
FPGA-based Niederreiter Cryptosystem using
Binary Goppa Codes

Wen Wang1, Jakub Szefer1, and Ruben Niederhagen2

1 Yale University, New Haven, CT, USA
{wen.wang.ww349, jakub.szefer}@yale.edu

2 Fraunhofer SIT, Darmstadt, Germany
ruben@polycephaly.org

Abstract. This paper presents an FPGA implementation of the Nieder-
reiter cryptosystem using binary Goppa codes, including modules for
encryption, decryption, and key generation. We improve over previous
implementations in terms of efficiency (time-area product and raw per-
formance) and security level. Our implementation is constant time in
order to protect against timing side-channel analysis. The design is fully
parameterized, using code-generation scripts, in order to support a wide
range of parameter choices for security, including binary field size, the de-
gree of the Goppa polynomial, and the code length. The parameterized
design allows us to choose design parameters for time-area trade-offs
in order to support a wide variety of applications ranging from smart
cards to server accelerators. For parameters that are considered to pro-
vide “128-bit post-quantum security”, our time-optimized implementa-
tion requires 966,400 cycles for the generation of both public and private
portions of a key and 14,291 cycles to decrypt a ciphertext. The time-
optimized design uses only 121,806 ALMs (52% of the available logic)
and 961 RAM blocks (38% of the available memory), and results in a
design that runs at about 250 MHz on a medium-size Stratix V FPGA.

Keywords: post-quantum cryptography, code-based cryptography, Nie-
derreiter cryptosystem, FPGA, hardware implementation.

1 Introduction

Arguably today’s most wide-spread asymmetric cryptographic algorithms are
the Rivest-Shamir-Adleman (RSA) cryptosystem, Diffie-Hellman key exchange
(DH), and a variety of primitives from the field of Elliptic-Curve Cryptogra-
phy (ECC), e.g., ECDSA, EdDSA, ECDH, etc. These cryptosystems are based
on the hardness of the integer-factorization problem and the discrete-logarithm
problem. Using today’s computing systems, no efficient algorithms for solving
these problems are known. However, the picture changes drastically if quan-
tum computers are taken into account. In the 1990s, Shor proposed algorithms
that can solve both the integer-factorization problem and the discrete-logarithm
problem in polynomial time on a quantum computer [23,24]. In order to provide

Permanent ID of this document: 939f29123f6853e858d367a6a143be76.
Date: 2018.01.24.

alternatives to the threatened schemes, the field of Post-Quantum Cryptogra-
phy (PQC) emerged in the 2000s and has received increased attention recently,
most noticeably due to a standardization process for PQC schemes started by
NIST in 2017 [7].

Currently, there are five categories of mathematical problems that are under
investigation for PQC: code-based systems, lattice-based systems, hash-based
systems, systems based on multivariate polynomial equations, and systems based
on supersingular isogenies of elliptic curves [4,22]. Each of these categories has
advantages and disadvantages. They vary in the performance measures (sizes of
public and private keys, sizes of ciphertext and key-exchange messages, computa-
tional cost, etc.) and in maturity: some schemes (e.g., some code-based schemes
and hash-based signature schemes) are considered well-understood and there is
a general agreement on the required security parameters while other schemes are
more recent and the exact security that they provide is yet under investigation.

Conservative and well-understood choices for code-based cryptography are
the McEliece cryptosystem [18] and its dual variant by Niederreiter [19] using
binary Goppa codes. In this paper, we focus on the Niederreiter cryptosystem.
This cryptosystem has relatively large public keys of up to 1MB for roughly 256-
bit classical security (corresponding to “128-bit post-quantum security” meaning
that a quantum computer needs to perform at least 2128 “operations” using the
best known attacks) using parameters proposed in [2]. There are more efficient
PQC schemes than Niederreiter with binary Goppa codes. However, some of
these schemes exhibit weaknesses that restrict their application to certain use-
cases (e.g., Niederreiter with QC-MDPC codes instead of binary Goppa codes is
affected by decoding errors [13] which restricts their use to ephemeral applica-
tions without long-term usage of keys) while how to choose security parameters
for some schemes is challenging (e.g., for some lattice-based schemes that have
a security reduction, parameters need to be chosen either based on best-known
attacks or based on the non-tight security reduction, which results in a dilemma
of choosing either more efficient or more reliable parameters [1]).

The large public keys of the Niederreiter cryptosystem using binary Goppa
codes make it particularly troublesome for use in embedded systems (due to
strong restrictions on resource usage) and in server scenarios (given a large num-
ber of simultaneous connections). In both cases, hardware acceleration can help
to improve the performance — either by providing a low-area, power efficient
crypto core in the embedded scenario or by providing a large, latency or through-
put optimized crypto accelerator for the server scenario. Therefore, we describe
and evaluate an FPGA implementation of this cryptosystem. Our FPGA imple-
mentation can be tuned in regard to performance and resource usage for either
low-resource usage in embedded systems or high performance as accelerator for
servers. Furthermore, we provide a generic implementation that can be used for
different performance parameters. This enables us to synthesize our design for
the above mentioned 256-bit security parameters and also smaller parameter
sets for comparison with prior art. For a given set of parameters, i.e. security
level, the design can be further configured to trade-off performance and area, by

changing widths of data paths, memories, and other parameters inside the de-
sign, without affecting the security level. All of the parameters can be configured
for key generation, encryption, and decryption.

