Cache Timing Side-Channel Vulnerability Checking with
Computation Tree Logic

Shuwen Deng, Wenjie Xiong and Jakub Szefer
Yale University
New Haven, Connecticut
{shuwen.deng, wenjie.xiong,jakub.szefer}@yale.edu

ABSTRACT

Caches are one of the key features of modern processors as they
help to improve memory access timing through caching recently
used data. However, due to the timing differences between cache
hits and misses, numerous timing side-channels have been discov-
ered and exploited in the past. In this paper, Computation Tree
Logic is used to model execution paths of the processor cache logic,
and to derive formulas for paths that can lead to timing side-channel
vulnerabilities. In total, 28 types of cache attacks are presented: 20
types of which map to attacks previously categorized or discussed
in literature, and 8 types are new. Furthermore, to enable practical
vulnerability checking, we present a new approach that limits the
depth of the execution paths that need to be checked by the Com-
putation Tree Logic, allowing for use of bounded model checking
for Computation Tree Logic based cache security verification using
the new three-step single-cache-block-access model.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; » Theory of computation — Modal and temporal
logics; Verification by model checking;

KEYWORDS
timing side-channel, caches, Computation Tree Logic

ACM Reference Format:

Shuwen Deng, Wenjie Xiong and Jakub Szefer. 2018. Cache Timing Side-
Channel Vulnerability Checking with Computation Tree Logic. In HASP
’18: Hardware and Architectural Support for Security and Privacy, June 2,
2018, Los Angeles, CA, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3214292.3214294

1 INTRODUCTION

With conventional processor caches, when a memory access is
made, first, the memory address is checked to see if the data is in
the cache, and if data is in the cache, it is called a cache hit, and data
is returned from the cache quickly. If data is not in the cache, it is a
cache miss, and main memory is accessed to retrieve the data, which
takes longer amount of time. Because of this timing difference, it is
possible to use timing of a program execution to determine if its
memory accesses are hits or misses. Furthermore, when flushing or
evicting a cache block, the timing of these operations depends on
whether the cache block originally had valid data, which can also
reveal the state of the cache block. The different timing information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6500-0/18/06....$15.00
https://doi.org/10.1145/3214292.3214294

can then be used to leak secrets of a victim program, and this has
been exploited by the various cache timing side-channel attacks,
eg. [1,5,7, 21, 30].

To address the security issues of cache timing side-channel at-
tacks, numerous secure processor caches have been designed and
analyzed through simulation and probability analysis in attempt
to prove that the proposed caches indeed prevent attacks [12, 13,
26, 27, 33-36, 39, 40]. Furthermore, to reason about the different
attacks, researchers have classified cache timing side-channels on
basis whether the attacks leverage cache hits or misses and whether
they are access-based or reuse-based, and whether the attacks lever-
age internal or external interference [22, 41]. Especially, [41] made
use of finite-state machine to model cache architectures and used
mutual information to calculate potential side-channel leakage of
the modeled cache architectures. Meanwhile, [22] used probabilis-
tic information flow graph to model interaction between a victim
and an attacker program, and used probability of an attack success
to evaluate how well different caches can defend against timing
side-channel attacks.

In contrast to the existing work, this paper is the first work to
explore Computation Tree Logic (CTL) [9, 10] to model execution
paths of the processor cache logic, and to derive formulas for paths
which indicate that there is a vulnerability to a potential attack.
Rather than trying to model or simulate attackers, this work explic-
itly enumerates all the possible execution paths that could lead to
an attack. CTL formulas are derived for these execution paths, and
these formulas can be used with existing tools to check if a specific
cache architecture is susceptible to one of the attacks. Especially,
behavior of each single cache block can be modeled as a Kripke
structure [23], which is used to describe the finite-state machine of
the cache logic. Given the CTL formulas, they can be used to verify
if there is at least one path in the computation tree derived from
the Kripke structure that matches the formula, and if so, there is a
potential vulnerability in the design.

The execution paths in computation tree of a cache could be
potentially infinite. However, we show that any path corresponding
to an attack can be represented as a path with three single-cache-
block accesses steps (step 0, step 1, and step 2 in Section 4). While
the computation tree is still large, it is now bounded in size and all
the paths can be evaluated within this bounded computation tree
to find potential vulnerabilities.

Through explicit enumeration of all the possible paths and their
analysis, we have derived CTL formulas for 28 types of cache at-
tacks. Of these attacks, 20 types are in agreement with the existing
cache attack categorizations presented in [22, 27, 41] or correspond
to known vulnerabilities. However, 8 of the types of attacks are
previously not detailed in literature. The 28 CTL formulas can be ap-
plied to evaluate any cache architecture and can check, in bounded
time, if the cache is vulnerable to an attack.

1.1 Contributions

This paper aims to help advance the field of verification of proces-
sor caches, and provides logic formulas that can be used to check

https://doi.org/10.1145/3214292.3214294
https://doi.org/10.1145/3214292.3214294
https://doi.org/10.1145/3214292.3214294

HASP *18, June 2, 2018, Los Angeles, CA, USA

cache implementation against potential cache timing side-channel
vulnerabilities. Our contributions are:

e First use of CTL to model execution paths of the processor
cache logic focusing on side-channel attacks.

e Development of a new, three-step single-cache-block-access
model for modeling all possible vulnerabilities that can lead
to timing side-channel attacks in caches.

e Derivation of 28 types of cache side-channel attacks based
on the three-step single-cache-block-access model, including
8 types of attacks previously not described in the existing
literature in detail.

e Discussion of how to find cache timing side-channel vul-
nerabilities in real cache implementations by using the CTL
formulas and bounded model checking.

2 COMPUTATION TREE LOGIC (CTL)

In this paper, we use Computation Tree Logic (CTL) [9, 10] to model
execution paths of the processor cache logic, and to derive formulas
for paths which can lead to attacks. CTL treats time as discrete and
branching, where at each time step the system is in a defined state.
It allows one to explore different execution paths that a system may
go through as it executes. The number of the paths depends on the
finite state machine describing the system. The lengths of the paths
can be infinite, but bounded paths can be checked (c.f. bounded
model checking [6]).

CTL is one type of temporal logic: temporal logic is the logic that
contains any system of rules and symbolisms to represent, and rea-
son about, propositions qualified in terms of time [14]. Propositions
such as “there exists a path that property p holds starting at some
time step until a step where property g holds” enable describing a
system along with changes in its state over time.

