
cryptography

Article

Intrinsic Run-Time Row Hammer PUFs:
Leveraging the Row Hammer Effect for Run-Time
Cryptography and Improved Security †

Nikolaos Athanasios Anagnostopoulos 1 ID , Tolga Arul 1 ID , Yufan Fan 2 ID , Christian Hatzfeld 3 ID ,
André Schaller 1 ID , Wenjie Xiong 4 ID , Manishkumar Jain 2, Muhammad Umair Saleem 2,
Jan Lotichius 3, Sebastian Gabmeyer 1 ID , Jakub Szefer 4 ID and Stefan Katzenbeisser 1,*

1 Security Engineering Group, Computer Science Department, Technical University of Darmstadt,
Mornewegstraße 32, S4|14, Darmstadt, 64293 Hessen, Germany;
anagnostopoulos@seceng.informatik.tu-darmstadt.de (N.A.A.); arul@seceng.informatik.tu-darmstadt.de (T.A.);
schaller@seceng.informatik.tu-darmstadt.de (A.S.); gabmeyer@seceng.informatik.tu-darmstadt.de (S.G.)

2 Department of Electrical Engineering and Information Technology, Technical University of Darmstadt,
S3|06, Merckstraße 25, Darmstadt, 64283 Hessen, Germany; yufan.fan@stud.tu-darmstadt.de (Y.F.);
manishkumar.jain@stud.tu-darmstadt.de (M.J.); muhammadumair.saleem@stud.tu-darmstadt.de (M.U.S.)

3 Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology,
Technical University of Darmstadt, S3|06, Merckstraße 25, Darmstadt, 64283 Hessen, Germany;
c.hatzfeld@emk.tu-darmstadt.de (C.H.); j.lotichius@emk.tu-darmstadt.de (J.L.)

4 Computer Architecture and Security Laboratory, Department of Electrical Engineering, Yale University,
10 Hillhouse Avenue, New Haven, CT 06520, USA; wenjie.xiong@yale.edu (W.X.); jakub.szefer@yale.edu (J.S.)

* Correspondence: katzenbeisser@seceng.informatik.tu-darmstadt.de; Tel.: +49-6151-162-5620
† This paper is an extended version of our paper published in Proceedings of 2017 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), 1–5 May 2017.

Received: 27 April 2018; Accepted: 25 June 2018; Published: 30 June 2018

Abstract: Physical Unclonable Functions (PUFs) based on the retention times of the cells of a Dynamic
Random Access Memory (DRAM) can be utilised for the implementation of cost-efficient and
lightweight cryptographic protocols. However, as recent work has demonstrated, the times needed
in order to generate their responses may prohibit their widespread usage. To address this issue, the
Row Hammer PUF has been proposed by Schaller et al., which leverages the row hammer effect in
DRAM modules to reduce the retention times of their cells and, therefore, significantly speed up the
generation times for the responses of PUFs based on these retention times. In this work, we extend
the work of Schaller et al. by presenting a run-time accessible implementation of this PUF and by
further reducing the time required for the generation of its responses. Additionally, we also provide
a more thorough investigation of the effects of temperature variations on the Row Hammer PUF and
briefly discuss potential statistical relationships between the cells used to implement it. As our results
prove, the Row Hammer PUF could potentially provide an adequate level of security for Commercial
Off-The-Shelf (COTS) devices, if its dependency on temperature is mitigated, and, may therefore,
be commercially adopted in the near future.

Keywords: row hammer; dynamic random access memory (DRAM); physical unclonable function
(PUF); run-time accessible; security primitive

1. Introduction

In recent years, attacks that exploit the effects of row hammering in Dynamic Random Access
Memories (DRAMs) have gained a lot of attention. However, as proven by the work of Schaller et al. [1],
which was published in 2017, the row hammer effect can also be used to actually enhance the security
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of a system, rather than diminish it. This paper extends the work of Schaller et al., demonstrating that
the row hammer effect can be utilised to provide run-time accessible cryptographic applications and
improved security.

The row hammer effect was first examined in detail in 2014, in a publication by Kim et al. [2],
in which the authors discuss the vulnerability of high-density, commodity DRAM modules to so-called
disturbance errors caused by repeatedly accessing uncached memory rows. Disturbance errors occur
due to the charge coupling between DRAM cells, which accelerates charge leakage in adjacent rows,
and eventually results in bits being flipped in so-called victim rows in DRAM, even though the victim
rows were not explicitly accessed.

The row hammer effect allows for breaking many software-based security mechanisms, as well
as memory and process isolation, because it allows flipping memory bits, which would otherwise
be protected by software-based access control mechanisms. While most relevant publications tend
to focus on the realisation of attacks utilising the row hammer effect and countermeasures against
them [3–9], Schaller et al. [1] presented, in 2017, a Physical Unclonable Function (PUF) based on
the row hammer effect, proving, in this way, that the row hammer effect can also be utilised for
security-enhancing applications.

The Row Hammer PUF, as Schaller et al. [1] call their novel PUF implementation is, in fact,
leveraging the row hammer effect in DRAM modules to reduce the retention times of their cells
and, thus, significantly speed up the generation times for the responses of PUFs based on these
retention times. This PUF can, therefore, be considered as both an improved rendition of the DRAM
retention-based PUF and as a novel PUF implementation, as it takes advantage of not only the retention
characteristic of the DRAM cells, but also of the row hammer effect.

In this case, contrary to the other known applications of the row hammer effect, the fact that the
vast majority of contemporary DRAMs seems to be vulnerable to row hammering, as noted in [2],
is proven to be advantageous for the security of the computer systems incorporating them. In particular,
a run-time accessible Row Hammer PUF can allow for a flexible and cost-efficient implementation of
cryptographic applications, e.g., key agreement, identification and authentication protocols, even in
low-end devices, such as the hardware usually employed in the Internet of Things (IoT).

DRAM-based PUFs are a relatively new category of memory-based PUFs, as the first relevant
publications appeared in 2012 [10–13]. In particular, there are multiple categories of DRAM-based
PUFs, each of which takes advantage of a different physical characteristic of the DRAM [14], such as
the startup values of the DRAM cells [15,16], their retention times [17,18] and their access latency
regarding both the relevant write and read operations [19,20]. In this paper, we focus rather on DRAM
PUFs based on the retention times of the DRAM cells, in the presence of the row hammer effect in
them. Traditional DRAM retention-based PUFs suffer from high generation times [20], while the
Row Hammer PUF introduced by Schaller et al. [1] allows for relatively low generation times.

In this paper, we examine how these generation times can be lowered even further, present and
evaluate a run-time accessible implementation of the Row Hammer PUF presented in the work of
Schaller et al. [1], investigate in detail the effects of temperature on the different implementations of the
Row Hammer PUF and provide a brief discussion regarding potential statistical relationships among
the cells used to implement it. In this way, we aim to demonstrate that the Row Hammer PUF
is a flexible, lightweight, cost-efficient and practical security primitive that can be used as
a basis for the implementation of cryptographic applications, e.g., key agreement [17] and
authentication [17,18] protocols that have been implemented using the exact same hardware,
and, therefore, significantly strengthen the security of systems that contain DRAMs vulnerable to the
row hammer effect.

Finally, the Row Hammer PUF not only does not require the addition of hardware for its
construction and operation, similar to other intrinsic memory-based PUFs, such as SRAM PUFs,
but, unlike most of those PUFs, which can only be accessed during boot-time and provide
a single input–output pair, the Row Hammer PUF can also be accessed during run-time and
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provides multiple Challenge–Response pairs (CRPs), as the input–output pairs of a PUF are usually
referred to. Thus, the Row Hammer PUF may be a DRAM-based PUF implementation that could
potentially be commercially adopted, especially as a security primitive for the implementation of
cryptographic applications in low-end devices, such as IoT hardware, that usually cannot support
other more demanding security mechanisms, such as a Trusted Platform Module (TPM), due to their
limited resources.

1.1. Contributions of This Paper

To present the contributions of this paper in a transparent manner, we first list the contributions
made by the original work of Schaller et al. [1] that this paper extends, and then presents the additional
contributions made by this paper.

The original paper by Schaller et al. [1], which this paper extends, made the following contribution
in the field of PUFs:

1. It introduced the Row Hammer PUF, whose implementation is based on unique disturbance
errors among DRAM rows, caused by the row hammer effect.

2. It discussed, in detail, the implementation of this PUF on Commercial Off-The-Shelf (COTS)
devices, which does not require additional hardware for its construction or operation. It is also
noted that this PUF could potentially be made accessible at run-time.

3. Additionally, it provided an extensive evaluation, presenting very good results regarding the
uniqueness, robustness and entropy of its responses.

4. Finally, it also presented a limited study of the effects of temperature on the operation of this PUF.

This paper extends the work done by Schaller et al. [1] by making the following additional contributions:

1. We present and evaluate a flexible run-time accessible implementation of the Row Hammer PUF
on COTS devices, based on the usage of a Linux kernel module.

2. We also improve, in some cases, the time required for the generation of responses from the
Row Hammer PUF, by fully disabling the caching of row hammering operations, and therefore
increasing the rate at which bits flip.

3. Furthermore, we present an extensive evaluation of the proposed implementations of the
Row Hammer PUF, in order to provide an adequate comparison of their uniqueness,
robustness and the entropy of their responses, both for the original implementation and for
the implementations proposed in this work.

4. Additionally, we also provide an extended investigation of the way temperature affects the
responses of the Row Hammer PUF.

5. Moreover, we examine whether potential statistical relationships exist among the cells used to
implement it.

6. Finally, we briefly discuss the potential of the Row Hammer PUF for commercial adoption.

1.2. Outline of This Paper

The rest of this paper is organised in the following way. Section 2 provides background
information regarding DRAMs and briefly presents the literature relevant to this paper, including
both works regarding the row hammer effect and ones concerning memory-based intrinsic PUFs.
The implementation setup of the original Row Hammer PUF and our improved implementations
of this PUF are discussed in Section 3. Subsequently, these implementations are evaluated in
Section 4, where also an extended investigation regarding the effects of temperature variations on the
Row Hammer PUF is provided. Additionally, we briefly examine, in this section, whether there is
any significant statistical relationship among the cells that are used to produce the Row Hammer PUF
responses. Furthermore, we also briefly discuss the potential of the Row Hammer PUF to be
commercially adopted, taking into account its dependency on temperature. Finally, Section 5 concludes
the paper providing useful remarks and helpful insights that can be drawn from the evaluation of the
different implementations of the Row Hammer PUF.
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2. Background and Related Literature

In this section, we provide some background information on the way DRAMs work and briefly
discuss works relevant to this paper. We examine briefly literature concerning either of the two main
topics related to this paper, the row hammer effect and memory-based intrinsic PUFs.

2.1. DRAM Data Storage and Access

The most common contemporary design for a DRAM cell consists of one transistor and one
capacitor, as shown in Figure 1. The transistor acts as a gatekeeper, regulating access to the capacitor,
whose charged or discharged state indicates the logical value stored in the DRAM cell. The gate of
the transistor is connected to a wordline (WL) that controls access to the whole row. The capacitor is
connected to a bitline (BL) through the transistor. Each bitline is also connected to an equaliser and a
sense amplifier that are used to convert the capacitor’s charge to a logical value. DRAM cells are quite
often separated into true cells, whose charged state indicates logical one, and anti-cells, whose charged
state represents logical zero [21]. For both types of cells, their discharged states indicate the opposite
logical value from that of their charged states. In Figure 1, we represent true cells as being connected
to a BL bitline and anti-cells as connected to a BL* bitline.

DRAM cells are organised in arrays, which are called banks, which are usually further organised in
sets of matrices of DRAM cells, in the way Figure 1 demonstrates. When a memory address is accessed,
the relevant bank is selected and the appropriate row and column in that bank are activated, through the
corresponding global wordline (GWL) and global bitline (GBL), respectively. Subsequently, the relevant
matrix in that bank is selected and the appropriate local row and column are activated, through the
corresponding local wordline (WL) and local bitline (BL). The relevant global wordlines and bitlines of
each bank are used in order to activate the local wordlines and bitlines of each matrix of DRAM cells
found inside that bank. To this end, an elaborate system of logic for address decoding and row and
column selection exists both at bank level and at matrix level, as well as a system of global equalisers
and sense amplifiers inside each bank and of local equalisers and sense amplifiers inside each matrix,
as Figure 1 shows. The need for such an intricate system of logic raises the demand for a large scale
of integration.

Figure 1. Schematics of the organisation of the DRAM module. The blue arrows show potential leakage
paths. (Figure adapted from a figure of the original paper by Schaller et al. [1].)

The charge stored in the capacitor of a DRAM cell leaks over time, leading the cell’s logical value
to flip. Therefore, the time required for enough charge to leak from a cell’s capacitor is equivalent to its
data retention time. Charge can leak from a cell’s capacitor either to components of that cell itself or to
components of other cells, which may be in the same or in different rows, as indicated in Figure 1 by the
blue arrows. Therefore, in order to prevent data stored in the DRAM cells from leaking, the cells need
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to be accessed periodically, in order to reinforce their stored values, through a process being referred to
as the refresh operation. To ensure data integrity, each DRAM row needs to be refreshed with a certain
frequency, which is in the order of milliseconds for most contemporary DRAM implementations.

To access a particular cell, the corresponding bank is selected and, on that bank, the correct global
wordline and global bitline are charged, in order to allow access to a particular row and column,
respectively, of that bank. This operation leads to the activation of a whole row of DRAM matrices.
Then, the appropriate matrix is selected and the correct local wordline and local bitline, on that matrix,
are charged, in order to allow access to a particular row and column, respectively, of that matrix.
This operation leads to the activation of a whole row of DRAM cells, as their transistors are activated
through the same wordline, as Figure 1 indicates. Therefore, all operations in the DRAM, such as
reading, writing and refreshing, tend to take place at the level of a whole row of a matrix or at the
level of a whole row of a bank, which in this case is being referred to as a sub-array [22], depending on
whether rows, found at the same row level, in the different matrices of the same sub-array are made to
be accessed simultaneously or not [23,24].

2.2. The Row Hammer Effect in DRAM

In recent years, large scale integration and higher clock frequencies being used in DRAMs have
brought into the spotlight the significance of the row hammer effect for the security of contemporary
DRAM implementations [2,25,26]. Due to large scale integration, adjacent DRAM components, such as
bitlines, wordlines, transistors and capacitors, start to exhibit coupling effects, which accelerate
charge leakage in adjacent DRAM cells. Additionally, high clock frequencies, allow for more frequent
access to different DRAM rows. When uncached DRAM rows are rapidly and repeatedly accessed,
in an operation referred to as row hammering, their very frequent activation, in conjunction to the
charge coupling between adjacent DRAM components, lead to a significant increase in the charge
leakage of DRAM cells in rows adjacent to those being accessed, which can result in a quick change in
the logical value of these cells, if they were initially in their charged state.