Inspired by the confidence in the code-based cryptosystems, there are a
few hardware implementations of different variants of these cryptosystems, e.g.,
[14,17,26]. Most of the work only focuses on the encryption and decryption parts
of the cryptosystem due to the complexity of the key generation module. More-
over, none of the prior designs are fully configurable as ours nor do they support
the recommended “128-bit post-quantum security” level. We are aware of only
one publication [26] that provides the design of a full McEliece cryptosystem
including key generation, encryption and decryption modules. However, their
design only provides a 103-bit classical security level, which does not meet the
currently recommended security level for defending against quantum comput-
ers. More importantly, the design in [26] is not constant-time and has poten-
tial security flaws. For example, within their key generation part, they generate
non-uniform permutations, and within the decryption part, they implement a
non-constant-time decoding algorithm. Note that our work focuses on a design
that can defend against timing side-channel attacks due to its constant-time im-
plementation. However, other types of side-channel attacks are out of scope of
this work. A detailed comparison with related work is presented in Section 5.

Contributions. This paper presents the first “128-bit post-quantum secure”,
constant-time, efficient, and tunable FPGA-based implementation of the Nieder-
reiter cryptosystem using binary Goppa codes. The contributions are:

– full cryptosystem with tunable parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code,

– new hardware implementation of merge sort for obtaining uniformly dis-
tributed permutations,

– new optimization of the Gao-Mateer additive FFT for polynomial evaluation,
– hardware implementation of a constant-time Berlekamp-Massey decoding

algorithm, and
– design testing using Sage reference code, iVerilog simulation, and output

from real FPGA runs.

2 Niederreiter Cryptosystem

The first public-key encryption scheme based on coding theory was proposed
in 1978 by McEliece [18], known as the McEliece public-key cryptosystem. In
1986, Niederreiter proposed a variant of the McEliece cryptosystem that uses
a parity check matrix for encryption instead of a generator matrix as used by
McEliece. Furthermore, Niederreiter proposed to use Reed-Solomon codes, which
were later shown to be insecure [27]. However, the Niederreiter cryptosystem
using binary Goppa codes remains secure and the Niederreiter cryptosystem has
been shown to be equivalent (using corresponding security parameters) to the
McEliece cryptosystem [15].

The private key of the Niederreiter cryptosystem is a binary Goppa code G
that is able to correct up to t errors. It consists of two parts: a generator, which
is a monic irreducible polynomial g(x) of degree t over GF(2m), and a support,
which is a random sequence of n distinct elements from GF(2m). The public key
is a binary parity check matrix H ∈ GF(2)mt×n, which is uniquely defined by
the binary Goppa code. To reduce the size of the public key, the matrix H of size
mt×n can be compressed to a matrix K ∈ GF(2)mt×k of size mt×(n−mt) with
k = (n − mt) by computing its systematic form. This is often called “modern
Niederreiter” and can also be used for the McEliece cryptosystem. For encryp-
tion, the sender encodes the message as a weight-t error vector e of length n.
Then e is multiplied with the public parity check matrix H and the resulting
syndrome is sent to the receiver as the ciphertext c. For decryption, the receiver
uses the secret support and the generator to decrypt the ciphertext in polynomial
time using an efficient syndrome decoding algorithm of G. If neither the support
nor the generator is known, it is computationally hard to decrypt the ciphertext,
given only the public key H. The Niederreiter cryptosystem has performance ad-
vantages over the McEliece system if it is used as a key-encapsulation scheme,
where a symmetric key is derived from the weight-t error vector e. The Nieder-
reiter cryptosystem with properly chosen parameters is believed to be secure
against attacks using quantum computers.

Security Parameters. The PQCRYPTO project [21] gives “initial recommen-
dations” for several PQC schemes. For McEliece and Niederreiter using binary
Goppa codes, they recommend to use a binary field of size m = 13, adding
t = 119 errors, code length n = 6960, and code rank k = n−mt = 6960−13·119 =
5413 for “128-bit post-quantum security” [2]. More precisely, these parameters
give a classical security level of 266-bit (slightly overshooting 256-bit security);
they were chosen to provide maximum security for a public key size of at most
1 MB [6]. We use these recommended parameters as primary target for our im-
plementation. However, since our design is fully parameterized, we can synthesize
our implementation for any meaningful choice of m, t, n, and k for comparison
with prior art (see Section 5).

2.1 Algorithms

There are three main operations within the Niederreiter cryptosystem: key gen-
eration, encryption and decryption. Key generation is the most expensive opera-
tion; it is described in Algorithm 1. The implementation of the key generator has
been described in detail in [28]. To generate a random sequence of distinct field
elements, [28] presents a low-cost Fisher-Yates shuffle module which generates a
uniform permutation. However, the runtime of the permutation module in [28]
depends on the generated secret random numbers. This non-constant-time design
of the permutation module might have vulnerabilities which enable timing side-
channel analysis. In our work, we present a merge sort module, which generates
a uniform permutation within constant time, as described in Section 3.1.