There are also other forms of temporal logics, which include
Linear Temporal Logic (LTL) [31] where at every moment in time
there will only be one possible future that “actually takes place” [24].
Interval Temporal Logic (ITL) [2, 3] represents both propositional
and first-order logical reasoning about periods of time. It is able
to handle both sequential and parallel composition. Computation
Tree Logic* (CTL*) [15] is a superset of Computation Tree Logic
(CTL) and Linear Temporal Logic (LTL). There are also temporal
logics for Hyperproperties [11], which are able to describe a set
of trace properties and moreover can describe security policies
such as noninterference. For this work, we use CTL as it allows for
enumerating various execution paths and checking if there exists
at least one path that matches a given formula.

2.1 Describing a System for CTL Checking

A system to be checked using CTL needs to be modeled as a finite-
state machine, which can be described by a Kripke structure M =
< N,I,0,R > [23]. N is the finite set of states in the system and
I C N is the set of initial states. & is the set of Boolean variables
(labels), or some primitive propositions, and ¢ : N — 22 is the
mapping function of each state to the set of variables that are true
in this state. Finally, R € N X N is the transition relation between
states of the system.

Given the Kripke structure M and an initial state s € I, the
computation tree for the execution of the system can be derived
starting in that state. The tree represents all the possible execution
paths of the system based on all the possible states of the system,
its inputs, and the state transitions.

A path from the root node, s, to a leaf node is called a path
7. There are many paths in a tree. If a tree is unbounded, there
could be infinite number of paths — later we explain how our work

S. Deng et al.

Table 1: Symbols of CTL formula syntax.

Symbol | Description
True logical true value
an atomic proposition
valid CTL formulas
negation (unary op.)
logical AND (binary op.)
logical OR (binary op.)
logical implication (binary op.)
logical bi-implication (if and only if, binary op.)
“for all” operator (along all paths, unary op.)
“exists” operator (along at least one path, unary op.)
“next” operator (unary op.)
“globally” operator (unary op.)
“eventually” operator (unary op.)
“until” operator (binary op.)

@, Y1, Q2

< Qx| o 8] U] <] >] 4

For all paths next:

&&&ﬁ&ﬁ%&

(M, s)EAX a (M, s)EAF a (M, 5)FAGa (M, 5) FAla Ub)

Is mevntable For all path mvarlantlv For all aths until:

Exists some paths next: Holds potentlally Potentiall always For some th until:

&&&&&&&&

(M, s)EEXa (M, s)EEF a (M, s)FEG a (M, 5) EE[a Ub)

Figure 1: Example paths in computation trees that are true for the
corresponding CTL formulas.

allows for use of bounded trees. If the tree is bounded, a path 7f
will have finite number of states, m, and the finite sequence of
states sg, $1, ..., Sm—1 of 7 hold that Y0 < i < m, s; — sj+1 and
(si,si+1) € R. Paths are written as 7 = sp — s1 — s3 — ... —
Sm—1, Where s; is 7p[i], indicating the i + 1%h state in the path. Here

o(rpl[i]) €220 < i < m) represents the set of variables that are
true in state zr[i], and — represents the predecessor to successor
relation between states in a path.

2.2 CTL Formula Syntax

CTL formulas can be described using the below syntax:

@ == Truelal-@lp1 A p2lQ1 V 2101 = @2lp1 © @2| (1)
AX@|EX@|AF@|EFplAG@|EGo|

A(p1U@2)|E(p1Ug2)

Symbols are explained in Table 1. The quantifiers over paths (A
and E) are always combined with path-specific quantifiers (X, G, F
and U). When evaluating CTL formulas, the unary operators bind
stronger than the binary ones. Implication (=) and bi-implication
(©) have the least precedence.

2.3 Semantics Over Paths

CTL formulas are true when there are certain execution paths
in the computation tree for a system that matches that formula.
Different CTL semantics, their names, and examples of paths that
make such formulas true are shown in Figure 1. For example, if
the CTL formula (M, s) |= EF¢p holds for a bounded computation
tree of Kripke structure M, there exists at least one state in one of
the paths in the tree where ¢ holds, i.e. ¢ “holds potentially” in the
computation tree.

Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic

ISA-level | Microarchitecture-level

1d : _(probe} {miss}
@ @
issue ! o
o 1 i
S, | ' {hit}
JE i {force
;f i N evict}
= : l
1vd ; "//{bypass} {replace}
return !
1

{return data}
Figure 2: ISA and Microarchitecture level view of cache operation.

3 CACHES AND SIDE-CHANNEL ATTACKS

Operation of a processor cache is realized in the hardware cache

controller logic, which can be described by a finite state machine.

Each type of a processor cache has a finite number of states in its
state machine and is deterministic!. The basic unit of a cache is
a cache block. Based on the inputs (memory access requests) the
state of each cache block evolves over time. Changes in the state

of a cache block can be expressed as a path in CTL terminology.

In this work, we show that CTL formulas can be used to describe
execution paths which may lead to an attack; if for a particular
cache state machine the CTL formula is never true, then the cache
is secure against that type of attack.

3.1 Threat Model

To reason about cache attacks, we assume there is an attacker
and a victim sharing the same cache. Third party interference has
equivalent functionality to some victim’s or attacker’s behavior
and is not considered. The attacker cannot directly access the state
machine of the cache logic, but can make use of the timing difference
between hits and misses to derive information about cache accesses
by the victim - a timing side-channel. The attacker is able to observe
its own timing and the timing of the operations of the victim. The

attacker knows at least some of the source code of the victim (e.g.

it can interpret some information from knowing a specific cache
block access by a victim). The attacker is also able to force victim
to execute a specific function (e.g. attacker can request victim to
decrypt a specific piece of data).

3.2 Cache State Machine

A cache hit or miss has a one-to-one mapping to the state in the
processor cache controller logic, and a hit or a miss has direct
relation to the timing. Figure 2 shows the operation of a cache at
two abstraction levels.

At the ISA level, memory access instructions, such as Id (load)
and st (store), are used to access data. When the instruction is
issued, data is requested from the memory subsystem. The cache
block corresponding to the memory address is accessed. When the
instruction is returned, the data is provided to the processor - for a
memory access operation, the latency of the instruction has direct
relation to whether it was a cache hit or cache miss. Similarly, for
a flush or evict instruction, the latency of the operation reflects
whether this cache block was an empty cache block (quick because
there is nothing to flush or evict) or was not empty (slow because
there was data to be flushed or evicted).

