets, where each view corresponds to a camera view (see
Figure 4(b) and (c)). The IXMAS dataset consists of 12 actions
performed by 10 actors. An action was recorded by 4 side
view cameras and 1 top view camera. Each actor repeated
one action 3 times. NUMA dataset consists of 10 human
actions captured by 3 Kinect sensors in 5 environments.
We adopt the bag-of-wordsmodel in [36]. An action video is

described by a set of detected local spatiotemporal trajectory-
based and global frame-based descriptors [37]. A k-means
clustering method is employed to quantize these descriptors
and build so-called video words. Consequently, a video can be
represented by a histogram of the video words detected in the

Fig. 4. Examples of multi-view problem settings: (a) multiple sensor views
in the Daily and Sports Activities (DSA) dataset, and (b) and (c) multiple
camera views in the IXMAS and Northwestern-UCLA datasets.

video, which is essentially a feature vector. An action captured
by V camera views is represented by V feature vectors, each
of which is a feature representation for one camera view.

DSA is a multi-sensor-view dataset comprised of 19 daily
and sports activities (e.g., sitting, playing basketball, and
running on a treadmill with a speed of 8 km/h), each
performed by 8 subjects in their own style for 5 minutes.
5 Xsens MTx sensor units are used on the torso, arms, and
legs (Figure 4(a)), resulting in a 5-view data representation.
Sensor units are calibrated to acquire data at 25 Hz sampling
frequency. The 5-min signals are divided into 5-second
segments so that 480(= 60seconds × 8subjects) signal
segments are obtained for each activity. One 5-second
segment is used as an action time series in this work.
We follow [1] to preprocess the raw action data in

a 5-s window, and represent the data as a 234-dimensional
feature vector. Specifically, the raw action data is represented
as a 125 × 9 matrix, where 125 is the number of sampling
points (125=25Hz × 5s), and 9 is the number of values (the
x,y,z axes’ acceleration, the x,y,z axes’ rate of turn, and the
x,y,z axes’ Earth’s magnetic field) obtained on one sensor.
We first compute the minimum and maximum values, the
mean, skewness, and kurtosis on the data matrix. The resulting
features are concatenated and generate a 45-dimensional
(5 features × 9 axes) feature vector. Then, we compute
discrete Fourier transform on the raw data matrix, and select
the maximum 5 Fourier peaks. This yields a 45-dimensional
(5 peaks × 9 axes) feature vector. The 45 frequency values that
correspond to these Fourier peaks are also extracted, resulting
in a 45-dimensional (5 frequency × 9 axes) as well. After-
wards, 11 autocorrelation samples are computed for each of
the 9 axes, resulting in a 99-dimensional (11 samples× 9 axes)
features. The three types of features are concatenated and
generate a 234-dimensional feature vector, representing the
human motion captured by one sensor in a 5-second window.
A human action captured by V sensors is represented by V
feature vectors, each of which corresponds to a sensor view.

A. IXMAS Dataset

Dense trajectory and histogram of oriented optical flow [37]
are extracted from videos. A dictionary of size 2000 is built for
each type of features using k-means. We use the bag-of-words
model to encode these features, and represent each video as a
feature vector.
We adopt the same leave-one-action-class-out training

scheme in [7], [8], and [25] for fair comparison. At each
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TABLE I

ONE-TO-ONE CROSS-VIEW RECOGNITION RESULTS OF VARIOUS SUPERVISED APPROACHES ON IXMAS DATASET. EACH ROW CORRESPONDS TO
A TRAINING VIEW (FROM VIEW C0 TO VIEW C4) AND EACH COLUMN IS A TEST VIEW (ALSO FROM VIEW C0 TO VIEW C4). THE RESULTS IN

BRACKETS ARE THE RECOGNITION ACCURACIES OF [7], [8], AND [38] AND OUR SUPERVISED APPROACH, RESPECTIVELY

TABLE II

ONE-TO-ONE CROSS-VIEW RECOGNITION RESULTS OF VARIOUS UNSUPERVISED APPROACHES ON IXMAS DATASET. EACH ROW CORRESPONDS TO
A TRAINING VIEW (FROM VIEW C0 TO VIEW C4) AND EACH COLUMN IS A TEST VIEW (ALSO FROM VIEW C0 TO VIEW C4). THE RESULTS IN
BRACKETS ARE THE RECOGNITION ACCURACIES OF [7], [8], [24], [25], AND [39] AND OUR UNSUPERVISED APPROACH, RESPECTIVELY

time, one action class is used for testing. In order to evaluate
the effectiveness of the information transfer of the proposed
approaches, all the videos in this action are excluded from the
feature learning procedure including k-means and the proposed
approaches. Note that these videos can be seen in training the
action classifiers. We evaluate both the proposed unsupervised
approach (Ours-1) and the supervised approach (Ours-2).