Within the Niederreiter cryptosystem, the ciphertext is defined as a syn-
drome, which is the product between the parity check matrix and the plaintext.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.
Output: Private key (g(x), (α0, α1, . . . , αn−1)) and public key K.

1 Choose a random sequence (α0, α1, . . . , αn−1) of n distinct elements in GF(2m)
as support.

2 Choose a random polynomial g(x) as generator such that g(α) 6= 0 for all
α ∈ (α0, . . . , αn−1).

3 Compute the t× n parity check matrix

H =


1/g(α0) 1/g(α1) · · · 1/g(αn−1)
α0/g(α0) α1/g(α1) · · · αn−1/g(αn−1)

...
...

. . .
...

αt−1
0 /g(α0) αt−1

1 /g(α1) · · · αt−1
n−1/g(αn−1)

 .

4 Transform H to a mt× n binary parity check matrix H ′ by replacing each entry
with a column of m bits.

5 Transform H ′ into its systematic form [Imt|K].
6 Return the private key (g(x), (α0, α1, . . . , αn−1)) and the public key K.

Algorithm 2: Encryption algorithm for the Niederreiter cryptosystem.

Input : Plaintext e, public key K.
Output: Ciphertext c.

1 Compute c = [Imt|K]× e.
2 Return the ciphertext c.

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key (g(x), (α0, α1, . . . , αn−1)).
Output: Plaintext e.

1 Compute the double-size 2t× n parity check matrix

H(2) =


1/g2(α0) 1/g2(α1) · · · 1/g2(αn−1)
α0/g

2(α0) α1/g
2(α1) · · · αn−1/g

2(αn−1)
...

...
. . .

...
α2t−1
0 /g2(α0) α2t−1

1 /g2(α1) · · · α2t−1
n−1 /g

2(αn−1)

 .

2 Transform H(2) to a 2mt× n binary parity check matrix H ′(2) by replacing each
entry with a column of m bits.

3 Compute the double-size syndrome: S(2) = H ′(2) × (c|0).
4 Compute the error-locator polynomial σ(x) by use of the decoding algorithm

given S(2).
5 Evaluate the error-locator polynomial σ(x) at (α0, α1, . . . , αn−1) and determine

the plaintext bit values.
6 Return the plaintext e.

As shown in Algorithm 2, the encryption operation is very simple and maps
to the multiplication between the extended public key [Imt|K] and the plain-
text e. In our work, we only focus on the core functionalities of the Niederreiter
cryptosystem, therefore we assume that the input plaintext e is an n-bit error
message of weight t.

As shown in Algorithm 3, the decryption operation starts from extracting
the error locator polynomial out of the ciphertext using a decoding algorithm.
We use the Berlekamp-Massey’s (BM) algorithm in our design and develop a
dedicated BM module for decoding, as described in Section 3.2. One problem
within BM-decoding is that it can only recover t

2 errors. To solve this issue, we
use the trick proposed by Nicolas Sendrier [14]. We first compute the double-
size parity check matrix H(2) corresponding to g2(x), then we append (n−mt)
zeros to c. Based on the fact that e and (c|0) belong to the same coset given
H(2)× (c|0) = H × e, computing the new double-size syndrome S(2) enables the
BM algorithm to recover t errors. Once the error locator polynomial is computed,
it is evaluated at the secret random sequence (α0, α1, . . . , αn−1), and finally the
plaintext e is recovered.

2.2 Structure of the Paper

The following sections introduce the building blocks for our cryptosystem in
a bottom-up fashion. Details of the GF(2m) finite field arithmetic and of the
higher-level GF(2m)[x]/f polynomial arithmetic can be found in [28]. Lever-
aging the arithmetic operations are modules that are used in key generation,
encryption, and decryption. For key generation, the description of the Gaussian
systemization and additive FFT module has been provided in [28] and in this
paper we will focus on the introduction of the new merge sort module and the
optimization of the additive FFT module, as described in Section 3. For encryp-
tion, a simple matrix-vector multiplication is needed. For decryption, additive
FFT is used as well, and a new Berlekamp-Massey decoding module is introduced
and described in Section 3. Then we describe how these modules work together
to obtain an efficient design for the full cryptosystem in Section 4. Validation of
the design using Sage, iVerilog, and Stratix V FPGAs is presented in Section 5
together with a discussion and comparison with related work.

3 Modules

The main building blocks within our Niederreiter cryptosystem (as shown in
Figure 2) are: two Gaussian systemizers for matrix systemization over GF(2m)
and GF(2) respectively, Gao-Mateer additive FFT for polynomial evaluations,
a merge-sort module for generating uniformly distributed permutations, and a
Berlekamp-Massey module for decoding. The Gaussian systemizer and the orig-
inal version of additive FFT have been described in detail in [28]. We will focus
on the merge-sort module, the Berlekamp-Massey module and our optimizations
for the additive-FFT module in this section.