Therefore, the row hammer effect is an unintended side effect that occurs when a memory
row, referred to as the hammer row, is rapidly and repeatedly accessed, causing cells in nearby rows,
called victim rows, to leak charge more quickly [2,25,27–29]. This charge leakage can cause the cell’s
logical value to change, causing what is known as a bit flip. Such bit flips are persistent to the refresh
operation [29]. These disturbance errors are based on the induced increase in the crosstalk among
adjacent DRAM components, such as bitlines, wordlines, transistors and capacitors, due to the frequent
activation of the hammer rows, when these rows are not available through the use of the cache memory,
but are accessed directly on the DRAM itself.

It has been shown that hammering a row will most likely affect its two adjacent rows.
Consequently, we can distinguish between single-sided row hammering, where one hammer row is
used to affect its two adjacent rows, and double-sided row hammering, where two (hammer) rows
adjacent to the same victim row are hammered, in order to increase the chance of bit flips [3]. Of course,
these two hammer rows may also affect their adjacent (victim) row that is not adjacent to both of them.
The distinction between single-sided and double-sided row hammering is evident on Figure 2.

Usually, to allow for a sufficiently high DRAM access rate, and thus to trigger disturbance
errors through the row hammer effect, non-cached memory accesses are needed, e.g., by leveraging
the CLFLUSH instruction. Lately, several works have demonstrated the feasibility of exploiting the
row hammer effect on platforms that do not provide such cache line flush instructions. In order to
circumvent CPU caching mechanisms and ensure direct access to DRAM, Gruss et al. [7] and Aweke et al. [8]
enforce cache eviction through elaborate memory access patterns. Qiao and Seaborn [9] make use of x86
non-temporal store instructions, which do not use the CPU cache and van der Veen et al. [4] utilize
non-cacheable Direct Memory Access (DMA) queries to exploit the row hammer effect.
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Figure 2. Row Hammering types: (a) Double-Sided Row Hammering (DSRH) with PUF size = 12 KB;
(b) Single-Sided Row Hammering (SSRH) with PUF size = 16 KB. We assume that the row size of the
DRAM bank used is 4 KB. (Figure from the original paper by Schaller et al. [1].)

Other papers have presented techniques to gain understanding of the locations of flipping bits.
Razavi et al. [6] presented a technique that allows for targeted bit flips at arbitrary physical memory
locations by combining the row hammer effect with memory duplication. To conduct predictable
row hammer attacks, van der Veen et al. [4] use a brute-force approach to hammer all DRAM rows and
collect information about expectable bit flip locations. Finally, in the work of Jung et al. [30] a novel
approach is presented that allows for reconstructing the physical layout of DRAM cells, by applying
multiple temperature gradients on the memory module and observing DRAM data retention, which
can allow for row hammer attacks of high precision.

Since its discovery, the row hammer effect has been used mainly as means of attacking a computer
system. In particular, changing the contents of memory cells can result in modification of important
data. Seaborn and Dullien [3] as well as van der Veen et al. [4] rely on the Row Hammer effect
in order to gain root privileges, by flipping bits in page table entries. Xiao et al. [5] attack Xen’s
paravirtualized memory isolation by employing the row hammer effect from within a malicious virtual
machine. Razavi et al. [6] as well as Bhattacharya and Mukhopadhyay [31,32] successfully attack RSA
by creating bit flips in keys stored in DRAM. Finally, Jang et al. [33] take advantage of the row hammer
effect in order to successfully attack the memory isolation solution provided by the Intel Software
Guard Extensions (SGX).

To the best of our knowledge, the work of Schaller et al. [1] is the only one that proposes the
use of the row hammer effect in a DRAM in order to enhance the security of the relevant computer
system that incorporates the DRAM, rather than diminish it. In this work, we extend and improve
their techniques, in order to allow for improved security and run-time cryptographic applications.
Additionally, we briefly explore the potential of the examined security scheme for commercial adoption.

2.3. Memory-Based Intrinsic PUFs

Physical Unclonable Functions (PUFs) ideally act as functions encoded in hardware,
which produce a unique output, being referred to as a response, for a specific input, being called
a challenge. However, in practice, PUFs tend to provide slightly noisy responses, which could affect
their reliability [34,35]. For this reason, usually a fuzzy extractor scheme, which incorporates some
Error Correction Code (ECC) [12], needs to be applied, in order to stabilise the PUF response [36].

The Row Hammer PUF, like most memory-based PUF implementations, is an intrinsic PUF
and, therefore, its implementation does not require the addition of extra circuitry either for its
construction or for its operation. Some other well-known memory-based intrinsic PUFs include
the SRAM PUF [37,38], the Flash PUF [39] and different types of DRAM PUFs based either on the
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startup values of the DRAM cells [15,16] or on their retention times [10–12,17] or on the access latency
times of the DRAM operations [19,20]. Intrinsic PUFs act as inherent security primitives and can,
therefore, be used to enhance the security of low-end devices, such as IoT hardware, that usually cannot
support other more demanding security mechanisms, such as a Trusted Platform Module (TPM), due to
their limited resources.

Depending on the number of their available input–output pairs, which are referred to as
Challenge–Response Pairs (CRPs), PUFs can provide a varying level of security and can, therefore,
be used in different applications. The most common applications of PUFs include secure key storage
and key agreement, as well as identification and authentication. A distinction can be made between
PUFs with a single or very few CRPs, which are referred to as “weak” PUFs, and PUFs with a large
number of CRPs, such that their complete characterisation within a limited timeframe is not possible,
which are called “strong” [40,41].

Although memory-based PUFs are usually considered as “weak” PUFs, in this work, we refrain
from judging whether the Row Hammer PUF is a “weak” or a “strong” PUF implementation, and only
note that it can provide multiple CRPs. This property of the Row Hammer PUF could be considered as
a potential advantage over other memory-based PUFs that can provide only a single CRP, such as PUF
implementations based on the startup values of SRAMs and DRAMs. Additionally, while the SRAM
PUF can only be accessed at boot-time, the Row Hammer PUF, as this work proves, can also be accessed at
run-time, therefore allowing for the implementation of PUF-based cryptographic applications at run-time.

However, while SRAM PUFs have been studied extensively [42,43], DRAM-based PUFs, such as
the Row Hammer PUF, have not yet been fully studied. Therefore, and as this work also proves,
while DRAM-based PUFs, such as the Row Hammer PUF may have a number of advantages over
other memory-based PUFs, such as SRAM PUFs, they also still suffer from a number of shortcomings,
such as their dependency on temperature. These open issues will need to be addressed in order to
explore the full potential of DRAM-based PUFs, including the Row Hammer PUF, for commercial
adoption [14]. Nevertheless, some of the identified shortcomings of some DRAM-based PUFs are being
addressed in recent literature, e.g., as this works demonstrates, the Row Hammer PUF implementation
can reduce significantly the time required for the generation of responses, in comparison to the ordinary
DRAM retention-based PUF implementations.

Finally, as the Row Hammer PUF is implemented in DRAM, which is an essential memory
component of most contemporary computer systems, it allows for the efficient implementation of
run-time cryptographic applications even on resource-constrained devices, such as IoT hardware,
which may not support the use of other, more complex and resource-demanding security primitives.

3. Run-Time Row Hammer PUF Implementations in Commodity DRAM

In this section, we examine in detail the different parameters and factors that can affect the
operation of a Row Hammer PUF. Additionally, we present and discuss our Row Hammer PUF
implementations, in comparison to the implementation presented by Schaller et al. [1]. In particular,
we introduce a more flexible firmware implementation and a run-time accessible kernel module
implementation of the Row Hammer PUF. The latter leverages a Linux kernel module, in a similar
way to the work of Xiong et al. [17], in order to provide access to the DRAM characteristics utilised by
the Row Hammer PUF.

As noted in previous works, the locations of the disturbance errors caused by the row hammer
effect in DRAM cells are stable [2,4]. This makes the row hammer effect a promising candidate for
a PUF. However, the number of bit flips introduced by the Row Hammer effect can be relatively small,
and thus may only provide a limited amount of entropy. For this reason, the Row Hammer PUF
takes advantage not only of the effect that the row hammer has on the DRAM cells, but also of their
data retention characteristic. In this way, it manages to significantly decrease the time required for
the generation of responses and, therefore, address a known problem of the DRAM retention-based
PUF, which has been noted in the recent literature [20]. Finally, further increases in the entropy of the
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responses of the Row Hammer PUF can be achieved by increasing the number of DRAM rows used in
order to implement this PUF, as well as by controlling the initial values of the DRAM cells in both the
hammer and the victim rows.

3.1. Row Hammer PUF Parameters

Our implementation setup is based on the inherent DRAM of a PandaBoard ES, the same
DRAM that was employed also in the work of Schaller et al. [1] that introduces the original
Row Hammer PUF, in order to facilitate comparisons between our results and the results of that work.
Our PandaBoard ES implementations demonstrate that the Row Hammer PUF can be implemented
on older low-end devices, which are currently already deployed and should be relatively cheap to
acquire. Therefore, we believe that the implementations and results presented in this work would also
be applicable on the majority of the devices that incorporate DRAM modules that are susceptible to
the row hammer effect.

In general, the operation of the Row Hammer PUF is influenced by a number of different
parameters, which can be exploited in order to increase the number of potential responses of this PUF.
The most influential of these parameters are examined in this section, while other additional factors
that can affect the operation and performance of the Row Hammer PUF are discussed in Section 3.3.

In particular, we note the following significant parameters that have been examined in order to
test their influence on the responses of the Row Hammer PUF:

• Row hammering type: There are two approaches to induce the row hammer effect described in
the relevant literature [3,8]. Therefore, we can distinguish between two different Row Hammering
types (RH types). If for one victim row there is only one adjacent hammer row, used to
induce bit flips, we call it Single-Sided Row Hammering (SSRH). In contrast, Double-Sided
Row Hammering (DSRH) involves the usage of both neighbours of a particular victim row as
hammer rows. The patterns of hammer and victim rows, used to conduct SSRH and DSRH are
shown in Figure 2. As we utilise the bit flips of a number of victim rows as the PUF response,
we refer to these rows as PUF rows, as indicated in Figure 2.

• PUF address and size: The PUF address defines the starting address of a PUF in the DRAM.
The PUF size depends on the number of victim rows that are employed for the implementation
of the Row Hammer PUF (PUF rows in Figure 2). Due to the existence of hammer rows,
PUF rows are not consecutive. The PUF size and the RH type influence the actual hammering
frequency, as a smaller PUF size will allow each hammer row to be accessed more frequently.
Likewise, SSRH has fewer hammer rows, so each can be accessed more often within the same
time period.

• Initial Value (IV) of the hammer rows: For the memory range that corresponds to PUF address
and PUF size, corresponding hammer rows will be pre-initialized by writing the hammer row IV
to them, before conducting the row hammer process.

• Initial Value (IV) of the PUF rows: Similarly, all PUF rows that are included in this
memory range are initialized with the PUF row IV before the Row Hammer process is started.
Both, the hammer row IV and the PUF row IV are important parameters because disturbance
errors are caused by the interaction of the charges of DRAM cells, which are dependent on
the logical values of these cells. Furthermore, as already mentioned, DRAM cells may be
divided into so-called true cells and anti-cells, which represent the same logical value using
different charge states [21]. True cells have a logical value of one when charged and a logical
value of zero when discharged, while anti-cells have the opposite values for these charge states.
Consequently, initializing a true cell with a value of logical zero or an anti-cell with logical one
will most likely prevent bit flips from occurring in these cells. Thus, it is important to evaluate the
effect of different values of PUF row IV and hammer row IV. As the layout of true and anti-cells is
identical for DRAM modules of the same type, once optimal settings for both sets of initial values
have been found, they can be used for all other instances of the same device type.
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• Row hammering time: The Row Hammering time (RH time) defines the total duration of the
PUF measurement, including the time needed to disable the refresh operation and conduct the
row hammering process. The RH time, just as the PUF size and the RH type, affects how many
times each hammer row will be accessed in total.

3.2. Row Hammer PUF Queries

Taking into account the above-mentioned parameters, the process of querying a Row Hammer PUF
is depicted in Algorithm 1. First, based on the PUF address, the PUF size and the RH type, the
DRAM region that will be used for the Row Hammer PUF is reserved, so that no other program can
access it. Next, the PUF rows and hammer rows are initialized with PUF row IV and hammer row IV,
respectively. Then, memory caching is disabled, if it has been enabled, for the hammer rows,
in order to ensure that all the row hammering commands executed will result in accesses in the
DRAM itself. The PUF query is started by disabling the DRAM auto-refresh for the PUF rows in
the next step. This is done using the same technique as the one employed by Xiong et al. [17].
Subsequently, the row hammering process is started. For this purpose, the hammer rows need to
be accessed and activated repeatedly for a certain time. This is achieved by a read operation to
the first word of each hammer row, which in turn causes the whole DRAM row to be refreshed.
Hence, bits in the PUF rows may start to leak charge and eventually flip. After RH time has passed,
the row hammering process ends and the DRAM auto-refresh is enabled again, for the PUF rows.
If memory caching for the hammer rows was enabled before the execution of Figure 1, then it is enabled
again. Finally, the PUF response is read from the PUF rows.

Algorithm 1: Process of querying a Row Hammer PUF. (Algorithm adapted from the original
paper by Schaller et al. [1].)

Input: PUF challenge C: {RH_type, PUF_address, PUF_size, Hammer_row_IV, PUF_row_IV,
RH_time}

Output: PUF response R
1 · reserve memory defined by PUF_address and PUF_size;
2 · initialize PUF_rows with PUF_row_IV and hammer_rows with Hammer_row_IV;
3 · disable memory caching (if it has been enabled), for hammer_rows;
4 · disable auto-refresh, for PUF_rows;
5 while t < RH_time do
6 for ri ∈ hammer_rows do
7 · read access to row ri;
8 end
9 end

10 · enable auto-refresh, for PUF_rows;
11 · enable memory caching (if it was originally enabled), for hammer_rows;
12 · read PUF_rows as PUF response R;

3.3. Additional Factors That Can Affect the Row Hammer PUF

As the Row Hammer PUF is inherently tied to the underlying physical properties of the DRAM
modules, there is a number of additional factors that can influence its operation. In particular,
external factors, such as the temperature and the voltage supply, as well as internal components,
such as error correction implementations, can affect the properties and operation of the DRAM in
general, and thus also significantly affect the responses of the Row Hammer PUF.