At the microarchitecture level, the cache controller is realized as
a Kripke structure describing the finite state machine of the cache
logic. A simplified structure is shown in Figure 2; a single memory

!Certain secure caches use randomization to map addresses to cache blocks, but overall
the operation of the cache is still deterministic.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

access at the ISA level, corresponds to a set of state transitions at
the microarchitecture level. The first state is sy. Proposition “probe”
holds in this state and is used to find out if the required data is in
the cache or not. If it is, then s; state (“hit”) is entered, followed by
s4 state (“return data”). If the data is not in the cache, then s, state
(“miss”) is entered, followed by s3 state (“replace”) where some
other data is evicted and the requested data is brought into the
cache. Finally, s4 state (“return data”) is entered and state will go
back to sy (“probe”) to wait for the next request.

Certain secure caches have other states, such as s5 (“force evict”)
or s¢ ("bypass”), as shown in the state transition diagram in Figure 2.
Other different possibie states exist as well. The goal of these extra
states is to disrupt the timing of a cache hit and miss, thus eliminate
the one-to-one correspondence between the timing and whether
hit or miss state was entered.

3.3 Timing Side-Channel Attacks

Because of the time differences between hits and misses, conven-
tional processor caches are susceptible to timing side-channel at-
tacks, detailed in surveys such as [16, 28, 32, 42]. In a timing side-
channel attack, there are an attacker, A and a victim, V. The goal for
the attacker is to observe the timing of single cache block accesses
of the victim or itself, and combined with some other knowledge,
to determine what sensitive data the victim is operating on, e.g.,
guess bits of a secret key.

The attacker can themselves access a cache block by making
single cache block accesses, or trigger the victim to make single
cache block accesses, e.g. request victim to do some known compu-
tation, or both. The attacker usually knows what code the victim
is executing, e.g. type of encryption algorithm, but does not know
the victim’s specific secrets. For instance, in the Prime + Probe
attack [29], by priming to know some initial state of the cache, then
letting victim execute, and finally observing the time of its own
accessing to the same cache block, the attacker may extract some
secret information.

4 VULNERABILITY MODELING

This paper proposes a new approach to reasoning about cache tim-
ing side-channel attacks by modeling execution paths that represent
vulnerabilities to attacks as CTL formula in the form of:

(M, s) = EF(E(E(step 0 U step 1) U step 2))

The vulnerability checking can be done by applying such CTL
formulas to a computation tree derived from a state machine of the
cache controller, which will be discussed in Section 5.

In this section, we first introduce the three-step single-cache-
block-access model and discuss the possibilities for each step in
Section 4.1. Once all possibilities for each of the steps are described,
then in Section 4.2, specific vulnerabilities and their CTL formulas
for the three steps are derived. In Section 4.3, we show why the
three-step model can model all possible n-step attacks.

4.1 Three-Step Single-Cache-Block-Access
Model

For a vulnerability to exist, there needs to be an interference be-
tween the attacker’s access and the victim’s access to the same
cache block, or an interference between two accesses of the vic-
tim to the same cache block. To be able to capture this, one needs
to analyze different possible accesses to a single cache block, de-
noted as “single-cache-block accesses”. Furthermore, at least three
such accesses, or “steps”, are needed to model the cache timing
side-channel attacks.

HASP *18, June 2, 2018, Los Angeles, CA, USA

Table 2: Six possible conditions for state of a single cache block in
the three-step single-cache-block-access modeling procedure.

Condition | Description

A specific memory location of the victim or attacker is
Vi/A brought into the single cache block targeted by and known
to attacker.

A piece of memory containing data from a range of vic-
tim’s memory addresses is accessed. Attacker knows the
range, but not specific addresses accessed. Therefore, the
targeted cache block is potentially accessed by V.
Victim or attacker does single-cache-block access to “re-
move” the cache block contents so neither attacker’s
known data nor victim’s data is in the cache. It can be
achieved by using other cache block accessing to evict the
original data, or using flush instructions like cflush, or
can be achieved using cache coherence protocol.
Attacker has no knowledge about memory location in
this cache block.

Vi

VR/IAR

First, some memory operation is performed that sets one single
cache block in some known initial state, which is step 0. Then some
action can be done by the victim or attacker, which is step 1, and
final action is taken to derive information by observing timing,
which is step 2. The attacker should be able to interpret the victim’s
behavior in step 2, if there is a possible attack.

We identify six possible conditions of a cache block in Table 2.
V1 requires attacker to drive the victim to access specific memory
location known by the attacker and put it into the cache block,
while A; means the attacker directly accessing a specific memory
address themselves and putting data at that location. In both cases
attacker knows specific address of memory location in the cache
block. Vx is more general than V;, where victim accesses one of
multiple security critical memory addresses (e.g. one of AES S-Box
table entries) and put the data into the cache block, but which
specific memory address or which cache block was accessed is not
known. Therefore, potentially the cache block targeted on could
be accessed by Vy. Vg or AR requires attacker or victim to remove
(clear or evict) data from a cache block so neither attacker’s known
data nor victim’s data is in the cache. It can be achieved by using
other cache block accesses to evict the original cache block, or by
using flush instructions like ¢ flush, or by using cache coherence
protocol among different cache levels or even different CPU cores. x
means the initial contents of the cache block is unknown to attacker.

4.1.1 Modeling Step 0. The initial state of a cache block can
be modeled as step 0. Any of the six conditions in Table 2 can
be achieved by performing one valid single-cache-block access
operation by the attacker or victim.

4.1.2 Modeling Step 1. Once the cache block is in a known state,
for an attack to exist, some interference needs to be created. This
is modeled by step 1. There are five possible conditions in this
step: AR, VR, A1, Vi or Vi. % is excluded as it cannot lead to an
attack — putting the cache block in an unknown state removes
useful information.

4.1.3 Modeling Step 2. The final step in any attack is to make
a cache block access to try to observe whether any interference
happened. Here possible conditions are Ag, Vg, A1, V1 or Vy as the
attacker needs to effectively access a memory location to observe its
own fast / slow timing, resulting from whether it is an empty cache
block when trying to remove data (for data removal) or whether
it is a cache hit / miss (for data access), or the victim is driven to
do some cache block access to put corresponding data or remove
data from cache block so attacker can observe victim’s fast / slow

S. Deng et al.

timing. If the observed timing of Step 2 for one single cache block
is always fast or always slow, attacker cannot extract information
from (the lack of) timing change. Therefore, timing change is a
requirement for effective attack, but it is not sufficient. * would not
give useful information and is not considered for this step.