Algorithm 4: Fisher-Yates shuffle

Output: Shuffled array A
Initalize: A = {0, 1, . . . , n− 1}

1 for i from n− 1 downto 0 do
2 Generate j uniformly from range [0, i)
3 Swap A[i] and A[j]

Algorithm 5: Merge sort

Input: Random list A, of length 2k

Output: Sorted list A
1 Split A into 2k sublists.
2 for i from 0 to k − 1 do
3 Merge adjacent sublists.

3.1 Random Permutation

An important step in the key-generation process is to compute a random permu-
tation of selected field elements, which is part of the private key and therefore
must be kept secret. In [28], the random permutation was computed by perform-
ing Fisher-Yates shuffle [11] on the ordered list (0, 1, . . . , 2m − 1). Algorithm 4
shows the operation of the Fisher-Yates shuffle. This algorithm computes a per-
mutation efficiently and requires only a small amount of computational logic.
As shown in in Algorithm 4, in each iteration step i (in decrementing order),
this module generates a random integer 0 ≤ j < i (Alg. 4, line 2), and then
swaps the data in array position i and j. In [28], a PRNG is used, which keeps
generating random numbers until the output is in the required range. Therefore,
this implementation of Fisher-Yates shuffle produces a non-biased permutation
(under the condition that the PRNG has no bias) but it is not constant-time
because different seeds for the PRNG will lead to different cycle counts for the
Fisher-Yates shuffle. This causes a potential risk of timing side-channel attacks,
which is hard to eliminate even if a larger PRNG is used.

To fully eliminate potential timing attacks using the Fisher-Yates shuffle
approach from [28], in this work, we implemented a constant-time sorting module
for permutation based on the merge-sort algorithm. Sorting a random list can be
regarded as the reverse operation of a permutation: Sorting a randomly permuted
list can be seen as applying swapping operations on the elements until a sorted
list is achieved. Applying the same swapping operations in reverse order to a
sorted list results in a randomly permuted list. Therefore, given a constant-time
sort algorithm, a constant-time algorithm for generating a random permutation
can easily be derived.

Merge Sort. Merge sort is a comparison-based sorting algorithm which pro-
duces a stable sort. Algorithm 5 shows the merge sort algorithm. For exam-
ple, a given random list A = (92, 34, 18, 78, 91, 65, 80, 99) can be sorted by us-
ing merge sort within three steps: Initially, list A is divided into eight sublists
(92), (34), (18), (78), (91), (65), (80), and (99) with granularity of one. Since there

is only one element in each sublist, these sublists are sorted. In the first step, all
the adjacent sublists are merged and sorted, into four sublists (34, 92), (18, 78),
(65, 91), and (80, 99) of size two. Merging of two sorted lists is simple: Itera-
tively, first elements of the lists are compared and the smaller one is removed
from its list and appended to the merged list, until both lists are empty. In
the second step, these lists are merged into two sublists (18, 34, 78, 92) and
(65, 80, 91, 99) of size four. Finally, these two sublists are merged to the final
sorted list Asorted = (18, 34, 65, 78, 80, 91, 92, 99).

In general, to sort a random list of n elements, merge sort needs log2(n)
iterations, where each step involves O(n) comparison-based merging operations.
Therefore, merge sort has an asymptotic complexity of O(n log2(n)).

Random Permutation. As mentioned above, sorting a random list can be
regarded as the reverse operation of permutation. When given a random list
A, before the merge sort process begins, we attach an index to each element
in the list. Each element then has two parts: value and index, where the value
is used for comparison-based sorting, and the index labels the original position
of the element in list A. For the above example, to achieve a permutation for
list P = (0, 1, ..., 7), we first attach an index to each of the elements in A,
which gives us a new list A′ = ((92, 0), (34, 1), (18, 2), (78, 3), (91, 4), (65, 5),
(80, 6), (99, 7)). Then the merge sort process begins, which merges elements
based on their value part, while the index part remains unchanged. Finally, we
get A′sorted = ((18, 2), (34, 1), (65, 5), (78, 3), (80, 6), (91, 4), (92, 0), (99, 7)). By
extracting the index part of the final result, we get a random permutation of
P , which is (2, 1, 5, 3, 6, 4, 0, 7). In general, to compute a random permutation,
we generate 2m random numbers and append each of them with an index. The
sorting result of these random numbers will uniquely determine the permutation.

In case there is a collision among the random values, the resulting permuta-
tion might be slightly biased. Therefore, the bit-width of the randomly generated
numbers needs to be selected carefully to reduce the collision rate and thusly the
bias. If the width of the random numbers is b, then the probability that there are

one or more collisions in 2m randomly generated numbers is 1 −
∏2m−1

i=1
(2b−i)

2b

due to the birthday paradox. Therefore, for a given m, the collision rate can be
reduced by using a larger b. However, increasing b also increases the required
logic and memory. Both m and b are parameters which can be chosen at compile
time in our implementation. The value for b can easily be chosen to fit to the
required m. For the parameters m = 13 and b = 32 the collision rate is 0.0078.
We further reduce the collision rate and thus the bias within merge sort by in-
corporating the following trick in our design at low logic cost: In case the two
random to-be-merged values are equal, we do a conditional swap based on the
least significant bit of the random value. Since the least significant bit of the
random value is random, this trick will make sure that if some random num-
bers are generated twice, we can still get a non-biased permutation. There still
is going to be a bias in the permutation if some random values appear more
than two times. This case could be detected and the merge sort module could