We discuss these factors and their potential influence on the Row Hammer PUF responses in
more detail, as follows:
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• Temperature: Prior work has shown that victim cells are not strongly affected by temperature [2].
However, the Row Hammer PUF is based on the interaction between the row hammer effect
and the DRAM decay, which was shown to be temperature-dependent [17,20]. We, therefore,
evaluate the temperature effect in Section 4, which confirms that the Row Hammer PUF is
significantly affected by temperature, exhibiting increased bit flips at higher temperatures.
While, for low temperature variations, the noise levels are stable and low, for high temperature
variations, the increase in the number of bit flips is such that it significantly differentiates the
PUF responses.

• Voltage: Prior work has shown that the voltage supply affects the leakage of DRAM cells [44].
In COTS devices there is currently no interface to control the voltage of DRAM cells. We assume
that, for the Row Hammer PUF, the DRAM operates at the factory-specified voltage settings.
The influence of voltage on the Row Hammer PUF will be investigated in future works. We do note,
however, that changing the voltage supply of DRAM on commodity hardware, without affecting
the supply of other components, such as its MicroController Unit (MCU), is not trivial, even when
it is possible, as noted by Schaller et al. [18].

• Error Correction Code (ECC): ECC can be used in DRAMs to protect from bit flips. Many DRAM
modules, such as the DRAM of the PandaBoard ES platforms used in this work, do not have ECC
implemented. Even if ECC is present, Aichinger [45] showed that ECC is not enough to mitigate
the Row Hammer effect. To use the Row Hammer PUF in the presence of ECC, the PUF size would
potentially have to be increased, in order to achieve a similar amount of bit flips. Nevertheless, if
ECC is implemented, it could potentially be disabled while the Row Hammer PUF is being queried,
either fully or only for the DRAM rows being used as PUF rows. Even if ECC is present and cannot
be disabled, it could potentially also be used for inherent error correction of the PUF response,
therefore improving the Row Hammer PUF operation, rather than hindering it. Finally, as relevant
ECC registers would indicate the rows on which bit flips are being observed, this information
could potentially also be exploited to enhance the PUF measurements. However, in this work, we
assume that no ECC is used, and the exact influence of ECC on the Row Hammer PUF remains
to be explored by future works. In general, the influence of ECC on the Row Hammer PUF
is highly dependent on the characteristics of the ECC that is implemented and on whether its
implementation allows for it to be disabled.

3.4. Implementation Setup

In this work, we test different implementations of the Row Hammer PUF that are based on the DRAM
modules of multiple PandaBoard ES Rev. B3 evaluation board, which is the same implementation setup as
the one used in the work of Schaller et al. [1] that introduced the Row Hammer PUF. In this way, we can
facilitate comparisons between our results and the results of that work. All our PUF implementations are
purely in software, leaving the hardware configuration unchanged.

The PandaBoard ES Revision B3 evaluation board incorporates a Texas Instruments OMAP 4460
System-on-Chip (SoC) module, which contains an ELPIDA B8164 B3PF-8D-F 1GB (2×4 Gb) Low
Power Double Data Rate type 2 (LPDDR2) Synchronous Dynamic Random Access Memory (SDRAM)
memory module in a Package-on-Package (PoP) configuration [46–49]. This DRAM module is divided
into 2 chips, with each chip containing 2 dies [49]. The memory is also further divided in 8 banks and
their overall row size is 32KB [49], with each bank, therefore, having a row size of 4KB.

The PUF responses produced by the boards can be transferred from them to a computer using
a serial connection, in order to be stored for further analysis and processing, or can be printed out
using the available inherent system commands. In both cases, either the full PUF response can be
extracted or only the memory regions that contain bit flips and their values. Finally, the correct time
points at which the row hammering should start and end are also calculated by our code, in such a way
as not to stall the PandaBoard’s microprocessor.
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We need to also note that the PandaBoard’s DRAM module has been fabricated using a 90 nm
manufacturing process. Therefore, further research may be required in order to evaluate the
performance of different row hammer implementations on DRAM modules that have been fabricated
based on more novel manufacturing processes or designs.

3.5. Firmware Implementation

The original Row Hammer PUF implementation described by Schaller et al. [1] was realised
using the U-Boot boot-loader [50]. We have also tested this implementation, for the purposes of this
paper, in order to compare it with the other implementations we present in this work. In the original
implementation, the Row Hammer PUF is queried during an early stage during DRAM initialisation,
before caching is enabled by the boot-loader. In this way, caching of the row hammering commands
could be avoided, in order to ensure that the hammer rows in the DRAM are accessed every time using
these commands.

In this work, we also present and test a similar firmware implementation, in which caching
is completely disabled by setting the relevant registers that control the cache to appropriate values
through software. This change should make our implementation more flexible, as it can be invoked
even after the caching has been enabled by the boot-loader. This firmware implementation can be set
to perform both SSRH and DSRH, enable or disable memory caching, use different sets of initial values as
hammer row IV and PUF row IV and, finally, work for different RH time, PUF address and PUF size.
Using these parameters, the Row Hammer PUF is queried as shown in Figure 1.

Since the DRAM is idle while the U-Boot boot-loader is running, queries to the Row Hammer PUF
can be conducted without affecting any other functions of the platform. In U-Boot, one can also control
the DRAM refresh cycle, as demonstrated by Xiong et al. [17]. Furthermore, although the PandaBoard
implements an ARM processor that does not provide the CLFLUSH instruction, one can access physical
DRAM addresses without caching, as described above.

The address organisation of the DRAM being examined can be deduced from the relevant
manuals [46–49] and adequate testing. Since the internal die architecture of the DRAM is not known
and address scrambling may be employed, as well as row redundancy, adequate testing, employing the
techniques discussed in [30], may be required in order to achieve effective row hammering. After we
disable interleaving, we allocate hammer rows and PUF rows in the same bank and make them
adjacent, as shown in Figure 2. The firmware can access physical memory addresses and therefore
allows direct access to physical memory locations, as long as these are not cached. To perform the
row hammer operation, the hammer rows need to be activated repeatedly for a certain time. In our
implementation this is achieved by a read operation to the first word of each hammer row.

3.6. Kernel Module Implementation

As noted in the work of Schaller et al. [1], the Row Hammer PUF can also be implemented using
a kernel module, in order to achieve run-time access. Similar to the U-Boot functionality, the DRAM
refresh operation can also be disabled from kernel space, as demonstrated by Xiong et al. [17]. As the
PandaBoard has two different DRAM chips, the kernel and processes running can be constrained
on one of these chips, which will keep being refreshed, while the other chip will be used for the
implementation of the Row Hammer PUF, which involves disabling the refresh operation for some
time, and manually refreshing critical data stored on the DRAM. Nevertheless, as Xiong et al. [17] have
demonstrated, this method is applicable also to devices that have only a single DRAM chip. Even if
the size of the DRAM makes it impossible to correctly refresh all the data stored in it, selective refresh
techniques could potentially be employed in order to adequately refresh critical data.

Moreover, also for the kernel module implementation, caching is disabled in a flexible manner,
by setting the relevant registers that control the cache to appropriate values through software. For the
purposes of this work, we have implemented and tested such a run-time accessible Row Hammer PUF,
using a Linux kernel module. This kernel module can be set to perform both SSRH and DSRH, enable or
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disable memory caching, use different sets of initial values as hammer row IV and PUF row IV and,
finally, work for different RH time, PUF address and PUF size. Using these parameters, the module
queries the Row Hammer PUF following the steps of Figure 1.

The module can be injected into the Linux kernel and run as one of the processes of the Linux
Operating System (OS), without affecting its normal performance. The kernel module runs parallel to
the other processes and is listed in the process list. Again, in this case, we disable interleaving and
allocate hammer rows and PUF rows in the same bank and make them adjacent, as shown in Figure 2.
The kernel module can only access virtual addresses, which have to be translated into physical ones by
the system. Nevertheless, we can translate specific physical addresses into virtual ones and then use
these virtual addresses within this module, in such a way as to access adjacent rows on the DRAM.
Again, the address organisation of the DRAM being examined can be deduced from the relevant
manuals [46–49] and adequate testing. Again, we need to note that as the internal die architecture
of the DRAM is not known and address scrambling may be employed, as well as row redundancy,
adequate testing, employing the techniques discussed in [30], may be required in order to achieve
effective row hammering. Finally, to perform the row hammer operation, the hammer rows need to be
activated repeatedly for a certain time. In our implementation this is achieved by a read operation to
the first word of each hammer row.

3.7. Disabling the Cache Operation

The produced code runs in the PandaBoard’s Cortex A9 MicroProcessor Unit (MPU), which has
a Cache Management Unit (CMU) that manages the caches of the MPU [48]. The CMU needs
to be programmed in such a way as to force all the cache lines to remain invalidated while the
row hammering process is running. This can be achieved by using the 64 range operation sets of the
CMU [48]. Each range operation set has three registers that can be programmed to allow for a range
operation to be performed over a memory region [48]. The first of these registers stores the starting
physical address of the memory region, the second its length, which can range from 1 B to 4KB, and
the third the type of operation to be performed, which can be clean, clean/invalidate or invalidate [48].
In this way, all levels of cache can be invalidated. Out of the 64 available range sets, only 56 can
be allocated [48]. As the allocated registers need to be deallocated after their use, the allocations
and deallocations of the range sets are done as an explicit step in the relevant Row Hammer PUF
code, in which caching of the hammer rows being used in the Row Hammer PUF is being disabled.
This ensures that the hammer rows in the DRAM are not cached when being accessed and, therefore,
are accessed in the DRAM itself.

4. Evaluation

In this section, we evaluate the different implementations of the Row Hammer PUF according to
their characteristics. We first present the original Row Hammer PUF implementation, introduced by
Schaller et al. [1], and briefly discuss its relevant characteristics and evaluation. Then, we examine
the different performance metrics by which the Row Hammer PUF implementations can be assessed,
in general, as well as compared against each other. Additionally, we demonstrate and compare our
results regarding the different Row Hammer PUF implementations, based on their characteristics.
Furthermore, we investigate in detail how temperature affects the Row Hammer PUF and whether
there are potential statistical relations among the PUF cells and their values. Moreover, we also present
a way to increase the number of bit flips observed in the Row Hammer PUF response, by employing
multiple instances of the Row Hammer PUF kernel module. Finally, we also examine the potential of
the Row Hammer PUF for commercial adoption.

4.1. Evaluation of the Original Row Hammer PUF

The original Row Hammer PUF, which was introduced by Schaller et al. [1], in 2017, is based
on a firmware implementation that was querying the PUF during an early stage during DRAM
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initialisation, before caching had been enabled by the boot-loader. This implementation was tested
using the values of the Row Hammer PUF parameters shown in Table 1. It was examined how
these parameters affected the number of observed bit flips and, then, this implementation was
evaluated, using a fixed parameter configuration, with regards to its uniqueness, robustness and
entropy. Additionally, it was briefly discussed how temperature variations could influence the
Row Hammer PUF.

Furthermore, due to the lack of information about the distribution of true and anti-cells it
was necessary to explore the correlation between such parameters as the hammer row IV and the
PUF row IV of the Row Hammer PUF and its PUF behaviour experimentally, by testing various
parameter settings. The reason for this was that most vendors of COTS, including the manufacturers
of the PandaBoard, treat such implementation details regarding their hardware components as the
distribution of true and anti-cells in the DRAM, as intellectual property and thus will not disclose
them. However, one potential approach to retrieve the layout of true cells (and anti-cells) would be
to initialize the DRAM with ‘0xFF’ (or ‘0x00’), disable the DRAM refresh operation and read back
the memory contents after a period of several hours or days, i.e., at the end of the decay process.
Such an approach has indeed been successfully tested by Kraft et al. [51].

Table 1. Parameters used for the evaluation of the original Row Hammer PUF characteristics, and their
corresponding sets of values. Additionally, this firmware implementation is executed before caching is
enabled. (Table from the original paper by Schaller et al. [1].)

Parameter Evaluated Values

RH type single-sided (SSRH), double-sided (DSRH)
PUF size 4 KB, 32 KB, 128 KB
hammer row IV ‘0x00’, ‘0x55’, ‘0xAA’, ‘0xFF’
PUF row IV ‘0x00’, ‘0x55’, ‘0xAA’, ‘0xFF’
RH time 60 s, 120 s
Cache (implicitly) disabled

In the original evaluation, three different memory regions, each located on one individual
PandaBoard, had been measured, with each such memory region considered as a PUF instance.
Therefore, three different PandaBoards had been employed for the evaluation of the
Row Hammer PUF. For all of the measurements, the PUF address was fixed. For each parameter
combination, 20 measurements were taken.

As Table 1 reveals, the original paper by Schaller et al. [1] considered a number of different
values for the Row Hammer PUF parameters, focusing, however, on evaluating configuration settings
that were expected to yield a good PUF. To extract the maximum possible entropy from the PUF,
Schaller et al. primarily strived to maximize the number of bit flips. For this purpose, they needed
to identify which parameters had the largest influence on the amount of bit flips. Their results,
shown in Table 2 and Figure 3, reveal that the hammer row IV and the PUF row IV play a significant
role in the amount of bit flips produced.

Furthermore, Schaller et al. [1] examined also the effects of Single-Sided (SSRH) and Double-Sided
Row Hammering (DSRH) on the number of bit flips observed in the original Row Hammer PUF
responses, as shown in Figure 4. Their results show that the use of DSRH results in slightly more bit flips
observed than the use of SSRH. However, the difference in the number of bit flips produced with the
two methods does not appear to be significant, as Figure 4 clearly indicates.
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Table 2. Overview of the average number of bit flips observed in the responses of the original
Row Hammer PUF, depending on combinations of hammer row IV and PUF row IV. Configuration
used: PUF size = 128 KB and RH time = 120 s and (RH type = SSRH/RH type = DSRH). (Table from
the original paper by Schaller et al. [1].)

PUF Row IV
Hammer Row IV

‘0x00’‘0x00’‘0x00’ ‘0x55’‘0x55’‘0x55’ ‘0xAA’‘0xAA’‘0xAA’ ‘0xFF’‘0xFF’‘0xFF’

‘0x00’ 7405/8032 17558/20358 7391/7200 17288/20152
‘0x55’ 0/0 0/0 0/0 0/0
‘0xAA’ 22547/24480 32904/37548 14218/14243 24479/28268
‘0xFF’ 15633/17798 15402/17579 6132/6479 6095/6416

00-00 00-55 00-AA 00-FF AA-00 AA-55 AA-AA AA-FF FF-00 FF-55 FF-AA FF-FF
0

0.5

1

1.5

2

2.5

3
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Figure 3. Average fractional number of bit flips observed in the responses of the original
Row Hammer PUF, given in percentages relative to PUF size, depending on combinations of
hammer row IV and PUF row IV. Configuration used: PUF size = 128 KB and RH time = 120 s
and (RH type = SSRH/RH type = DSRH).