4.14 Deriving CTL Formula From the Three Steps. Based on the
three steps, CTL formula are derived in the form of: (M, s) |=
EF(E(E(step 0 U step 1) U step 2)). The possible states for the
steps are inserted in the place of “step 0”, “step 1, and “step 2”. For
example, if the states in the conditions are Ay, Vy, and Ay, then the

resulting formula is: (M, s) |= EF(E(E(A; U Vx) U Ay)).

4.2 Formulas for Attacks

Table 3 shows exhaustive list of all possible three-step combinations
of conditions for one single cache block. As discussed in the prior
Section, step 0 can be %, Ar, Vg , A1, V1 and Vy, step 1 and step 2
can be AR, Vg, A1, V1 and V. Based on these, all possible three-step
CTL formulas can be obtained. In Table 3, the three step columns
give the conditions for each evaluated path. Observed Timing of
step 2 column represents possible fast or slow timing information.
When loading data in step 2, fast load time corresponds to cache
hit and slow load time corresponds to cache miss. For a cache block
data removal (AR or VR), fast data removal time indicates that the
corresponding cache block previously did not have data and slow
data removal time indicates that the corresponding cache block
previously had data. Possible Attack column indicates if the three
steps in the corresponding row represent vulnerability to an attack.
Categorization column gives a name to the attack if such exists
in a row. Finally, footnote explanations give some intuition why,
or why not, the three steps in a table row correspond, or do not
correspond, to an attack.

Through evaluation of these exhaustive combinations, we have
found in total 28 kinds of vulnerabilities. Of the 28 types of attacks
presented in this paper, 20 of them have example attacks, as shown
in Table 4. However, the existing example attacks do not cover
all possible attacks in some types. For instance, Type M vulnera-
bility can be implemented as Flush + Flush attack [18]. But other
remain-to-be-discovered attacks are also possible, e.g., Flush + Evict
attack, Evict + Evict attack, etc. Moreover, 8 of the attacks are new.
Combined by some common features, these 8 new vulnerabilities
are explained below.

4.2.1 Type A, B Attacks. For Type A, B attacks, the victim fails
to reuse its own security critical memory location in Step 2 because
there is intermediate access that removes the data from the cache
block. This implies the contention between different, known mem-
ory locations from which data is removed and unknown victim’s
memory location for the same cache block.

o Victim: performs memory access to put some security critical
memory location into the cache block.

o Attacker: removes the cache block’s data (Type A) or lets the
victim remove the cache block’s data (Type B).

e Victim: performs memory access to put some security crit-
ical memory location into the cache block again and the
attacker can observe the victim’s data load time. (Longer
time indicates this removed cache block’s memory location
of the attacker has the same index as the unknown memory
location of the victim.)

4.2.2 Type C, D, E, F Attacks. In the Type C, D, E, F attacks,
victim experiences cache hit due to attacker’s previous cache block
access in step 1, which leads to decreased cache access time. This
time difference is observed by the attacker.

Table 3: Exhaustive list of all potential three-step single-cache-block accesses for cache timing side-channel vulnerability analysis.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic

O.Wm.mzmm Possible | Catego- O._um.m?mm Possible | Catego- O.Vm.mzmm Possible Catego-
Num. | Step 0 | Step1 | Step?2 HMM:MWW Attack | rization || Num. | Step 0 | Step1 | Step2 ,_.Wﬂ_wwmmow Attack | rization || Num. | Step 0 | Step1 | Step2 .ﬁMwMumMm Attack | rization
1 * AR AR fast N — 51 VR Vr Vi slow N? — 101 i Vi VR slow N3 —
2 AR AR AR fast NT — 52 Ay Vr Vi slow N2 — 102 Ve Vi Vr slow N3 —
3 Vi AR AR fast NT — 53 V Vr v slow N? — 103 * v A fast N* —
4 A AR AR fast NT — 54 Ve Vr v slow N? — 104 AR v A fast N? —
5 v AR AR fast NT — 55 * Vi Vye fast/slow N’ — 105 Vr v A, fast N7 —
6 Vi AR AR fast N! — 56 AR Vr Vi fast/slow N° — 106 Ay Vi Ay fast N7 —
7 * AR Vr fast NT — 57 Vi VR Vy fast/slow N° — 107 Vi Vi Ay fast N¥ —
8 AR AR Vi fast NT — 58 A VR Vi fast/slow N’ — 108 Vi v Ay fast N ¢ —
9 Vi AR Vi fast NT — 59 Vi Vi Vi fast/slow N° — 109 * v Vi fast N¥ —
10 A AR VR fast NT — 60 Ve VR Ve fast/slow Y Type B 110 AR i i fast N1 —
11 v AR Vr fast N — 61 * Ay AR slow N3 — 111 VR v Vi fast NE —
12 Ve AR VR fast NT — 62 AR Ay Ag slow N3 — 112 Ay \4 i fast N7 —
13 * AR A slow N? — 63 Vi A AR slow N3 — 113 Vi v Vi fast N* —
14 AR AR Ay slow N2 — 64 Ay Ay AR slow N3 — 114 Vi i) fast N? —
15 VR AR A slow N?Z — 65 \4 Ay AR slow N3 — 115 * \4 Ve fast/slow NS —
16 Ay AR Ay slow N? - 66 Ve Ay AR slow’ N3 - 116 AR Vi Ve fast/slow Y§ Type H
17) AR Ay slow N? — 67 * Ay VR slow N3 — 117 VR Vi Ve fast/slow Y®© Type I
18 Vi AR Ay slow N — 68 AR Ay VR slow N3 — 118 A \4 Ve fast/slow Y© Type]
19 * AR Vi slow N?Z — 69 Vr A, Vr slow’ N3 — 119 Vi Vi Vy fast/slow Y§ Type K
20 AR AR i slow N — 70 Aq Ay VR slow N3 — 120 Vi Vi Vi fast/slow Y Type L
21 Vi AR i slow N2 — 71 Vi Ay Vi slow N3 — 121 * Vi AR fast/slow N3 —
22 A AR Vi slow N? — 72 Vi A; Vr slow N3 — 122 AR Ve AR fast/slow Y Type M
23 v AR v slow N?Z — 73 * A A fast N* — 123 VR Ve AR fast/slow Y Type N
24 Ve AR v slow N? — 74 AR Ay A fast N* — 124 A Vy AR slow N3 —
25 * AR Ve fast/slow NE — 75 Vr A Ay fast N? — 125 Vi Vi AR slow N —
26 AR AR Vi fast/slow N° — 76 Ay Ay Ay fast NE — 126 Vy Ve AR fast/slow Y Type O
27 VR AR Vi fast/slow N> — 77 12 Ay Ay fast N4 — 127 * Ve Vr fast/slow NO —
28 Ay AR Vi fast/slow NE — 78 Ve Ay Ay fast N? — 128 AR Vi VR fast/slow Y Type P
29 v AR Vy fast/slow N3 — 79 * A V; fast N? — 129 Vr Ve Vr fast/slow Y Type Q
30 Vy AR Vy fast/slow Y7 Type A 80 AR Ay Vi fast N4 — 130 Ay Vy Vi slow N? —
31 * Vr AR fast NT — 81 Vi A v fast N? - 131 Vi Vi Vr slow N —
32 AR VR AR fast NT — 82 Ay Ay \4 fast N? — 132 Vi Vi VR fast/slow Y Type R
33 VR VR AR fast NT — 83 V; A V; fast N? — 133 * Ve Aq fast/slow N° —
34 Ay Vr AR fast NT — 84 Ve Ay Vi fast N7 — 134 AR Ve Ay fast/slow Y© Type S
35 Vi VR AR fast NT — 85 * Ay Ve fast/slow N’ — 135 Vr Vi Ay fast/slow Y © Type T
36 Vi VR AR fast NT — 86 AR Ay Vy fast/slow Y?® Type C 136 A Vi A fast/slow Y Type U
37 * VR VR fast NT — 87 VR Ay Vy fast/slow Y® Type D 137)4 Vy Ay fast/slow Y7 Type V
38 AR VR \ fast NT — 88 Ay Ay Ve fast/slow Y®© Type E 138 Ve Vi Ay fast/slow Y© Type W
39 Vr Vr Vr fast NT — 89 Vi A Ve fast/slow Y® Type F 139 * Ve Vi fast/slow N° —
40 Ay VR VR fast NT — 90 Vy Ay Vy fast/slow Y7 Type G 140 AR Vy)4 fast/slow Y®© Type X
41 Vi VR Vr fast N — 91 * Vi AR slow N3 — 141 VR Vi Vi fast/slow Y Type Y
42 Vi VR VR fast NT — 92 AR \4 AR slow N3 — 142 Ay Vi Vi fast/slow Y Type Z
43 * Vr Ay slow N — 93 Vr Vi AR slow N3 — 143 Vi Vi i fast/slow Y Type AA
44 AR Vi A slow N — 94 A v Agr slow N3 - 144 7 Vi Vi fast/slow Y © Type AB
45 Vi Vr A slow N? — 95 Vi Vi AR slow N3 — 145 * Ve Vy fast N? —
46 Ay VR Aq slow N — 9% Ve Vi AR slow N3 — 146 AR Ve Vy fast N* —
47 i VR Ay slow N? — 97 * Vi VR slow N3 — 147 VR Vy Vy fast N? —
48 Vi Vr Ay slow N2 — 98 AR Vi Vi slow N3 — 148 Ay Vi Vi fast N1 —
49 * VR Vi slow N? — 99 VR Vi Vr slow N3 — 149 12 Vi Vy fast N? —
50 AR VR v slow N? — 100 A v VR slow N3 — 150 Ve Vy Ve fast N? —
1 Observed timing of step 2’s data removal will always be fast, because data in this cache block is already removed in Step 1. 2 Observed timing of step 2’s data accessing will always be slow, because data in this cache block is removed in Step 1.
3 Observed timing of step 2’s data removal will always be slow, because data in this cache block is accessed in Step 1. 4 Observed timing of step 2’s data accessing will always be fast, because data in this cache block is already accessed in Step 1.
3 Victim’s behavior from timing observation cannot be interpreted because there are different possibilities existing for different subsets of Step 0. 6 Observed timing of Step 2 depends on whether victim’s unknown address in Step 1 or Step 2 maps to the same cache
block as attacker’s known address. Fast timing means the same cache block is mapped, while slow timing means the opposite situation. 7 Observed timing of Step 2 depends on whether victim’s unknown address in Step 1 or Step 2 have the same index in the cache
as attacker’s or victim’s known address. Slow timing means they have the same index, while fast timing means the opposite situation. 8 Observed timing of step 2’s data removal will always be slow, because data in this cache block is accessed in Step 0 no matter what

step 1’s Vyx address is.

HASP *18, June 2, 2018, Los Angeles, CA, USA

Table 4: Different types of cache timing side-channel attack vulner-
abilities extracted from all possible combinations listed in Table 3
and their relations with existing attack categorizations or known
attack examples.

Categori- c . .
A ategori- | Categori- Known
CTL Format of the Attack Zattlﬁi]; m zation in zation Attack
[22][27] in [41] Example
paper
EF(E(E(Vyx U AR) U Vy))| Type A — —
EF(E(E(V, U VR) U Vy))| TypeB —
EF(E(E(AR U A;) U Vy))| TypeC — —
EF(E(E(VR U A) U V4)) | TypeD — —
EF(E(E(A, U A)) U V) | TypeE =
EF(E(E(V1 U A) U Vy)) Type F — —
EF(E(E(V, U A) U Vy)) | TypeG Type 1 — 1)
EF(E(E(AR U V1) U Vy)) | TypeH Type 3 Type IV 2)
EF(E(E(VR U V) U Vy)) Type I Type 3 Type IV 2)
EF(E(E(A, UV) U V,)) | _Type] | Type3 | TypelV | (@
EF(E(E(Vv; U V) U Vy)) Type K Type 3 Type IV 2)
EF(E(E(V, U V1) U Vy)) Type L — Type 1T 3)
EF(E(E(AR U Vy) U AR))| TypeM = 4)
EF(E(E(VR U Vi) U AR))| TypeN — — (4)
EF(E(E(Vy U Vi) U AR))| Type O — — (4)
EF(E(E(AR U Vi) U VR))| TypeP — 4)
EF(E(E(VR U Vx) U VR)) [Type Q - - €]
EF(E(E(Vy, U Vi) U VR))| TypeR — — (4)
EF(E(E(AR U V4) U Ay))| TypeS Type 4 Type III (5)
EF(E(E(VR U V) U Ay)) | TypeT Type 4 Type I (5)
EF(E(E(A; UVy) U Ay)) | TypeU Type 2 Type I (6)
EF(E(E(V, U V) U A7) | TypeV -
EF(E(E(Vx U Vi) U Ay)) | TypeW Type 4 Type IIT (5)
EF(E(E(AR U V,) U V1)) | TypeX Type 3 Type IV 2)
EF(E(E(VR U Vi) U Wy)) Type Y Type 3 Type IV 2)
EF(E(E(A; U Vi) U V7)) | TypeZ — =
EF(E(E(V1 U Vi) U Vq)) | Type AA Type II 3)
EF(E(E(Vx U Vi) U V1)) | Type AB Type 3 Type IV 2)