Design Algorithm Const. Cycles Logic Time×Area Mem. Reg. Fmax

[28] FY-shuffle × 23, 635 149 3.52 · 106 7 111 334 MHz
Our merge-sort X 147, 505 448 6.61 · 107 46 615 365 MHz

Table 1: Performance of computing a permutation on 213 = 8192 elements with m = 13
and b = 32; Const. = Constant Time.

be restarted repeatedly until no bias occurs. However, the probability of this is
very low (prob ≈ 2−27.58 according to [10]) for m = 13 and b = 32.

Fully Pipelined Hardware Implementation. We implemented a parameter-
ized merge sort module using two dual-port memory blocks P and P ′ of depth
2m and width (b+m). First, a PRNG is used, which generates 2m random b-bit
strings, each cell of memory block P then gets initialized with one of the ran-
dom b-bit strings concatenated with an m-bit index string (corresponding to the
memory address in this case). Once the initialization of P finishes, the merge
sort process starts. In our design, the merge sort algorithm is implemented in
a pipelined way. The basic three operations in the merge-sort module are: read
values from two sublists, compare the two values, and write down the smaller one
to a new list. In our design, there are four pipeline stages: issue reads, fetch out-
puts from memory, compare the outputs, and write back to the other memory.
We built separate logic for these four stages and time-multiplex these four stages
by working on independent sublists in parallel whenever possible. By having the
four-stage pipelines, we achieve a high-performance merge-sort design with a
small logic overhead.

Table 1 shows a comparison between our new, constant time, sort-based
permutation module with the non-constant time Fisher-Yates shuffle approach
in [28]. Clearly, the constant-time permutation implementation requires more
time, area, and particularly memory. Therefore, a trade-off needs to be made
between the need for increased security due to the constant-time implementation
and resource utilization. In scenarios where timing side-channel protection is not
needed, the cheaper Fisher-Yates shuffle version might be sufficient.

3.2 Berlekamp-Massey Algorithm

Finding a codeword at distance t from a vector v is the key step in the decryp-
tion operation. We apply a decoding algorithm to solve this problem. Among
different algorithms, the Berlekamp-Massey (BM) algorithm [16] and Patterson’s
algorithm [20] are the algorithms most commonly used. Patterson’s algorithm
takes advantage of certain properties present in binary Goppa codes, and is able
to correct up to t errors for binary Goppa codes with a designated minimum
distance dmin ≥ 2t+ 1. On the other hand, general decoding algorithms like the
BM algorithm can only correct t

2 errors by default, which can be increased to t
errors using the trick proposed by Nicolas Sendrier [14]. However, the process of
BM algorithm is quite simple compared to Patterson’s algorithm. More impor-
tantly, it is easier to protect the implementation of BM algorithm against timing

 entry_sum
(Vector mult.)

Ϭ(x) = 1

β(x) = 1

l = 0

k = 0

δ-1

β'(x)

Ϭ'(x)

t, S(x)

GF(2m)
inv.

δ = 0

d

GF(2m)
mult.δ-1

dδ-1

Scalar
mult.β(x)

dδ-1β(x) Vector
add.

Ϭ(x)

Binary
shiftIf condition

(d = 0 or
k < 2l)

Add/Sub.

k' = k + 1

k

l

k

l'

k'

δ' = d or δ

δ-1

δ'

δ

Berlekamp-Massey Step

d

Fig. 1: Dataflow diagram of the Berlekamp-Massey module.

attacks given the simplicity of the decryption steps. Consequently, we use BM
algorithm in our decryption module.

Our implementation follows the Berlekamp iterative algorithm as described
in [16]. The algorithm begins with initializing polynomials σ(x) = 1 ∈ GF(2m)[x],
β(x) = x ∈ GF(2m)[x], integers l = 0 and δ = 1 ∈ GF(2m). The input syndrome

polynomial is denoted as S(x) =
∑2t−1

i=1 Six
i ∈ GF(2m)[x]. Then within each

iteration step k (0 ≤ k ≤ 2t−1), the variables {σ(x), β(x), l, δ} are conditionally
updated using operations described in Algorithm 6. Note that updating poly-
nomial β(x) only involves multiplying a polynomial by x, which can be easily
mapped to a binary shifting operation on its coefficients in hardware. Updat-
ing integer l and field element δ only involves subtraction/addition operations,
and these operations can also be easily implemented in hardware. Therefore the
bottleneck of the algorithm lies in computing d and updating σ(x).