Finally, the original work by Schaller et al. [1] also considered the Jaccard index [52] for bit flips
found in different responses of the same PandaBoard (intra-device Jaccard index—Jintra) or of different
PandaBoards (inter-device Jaccard index—Jinter). By applying these metrics, they were able to prove
that the original Row Hammer PUF responses exhibit a high degree of robustness and uniqueness,
as the Jintra values were close to one and the Jinter values close to zero. As Table 2 and Figure 3
indicate, the original Row Hammer PUF provides the most bit flips and the highest entropy when
hammer row IV = ‘0xAA’ and PUF row IV = ‘0x55’. For this reason, Schaller et al. [1] chose to present
results for the Jintra and the Jinter values only for this case, which can be seen in Figure 5.
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(a) (b)

Figure 4. Average fractional number of bit flips observed in the responses of the original
Row Hammer PUF, given in percentages relative to PUF size, using PUF row IV = ‘0xAA’,
different values of hammer row IV and, (a) RH type = SSRH or (b) RH type = DSRH. (Figure from
the original paper by Schaller et al. [1].)

In Figure 5, histograms for both Jintra and Jinter are presented, for RH time set either to 60 s or
120 s and PUF row IV = ‘0xAA’, hammer row IV = ‘0x55’, PUF size = 128 KB and RH type = SSRH.
This Figure shows that the values of Jintra and Jinter are not overlapping in any case, indicating that all
the original Row Hammer PUF instances can be robustly and uniquely identified. With a minimum
Jintra value of 0.9454, the Row Hammer PUF measurements presented, exhibit a maximum noise
of ≈5%, which can be easily corrected by standard Fuzzy Extractor (FE) constructions [53].

Figure 5.Histogram of Jinter and Jintra values for the original three PUF instances using 20 measurements
with PUF row IV = ‘0xAA’, hammer row IV=‘0x55’, PUF size = 128 KB and RH type = SSRH.
(Figure from the original paper by Schaller et al. [1].)

As DRAM retention-based PUFs exhibit high generation times for their responses,
providing a relatively low amount of new bit flips over time, they usually exhibit a bias
towards their original (non-flipped) values, which may even be public. Therefore, using metrics
based on the Hamming distance, such as the intra-device and the inter-device Hamming
distances, for their characterisation cannot usually provide useful insights into their performance.
However, recent works [1,17,18,20,54] have shown that the use of similarly constructed metrics based
on the Jaccard index of the positions of their flipped bits, such as the intra-device and inter-device
Jaccard index, can provide a clear overview of their performance.
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The Jintra and Jinter metrics are based on the Jaccard index [52], and for two sets s1 and s2 of position
indices of flipped bits in two PUF responses R1 and R2, respectively, the Jaccard index between these
two responses is given by the formula:

J(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

, (1)

which provides the similarity of the two sets, s1 and s2. If R1 and R2 are obtained from the same
PUF instance, then J(s1, s2) is equivalent to their Jintra value, whereas if R1 and R2 are obtained from
different PUF instances, then J(s1, s2) is equivalent to their Jinter value.

4.2. The Role of the Row Hammer PUF Parameters in Its Evaluation

Schaller et al. [1] noted that the bit flips observed in their results only partially overlap with the
bit flips caused by the DRAM data retention characteristic alone. Compared to the bit flips caused
by DRAM decay, using the techniques described in [17], their Row Hammer PUF implementation
introduces, in the best case for each PUF row IV, 2.4 times more bit flips in 60 s and about twice the
number of bit flips in 120 s. Hence, the bit flips observed in the Row Hammer PUF responses are due
to the hammering process and the DRAM cell decay that emerges after DRAM refresh is disabled, and
the row hammering process induces new bit flips, which are at different locations compared to the
DRAM decay process.

Additionally, the results of the evaluation of the original Row Hammer PUF clearly indicate that
the hammer row IV, the PUF row IV and the RH time have a strong influence on the number of bit flips
observed in its responses, while the RH type and the PUF size may affect this number, but not in
a significant way. We, therefore, proceed to examine the potential causes of the observed behaviour,
in regards to the Row Hammer PUF parameters discussed in Section 3.1.

• Hammer row and PUF row IV: Given that DRAM arrays consist of true cells and anti-cells,
the initial values of the hammer rows (hammer row IV) as well as the initial values of the PUF
rows (PUF row IV) are expected to play an important role regarding the number of observed
bit flips. Depending on the type of a cell, a bit flip in a PUF row can be observed only if the cell
is initialized with the logical value that corresponds to its charged state. Similarly, due to the
physical interaction of charged analog elements in the hammer and PUF rows (i.e., wires and
capacitors) and the resulting charge leakage paths, the initial values of the hammer rows can also
influence the probability of occurrence of a bit flip.

Therefore, the values of both parameters must be chosen carefully, in order to maximize
bit flips, and thus also maximise the entropy of the Row Hammer PUF. As Table 2 shows,
different configurations of hammer row IV and PUF row IV lead to measurements that exhibit
different bit flips. In general, it can be inferred from the experiments, that the number of bit flips
on the PandaBoard can be maximized, if PUF rows are pre-initialized in such a way that keeps
true cells and anti-cells in their charged states, while the cells of the adjacent hammer rows are
kept in their uncharged states. In particular, the measurements show that most bit flips can be
observed, if PUF rows are initialized with ‘0xAA’, which indicates a bit-wise alternating pattern of
logical values, starting with logical one. In this case, the most bit flips occur when adjacent hammer
rows are set up using the complementary pattern, starting with a bit having the value of logical zero
(‘0x55’). In contrast, no bit flips can be observed when initializing PUF rows with ‘0x55’, as in this
case, cells of the PUF rows were initialized corresponding to their uncharged states.

• Row hammering time: As Figure 4 shows, the RH time significantly affects the amount of bit flips
observed in the Row Hammer PUF responses. In particular, for RH time = 120 s, the amount
of bit flips observed seems to be, on average, ≈4 times the amount of bit flips observed for
RH time = 60 s for all cases examined. A strong relation between the RH time and the amount
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of bit flips observed was expected. Nevertheless, the exact relation between RH time and the
amount of bit flips observed needs to be investigated even further.

• Row hammering type: While the RH type was expected to have a strong influence on the number
of bit flips, Figure 4 clearly indicates that, contrary to expectations, applying DSRH, as shown in
Figure 4b, instead of SSRH, as shown in Figure 4a, does not lead to a highly increased number of
flips, despite hammering both rows adjacent to each PUF row, instead of just one. Compared to
SSRH, using DSHR only leads to ≈9% more bit flips in 60 s and to ≈15% in 120 s on average.

• PUF size: The PUF size influences the total time required to execute a single iteration of
hammering the DRAM. In all implementations presented, each hammer row is accessed roughly
every 6 µs when hammering 2 rows (4 KB PUF) and every 8 µs when hammering 17 rows (64 KB
PUF), when using DSRH, as shown in Figure 2. Figure 4 shows the number of bit flips relative to
the PUF size. The number of bit flips does not change significantly for different values of PUF
size, i.e., the fraction of bit flips for different memory ranges stays relatively stable.

In addition to these parameters, this work also examines the role of the following two varying
factors in the evaluation of the tested Row Hammer PUF implementations:

• Cache state: Caching can be either enabled or disabled in our experiments. We expect that
disabling cache will lead into an increased amount of bit flips observed.

• Implementation type: The Row Hammer PUF code has been implemented both in firmware and
as a kernel module. While the kernel module implementation allows for run-time access to the
Row Hammer PUF, we expect this implementation to result in a decrease in the number of bit flips
observed, as in this implementation memory accesses are performed using virtual addresses that
need to be translated into physical ones, in contrast to the firmware implementation that uses
physical addresses. Additionally, we need to note that the PandaBoard has a two-level Translation
Lookaside Buffer (TLB) organization, which is used in the translation of virtual memory addresses
to physical memory addresses [48].

Finally, we also investigate temperature as a factor that can potentially affect the Row Hammer PUF
significantly, as it is known that temperature variations have a strong influence on DRAM
retention-based PUFs [1,17,18,20,54].

4.3. PUF Performance Metrics

As already noted, instead of using metrics that are based on the Hamming distance,
i.e., inter-device and intra-device Hamming distance, we utilize the Jaccard index [52] for bit flips
found in different responses of the same PandaBoard (intra-device Jaccard index—Jintra) or of
different PandaBoards (inter-device Jaccard index—Jinter). This is motivated by the fact that the
Row Hammer PUF show different characteristics from other memory-based PUFs, such as the SRAM
PUF. In particular, the Row Hammer PUF responses draw their PUF characteristics mostly from
the location of the flipped bits, and not only from their amount and value. This characteristic,
the uniqueness of the flipped cell locations (addresses), is rather not properly reflected by metrics
based on the Hamming distance, but by metrics based on the Jaccard index.

In particular, we evaluate the characteristics of both the firmware and the kernel module
implementation of the Row Hammer PUF based on the following PUF qualities and the performance
metrics relevant to each one of them, as explained below:

• Uniqueness: The uniqueness of the Row Hammer PUF responses is measured using the
Jinter metric. This metric compares the indices of bit flips observed in responses obtained from
different PUF instances. For two PUF responses obtained from different PUF instances, a set of
position indices is created for the bit flip positions of each response. The Jinter of these two PUF
responses is equal to the cardinality of the intersection of the two sets over the cardinality of their
union, using Figure 1. Ideally, for maximal PUF uniqueness, the two responses compared should
have no common bit flip locations, resulting in a Jinter value equal to zero.
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• Robustness: The robustness of the Row Hammer PUF responses is measured using the
Jintra metric. This metric compares the indices of bit flips observed in responses obtained from
the same PUF instance. For two PUF responses obtained from the same PUF instance, a set of
position indices is created for the bit flip positions of each response. The Jinter of these two PUF
responses is equal to the cardinality of the intersection of the two sets over the cardinality of their
union, using Figure 1. Ideally, for maximal PUF robustness, the two responses compared should
have the same bit flip locations, resulting in a Jintra value equal to one.

• Entropy: PUF measurements should exhibit sufficient entropy in order to derive a cryptographic
key that cannot be easily predicted, either partially or fully. We estimate the Shannon entropy of
the PUF measurements, as proposed by Xiong et al. [17]. Therefore, assuming that the locations
of flipped bits are distributed uniformly, the entropy can be calculated as:

H = log2

(
N
k

)
, (2)

where N is the total number of bits contained in a PUF response Rx, i.e., the PUF size, and k as
the cardinality of the set sx that contains the indices of flipped bits observed in Rx.

4.4. Evaluation of Our Row Hammer PUF Implementations

To assess the applicability of the set of flipped bits as a PUF, we validated the uniqueness,
robustness and entropy of the Row Hammer PUF responses for the parameter sets given in Figure 3.
In our evaluation, we use four different memory regions, each one located on an individual PandaBoard,
with each such memory region considered as a PUF instance. Therefore, four different PandaBoards
have been employed for the evaluation of our implementations of the Row Hammer PUF. The PUF
address and the PUF size are the same for all of the measurements. Additionally, for each parameter
combination, 20 measurements have been taken.

Furthermore, as Table 3 shows, we again examine different values for the hammer row IV and
PUF row IV parameters, in order to determine their effects on the responses of the Row Hammer PUF
implementations we examine. However, we should note that we do not present results for cases with
PUF row IV = ‘0x55’, because we have confirmed that they lead to no bit flips for our PandaBoard
implementations. On the contrary, we examine cases where the cache operation is either enabled or
disabled. Finally, we also note that we test both the firmware and the kernel module implementation
using all the parameter sets given in Table 3.

Table 3. Parameters used for evaluation of the Row Hammer PUF characteristics, and their corresponding
set of values. Compared to Table 1, the PUF size is fixed to 128 KB and caching can be enabled or disabled
through the manipulation of the registers of the Cache Management Unit (CMU). Additionally, cases with
PUF row IV = ‘0x55’ are not examined in depth, as we have verified that they lead to no bit flips for
our PandaBoard implementations. Finally, both the firmware and the kernel module implementation
have been tested using this configuration.

Parameter Evaluated Values

RH type single-sided (SSRH), double-sided (DSRH)
PUF size 128 KB
PUF row IV ‘0x00’, ‘0xAA’, ‘0xFF’
hammer row IV ‘0x00’, ‘0x55’, ‘0xAA’, ‘0xFF’
RH time 60 s, 120 s
Cache enabled, disabled

4.4.1. Regarding the Entropy of the Responses

We again consider a number of different values for the Row Hammer PUF parameters,
in order to facilitate comparisons between our implementations and the original implementation
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by Schaller et al. [1]. To this end, we choose to examine Row Hammer PUF implementations
with a fixed PUF size = 128 KB. We believe that, as modern DRAM size ranges from several MB
to some GB, the usage of a DRAM region of some hundreds of KB for our implementations of
the Row Hammer PUF indicates that this PUF can be implemented even in resource-constrained
devices, such as IoT hardware. Nevertheless, as the evaluation of the original implementation of the
Row Hammer PUF by Schaller et al. [1] indicates, this PUF can also be implemented using a smaller,
or even a larger, memory region. We also choose to examine PUF responses taken at RH time = 60 s
and at RH time = 120 s, in order to further facilitate comparisons between our implementations and
the original implementation by Schaller et al. [1]. Nevertheless, this PUF can produce responses of
adequate uniqueness, robustness and entropy for lower, or even higher, RH time values.

Our results regarding the number of bit flips observed in the responses of our Row Hammer PUF
implementations are shown in Figures 6 and 7, for the firmware and the kernel module implementation,
respectively. In comparison to the cases presented in Figure 3, for PUF size = 128 KB, RH time= 120 s
and (RH type = SSRH/RH type = DSRH), for the original Row Hammer PUF implementation, the same
cases in Figure 6 that presents the evaluation results of our firmware implementation, indicate a slight
increase in the number of bit flips observed and, therefore, also in the entropy of this implementation.
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Figure 6. Average fractional number of bit flips observed in the responses of the firmware implementation
of the Row Hammer PUF, given in percentages relative to PUF size, depending on combinations
of hammer row IV and PUF row IV. Configuration used: PUF size = 128 KB, (RH time= 60 s/RH
time= 120 s), (RH type = SSRH/RH type = DSRH) and (Cache disabled/Cache enabled).
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Figure 7. Average fractional number of bit flips observed in the responses of the kernel
module implementation of the Row Hammer PUF, given in percentages relative to PUF
size, depending on combinations of hammer row IV and PUF row IV. Configuration used: PUF
size = 128 KB, (RH time= 60 s/RH time = 120 s), (RH type = SSRH/RH type = DSRH) and
(Cache disabled/Cache enabled).