(1) Evict + Time attack [29]. (4) Flush + Flush attack [18].
(2) Cache Collosion attack [7]. (5) Flush + Reload attack [37, 38], Evict + Reload attack [19].
(3) Bernstein’s attack [5].

o Attacker: removes the cache block’s data (Type C) or lets the
victim remove the cache block’s data (Type D) or accesses a
cache block at a known memory location (Type E) or drives
the victim to access a cache block at known memory location
(Type F).

o Attacker: accesses the cache block with known memory
location again.

o Victim: performs memory access to put some security critical
memory location into the cache block and the attacker can
observe the victim’s data load time. (Shorter data access
time indicates victim’s address of security critical memory
location maps to the same cache block as attacker’s known
memory location.)

(6) Prime + Probe attack [29, 30], Alias-driven attack [20].

4.2.3 TypeV Attack. In this attack, there is contention between
known memory address of the victim and unknown victim’s address
for the same cache block:

o Victim: performs memory access to put corresponding mem-
ory location known to the attacker into the cache block.

o Victim: performs memory access to put some security critical
memory location into the cache block.

o Attacker: accesses the same memory location as victim’s
known address, observes if there is a hit or a miss due to
contention with victim’s prior accesses. (A miss indicates
attacker’s memory location has the same index as unknown
victim’s security critical memory access.)

4.24 Type Z Attack. In the Type Z attack, the victim fails to
reuse attacker’s same known initial memory location because of
the intermediate unknown victim’s memory access. This implies
the contention between different known memory location and
unknown victim’s memory location for the same cache block.

S. Deng et al.

o Attacker: performs memory access to put corresponding
memory location known to itself into the cache block.

e Victim: performs memory access to put some security critical
memory location into the cache block.

e Victim: accesses the cache block at the same location as
the attacker; attacker observes the timing to derive victim’s
hit or miss information. (Longer time indicates this known
victim’s memory location has the same index as the unknown
memory location of the victim.)

4.3 Analysis of Three-Step
Single-Cache-Block-Access Model

In the following discussion, we will analyze why three-step single-
cache-block-access model can cover all possible cache timing side-
channel vulnerabilities based on our threat model, while less-than-
three-step model is inadequate, and why using more steps is not
necessary. Let f denotes the number of single-cache-block accesses
in one attack, a denotes the number of single-cache-block accesses
in a model to model all possible attacks. 8, @, n € Z*.

We first show the model needs at least three accesses to model
all possible attacks (¢ > 2) by proof of contradiction. If & < 2, the
model with « accesses cannot model Type A vulnerability, which
is required to have three single-cache-block accesses by victim,
attacker and victim, respectively. This contradicts the assumption
that a model with « accesses can model all attacks. Therefore, & > 2.

We want to show the model with @ = 3 accesses can model all
possible attacks with any f accesses. (i) For § = 1, interference
between attacker’s and victim’s access to a cache block, or between
two accesses of the victim is not possible, thus no attack can be
achieved by one access. (ii) For f = 2, we can use the three-step
model by setting Step 0 to be x — this first single-cache-block access
gives no information and thus the next two steps form a two-step
single-cache-block accesses. As shown in the exhaustive lists of
Table 3, there is no attacks with Step 0 being *. (iii) For f = a = 3,
the model has the same number of steps as the attack. Table 3
gives exhaustive list of all possible three-step single-cache-block
accesses and shows that there are 28 types of attacks, thus f can
be 3 and @ = 3 can cover this condition. (iv) For f > 3, let f*
denote the number of accesses in a cache access sequence that has
the property: If the sequence of f access can form an attack, the
sequence of f* access must also be an attack. The sequence of f-
step single-cache-block accesses can be reduced to f*-step accesses
based on following rules:

(1) If single cache block accesses have a sub-pattern such as {

..~ % ~> ..}, they can be divided into two separate parts,
based on the position of x. The original f*-step single-cache-
block-access model can then be reduced by at least 1 step
for each of the two separate patterns. Each pattern can be
recursively analyzed again.

If the remaining single cache block accesses have a pattern
such as {... ~ AR ~» AR ~ ...}, {... » AR ~ Vg ~ ...},
{... > VR ~ AR ~ .. {... » VR~ VR ~ L} {o
Al ~ A~ L A~ Vo L
A~ Lo Vs Vs L e v Ve v Ve s L),
due to the repeat single cache block location accessed, they
can be reduced to {... ~ AR ~ ..}, {... ~ Vg ~ ...},
{... ~ AR ~ ..} {o ~ Vg ~ L {o ~ A ~ L,
{i..~ V1~ Lo~ A~ L~ Vo L)
{... ~ Vi ~> ...}, respectively. Therefore, f* can be reduced
to (f* — 1). Each pattern can be recursively analyzed again.
(3) Following the above two rules, either f* < 3 holds, or the fol-

lowing sub-patterns in the single-cache-block access pattern

—
N
~

~ VoA

Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic

still exist: {... ~» (AR/VR/Al/Vl) s Vi o~ (AR/VR/Al/Vl) ~

..por{... ~ Vi ~» (AR/VR/A1/V1) ~» Vi ~> ...}. These
two patterns map to known vulnerabilities listed in Table 4:
Type M,N,P,Q,S, T, U, V, X, Y, Z, AA for the first sub-pattern
(Except 4 combinations derived from {... ~» (A1/V1) ~
Vi ~> (AR/VR) ~~ ...} where slow data removal time is cer-
tain because of Step 0’s known data accessing and timing
observation of AR /VR is always slow), and Type A, B, G and
L for the second sub-pattern. Therefore, the longer pattern
of multiple cache block accesses will always be matched by
these known three-step vulnerability patterns: f* can be
always reduced to less than or equal to three steps, which
can be covered by a-step modeling where « equals to 3.
In conclusion, o = 3, which shows three-step single-cache-block-
access model can cover all possible timing cache side-channel vul-
nerabilities based on our threat model and is the most simplified
model. At the same time, modeling paths having more than three
steps can be reduced to three steps only.