Hardware Implementation. The first step within each iteration is to calcu-
late d (Alg. 6, line 3). We built an entry sum module (as shown in Figure 1) for
this computation, which maps to a vector-multiplication operation as described
in [28]. We use two registers σvec and βvec of m · (t+ 1) bits to store the coef-
ficients of polynomials σ(x) and β(x), where the constant terms σ0 and β0 are
stored in the lowest m bits of the registers, σ1 and β1 are stored in the second
lowest m bits, and so on. We also use a register Svec of m · (t+1) bits to store at
most (t+ 1) coefficients of S(x). This register is updated within each iteration,
where Sk is stored in the least significant m bits of the register, Sk−1 is stored
in the second least significant m bits, and so on. The computation of d can then
be regarded as an entry-wise vector multiplication between register σvec and

Algorithm 6: Berlekamp-Massey algorithm for decryption.

Input : Public security parameter t, syndrome polynomial S(x).
Output: Error locator polynomial σ(x).

1 Initialize: σ(x) = 1, β(x) = x, l = 0, δ = 1.
2 for k from 0 to 2t− 1 do

3 d =
∑t

i=0 σiSk−i

4 if d = 0 or k < 2l:
5 {σ(x), β(x), l, δ} =

{
σ(x)− dδ−1β(x), xβ(x), l, δ

}
.

6 else:
7 {σ(x), β(x), l, δ} =

{
σ(x)− dδ−1β(x), xσ(x), k − l + 1, d

}
.

8 Return the error locator polynomial σ(x).

register Svec = (0, 0, ..., S0, S1, ..., Sk−1, Sk) for all 0 ≤ k ≤ 2t− 1. Register σvec

is initialized as (0, 0, ..., 1) for the first iteration, and then gets updated with the
new coefficients of σ(x) for the next iteration. Svec is initialized as all zeroes,
and then constructed gradually by reading from a piece of memory which stores
coefficient Si of syndrome polynomial S(x) at address i for 0 ≤ i ≤ 2t−1. Within
the k-th iteration, a read request for address k of the memory is issued. Once
the corresponding coefficient Sk is read out, it is inserted to the lowest m bits of
Svec. After the computation of d, we start updating variables {σ(x), β(x), l, δ}.
To update σ(x), one field-element inversion, one field-element multiplication, one
scalar multiplication as well as one vector subtraction are needed. At first, field
element δ is inverted. As described in [28], the inversion of elements in GF(2m)
can be implemented by use of a pre-computed lookup table. Each entry of the
table can be read in one clock cycle. After reading out δ−1, a field-element multi-
plication between d and δ−1 is performed, which makes use of the GF(2m) mul-
tiplication module as described in [28]. Once we get dδ−1, a scalar multiplication
between field element dδ−1 and polynomial β(x) starts, which can be mapped
to an entry-wise vector multiplication between vector (dδ−1, dδ−1, ..., dδ−1) and
(βt, βt−1, ..., β1, β0). The last step for updating σ(x) is to subtract dδ−1β(x)
from σ(x). In a binary field GF(2m), subtraction and addition operations are
equivalent. Therefore, the subtraction between σ(x) and dδ−1β(x) can simply
be mapped to bit-wise xor operations between vector (σt, σt−1, ..., σ1, σ0) and
vector (dδ−1βt, dδ

−1βt−1, ..., dδ
−1β1, dδ

−1β0). Updating polynomial β(x) is done
by conditionally replacing its coefficient register βvec with δvec, and then shift
the resulting value leftwards by m bits. Updating integer l and field element δ
only involves simple and cheap hardware operations.

The above iterations are repeated for a fixed number of 2t times, where t is
the public security parameter. After 2t iterations, the final output is determined
as the error locator polynomial σ(x). It is easy to see that within each iteration,
the sequence of instructions is fixed, as long as we make sure that the conditional
updates of variables {σ(x), β(x), l, δ} are constant time (which is easy to achieve
due to its fixed computational mapping in hardware), the run time of the whole
design is fixed given the fixed iteration times. Therefore our BM implementation
is fully protected against existing timing side-channel attacks, e.g., [3,25].

mulBM mulBM step Cycles Logic Time×Area Mem. Reg. Fmax

10 10 7379 6285 4.64 · 107 7 13, 089 364 MHz
20 20 4523 7052 3.19 · 107 7 13, 031 353 MHz
30 30 3571 7889 2.82 · 107 7 12, 956 361 MHz
40 40 3095 9047 2.8 · 107 7 13, 079 356 MHz
60 60 2619 11, 400 2.99 · 107 7 13, 274 354 MHz

Table 2: Performance of the Berlekamp-Massey module for m = 13, t = 119, and
deg(S(x)) = 237.

We built a two-level design. The lower level is a BM step module, which maps
to one iteration, shown as “Berlekamp-Massey Step” in Figure 1. The higher-
level BM module then iteratively applies BM step and entry sum modules. Table 2
shows performance for the BM module. A time-area trade-off can be achieved by
adjusting the design parameters mulBM and mulBM step, which are the number
of multipliers used in the BM and BM step modules. mulBM and mulBM step can
be freely chosen as integers between 1 and t+ 1.