Additionally, as Figures 6 and 7 show, the average number of bit flips being observed in
the Row Hammer PUF responses is rather dependent on the RH time, the hammer row IV and the
PUF row IV. In particular, setting RH time = 120 s leads to ≈400% more bit flips than when setting RH
time = 60 s. We also note that, in a similar fashion to Figure 3, the largest average number of bit flips
and, therefore, the highest entropy occur when hammer row IV = ‘0xAA’ and PUF row IV = ‘0x55’.

On the contrary, the RH type and the Cache state do not appear to affect significantly the number
of bit flips being observed in the PUF responses. In particular, the use of DSRH results in slightly more
bit flips observed than the use of SSRH. However, the difference in the number of bit flips produced with
the two methods does not appear to be significant. Nevertheless, SSRH requires ≈55% less memory
and involves less memory accesses compared to DSRH. Furthermore, the Cache being enabled even
seems to be increasing the number of bit flips observed for some combinations of hammer row IV and
PUF row IV, while, for most cases, disabling the cache operation leads to an increase in bit flips, as we
were expecting.

Moreover, the firmware implementation seems to provide more bit flips in comparison to the
kernel module implementation, for all cases. This difference is due to the fact that the firmware
implementation uses physical addresses to access the DRAM, while the kernel module implementation
accesses the DRAM through the use of virtual addresses, which need to be translated into physical
ones. This leads to fewer DRAM accesses being achieved by the kernel module implementation for the
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same RH time and, therefore, the hammer rows being hammered less often, causing fewer bit flips in
the PUF rows.

Nevertheless, in all cases, the potential PUF response generation times are significantly lower
than the times required to generate the response of existing DRAM retention-based PUFs, using the
techniques described by Xiong et al. in [17]. In particular, in comparison to the bit flips caused
by the DRAM data retention characteristic alone, we observe, in the best case for each PUF row IV,
around twice as many bit flips for our firmware Row Hammer PUF implementation and around
1.35 times as many bit flips for our kernel module Row Hammer PUF implementation, both for RH
time = 60 s and for RH time = 120 s, in all cases examined.

We note here that we tested implementations of DRAM retention-based PUFs, based on the
techniques described by Xiong et al. in [17], and using all the different PUF row IV described
in this work, for both values of RH time employed in this work and for a PUF size = 128 KB.
Obviously, for a PUF that does not take advantage of the row hammer effect, such as the DRAM
retention-based PUFs that are described by Xiong et al. in [17], the Cache state, the RH type and
the hammer row IV are not applicable variables. However, we need to note that since for the
Row Hammer PUF implementations, the amount of bit flips observed, for each case, is also dependent
on the Cache state, the RH type and the hammer row IV, we only compare the average fractional
number of bit flips observed in the responses of DRAM retention-based PUFs, based on the techniques
described by Xiong et al. in [17], against the highest average fractional number of bit flips observed in the
responses of Row Hammer PUFs, for each particular Row Hammer PUF implementation and PUF row IV
described in this work, for both values of RH time employed in this work and for a PUF size = 128 KB,
and for results acquired using the same devices for the implementations of both PUF types.

The observed differences in the amount of bit flips generated by the two PUF types, allow us
to conclude that for a particular measurement time, the Row Hammer PUF implementations
can generate responses of a higher entropy or, in other words, that the Row Hammer PUF
implementations can generate responses with a particular amount of bit flips, and, therefore,
of a particular entropy, at a lower time of measurement than the other DRAM retention-based
PUFs. Nevertheless, this conclusion is applicable only to the values of RH type, Cache state and
hammer row IV that provide the highest average fractional number of bit flips, for each particular
Row Hammer PUF implementation and PUF row IV described in this work. In such cases, however,
we have around 100% more bit flips for our firmware Row Hammer PUF implementation and
around 35% more bit flips for our kernel module Row Hammer PUF implementation, both for
RH time = 60 s and for RH time = 120 s, than the amount of bit flips observed in the responses
of DRAM retention-based PUFs that are implemented according to the techniques described by
Xiong et al. in [17], for both measurement times, respectively.

Finally, based on the results shown in Figures 6 and 7, we can easily assume that for
hammer row IV = ‘0xAA’ and PUF row IV = ‘0x55’, the minimum fractional number of bit flips
observed in the responses of our Row Hammer PUF implementations will be at least 0.25%
for RH time = 60 s and 2% for RH time = 120 s, given in percentages relative to PUF size.
Based on Figure 2, the fractional Shannon entropy, i.e., the entropy per DRAM cell, is given by
the formula:

Hb =

log2

(
N
k

)
N

. (3)

Therefore, the lowest bound for the fractional Shannon entropy, which is an approximation of the
min-entropy, for RH time = 60 s, is:

Hb =

log2

( 1048576
0.25
100
× 1048576

)
1048576

≈ 0.025, (4)
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while, for RH time = 120 s, it is:

Hb =

log2

( 1048576
2

100
× 1048576

)

1048576
≈ 0.141. (5)

Therefore, given the vast amount of available cells, the Row Hammer PUF responses show sufficient
entropy to derive cryptographic keys. For example, the derivation of a 1024-bit key, given a fractional
entropy of 0.025, requires ≈5 KB, while given a fractional entropy of 0.141, it requires ≈908 B. Thus, as PUF
size = 128 KB, the PUF can create at least 25 1024-bit keys at RH time = 60 s and 144 such keys at RH
time = 120 s. Therefore, our Row Hammer PUF implementations can indeed provide cryptographic
applications and improved security. We also note that, based on extended experiments, a single 1024-bit
key can be constructed in a few seconds. We present here only results for 60 and 120 s, in order to make
our results somehow comparable to those of the original Row Hammer PUF implementation presented
by Schaller et al. [1], and demonstrate that our implementations can provide a significant amount of
cryptographic keys within a few minutes, allowing in this way for cryptographic applications that
require more than a single key.

4.4.2. Regarding the Robustness and Uniqueness of the Responses

In a similar fashion to the original work by Schaller et al. [1], we also consider the Jintra and
Jinter metrics, in order to assess the robustness and uniqueness, respectively, of the responses of our
Row Hammer PUF implementations. As Figure 8 shows, the Row Hammer PUF responses of both the
firmware and the kernel module implementation exhibit a high degree of robustness and uniqueness,
as, for both cases, the Jintra values are close to 1 and the Jinter values close to zero, in a similar fashion
to Figure 5. However, we need to note that our results consider all cases for the different parameter values
shown in Table 3, and not just the different cases for hammer row IV = ‘0xAA’ and PUF row IV = ‘0x55’.
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Figure 8. Histogram of Jinter and Jintra values for the firmware and kernel module implementations,
using 20 measurements for each case of different combinations of RH type, PUF row IV, hammer row IV,
Cache state and (RH time = 60 s/RH time = 120 s), for PUF size = 128 KB, according to Table 3.
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As the values of Jintra and Jinter are not overlapping in any case, we can conclude that all
Row Hammer PUF instances can be robustly and uniquely identified. Nevertheless, we note that
in Figure 8, Jintra values for RH time = 120 s are closer to one and Jinter values for RH time = 60 s
closer to zero, in a similar fashion to Figure 5. Such a result should be expected, due to the larger
number of bit flips observed at RH time = 120 s in comparison to RH time = 60 s.

Furthermore, Figures 9 and 10 present in more detail the Jintra and Jinter values for all cases
considered, for the firmware and the kernel module implementation, respectively. These two
Figures also clearly indicate that for both implementations as well as both Cache states, all the
Row Hammer PUF instances can be robustly and uniquely identified. Additionally, we note that,
in most cases, a few outliers exist for Jintra values, which could potentially be ignored.

To address the nature of these outliers, we present Figures 11 and 12, which show the distributions
of Jinter values, grouped by hammer row IV, for different PUF row IV, Cache states and RH type, for
the firmware and the kernel module implementation, respectively, and Figures 13 and 14, which show
the distributions of Jintra values, grouped by hammer row IV, for different PUF row IV, Cache states
and RH type, for the firmware and the kernel module implementation, respectively. In these Figures,
the values of Jinter and Jintra for different RH time are grouped in a single distribution.
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Figure 9. Histogram of Jinter and Jintra values for the firmware implementation, using 20 measurements
for each case of different combinations of RH type, PUF row IV, hammer row IV, Cache state and RH
time, for PUF size = 128 KB, according to Table 3.
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Figure 10. Histogram of Jinter and Jintra values for the kernel module implementation,
using 20 measurements for each case of different combinations of RH type, PUF row IV, hammer row IV,
Cache state and RH time, for PUF size = 128 KB, according to Table 3.
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Figure 11. Distributions of Jinter values, grouped by hammer row IV, for different PUF row IV,
Cache states and RH type, for the firmware implementation. Jinter values for RH time = 60 s and
RH time = 120 s are grouped in a single distribution, per case.
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Figure 12. Distributions of Jinter values, grouped by hammer row IV, for different PUF row IV,
Cache states and RH type, for the kernel module implementation. Jinter values for RH time = 60 s and
RH time = 120 s are grouped in a single distribution, per case.
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Figure 13. Distributions of Jintra values, grouped by hammer row IV, for different PUF row IV,
Cache states and RH type, for the firmware implementation. Jintra values for RH time = 60 s and
RH time = 120 s are grouped in a single distribution, per case.
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Figure 14. Distributions of Jintra values, grouped by hammer row IV, for different PUF row IV,
Cache states and RH type, for the kernel module implementation. Jintra values for RH time = 60 s and
RH time = 120 s are grouped in a single distribution, per case.

As one can see in Figure 11, the lowest Jinter values for the firmware implementation seem to
occur for hammer row IV = ‘0xAA’, in all cases. However, Figure 12 indicates that Jinter values for
the kernel module implementation seem to be similar for all hammer row IV values, in all cases.
Furthermore, Figure 13 indicates that all Jintra values for the firmware implementation are close to
one, apart from some values for RH type = SSRH, with the cache operation enabled. On the contrary,
Figure 14 shows that Jintra values for the kernel module implementation are more noisy in all cases,
with the highest Jintra values for this implementation occurring for hammer row IV = ‘0xAA’, in all cases.

Figures 13 and 14 both include values near 0.7, which do not appear to be clear outliers,
indicating that the usual error correction schemes may not be applicable for the stabilisation of
all the responses of the firmware and kernel module implementations. We, therefore, propose the
application of the helper data scheme proposed by Schaller et al. [18] for the error correction of
such cases. However, for hammer row IV = ‘0xAA’ and PUF row IV = ‘0x55’/‘0xAA’, the minimum
Jintra values seem to be under 0.9, in all cases, and therefore, their noise can be easily corrected by
standard Fuzzy Extractor (FE) constructions [53].

Finally, as 20 measurements were performed for each combination of parameters, we have
utilised an analysis method for the variance of these repeated measurements, based on the work
of Bakeman [55]. We utilise an ANalysis Of VAriance (ANOVA) method, in order to discover the
parameters that have the strongest effects on our results. We, therefore, consider only significant and
large factor effects as meaningful. Our effect size is calculated as generalized eta-squared (η2

G), based on
the work of Bakeman [55], with values of η2

G > 0.26 denoting strong effects, i.e., factors accounting for
more than 26% of the data variance.

For Jinter values, ANOVA reveals that both the hammer row IV and the PUF row IV have
a significant effect on them. In particular, for the firmware implementation, ANOVA, based on
the method suggested by Bakeman [55], indicates that the hammer row IV has the strongest effect
(F(3, 15) = 229.53, p < 0.001, η2

G = 0.96) on the Jinter values, while the PUF row IV also has a significant
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effect (F(2, 10) = 30.93, p < 0.001, η2
G = 0.53) on them, as well as the interaction between the two

sets of initial values (F(6, 30) = 220.43, p < 0.001, η2
G = 0.93). For the kernel module implementation,

ANOVA indicates that the PUF row IV has the strongest effect (F(2, 10) = 27.02, p < 0.001, η2
G = 0.78)

on the Jinter values, while the hammer row IV also has a significant effect (F(3, 15) = 24.37, p < 0.001,
η2

G = 0.31) on them, as well as the interaction between the two sets of initial values (F(6, 30) = 55.15,
p < 0.001, η2

G = 0.73).
For Jintra values, ANOVA also reveals that both the hammer row IV and the PUF row IV have

a significant effect on them. In particular, for the firmware implementation, ANOVA, based on
the method suggested by Bakeman [55], indicates that the hammer row IV has the strongest effect
(F(3, 9) = 56.37, p < 0.001, η2

G = 0.88) on the Jintra values, while the PUF row IV also has a significant
effect (F(2, 6) = 132.51, p < 0.001, η2

G = 0.79) on them, as well as the interaction between the two
sets of initial values (F(6, 18) = 92.36, p < 0.001, η2

G = 0.94). For the kernel module implementation,
ANOVA indicates that the PUF row IV has the strongest effect (F(2, 6) = 21.46, p = 0.002, η2

G = 0.63)
on the Jintra values, while the hammer row IV also has a significant effect (F(3, 9) = 38.23, p < 0.001,
η2

G = 0.51) on them. In this case, the interaction between the two sets of initial values does not seem to
have a meaningful effect (F(6, 18) = 1.33, p = 0.293, η2

G = 0.23) on the Jintra values.
These results seem mostly consistent with the results shown in the different Figures.

However, the difference in the ANOVA values for the Jintra and Jinter metrics for the two implementations
under examination, as well as the visible variations in the values presented in Figures 11–14 indicate
that there is another factor that significantly affects the values for these two metrics.

4.5. Extended Investigation of the Role of Temperature on the Responses of the Row Hammer PUF

The original paper by Schaller et al. [1] recognised that the original Row Hammer PUF responses
could be influenced by its operating temperature. Therefore, it examined the behaviour of the original
Row Hammer PUF at different levels of its operating temperature, namely 40 ◦C (working temperature
of DRAM on PandaBoard), 50 ◦C and 60 ◦C. Schaller et al. [1] presented the average number of bit flips
and the Jintra values for PUF responses taken at these respective temperatures, as shown in Table 4.

Table 4. Average number of bit flips and minimum Jintra values obtained at operating temperatures of
40 ◦C, 50 ◦C and 60 ◦C, for the original Row Hammer PUF implementation with PUF row IV = ‘0xAA’,
hammer row IV = ‘0x55’, PUF size = 128 KB, RH time = 120 s and RH type = SSRH. (Table from the
original paper by Schaller et al. [1].)

Metric
Operational Temperature

40 ◦C 50 ◦C 60 ◦C

avg. bit flips 32904 65431 132450
min. Jintra 0.9662 0.9810 0.9847

Nevertheless, the original work by Schaller et al. [1] does not present any Jintra values calculated
for two responses that have been taken at different temperatures from each other. As we will
show, this might have been a major shortcoming of this work, as responses taken from the same
Row Hammer PUF at different temperatures from each other differ significantly and Row Hammer PUF
instances cannot be robustly and uniquely identified based on them. Nevertheless, as Schaller et al. [1]
indicate, while bit flips increase at higher temperatures, the noise level stays constant at different
temperatures, when the temperature is stable. Therefore, the Row Hammer PUF exhibits sufficient stability
to be used at any temperature, within its physical limits, as long as the temperature remains stable.