1) One-to-One Cross-View Action Recognition: This exper-
iment trains on data from one camera view (training view),
and tests the on data from the other view (test view). We only
use the learned shared features and discard the private features
in this experiment as the private features learned on one view
does not capture too much information of the other view.
We compare Ours-2 approach with [7], [8], and [38] and

report recognition results in Table I. Ours-2 achieves the
best performance in 18 out of 20 combinations, significantly
better than all the comparison approaches. It should be noted
that Ours-2 achieves 100% in 16 cases, demonstrating the
effectiveness of the learned shared features. Thanks to the
abundant discriminative information from the learned shared
features and label information, our approach is robust to
viewpoint variations and can achieve high performance in
cross-view recognition.
We also compare Ours-1 approach with [7], [8], [24],

[25], and [39], and report comparison results in Table II.
Our approach achieves the best performance in 19 out of 20
combinations. In some cases, our approach outperforms the
comparison approaches by a large margin, for example, C4→
C0 (C4 is the training view and C0 is the test view), C4→ C1,
and C1→ C3. The overall performance of Ours-1 is slightly
worse than Ours-2 due to the removal of the label information.

2) Many-to-One Cross-View Action Recognition: In this
experiment, one view is used as test view and all the other
views are used as training views. We evaluate the performance
of our approaches in this experiment, which use both the
learned shared and private features.

TABLE III

MANY-TO-ONE CROSS-VIEW ACTION RECOGNITION RESULTS ON
IXMAS DATASET. EACH COLUMN CORRESPONDS TO A TEST VIEW

Our unsupervised (Ours-1) and supervised (Ours-2)
approaches are compared with existing approaches [5]–[8],
[22], [25], [40]. The importances of SAM Z in Eq. (2), the
incoherence in Eq. (4) and the private features in Ours-2 model
are also evaluated.
Table III shows that our supervised approach (Ours-2)

achieves an impressive 100% recognition accuracy in all the
5 cases, and Ours-1 achieves an overall accuracy of 99.8%.
Ours-1 and Ours-2 achieve superior overall performance over
all the other comparison approaches, demonstrating the benefit
of using both shared and private features in this work. Our
approaches use the sample-affinity matrix to measure the
similarities between video samples across camera views. Con-
sequently, the learned shared features accurately characterize
the commonness across views. In addition, the redundancy
is reduced between shared and private features, making the
learned private features more informative for classification.
Although the two methods in [8] exploit private features as
well, they do not measure different contributions of samples in
learning the shared dictionary, making the shared information
less discriminative.
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Fig. 5. Performance variations of our supervised approach (Ours-2) on
IXMAS dataset with various values of parameters α, β, and γ . Note that
the origin of y-axis starts from 98%. (a) Parameter α. (b) Parameter β.
(c) Parameter γ

Ours-2 outperforms No-SAM approach, suggesting the
effectiveness of SAM Z . Without SAM Z , No-SAM treats
samples across views equally, and thus cannot accurately
weigh the importance of samples in different views. The
importance of the private features can be clearly seen from
the performance gap between Ours-2 and No-private approach.
Without private features, the No-private approach only uses
shared features for classification, which are not discrimina-
tive enough if some informative motion patterns exclusively
exist in one view and are not sharable across views. The
performance variation between Ours-2 and the No-incoherence
method suggests the benefit of encouraging the incoherence
in Eq. (4). Using Eq. (4) allows us to reduce the redundancy
between shared and private features, and help extract discrim-
inative information in each of them. Ours-2 slightly outper-
forms Ours-1 in this experiment, indicating the effectiveness
of using label information in Eq. (5).