5 VULNERABILITY CHECKING

Given the CTL formulas for potential vulnerabilities, they need to be
applied to a cache for actual verification of the given cache design.
The complexity of the checking depends on the cache architecture.
Core ideas of the vulnerability checking in this Section are:

o Modeling state transitions of each cache block as a compu-
tation tree derived from the Kripke structure based on the
cache controller logic.

e Bounding number of states of the execution paths in the
computation tree according to the three-step model.

e Mapping each step of three-step single-cache-block-access
model to the states in the computation tree and check whether
the CTL formulas for each attack in Table 4 hold or not.

5.1 Bounded Checking with Three-Step
Single-Cache-Block-Access Rule

Figure 3 shows a simplified cache state machine (described as a
Kripke structure) targeting on only one single cache block and
using “ld” instruction accessing as the example. It follows Figure 2,
but with s5 (“force evict”) and s¢ ("bypass”) states omitted. For
each element of the Kripke structure M = < N,I,0,R >, N =
{s0, s1, $2, $3, sa}, I = sp, 0 = {sp — {probe}, s; — {hit}, s; —
{miss}, s3 — {replace}, s4 — {return data}}, R = {sp — s1, so —
Sp, $1 — S4, Sy — S$3, S3 — S4, S4 — so}. The cache starts in s
state (“probe”) — consequently the computation tree is rooted at the
so state. From there, for all possible addresses of data in the cache
block (for the Figure example addresses are 1 bit, so there are 2
possible values) and for all the possible memory requests (again,
two possibilities for the address in Figure 3), a computation tree is
built by enumerating all the possible transitions. The computation
tree for the example is shown on the right-hand side of Figure 3.
From the s¢ state (“probe”) the tree is built, and different states
are explored in the execution paths. Eventually, each path will reach
the s4 state (“return data”). This is equivalent to having finished one
single-cache-block-access operation. For our proposed modeling,
total of three operations are needed, thus each path is explored
further. From sg4 state (“return data”) the sy state (“probe”) is visited,
and again all the possible paths inputs are considered. Note, this
time the data in the cache block is fixed (it is the data in the block
at the prior s4 state (“return data”)) so only different cache inputs
are considered but not different states of that block. Going forward,
each path will have s4 state (“return data”) again (end of second
single-cache-block access). The tree is further expanded until third

HASP ’18, June 2, 2018, Los Angeles, CA, USA

(s,,0)
O A T

3 ' Step 0
‘{probe} I ,,(ivz,),, (51’2) <P
@ ‘/(50,3) \\ (s,;3)
<
gm« .{miss } (s,4) (5,4) (5,,4)
Unfold from s, to
) 5 .5
\ W(‘f) COEE AN Step 1
l [) L RO
oﬂreplace} (s,,7) D 6D) .\‘ (54{7)
{return / / / /\ - ,,,\, ,,,,,,,
data} (5,8) (5,8) (p8) (5,8) 5.8) (,8) (7 Step 2
Y voos
(579) (5.9 (5,9) (5,9 (5,9) (58 <51.8)
v

(5,710) (s,710) (5,110) (5,,10)
(s,1 1)

Figure 3: Simplified sample cache controller Kripke structure, fol-
lowing Figure 2, but with the s5 state (force evict) and s state (bypass)
omitted; and the resulting computation tree of three-step single-
cache-block-access model. For convenience, each node in the tree
is composed of a pair indicating the state in the Kripke structure
and the level of the node in the tree.

s4 state (“return data”) is reached on each path. Different caches,
especially secure caches, may have many different intermediate
states so the tree can become quite complicated, but will have
similar structure and each path will be bounded.

Based on the discussion of Section 4, known cache side-channel
vulnerabilities can be represented by the three-step model. Thus,
checking states of three single-cache-block accesses is enough to
verify different possibilities of cache timing side-channel vulnera-
bilities for different caches.

5.2 Secure Cache Model Checking with CTL

In order to prevent different types of cache timing side-channel
vulnerabilities listed in Table 4, the designs of secure caches should
not allow paths which correspond to the vulnerability to exist in the
state transition of cache’s computation tree unfolded from cache’s
Kripke structure.

When a secure cache is implemented and a computation tree
similarly as right-hand side of Figure 3 is derived from the corre-
sponding Kripke structure, in order to check formula derived from
Section 4 with each step under the condition from Table 2, primitive
propositions (22) for each state should have: address of the data in
the cache block, whom the addresses belong to (victim or attacker)
and condition of that block (“probe”, “hit”, “miss”, “flushing”, etc.).
Other primitive propositions should be removed using predicate
abstraction [17] to simplify the state machine. With the above in-
formation for each state, a mapping function from the primitive
propositions to conditions described in Table 2 can be derived and
which condition one state corresponds to can be obtained. Each
of the 28 types of cache timing side-channel vulnerabilities in the
form of CTL formula will then be checked one by one based on
the mapping function to see if the represented vulnerabilities exist
in the computation tree for each single cache block of the secure
cache designs.

5.3 Towards Verification of Secure Caches

As the number of states in each path of the tree is finite, it is possible
to use Bounded Modeling Checking (BMC) [6] for the vulnerabil-
ity checking. There are existing tools that allow for performing
bounded modeling checking for CTL logic. UPPAAL [25] is an in-
tegrated tool environment to model, simulate and verify real-time
embedded systems. RuleBase [4] is an industry-oriented formal
verification tool to formally verify critical portions of hardware

HASP *18, June 2, 2018, Los Angeles, CA, USA

designs. NuSMV 2 [8] takes SMV modeling language with CTL
specifications to do model checking.

Our ongoing work is on implementation of various secure cache
designs and using the tools listed above to check for existence of
potential vulnerabilities in the different cache designs. We expect
the three-step bounded single-cache-block-access model will allow
for fast, practical verification of cache architectures.

6 CONCLUSION

Cache timing side-channel vulnerabilities based on cache access
and timing differences are getting more and more attention and
represent an increasing threat. In this work, we use Computation
Tree Logic to model execution paths of the processor cache logic
and derive Computation Tree Logic formulas representing vulnera-
bilities to cache attacks. Based on the study of cache timing side-
channel vulnerabilities, we propose that for existing cache timing
side-channel vulnerabilities, a three-step single-cache-block-access
model is able to cover all the possibilities for potential attacks. We
presented 28 types of vulnerabilities based enumeration of all po-
tential three-step execution paths, 20 of which map to the known
attack categories or have been previously demonstrated, while 8
of which are new. We also show how existing tools for bounded
model checking can be used with our approach and can help with
security verification of processor caches.