Our evaluation results show that even small changes in the ambient temperature of the
Row Hammer PUF can have dramatic effects on its responses. In particular, two responses taken
from the same Row Hammer PUF instance at two temperatures differing by only 10 ◦C cannot,
in general, be used to identify that instance in a robust way and, sometimes, cannot even be used
to uniquely identify such an instance. However, in order to validate that our Row Hammer PUF
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implementations can be used at different temperatures, when the temperature remains stable, we utilise
the same methodology as Schaller et al. [1] and present how temperature variations affect the average
fractional number of bit flips observed in the responses of both the firmware, in Figure 15 and the
kernel module implementation, in Figure 16.

We have evaluated both the firmware and the kernel module Row Hammer PUF implementations
in the region from 0 ◦C to 70 ◦C using the ambient temperature and without reading out the exact
operating temperature of the DRAM module. We performed our experiments using a climate chamber,
namely a Heraeus Vötsch HC4005, which has an absolute accuracy of ±0.8 ◦C. We have also performed
experiments for both Row Hammer PUF implementations at 80 ◦C of ambient temperature, at which
temperature, however, the PandaBoard becomes unstable and either resets itself or, even, its execution
hangs, until the PandaBoard is manually reset.

As Figures 15 and 16 show, for RH time = 60 s, the average fractional number of bit flips is close
to 0% of the PUF size for 0 ◦C, for both implementations, and only starts rising after the temperature
has risen beyond 20 ◦C, reaching 50% of the PUF size, for the firmware implementation, and more
than 40% of the PUF size, for the kernel module implementation, at 70 ◦C. As Figures 15 and 16 also
show, for RH time = 120 s, the average fractional number of bit flips is very close to 0% of the PUF
size, for the kernel module implementation, and slightly above 2% of the PUF size, for the firmware
implementation, for 0 ◦C. The average fractional number of bit flips starts rising slightly before 20 ◦C,
for both implementations, reaching more than 60% of the PUF size, for the firmware implementation,
and more than 70% of the PUF size, for the kernel module implementation, at 70 ◦C.

This is a clear indication that both Row Hammer PUF implementations may face uniqueness
problems for low RH time and low temperatures, as not enough bit flips will be occurring, and also for
high RH time and high temperatures, as too many bit flips will be occurring, potentially preventing in
both cases the correct identification of the PUF instance.
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Figure 15. Temperature dependency of the average fractional number of bit flips observed in the responses
of the firmware implementation, given in percentages relative to PUF size, for PUF size = 128 KB,
RH type = DSRH), PUF row IV = 0xAA, hammer row IV = 0x55, with the Cache disabled,
(RH time = 60 s/RH time = 120 s) and ambient temperatures between 0 ◦C to 70 ◦C. 20 measurements
have been performed for each combination of the presented values of the PUF parameters.
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Figure 16. Temperature dependency of the average fractional number of bit flips observed in the
responses of the kernel module implementation, given in percentages relative to PUF size, for PUF
size= 128 KB, RH type= DSRH), PUF row IV= 0xAA, hammer row IV= 0x55, with the Cache disabled,
(RH time = 60 s/RH time = 120 s) and ambient temperatures between 0 ◦C to 70 ◦C. 20 measurements
have been performed for each combination of the presented values of the PUF parameters.

Additionally, we have examined the effects of temperature variations on the Jintra and Jinter values
at various temperatures, as shown in Figures 17 and 18, for the firmware and the kernel module,
respectively. As it can be seen on Figures 17 and 18, the values of the Jintra metric are close to 1 for
both implementations and all temperatures examined, while the values of the Jinter metric are close
to zero for both implementations and temperatures below 60 ◦C, being below 0.1 for temperatures
below 50 ◦C, and below 0.2 for temperatures between 50 ◦C and 60 ◦C. However, for temperatures
between 60 ◦C and 70 ◦C, they rise abruptly and they reach, for RH time = 60 s, values close to 0.25,
for the firmware, and close to 0.35 for the kernel module implementation, and, for RH time = 120 s,
values close to 0.45, for the firmware, and close to 0.6 for the kernel module implementation.

This is a clear indication that both Row Hammer PUF implementations may face uniqueness
problems for high RH time and high temperatures, as the Jinter values reach closer to the Jintra ones,
surpassing even the value of 0.5, and, therefore, potentially preventing in both cases the correct
identification of the PUF instance.

Furthermore, as 20 measurements were performed for each combination of parameters for every
10 ◦C, in the temperature region from 0 ◦C to 70 ◦C, we have utilised an analysis method for the
variance of these repeated measurements, based on the work of Bakeman [55]. We utilise this ANalysis
Of VAriance (ANOVA) method, in order to discover the parameters that have the strongest effects on
our results. We, therefore, consider only significant and large factor effects as meaningful. Our effect
size is calculated as generalized eta-squared (η2

G), based on the work of Bakeman [55], with values of
η2

G > 0.26 denoting strong effects, i.e., factors accounting for more than 26% of the data variance.
Our ANOVA analysis, in general, reveals that indeed temperature has a profound effect on both

Jintra and Jinter values. However, it has a larger effect on the Jinter values—with F(7, 35) = 229.41,
p < 0.001, η2

G = 0.98, for the firmware, and F(7, 35) = 253.43, p < 0.001, η2
G = 0.98, for the kernel

module implementation—than on the Jintra values—with F(7, 21) = 3.50, p = 0.012, η2
G = 0.54, for the

firmware, and F(7, 21) = 14.40, p < 0.001, η2
G = 0.83, for the kernel module implementation.
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Figure 17. Temperature dependency of the Jinter and Jintra values for the responses of the
firmware implementation, for PUF size = 128 KB, RH type = DSRH), PUF row IV = 0xAA,
hammer row IV = 0x55, with the Cache disabled, (RH time = 60 s/RH time = 120 s) and ambient
temperatures between 0 ◦C to 70 ◦C. 20 measurements have been performed for each combination of
the presented values of the PUF parameters.
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Figure 18. Temperature dependency of the Jinter and Jintra values for the responses of the
kernel module implementation, for PUF size = 128 KB, RH type = DSRH), PUF row IV = 0xAA,
hammer row IV = 0x55, with the Cache disabled, (RH time = 60 s/RH time = 120 s) and ambient
temperatures between 0 ◦C to 70 ◦C. 20 measurements have been performed for each combination of
the presented values of the PUF parameters.
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Moreover, our results regarding pairwise comparisons for Jinter values, produced using the
Student’s t-tests with pooled standard deviation and adjusted using the Holm–Bonferroni method,
reveal significantly lower p-values for 60 ◦C and 70 ◦C compared to all other groups, for the Jinter values
of the responses of both implementations, while p-values for 50 ◦C compared to groups for 0 ◦C, 10 ◦C,
20 ◦C and 30 ◦C also appear low, for the Jinter values of the responses of both implementations.
Furthermore, pairwise comparisons for Jintra values, produced using the Student’s t-tests with pooled
standard deviation and adjusted using the Holm–Bonferroni method, reveal low p-values for 70 ◦C
compared to all other groups, for the Jintra values of the responses of the firmware implementation,
and p-values for 0 ◦C and 10 ◦C compared to groups for 20 ◦C, 30 ◦C, 40 ◦C and 50 ◦C, 60 ◦C and 70 ◦C
appear low, for the Jintra values of the responses of the kernel module implementation. These results
seem to be verified by the appearance and form of Figures 17 and 18.

Finally, we have also evaluated, for both implementations, the Jintra for pairs of Row Hammer PUF
responses taken at different temperatures from the same device. Figure 19 presents the Jintra for pairs
of responses taken at 20 ◦C and responses taken at the same or different temperatures from each other.
As one can see in this Figure, while Jintra values are very close to one for pairs of responses taken both
at 20 ◦C, Jintra values for pairs of responses taken at different temperatures from each other are all well
below 0.3, indicating that the two responses will rather be recognised as coming from different devices,
while in fact they have been produced from the same device. This is a very clear indication that both
Row Hammer PUF implementations are facing robustness problems when the ambient temperature
changes, even for small temperature variations of 10 ◦C and, therefore, can only be robustly identified
when PUF responses taken at the same temperature are used.
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Figure 19. Jintra values for pairs of PUF responses taken at the same or different temperatures from
each other. Jintra values for the firmware and the kernel module implementations have been grouped
together, for each case presented. Jintra values for RH time = 60 s and for RH time = 120 s have
also been grouped together, for each case presented. Configuration used: PUF size = 128 KB,
RH type = DSRH), PUF row IV = 0xAA, hammer row IV = 0x55, with the Cache disabled.
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As this section shows, temperature can significantly influence the responses of the
Row Hammer PUF, affecting both their robustness, in general, as well as their uniqueness, in some
cases. We can, therefore, assume that minor variations observed for room temperature measurements
could be caused by small variations in the ambient temperature. However, we have also shown that
the Row Hammer PUF can be used over a large range of ambient temperature values, as long as the
temperature remains the same. Nevertheless, even in this case, it is uncertain whether it will operate
sufficiently at very low temperatures, at which, apart from the long time periods that may be required
for responses to be generated, also data remanence effects can start to affect its operation [56]. As we
have discussed uniqueness problems may appear both at very low temperatures for low RH time, as not
enough bit flips may be occurring, and at high temperatures for high RH time, as too many bit flips
may be occurring. In the latter case, we could use the indices of the cells that have not yet flipped,
which could provide unique identification of different devices. In conclusion, however, we need to state
that the temperature dependency of the Row Hammer PUF is an issue that will need to be adequately
addressed, before this PUF can be considered as an efficient security mechanism for widespread usage.
We do need to note that our experiments were based on different values of the ambient temperature,
a characteristic that an attacker can very easily manipulate, and not on the operating temperature of the
PUF itself.

4.6. Potential Statistical Relations among PUF Cells

In this section, we examine whether there is some statistical relation between the PUF cells that
flip and their neighbourhood. We examine whether there is a statistical relation between PUF cells
that have flipped and the values of their neighbouring PUF cells and also whether there is a statistical
relation between PUF cells that have flipped and other PUF cells in their neighbourhood that also flip
for the same or a lower RH time value. In particular, we examine the probability that PUF cells nearby
a bit flip have a specific value and the probability that such cells have flipped at the same or a lower RH
time value. If any of these probabilities are significantly higher than the relevant average probability
for all the PUF cells, then we can conclude that some statistical relation exists. Otherwise, we can
conclude that no statistical relation seems to exist among the PUF cells that flip and their neighbouring
PUF cells.

In this way, we can investigate whether there is some way to predict the positions of the bit flips
or if they appear to be random. If the positions of the bit flips could be predicted, then a number of
different attacks taking advantage of this property may have been possible. However, in all cases,
our results show that there appears to be no statistical relation between the PUF cells that flip and their
neighbourhood. Nevertheless, a more in-depth investigation would be required, before we could state
with absolute certainty that such a relation does not exist.

First, we examine the average values of PUF cells around a PUF cell that has flipped, for room
temperature, PUF size = 128 KB, RH time = 120 s, hammer row IV = ‘0x55’ and PUF row IV = ‘0xAA’
and all the different combinations of cache states and RH type, as shown in Tables 5 and 6, for the
firmware and the kernel module implementation, respectively. In this way, we can detect potential
statistical relations affecting the response of the PUF that stem from interactions between the charge
that was stored in a PUF cell that has flipped, i.e., that has had at least half of its charge leaked, and the
charge stored in other PUF cells found in different rows and columns of the DRAM around the flipped
PUF cell. We do so by using a 3× 3 window having the flipped PUF cell in its centre every time.
Of course, only cells in the same row of this window are adjacent to each other in the DRAM module,
as PUF cells in different rows may be separated by a hammer row in the DRAM module. Our results,
which are shown in Tables 5 and 6, indicate that the average probability of a neighbouring PUF cell
having a logical value of one or zero is close to 50% in all cases, suggesting a lack of any statistical
relation between these values and the fact that the center cell of the window has flipped. We test for RH
time = 120 s only, as the PUF cells that have flipped for RH time = 60 s are a subset of the PUF cells
that have flipped for RH time = 120 s.
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Table 5. 3× 3 windows showing the average probability of the neighbouring PUF row cells of a PUF row
cell that has flipped to have a logical value of one, at room temperature for the firmware implementation,
when PUF size = 128 KB, RH time = 120 s, hammer row IV = ‘0x55’ and PUF row IV = ‘0xAA’ and
(a) caching is disabled and RH type = DSRH; (b) caching is enabled and RH type = DSRH; (c) caching is
disabled and RH type = SSRH; and (d) caching is enabled and RH type = SSRH. Note that the cells in
the 3× 3 windows presented are adjacent to each other in the DRAM module only if they are in the
same row of each window.

(a) (b)

0.5353 0.4712 0.5359 0.5360 0.4703 0.5366
0.5359 f lip 0.5346 0.5363 f lip 0.5353
0.5342 0.4710 0.5349 0.5347 0.4701 0.5354

(c) (d)

0.5306 0.4736 0.5303 0.5305 0.4738 0.5299
0.5322 f lip 0.5301 0.5320 f lip 0.5298
0.5322 0.4736 0.5315 0.5321 0.4738 0.5312

Table 6. 3 × 3 windows showing the average probability of the neighbouring PUF row cells of
a PUF row cell that has flipped to have a logical value of one, at room temperature for the kernel
module implementation, when PUF size = 128 KB, RH time = 120 s, hammer row IV = ‘0x55’
and PUF row IV = ‘0xAA’ and (a) caching is disabled and RH type = DSRH; (b) caching is enabled
and RH type = DSRH; (c) caching is disabled and RH type = SSRH; and (d) caching is enabled and RH
type= SSRH. Note that the cells in the 3× 3 windows presented are adjacent to each other in the DRAM
module only if they are in the same row of each window.