3) Parameter Analysis: The sensitivity of our approach
to parameters α, β, γ, p, K are evaluated in this experiment.
The average performance of one-to-one cross-view action
recognition accuracy is reported.
Performance variations of Ours-2 given parameters α, β, γ

of values 0.001, 0.01, 0.1, 1, 10, 100 are shown in Figure 5.
Results show that our approach is insensitive to all these para-
meters. The largest performance gap given different parameter
value of α, γ is 0.19%. The performance variation given β
is even lower, which is 0.07%. These results demonstrate
the insensitivity of our approach to these parameters, and
thus we simply set all these parameters to 1 throughout the
experiments. The results of Ours-1 are not given here as it
shows similar results to Ours-2.
We also verify the effectiveness of corruption probability p

in Ours-2, and the number of layers K in Ours-1 and Ours-2.
Results in Figure 6 indicate that the performance slightly
decreases if we increase the corruption probability p. The
performance variation is only 0.68% if p � 0.2, and it
increases to 1.25 if p � 0.4. The underlying reason is adding
noise in raw data (p > 0) reduces the amount of shared
information between views. Thus, the discriminative power of
shared features is decreased and results in a relatively lower
recognition performance. The best performance given vari-
ous K is achieved at 2-layer and 3-layer in Ours-1 and Ours-2,
respectively. However, the performance gap is slight, which
is 0.25% and 0.82% for Ours-1 and Ours-2, respectively.
Considering the extra training time using multiple layers, we
use K = 1 in this work.

Fig. 6. Performance variations on IXMAS dataset with (left to right) different
number of layers in Ours-1, and layers in Ours-2. Note that the origin of y-axis
starts from 95% in (a) and 99% in (b) and (c).

Fig. 7. Objective function values at each layer in iterations of our
(a) unsupervised and (b) supervised approaches on IXMAS dataset.

The convergence of the proposed two approaches is also
verified. We build 4-layer networks for the two approaches,
and show the objective function values of each layer in dif-
ferent iterations in Figure 7. Results indicate that the training
of each layer generally converges within 5 iterations.

B. Northwestern-UCLA Multiview Action 3D Dataset

1) Many-to-One Cross-View Action Recognition: We use
the same features as the IXMAS dataset. Many-to-One cross-
view recognition accuracy in three cross-view scenarios are
reported following [35], i.e., Cross-Subject, Cross-Camera
View, and Cross-Environment.
Our methods are compared with [26], [27], [35], and

[41]–[43] in three cross-view scenarios following [35], i.e.,
Cross-Subject, Cross-Camera View, and Cross-Environment.
Results in Table IV show that Ours-2 outperforms

[35]+LowR (low resolution visual features) by 3.9% and
10.4% in Cross-View and Cross-Env scenarios, respectively,
and achieves comparable performance with [35]+LowR in
Cross-Subject scenario. Ours-2 utilizes both private and shared
features in various views, while [35] only uses features shared
between views. In this comparison, the most significant per-
formance gain of Ours-2 in Cross-Subject, Cross-View, and
Cross-Env scenarios is 30.4% (over [27]), 32.0% (over [26]),
and 62.3% (over [27]), respectively. Such remarkable improve-
ments demonstrate the benefit of using both shared and
private features for modeling cross-view data, and SAM for
measuring the similarity of samples in multiple views. Ours-2
outperforms Ours-1 due to the use of label information.

2) Parameter Analysis: The sensitivity of our approach
to parameters α, β, γ are evaluated in this experiment.
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TABLE IV

CROSS-SUBJECT, CROSS-VIEW, AND CROSS-ENVIRONMENT ACTION
RECOGNITION RESULTS ON NUMA DATASET

Fig. 8. Performance variations of our supervised approach (Ours-2) with
various values of parameters α, β, and γ on NUMA dataset. (a) Parameter α.
(b) Parameter β. (c) Parameter γ .

The average performance of many-to-one cross-view action
recognition accuracy is reported.
Performance variations of Ours-2 given parameters α, β, γ

of values 0.001, 0.01, 0.1, 1, 10, 100 are shown in Figure 8.
Results show that Our-2 is insensitive to all these parameters.
The largest performance gap given different parameter values
of α,β, and γ is within 2%. These results demonstrate the
insensitivity of our approach to these parameters, and thus we
simply set all these parameters to 1 throughout the experi-
ments. The results of our unsupervised approach is not given
here as it shows similar results to the supervised approach.

C. Daily and Sports Activities Data Set

1) Many-to-One Cross-View Action Classification: In this
experiment, data from 4 sensors are used for training
(36, 480 time series) and the data from the remaining 1 sensor
(9, 120 time series) are used for testing. This process is
repeated 5 times and the average results are reported.
Our unsupervised (Ours-1) and supervised (Ours-2)

approaches are compared with mSDA [10], DRRL [44] and
IKSVM. The importances of SAM Z in Eq. (2), the incoher-
ence in Eq. (4) and the private features in Ours-2 model are
also evaluated. We remove Z in Eq. (2) and the incoherence
component in Eq. (4) from the supervised model, respectively,
and obtain the “No-SAM”, and the “No-incoherence” model.
We also remove the learning of parameter {Gv}V

v=1 from
the supervised model and obtain the “No-private” model.
Comparison results are shown in Table V.
Ours-2 achieves superior performance over all the other

comparison methods in all the 5 cases with an overall
recognition accuracy of 58.0%. Ours-2 outperforms Ours-1
by 0.9% in overall classification result due to the use of