3.3 Optimizations for Additive FFT

Evaluating a polynomial at multiple data points over GF(2m) is an essential
step in both the key generation and the decryption processes. In key generation,
an evaluation of the Goppa polynomial g(x) is needed for computing the par-
ity check matrix H, while for decryption, it is required by the computation of
the double-size parity check matrix H(2) as well as the evaluation of the error
locator polynomial σ(x). Therefore, having an efficient polynomial-evaluation
module is very important for ensuring the performance of the overall design. We
use a characteristic-2 additive FFT algorithm introduced in 2010 by Gao and
Mateer [12], which was used for multipoint polynomial evaluation by Bernstein
et al. in 2013 [5]. Additive FFT consists of two parts. First, radix conversion and
twist is performed on the input polynomial. Given a polynomial g(x) of 2k coef-
ficients, the recursive twist-then-radix-conversion process returns 2k 1-coefficient
polynomials. Then, these 1-coefficient polynomials are used to iteratively evalu-
ate the input points by use of the reduction process.

We applied some modifications and improvements to both parts of the addi-
tive FFT design from [28]:

Optimizing Radix Conversion and Twisting. The radix-conversion step,
which includes both radix conversion and twist, consists of several rounds that
iteratively compute the new output coefficients of the converted input polyno-
mial. The number of rounds is the base-2 logarithm of the degree of the input
polynomial. In each round, new temporary coefficients are computed as the sum
of some of the previous coefficients followed by a twist operation, i.e., a multi-
plication of each coefficient with a pre-computed constant to obtain a new basis
for the respective round.

Design Coeffs. Mult. Cycles Logic Time×Area Reg. Mem. Fmax

Our 120 2 385 1893 7.3 · 105 3541 6 305 MHz

Our 120 4 205 2679 5.5 · 105 3622 10 273 MHz
[28] 128 4 211 5702 1.2 · 106 7752 0 407 MHz

Our 120 8 115 4302 4.9 · 105 3633 17 279 MHz
[28] 128 8 115 5916 6.8 · 105 7717 0 400 MHz

Table 3: Performance of our radix-conversion module compared to [28] for GF(213).

The radix-conversion module in [28] is using dedicated logic for each round
for summing up the required coefficients, computing all coefficients within one
cycle. Computing all coefficients with dedicated logic for each round requires a
significant amount of area although radix conversion only requires a very small
amount of cycles compared to the overall additive FFT process. Therefore, this
results in a relatively high time-area product and a poor usage of resources.

We improve the area-time product at the cost of additional cycles and ad-
ditional memory requirements by using the same logic block for different coef-
ficients and rounds. An additional code-generation parameter is used to specify
how many coefficients should be computed in parallel, which equals to the num-
ber of multipliers (1 ≤ Mult. ≤ t+ 1) used in twist when mapping to hardware
implementations. Each round then requires several cycles depending on the se-
lected parameter. The computation of the new coefficients requires to sum up
some of the previous coefficients. The logic therefore must be able to add up any
selection of coefficients depending on the target coefficient. We are using round-
and coefficient-dependent masks to define which coefficients to sum up in each
specific case. These masks are stored in additional RAM modules.

Furthermore, in the design of [28], the length of the input polynomial is
constrained to be a power of 2. For shorter polynomials, zero-coefficients need
to be added, which brings quite some logic overhead especially on some extreme
cases. For example, for a polynomial of 129 coefficients (t = 128), a size-256 radix
conversion module will be needed. Instead, our improved design eliminates this
constraint and allows an arbitrary input length with low overhead and therefore
is able to further reduce cycle count and area requirements.

Table 3 shows the performance improvements of the current radix-conversion
module compared to the design in [28]. The numbers for our new design are
given for a polynomial of length 120. The design in [28] requires the next larger
power of 2 as input length. Therefore, we give numbers for input length 128
for comparison. For a processing width of four coefficients (multipliers), our
new implementation gives a substantial improvement in regard to the time-area
product over the old implementation at the cost of a few memory blocks.

Parameterizing Reduction. In the previous design of the additive FFT in [28],
the configuration of the reduction module is fixed and uniquely determined by
the polynomial size and the binary field size. Before the actual computation
begins, the data memory is initialized with the 2k 1-coefficient polynomials from

Mult. Cycles Logic Time×Area Mem. Bits Mem. Reg. Fmax

32 968 4707 4.56 · 106 212, 160 63 10, 851 421 MHz
64 488 9814 4.79 · 106 212, 992 126 22, 128 395 MHz

Table 4: Performance of our parameterized size-128 reduction module for GF(213).

the output of the last radix-conversion round. The data memory D within the
reduction module is configured as follows: The depth of the memory equals
to 2k, based on this, the width of the memory is determined as m× 2m−k since
in total m×2m memory bits are needed to store the evaluation results for all the
elements in GF(2m). Each row of memory D is initialized with 2m−k identical 1-
coefficient polynomials. The other piece of memory within the reduction module
is the constants memory C. It has the same configuration as the data memory
and it stores all the elements for evaluation of different reduction rounds. Once
the initialization of data memory and constants memory is finished, the actual
computation starts, which consists of the same amount of rounds as needed in
the radix conversion process. Within each round, two rows of values (f0 and f1)
are read from the data memory and the corresponding evaluation points from
the constants memory, processed, and then the results are written back to the
data memory. Each round of the reduction takes 2k cycles to finish. In total, the
reduction process takes k × 2k cycles plus overhead for memory initialization.