(a) (b)

0.5166 0.4874 0.5155 0.5190 0.4849 0.5177
0.5158 f lip 0.5154 0.5186 f lip 0.5172
0.5157 0.4871 0.5147 0.5180 0.4845 0.5168

(c) (d)

0.5146 0.4867 0.5148 0.5162 0.4859 0.5154
0.5155 f lip 0.5149 0.5169 f lip 0.5154
0.5159 0.4865 0.5160 0.5170 0.4858 0.5161

Subsequently, we examine the average probability that a PUF cell has flipped in the
neighbourhood of another PUF cell that has flipped, for room temperature, PUF size = 128 KB,
RH time= 120 s, hammer row IV = ‘0x55’ and PUF row IV= ‘0xAA’ and all the different combinations
of cache states and RH type, as shown in Tables 7 and 8, for the firmware and the kernel module
implementation, respectively. In this way, we can detect potential statistical relations affecting the
response of the PUF that stem from interactions between the charge that was stored in a PUF cell
that has flipped, i.e., that has had at least half of its charge leaked, and the charge of other PUF cells
found in different rows and columns of the DRAM in an extensive region around the flipped PUF
cell, leading these other PUF cells to decay faster than usual, and, therefore, also be flipped. We do so
by using a 7× 7 window having the flipped PUF cell in its centre every time. Of course, only cells
in the same row of this window are adjacent to each other in the DRAM module, as PUF cells in
different rows may be separated by a hammer row in the DRAM module. Our results, which are shown
in Tables 7 and 8, indicate that the average probability of a PUF cell being flipped in the extended
neighbourhood considered is consistently similar to the general probability of a PUF cell being flipped
at RH time = 120 s, for each case, as shown in Figures 6 and 7, for the firmware and the kernel module
implementation, respectively. Therefore, our results suggest a lack of any statistical relation between
PUF cells that flip within a particular RH time. We test for RH time = 120 s only, as the PUF cells that
have flipped for RH time = 60 s are a subset of the PUF cells that have flipped for RH time = 120 s.
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Table 7. 7× 7 windows showing the average probability of the neighbouring PUF row cells of a PUF
row cell that has flipped, to have also flipped, at room temperature for the firmware implementation,
when PUF size = 128 KB, RH time = 120 s, hammer row IV = ‘0x55’ and PUF row IV = ‘0xAA’ and
(a) caching is disabled and RH type = DSRH; (b) caching is enabled and RH type = DSRH; (c) caching is
disabled and RH type = SSRH; and (d) caching is enabled and RH type = SSRH. Note that the cells in
the 7× 7 windows presented are adjacent to each other in the DRAM module only if they are in the
same row of each window.

(a) (b)

0.0441 0.0433 0.0440 0.0456 0.0441 0.0442 0.0440 0.0427 0.0420 0.0427 0.0441 0.0427 0.0428 0.0428
0.0446 0.0440 0.0427 0.0450 0.0440 0.0441 0.0445 0.0431 0.0425 0.0413 0.0437 0.0426 0.0426 0.0430
0.0438 0.0441 0.0441 0.0457 0.0435 0.0440 0.0435 0.0425 0.0424 0.0426 0.0445 0.0420 0.0426 0.0422
0.0446 0.0482 0.0458 f lip 0.0458 0.0482 0.0446 0.0433 0.0465 0.0442 f lip 0.0442 0.0465 0.0433
0.0435 0.0442 0.0436 0.0457 0.0442 0.0443 0.0439 0.0422 0.0429 0.0422 0.0445 0.0427 0.0426 0.0426
0.0445 0.0441 0.0440 0.0451 0.0430 0.0439 0.0447 0.0431 0.0426 0.0426 0.0438 0.0416 0.0426 0.0432
0.0449 0.0457 0.0453 0.0461 0.0449 0.0446 0.0452 0.0437 0.0443 0.0438 0.0447 0.0436 0.0434 0.0437

(c) (d)

0.0338 0.0349 0.0342 0.0353 0.0340 0.0342 0.0339 0.0335 0.0348 0.0340 0.0351 0.0338 0.0342 0.0337
0.0240 0.0239 0.0230 0.0240 0.0237 0.0226 0.0232 0.0238 0.0237 0.0229 0.0238 0.0236 0.0224 0.0230
0.0329 0.0323 0.0325 0.0341 0.0333 0.0339 0.0329 0.0328 0.0322 0.0323 0.0338 0.0331 0.0337 0.0327
0.0468 0.0488 0.0460 f lip 0.0460 0.0488 0.0468 0.0466 0.0486 0.0459 f lip 0.0459 0.0486 0.0466
0.0356 0.0366 0.0359 0.0369 0.0353 0.0347 0.0354 0.0354 0.0363 0.0358 0.0366 0.0350 0.0346 0.0353
0.0234 0.0228 0.0237 0.0242 0.0234 0.0239 0.0241 0.0232 0.0226 0.0236 0.0240 0.0233 0.0237 0.0240
0.0323 0.0326 0.0323 0.0343 0.0321 0.0335 0.0323 0.0321 0.0325 0.0321 0.0341 0.0319 0.0335 0.0319

Table 8. 7× 7 windows showing the average probability of the neighbouring PUF row cells of a PUF row
cell that has flipped, to have also flipped, at room temperature for the kernel module implementation,
when PUF size = 128 KB, RH time = 120 s, hammer row IV = ‘0x55’ and PUF row IV = ‘0xAA’ and
(a) caching is disabled and RH type = DSRH; (b) caching is enabled and RH type = DSRH; (c) caching is
disabled and RH type = SSRH; and (d) caching is enabled and RH type = SSRH. Note that the cells in
the 7× 7 windows presented are adjacent to each other in the DRAM module only if they are in the
same row of each window.

(a) (b)

0.0339 0.0344 0.0337 0.0344 0.0350 0.0347 0.0339 0.0303 0.0308 0.0304 0.0312 0.0316 0.0311 0.0305
0.0344 0.0337 0.0341 0.0357 0.0347 0.0341 0.0343 0.0309 0.0302 0.0303 0.0320 0.0308 0.0309 0.0308
0.0348 0.0346 0.0345 0.0362 0.0345 0.0339 0.0341 0.0312 0.0312 0.0308 0.0327 0.0315 0.0304 0.0303
0.0339 0.0363 0.0343 f lip 0.0343 0.0363 0.0339 0.0302 0.0327 0.0303 f lip 0.0303 0.0327 0.0302
0.0341 0.0343 0.0345 0.0361 0.0347 0.0347 0.0347 0.0303 0.0308 0.0314 0.0326 0.0311 0.0313 0.0311
0.0342 0.0341 0.0346 0.0355 0.0341 0.0339 0.0344 0.0307 0.0308 0.0309 0.0317 0.0301 0.0303 0.0308
0.0336 0.0349 0.0351 0.0343 0.0340 0.0348 0.0342 0.0300 0.0312 0.0316 0.0310 0.0308 0.0310 0.0305

(c) (d)

0.0351 0.0349 0.0353 0.0377 0.0356 0.0361 0.0357 0.0279 0.0275 0.0275 0.0295 0.0282 0.0280 0.0276
0.0366 0.0361 0.0377 0.0369 0.0362 0.0363 0.0378 0.0288 0.0287 0.0296 0.0288 0.0289 0.0286 0.0298
0.0360 0.0372 0.0358 0.0375 0.0366 0.0366 0.0370 0.0280 0.0294 0.0284 0.0293 0.0289 0.0294 0.0295
0.0366 0.0381 0.0376 f lip 0.0376 0.0381 0.0366 0.0287 0.0301 0.0295 f lip 0.0295 0.0301 0.0287
0.0370 0.0371 0.0367 0.0379 0.0361 0.0373 0.0361 0.0295 0.0297 0.0290 0.0298 0.0286 0.0295 0.0281
0.0374 0.0363 0.0365 0.0372 0.0378 0.0364 0.0369 0.0294 0.0287 0.0291 0.0293 0.0298 0.0292 0.0293
0.0368 0.0372 0.0367 0.0386 0.0360 0.0360 0.0367 0.0285 0.0290 0.0290 0.0305 0.0283 0.0284 0.0293
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Finally, we also examine the average probability that a PUF cell that has flipped within
RH time = 60 s is in the neighbourhood of another PUF cell that has flipped within RH time = 120 s,
for room temperature, PUF size = 128 KB, hammer row IV = ‘0x55’ and PUF row IV = ‘0xAA’ and
all the different combinations of cache states and RH type, as shown in Tables 9 and 10, for the
firmware and the kernel module implementation, respectively. In this way, we can detect potential
statistical relations affecting the response of the PUF that stem from interactions between the charge
that was stored in a PUF cell that has flipped, i.e., that has had at least half of its charge leaked,
within RH time = 120 s and the charge of other PUF cells, found in different rows and columns of the
DRAM in an extensive region around the flipped PUF cell, that have flipped, i.e., that have had at least
half of its charge leaked, within RH time = 60 s and, therefore, may have also affected the decay of the
PUF cell that has flipped within RH time = 120 s. We do so by using a 7× 7 window having the PUF
cells that flip within RH time = 120 s in its centre every time. Of course, only cells in the same row of
this window are adjacent to each other in the DRAM module, as PUF cells in different rows may be
separated by a hammer row in the DRAM module. Our results, which are shown in Tables 9 and 10,
indicate that the average probability of a PUF cell having flipped within RH time = 60 s and at the
same time being in the neighbourhood of another PUF cell that has flipped within RH time = 120 s is
consistently similar to the general probability of a PUF cell being flipped at RH time = 60 s, for each
case, as shown in Figures 6 and 7, for the firmware and the kernel module implementation, respectively.
Therefore, our results suggest a lack of any statistical relation between PUF cells that flip at a particular
RH time = t1 and PUF cells that flip at another particular RH time = t2, with t1 < t2.

Table 9. 7 × 7 windows showing the average probability of the neighbouring PUF row cells of
a PUF row cell that has flipped at RH time = 120 s, to have flipped RH time = 60 s, at room
temperature for the firmware implementation, when PUF size = 128 KB, hammer row IV = ‘0x55’
and PUF row IV = ‘0xAA’ and (a) caching is disabled and RH type = DSRH; (b) caching is enabled
and RH type = DSRH; (c) caching is disabled and RH type = SSRH; and (d) caching is enabled and
RH type = SSRH. Note that the cells in the 7× 7 windows presented are adjacent to each other in the
DRAM module only if they are in the same row of each window.

(a) (b)

0.0096 0.0099 0.0094 0.0105 0.0100 0.0099 0.0098 0.0092 0.0095 0.0091 0.0100 0.0096 0.0096 0.0095
0.0103 0.0099 0.0093 0.0106 0.0102 0.0100 0.0097 0.0099 0.0096 0.0089 0.0103 0.0098 0.0096 0.0093
0.0100 0.0098 0.0101 0.0104 0.0099 0.0100 0.0101 0.0098 0.0094 0.0097 0.0100 0.0095 0.0096 0.0096
0.0104 0.0110 0.0107 f lip 0.0109 0.0109 0.0100 0.0100 0.0105 0.0103 f lip 0.0105 0.0105 0.0097
0.0099 0.0100 0.0099 0.0107 0.0097 0.0101 0.0100 0.0096 0.0096 0.0095 0.0103 0.0093 0.0097 0.0096
0.0103 0.0100 0.0100 0.0110 0.0099 0.0102 0.0100 0.0099 0.0097 0.0096 0.0107 0.0095 0.0097 0.0095
0.0104 0.0105 0.0105 0.0109 0.0102 0.0109 0.0104 0.0101 0.0103 0.0101 0.0106 0.0099 0.0105 0.0099

(c) (d)

0.0084 0.0081 0.0080 0.0089 0.0088 0.0087 0.0088 0.0083 0.0081 0.0079 0.0089 0.0087 0.0087 0.0088
0.0054 0.055 0.0054 0.0060 0.0056 0.0055 0.0058 0.0054 0.0054 0.0053 0.0060 0.0054 0.0055 0.0058
0.0089 0.0088 0.0090 0.0091 0.0086 0.0089 0.0086 0.0090 0.0087 0.0089 0.0091 0.0086 0.0088 0.0086
0.0125 0.0132 0.0125 f lip 0.0124 0.0135 0.0125 0.0125 0.0131 0.0124 f lip 0.0123 0.0135 0.0124
0.0090 0.0094 0.0091 0.0092 0.0088 0.0088 0.0088 0.0089 0.0093 0.0091 0.0091 0.0088 0.0088 0.0087
0.0054 0.0055 0.0052 0.0061 0.0050 0.0056 0.0058 0.0053 0.0054 0.0051 0.0059 0.0050 0.0055 0.0057
0.0079 0.0087 0.0082 0.0089 0.0082 0.0086 0.0080 0.0078 0.0087 0.0082 0.0088 0.0081 0.0086 0.0079

Thus, our results indicate that the logical values—and, therefore, also the charges—and the
retention times of victim cells in a DRAM utilised for the implementation of the Row Hammer PUF
do not affect the retention times of other victim cells in that DRAM, while it is being employed as
a Row Hammer PUF implementation, as the logical values and retention times of PUF cells around
a PUF cell that has flipped appear to be random. Additionally, the position of new bit flips does
not appear to be based on the position of bit flips that have already occurred. Our results do not
indicate any statistical relation of any sort, including a potential clustering of the bit flips. We chose
to examine the logical values of cells neighbouring a PUF cell that has flipped using a 3× 3 window,
as these values are also based on the PUF row IV, and it would be easy to detect potential statistical
relations, while we used a more extensive 7× 7 window to examine the probability of PUF cells in their
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neighbourhood of a PUF cell that has flipped, flip within the same or a lower RH time value, because
leakage paths and charge interactions within the DRAM module could potentially be occurring within
an broad range around the cell that has flipped and is placed in the centre of the 7× 7 window.

Table 10. 7× 7 windows showing the average probability of the neighbouring PUF row cells of a PUF
row cell that has flipped at RH time= 120 s, to have flipped RH time= 60 s, at room temperature for the
kernel module implementation, when PUF size = 128 KB, hammer row IV = ‘0x55’ and PUF row IV
= ‘0xAA’ and (a) caching is disabled and RH type = DSRH; (b) caching is enabled and RH type = DSRH;
(c) caching is disabled and RH type = SSRH; and (d) caching is enabled and RH type = SSRH. Note that
the cells in the 3× 3 windows presented are adjacent to each other in the DRAM module only if they
are in the same row of each window.