TABLE V

MANY-TO-ONE CROSS-VIEWACTION CLASSIFICATION RESULTS ON DSA
DATASET. EACH COLUMN CORRESPONDS TO A TEST VIEW.
V0-V4 ARE SENSOR VIEWS ON TORSO, ARMS, AND LEGS

label information. Note that cross-view classification on DSA
dataset is challenging as the sensors on different body parts
are weakly correlated. The sensor on torso (V0) has the
weakest correlations with the other four sensors on arms
and legs. Therefore, results of all the approaches on V0
are the lowest performance compared to sensors V1-V4.
Ours-1 and Ours-2 achieve superior overall performance over
the comparison approaches IKSVM and mSDA due to the
use of both shared and private features. IKSVM and mSDA
do not discover shared and private features, and thus cannot
use correlations between views and exclusive information in
each view for classification. To better balance the information
transfer between views, Ours-1 and Ours-2 use the sample-
affinity matrix to measure the similarities between video
samples across camera views. Thus, the learned shared features
accurately characterize the commonness across views. Though
the overall improvement of Ours-1 and Ours-2 over mSDA
is 1% and 1.9%, Ours-1 and Ours-2 correctly classifies 456
and 866 more sequences than mSDA in this experiment,
respectively.
The performance gap between Ours-2 and the No-SAM

approach suggests the effectiveness of SAM Z . Without
SAM Z , No-SAM treats samples across views equally, and
thus cannot accurately weigh the importance of samples
in different views. Ours-2 outperforms No-private approach,
suggesting the importance of the private features in learning
discriminative features for multi-view classification. Without
private features, No-private approach only uses shared features
for classification, which are not discriminative enough if some
informative motion patterns exclusively exist in one view and
are not sharable across views. Ours-2 achieves superior per-
formance over No-incoherence method, indicating the benefit
of encouraging the incoherence in Eq. (4). Using Eq. (4)
allows us to reduce the redundancy between shared and private
features, and help extract discriminative information in each
of them. Ours-2 slightly outperforms Ours-1, indicating the
effectiveness of using label information in Eq. (5).

2) Parameter Analysis: We also evaluate the sensitivity of
our approach to parameters α, β, γ . In this experiment, all the
5 views are used for both training and testing. 50% action
data (regardless of data views) are used for training and the
remaining 50% data are used for testing.
Figure 9 illustrates the performance variations of Ours-2

given parameters α, β, γ of values 0.001, 0.01, 0.1, 1, 10, 100.
Results show that Ours-2 is insensitive to all these parameters.
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Fig. 9. Performance variations of our supervised approach (Ours-2) with
various values of parameters α, β, and γ on the DSA dataset. The origin of
y-axis starts from 80% in order to show slight performance variations.

Fig. 10. Objective function values at each layer in iterations of our
(a) unsupervised and (b) supervised approaches on DSA dataset.

The largest performance variations given different parameter
values of α, β, γ are 0.4%, 0.4%, 2.5%, respectively. The
performance gap with respect to γ is slightly larger than
the parameters α, β as γ determines the amount of label
information to the model. Ours-2 relies on shared and private
features more than the label information as it yields the
best accuracy when γ = 0.001. As Ours-2 is insensitive to
these parameters, we simply set all these parameters to 1
throughout the experiments. The results of Ours-1 approach
are not shown here as it shows similar results to Ours-2
approach.
We also evaluate the convergence of Ours-1 and Ours-2.

5-layer networks are learned for the two approaches, and
their objective function values of each layer in 20 iterations
are shown in Figure 10. Results demonstrate that the training
of each layer quickly converges within 5 iterations.

V. CONCLUSION

We have proposed two novel view-invariant feature learn-
ing approaches for cross-view action classification. Our
approaches utilize both shared and private features to accu-
rately characterize human actions with large viewpoint and
appearance variations. The sample affinity matrix is introduced
in this work to compute sample similarities across views.
The matrix is elegantly embedded in the learning of shared
features in order to accurately weigh the contribution of each
sample to the shared features, and balance information transfer.
Extensive experiments on the IXMAS, NUMA, and DSA
datasets show that our approaches outperform state-of-the-art
approaches in cross-view action classification.
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