7 ACKNOWLEDGEMENT

We would like to thank Professor Ruzica Piskac and Mr. Mark
Santolucito for helpful discussions, and the anonymous reviewers
for their feedback on this paper. This work was supported in part
by the National Science Foundation’s grant number 1524680.

REFERENCES

[1] Onur Aciigmez and Cetin Kaya Kog. 2006. Trace-driven cache attacks on AES
(short paper). In International Conference on Information and Communications
Security. Springer, 112-121.

[2] James F Allen. 1984. Towards a general theory of action and time. Artificial
intelligence 23, 2 (1984), 123-154.

[3] JamesF Allen. 1990. Maintaining knowledge about temporal intervals. In Readings
in qualitative reasoning about physical systems. Elsevier, 361-372.

[4] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Avner Landver. 1996. RuleBase:

An industry-oriented formal verification tool. In Proceedings of the 33rd annual

Design Automation Conference. ACM, 655-660.

] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).

[6] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-
bolic model checking without BDDs. In International conference on tools and
algorithms for the construction and analysis of systems. Springer, 193-207.

[7] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against

AES. In International Workshop on Cryptographic Hardware and Embedded Systems.

Springer, 201-215.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,

Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. 2002.

Nusmv 2: An opensource tool for symbolic model checking. In International

Conference on Computer Aided Verification. Springer, 359-364.

Edmund M Clarke and E Allen Emerson. 1981. Design and synthesis of synchro-

nization skeletons using branching time temporal logic. In Workshop on Logic of

Programs. Springer, 52-71.

Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. 1986. Automatic

verification of finite-state concurrent systems using temporal logic specifications.

ACM Transactions on Programming Languages and Systems (TOPLAS) 8, 2 (1986),

244-263.

Michael R Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K Micinski,

Markus N Rabe, and César Sanchez. 2014. Temporal logics for hyperproperties.

In International Conference on Principles of Security and Trust. Springer, 265-284.

Victor Costan, Ilia A Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal

Hardware Extensions for Strong Software Isolation.. In USENIX Security Sympo-

sium. 857-874.

[13] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry

Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of

cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-

tion (TACO) 8, 4 (2012), 35.

E Allen Emerson. 1990. Temporal and modal logic. In Formal Models and Semantics.

Elsevier, 995-1072.

[8

=

[10

[11

[12

[14

[15

[16

[17

(18]

I
=

[
—

[29

[30
(31]

(32]

[33

[34

&
=

[38

[39

[40

[41

=
L)

S. Deng et al.

E Allen Emerson and Joseph Y Halpern. 1986. “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic. Journal of the ACM
(JACM) 33, 1 (1986), 151-178.

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary hardware.
Journal of Cryptographic Engineering (2016), 1-27.

Susanne Graf and Hassen Saidi. 1997. Construction of abstract state graphs with
PVS. In International Conference on Computer Aided Verification. Springer, 72-83.
Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279—
299.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.. In USENIX Security
Symposium. 897-912.

Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.
Cache storage channels: Alias-driven attacks and verified countermeasures. In
Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 38-55.

David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games—
Bringing access-based cache attacks on AES to practice. In Security and Privacy
(SP), 2011 IEEE Symposium on. IEEE, 490-505.

Zecheng He and Ruby B Lee. 2017. How secure is your cache against side-channel
attacks?. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 341-353.

Saul Kripke. 2007. Semantical considerations of the modal logic. (2007).

Leslie Lamport. 1980. Sometime is sometimes not never: On the temporal logic
of programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 174-185.

Kim G Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a nutshell.
International journal on software tools for technology transfer 1, 1-2 (1997), 134~
152.

Ruby B Lee, Peter Kwan, John P McGregor, Jeffrey Dwoskin, and Zhenghong
Wang. 2005. Architecture for protecting critical secrets in microprocessors. In
ACM SIGARCH Computer Architecture News, Vol. 33. IEEE Computer Society,
2-13.

Fangfei Liu and Ruby B Lee. 2014. Random fill cache architecture. In Microarchi-
tecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium on. IEEE,
203-215.

Yangdi Lyu and Prabhat Mishra. 2017. A Survey of Side-Channel Attacks on
Caches and Countermeasures. Journal of Hardware and Systems Security (2017),
1-18.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1-20.

Colin Percival. 2005. Cache missing for fun and profit.

Amir Pnueli. 1977. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on. IEEE, 46-57.

Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on
AES, and countermeasures. Journal of Cryptology 23, 1 (2010), 37-71.

Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing channel
protection. In Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE.
IEEE, 1-6.

Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting soft-
ware cache-based side channel attacks. In ACM SIGARCH Computer Architecture
News, Vol. 35. ACM, 494-505.

Zhenghong Wang and Ruby B Lee. 2008. A novel cache architecture with en-
hanced performance and security. In Microarchitecture, 2008. MICRO-41. 2008 41st
IEEE/ACM International Symposium on. IEEE, 83-93.

Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017.
Secure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against
Cache-Based Side Channel Attacks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture. ACM, 347-360.

Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are Coherence Pro-
tocol States Vulnerable to Information Leakage?. In High Performance Computer
Architecture (HPCA), 2018 IEEE International Symposium on. IEEE, 168-179.
Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium. 719~
732.

Danfeng Zhang, Aslan Askarov, and Andrew C Myers. 2012. Language-based
control and mitigation of timing channels. ACM SIGPLAN Notices 47, 6 (2012),
99-110.

Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A
hardware design language for timing-sensitive information-flow security. In
ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 503-516.

Tianwei Zhang and Ruby B Lee. 2014. New models of cache architectures char-
acterizing information leakage from cache side channels. In Proceedings of the
30th Annual Computer Security Applications Conference. ACM, 96-105.

YongBin Zhou and DengGuo Feng. 2005. Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security Testing. JACR
Cryptology ePrint Archive 2005 (2005), 388.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Computation Tree Logic (CTL)
	2.1 Describing a System for CTL Checking
	2.2 CTL Formula Syntax
	2.3 Semantics Over Paths

	3 Caches And Side-Channel Attacks
	3.1 Threat Model
	3.2 Cache State Machine
	3.3 Timing Side-Channel Attacks

	4 Vulnerability Modeling
	4.1 Three-Step Single-Cache-Block-Access Model
	4.2 Formulas for Attacks
	4.3 Analysis of Three-Step Single-Cache-Block-Access Model

	5 Vulnerability Checking
	5.1 Bounded Checking with Three-Step Single-Cache-Block-Access Rule
	5.2 Secure Cache Model Checking with CTL
	5.3 Towards Verification of Secure Caches

	6 Conclusion
	7 Acknowledgement
	References