(a) (b)

0.0091 0.0094 0.0088 0.0093 0.0095 0.0095 0.0092 0.0076 0.0079 0.0075 0.0077 0.0081 0.0081 0.0079
0.0094 0.0092 0.0093 0.0096 0.0094 0.0092 0.0091 0.0081 0.0076 0.0078 0.0082 0.0080 0.0080 0.0078
0.0091 0.0094 0.0096 0.0102 0.0092 0.0092 0.0090 0.0077 0.0081 0.0082 0.0086 0.0081 0.0081 0.0074
0.0092 0.0097 0.0097 f lip 0.0094 0.0097 0.0087 0.0078 0.0081 0.0082 f lip 0.0079 0.0081 0.0074
0.0093 0.0095 0.0093 0.0097 0.0097 0.0090 0.0092 0.0079 0.0080 0.0080 0.0085 0.0082 0.0078 0.0078
0.0093 0.0088 0.0090 0.0100 0.0091 0.0087 0.0091 0.0079 0.0074 0.0076 0.0086 0.0078 0.0076 0.0076
0.0093 0.0093 0.0100 0.0096 0.0091 0.0096 0.0091 0.0077 0.0079 0.0085 0.0080 0.0078 0.0084 0.0078

(c) (d)

0.0100 0.0094 0.0098 0.0101 0.0098 0.0098 0.0097 0.0071 0.0066 0.0064 0.0071 0.0069 0.0066 0.0067
0.0098 0.0100 0.0104 0.0103 0.0101 0.0098 0.0104 0.0068 0.0067 0.0072 0.0071 0.0069 0.0068 0.0074
0.0099 0.0106 0.0102 0.0106 0.0099 0.0104 0.0100 0.0068 0.0074 0.0074 0.0072 0.0072 0.0072 0.0067
0.0100 0.0105 0.0107 f lip 0.0106 0.0104 0.0100 0.0069 0.0070 0.0075 f lip 0.0073 0.0071 0.0066
0.0100 0.0104 0.0102 0.0104 0.0099 0.0105 0.0100 0.0071 0.0074 0.0072 0.0072 0.0071 0.0072 0.0069
0.0103 0.0101 0.0099 0.0105 0.0103 0.0102 0.0101 0.0068 0.0074 0.0073 0.0071 0.0070 0.0069 0.0070
0.0104 0.0101 0.0100 0.0109 0.0097 0.0102 0.0102 0.0070 0.0067 0.0066 0.0076 0.0069 0.0070 0.0069

We need to note here that the disturbance errors that result in the observed bit flips are, of course,
clustered in the DRAM region being used for the implementation of the Row Hammer PUF. In this
section, we examine whether, within this region, the observed bit flips appear to be clustered in
particular sub-regions and whether some statistical relation appears to be present between the bit flips
observed in the PUF responses and their neighbouring PUF cells.

4.7. Increasing the Number of Bit Flips Observed through the Use of Multiple Instances of the Row Hammer
PUF Kernel Module Implementation

The kernel module implementation of the Row Hammer PUF is executed as a process thread by
the microprocessor of the PandaBoard and its execution does not affect the other processes running.
Therefore, as different threads or, even, processes can have access to the same DRAM region, we can
run multiple individual instances of the kernel module simultaneously, in order to increase the amount
of bit flips being observed and, in this way, also reduce the time needed for the Row Hammer PUF to
generate responses. Nevertheless, these kernel modules need to somehow be synchronised in order
to avoid faults and errors during their execution. Therefore, they need to be inserted into the Linux
kernel one after the other, run almost simultaneously and then be removed also successively, after the
Row Hammer PUF operation has finished.

We have run two kernel modules implementing the Row Hammer PUF operation at the same
time, at stable temperature, for PUF size = 128 KB, RH type = DSRH and with caching disabled,
for all the combinations of hammer row IV and PUF row IV that have been presented. Our results,
shown in Figure 20, clearly indicate an increase of ≈16%, for RH time = 60 s, and of ≈18%, for RH
time = 120 s, in the amount of bit flips observed when two kernel module implementations of the
Row Hammer PUF are running simultaneously over the amount of bit flips observed when only one is
running, at stable temperature of 30◦C. Additionally, as Figure 21 shows, the Jintra and Jinter values are
close to one and zero, respectively, for all cases examined for the simultaneous execution of two kernel
module implementations of the Row Hammer PUF, at stable temperature of 30◦C.
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It is important to note here that these results can only be obtained when the ambient temperature
is stable. Our experiments at uncontrolled room temperature provided inconsistent results, as the
amount of bit flips observed for two kernel module implementations of the Row Hammer PUF
running simultaneously was at times much higher, similar to or, even, lower than the amount of
bit flips observed for only a single kernel module implementation running. These inconsistencies in the
amount of bit flips being observed in responses of the same device and for the same Row Hammer PUF
configuration, when the temperature is not stable, have been discussed in detail in Section 4.5.

Nevertheless, we have proven that it is possible to reduce the time required for the generation of
responses of the Row Hammer PUF in a significant degree, through the simultaneous use of multiple
kernel module implementations of it, as long as the ambient temperature is kept stable.
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Figure 20. Average fractional number of bit flips observed in the responses of the Row Hammer PUF,
when only one kernel module implementation is running and when two kernel module
implementations are running simultaneously, given in percentages relative to PUF size, depending
on combinations of hammer row IV and PUF row IV. Configuration used: PUF size= 128 KB,
Cache disabled, RH type = DSRH and (RH time = 60 s/RH time = 120 s).
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Figure 21. Histogram of Jinter and Jintra values for responses of the Row Hammer PUF, when two
kernel module implementations are running simultaneously, using 20 measurements for each case
of different combinations of PUF row IV, hammer row IV, RH type = DSRH, Cache disabled and
(RH time = 60 s/RH time = 120 s), for PUF size = 128 KB.

4.8. Potential for Commercial Adoption

As the previous sections indicate, although the Row Hammer PUF seems to be strongly
dependent on temperature, its responses are, in general, unique, robust and of high entropy.
Nevertheless, as temperature variations can significantly affect the robustness of the Row Hammer PUF
responses, future research will need to fully address this issue.

It should also be noted that the dependency of the Row Hammer PUF on temperature makes
it, in general, susceptible to Denial of Service (DoS) attacks, as an attacker could change the ambient
temperature and, in this way, also change the PUF response. Additionally, in case the ambient
temperature is very low or very high, the PUF response could be guessed or brute-forced, as the number
of bit flips observed in it could be either too low or too high, respectively. Nevertheless, this latter
attack also depends on whether an attacker may know the PUF row IV.

A proposed way to address the dependency of the Row Hammer PUF on temperature
is to examine the effects of temperature on the PUF responses in detail, in order to identify
a measurement time at each particular temperature, such that each of these times will result in
a similar PUF response being acquired [17,18]. In this way, by using a set of equivalent RH time,
one for each particular temperature, in order to acquire similar responses at each temperature,
the Row Hammer PUF implementations can provide robust PUF responses even at different
temperatures. However, such a solution may still suffer from high response generation times, at rather
low temperatures.

Another potential way to address the effects of temperature on the Row Hammer PUF responses
would be to combine these responses with the temperature of the PUF module. In particular, as the
PandaBoard’s microprocessor module, which contains its on-board DRAM package, also contains
a temperature sensor, it is possible to combine temperature readings with the current temperature of
the DRAM module. Preliminary experiments have indicated that the proposed solution can indeed
provide results that appear to be highly promising. However, whether this potential solution can
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be used to solve the aforementioned issue in an efficient way remains in the scope of a future work.
Nevertheless, such a solution can also be utilised in order to stabilise the PUF responses of DRAM
retention-based PUFs, in general, as their implementations seem to suffer from such temperature
dependencies [17,18,20].

In the worst case, a trivial solution can be employed, by examining the responses of the
Row Hammer PUF at intervals of 5◦C for every RH time that will be used. In this way, the responses
of the Row Hammer PUF could be used for identification and authentication purposes, as long as also
the temperature at which they have been taken is also reported.

Therefore, as the effects of temperature variations on the Row Hammer PUF can either
be controlled or mitigated, its PUF responses could be considered as unique per PUF instance,
mostly robust and, in general, of high entropy. In particular, as our room temperature experiments
indicate, if the temperature remains relatively stable, PUF responses are highly stable and unique,
with measured Jintra and Jinter values being, in all cases, close to zero and one, respectively.

Moreover, the Row Hammer PUF also offers a number of further advantages in comparison to
other PUFs. Firstly, it can be implemented in most contemporary computer systems, as DRAM is an
inherent component of them. Secondly, it offers multiple Challenge–Response Pairs (CRPs) and can be
accessed at run-time, in contrast to the SRAM PUF that provides only a single CRP and can only be
accessed at boot-time. Additionally, it can provide significantly lower generation times and higher
entropy than similar DRAM retention-based PUFs, while also allowing for the implementation of the
same cryptographic protocols as the ones implemented using those exact DRAM retention-based PUFs,
such as key agreement [17] and authentication [17,18] protocols that have been implemented using the
exact same hardware.

Furthermore, all of its current implementations require administrative rights to be properly
inserted into a system and executed, which could prevent a number of attacks against them.
Nevertheless, we note that security is a relative term, being highly dependent on the manufacturing
costs, the costs of performing a successful attack and the potential gains/damages of such an attack [57].

Therefore, the Row Hammer PUF, like any other security mechanism [57], cannot provide perfect
security, even if its PUF responses are no longer affected by temperature variations. Thus, in order to
assess its value as a security mechanism and, in this way, also determine its potential for commercial
adoption, we should examine its manufacturing costs, the lowest cost of a successful attack and the
potential gains/damages of such an attack.

However, we already know that the manufacturing costs of the Row Hammer PUF are minimal
for most contemporary computer system implementation, as DRAMs are inherent components of
them. We also have discussed that the easiest way to attack the Row Hammer PUF is by changing the
ambient temperature and that such an attack can either cause a DoS or, more rarely, lead to the PUF
response becoming quite easy to reveal.

Hence, we can easily conclude that Row Hammer PUF implementations, and especially the kernel
module one, are implementing a flexible, lightweight, cost-efficient and practical security primitive
that can be used as a basis for the realisation of cryptographic applications, especially in low-end COTS
devices, such as IoT hardware, that have limited resources and cannot support more complex security
mechanisms, such as TPMs. Nevertheless, this security primitive suffers a significant vulnerability
in the form of its strong dependency to temperature variations, which would prevent its commercial
adoption for practical applications, until it has been sufficiently addressed.

Finally, we need to also note that our Row Hammer PUF implementations could require slight
modifications in order to be applied on different devices. We note here that as the internal die
architecture of a DRAM is usually not known and address scrambling may be employed, as well as
row redundancy, adequate testing, employing the techniques discussed in [30], may be required in
order to achieve effective row hammering. Nevertheless, as long as the row hammer effect significantly
affects the DRAM of a device and the functionality of its DRAM controller can be controlled and
modified through software, we believe that the Row Hammer PUF can be implemented in such
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a device. We clarify here that for the proper implementation of the Row Hammer PUF on a device,
this device must have a DRAM module that is susceptible to the row hammer effect and software code
running with administrative privileges must be able to control the refresh operation, the ECC and the
caching of at least a single DRAM region with a size of several KB. As these criteria seem to be fulfilled
by a large number of, even resource-constrained, devices, we believe that the Row Hammer PUF could
potentially be used in order to provide run-time cryptography and improved security in devices that
cannot support other more resource-demanding security mechanisms.

5. Conclusions

This work has presented a flexible firmware implementation of the Row Hammer PUF that was
originally introduced by Schaller et al. [1], as well as a run-time accessible implementation of the
same PUF. The Row Hammer PUF is a memory-based intrinsic PUF that takes advantage of both the
row hammer effect in DRAMs and the data retention characteristic of their cells, in order to provide
unique responses. This is the first application of the row hammer effect that can be used to enhance the
security of a system, rather than diminish it. Additionally, as DRAM modules are inherent components
of most contemporary systems, the Row Hammer PUF can be implemented in them, without the need
of additional hardware for its construction or operation.

In this work, we have extensively evaluated both a firmware and a kernel module implementation
of the Row Hammer PUF, proving that the two implementations provide equally good results, for all
cases assessed. Additionally, we have also confirmed that the Row Hammer PUF can provide unique
and robust responses of high entropy. Moreover, we have also shown that, in some cases, disabling
the cache can increase the number of bit flips observed in the Row Hammer PUF responses and,
therefore, also reduce the time needed to generate a response, or increase its entropy. Finally, we have
also demonstrated that the simultaneous use of multiple kernel module implementations of the
Row Hammer PUF can also be utilised in order to increase the number of observed bit flips and,
therefore, either reduce the time needed to generate responses or increase their entropy.

In general, as we have shown, the Row Hammer PUF can be utilised in order to address the
problem of DRAM retention-based PUFs needing extended amounts of time in order to generate their
responses [20]. Furthermore, the Row Hammer PUF also provides multiple Challenge–Response Pairs
(CRPs) and its kernel module implementation allows access to it at run-time. Moreover, both the
firmware and the kernel module implementation of the Row Hammer PUF can be used as a basis for the
implementation of cryptographic applications, such as key agreement [17] and authentication [17,18]
protocols that have been designed for DRAM retention-based PUFs.

Nevertheless, our extended investigation of the effects of temperature on the Row Hammer PUF
has revealed that the Row Hammer PUF is strongly dependent on temperature variations. Temperature
variations can significantly affect its robustness and, at extreme cases, even substantially affect its
entropy. As this is also a known problem for DRAM retention-based PUFs [17,18,20], we have
briefly discussed some potential ways to address this issue. However, as this issue undoubtedly
affects the potential of the Row Hammer PUF for commercial adoption and widespread use for
practical applications, it needs to be addressed in a much more comprehensive manner by future
research. If the dependency of the Row Hammer PUF on temperature can be controlled in an efficient
manner, then, this PUF can also potentially be used for the attestation of time and/or temperature.
Moreover, future research should additionally investigate and address the effects of voltage variations
and aging on the Row Hammer PUF.

Finally, we can conclude that the Row Hammer PUF can, in general, be utilised as a basis for
providing flexible, lightweight, cost-efficient and practical run-time cryptographic solutions in low-end
COTS devices, such as IoT hardware, that cannot support other more resource-demanding security
primitives, such as TPMs. Nevertheless, although the Row Hammer PUF can be used to significantly
improve the security of a system, the dependency of all its current implementations on temperature
variations must be taken into account, when considering it as a security mechanism.
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The following abbreviations are used in this manuscript:

ANOVA ANalysis Of Variance
B Bytes
CMU Cache Management Unit
COTS Commercial Off-The-Shelf
CRP Challenge–Response Pair
DAAD German Academic Exchange Service (Deutscher Akademischer AustauschDienst)
DFG German Research Foundation (Deutsche ForschungsGemeinschaft)
DMA Direct Memory Access
DoS Denial of Service
DRAM Dynamic Random Access Memory
DSRH Double-Sided Row Hammering
ECC Error Correction Code
FE Fuzzy Extractor
GB GigaBytes
IoT Internet of Things
IV Initial Value
KB KiloBytes
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LPDDR2 Low Power Double Data Rate type 2
MB MegaBytes
MDPI Multidisciplinary Digital Publishing Institute
MPU MicroProcessor Unit
nm nanometer
NSF US National Science Foundation
OS Operating System
PoP Package-on-Package
PUF Physical Unclonable Functions
RH Row Hammering
SDRAM Synchronous Dynamic Random Access Memory
SGX (Intel) Software Guard Extensions
SoC System-on-Chip
SSRH Single-Sided Row Hammering
TLB Translation Lookaside Buffer
TPM Trusted Platform Module
US/USA United States of America
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