In our current design, we made the reduction module parameterized by in-
troducing a flexible memory configuration. The width of memories D and C can
be adjusted to achieve a trade-off between logic and cycles. The algorithmic pat-
tern for reduction remains the same, while the computational pattern changes
due to the flexible data reorganization within the memories. Instead of fixing
the memory width as m × 2m−k, it can be configured as a wider memory of
width m × 2m−k+i, 0 ≤ i ≤ k. In this way, we can store multiple 1-coefficient
polynomials at one memory address. The organization of the constants mem-
ory needs to be adapted accordingly. Therefore, within each cycle, we can either
fetch, do computation on, or write back more data and therefore finish the whole
reduction process within much fewer cycles (k × 2k−i plus overhead of few ini-
tialization cycles). However, the speedup of the running time is achieved at the
price of increasing the logic overhead, e.g., each time the width of the memory
doubles, the number of multipliers needed for computation also doubles.

Table 4 shows the performance of our parameterized reduction module. We
can see that doubling the memory width halves the cycles needed for the reduc-
tion process, but at the same time approximately doubles the logic utilization.
We can see that although the memory bits needed for reduction remain similar
for different design configurations, the number of required memory blocks dou-
bles in order to achieve the increased memory width. Users can easily achieve a
trade-off between performance and logic by tuning the memory configurations
within the reduction module.

Table 5 shows performance of the current optimized additive FFT module.
By tuning the design parameters in the radix conversion and reduction parts,

Multipliers
Design Rad. Red. Cycles Logic Time×Area Mem. Reg. Fmax

Our 4 32 1173 7344 8.61 · 106 73 14, 092 274 MHz
[28] 4 32 1179 10, 430 1.23 · 107 63 18, 413 382 MHz

Our 8 64 603 13, 950 8.41 · 106 143 25, 603 279 MHz
[28] 8 32 1083 10, 710 1.16 · 107 63 18, 363 362 MHz

Table 5: Performance of our optimized additive-FFT module compared to [28] for
m = 13, deg(g(x)) = 119. Rad. and Red. are the number of multipliers used in radix
conversion and twist (reduction) separately.

we are able to achieve a 28% smaller time-area product compared to [28] when
Rad. = 4 and Red. = 64.

4 Key Generation, Encryption and Decryption

We designed the Niederreiter cryptosystem by using the main building blocks
shown in Figure 2. Note that we are using two simple 64-bit Xorshift PRNGs in
our design to enable deterministic testing. For real deployment, these PRNGs
must be replaced with a cryptographically secure random-number generator,
e.g., [8]. We require at most b random bits per clock cycle per PRNG.

4.1 Key Generation

The overall design of our key-generation module is identical to the design in [28].
The dataflow diagram is shown in Figure 2a. However, we improve the security
of private-key generation by substituting the Fisher-Yates Shuffle module with
a merge-sort module in order to generate a uniform and random permutation in
constant time (see Section 3.1). The generation of the public key is improved by
several optimizations applied to the additive FFT module (see Section 3.3).

Table 6 shows a comparison of the performance of the old implementation
in [28] with our new, improved implementation. Despite the higher cost for the
constant-time permutation module, overall, we achieve an improvement in regard
to area requirements and therefore to the time-area product at roughly the
same frequency on the price of a higher memory demand. However, the overall
memory increase is less than 10% which we believe is justified by the increased
side-channel resistance due to the use of a constant-time permutation.

4.2 Encryption

Figure 2b shows the interface of the encryption module. The encryption mod-
ule assumes that the public key K is fed in column by column. The matrix-
vector multiplication [Imt|K] × e is mapped to serial xor operations. Once
the PK column valid signal is high, indicating that a new public-key column

H

R R
Generator

PRNG

GF(2m)
Gaussian

Systemizer

g-portion

g(x)
Evaluation
(Additive FFT)

H
Generator

g_out

P
Generator

(Sort)

P

P_out

GF(2)
Gaussian

Systemizer

K_out

PRNG

Permutation Gen.

Goppa Polynomial Gen.

Public Key K Gen.

K-portion
C

D

P'

I

I

M

(a) Key generation, with optimizations over [28]

(b) Encryption

�

����
���	
���
�
��������������

�

�
�

�	��
�����
��

��������

�����

�������	����
���!�""��

���
�
#
$��
�

�� %������ &�$
������!�""���

' '
!

(c) Decryption

Fig. 2: Dataflow diagrams of the three parts of the full cryptosystem: (a) key generation,
(b) encryption, and (c) decryption. Dark gray boxes represent block memories, while
white boxes represent major logic modules.

(PK column) is available at the input port, the module checks if the correspond-
ing bit of plaintext e is 1 or 0. If the bit value is 1, then an xor operation between
the current output register (initialized as 0) and the new public-key column is
carried out. Otherwise, no operation is performed. After the xor operation be-
tween K and the last (n −mt) bits of e is finished, we carry out one more xor

operation between the output register and the first mt bits of e. Then the up-
dated value of the output register will be sent out as the cipheretxt c. Table 7
shows performance of the encryption module. The encryption module is able to
handle one column of the public key in each cycle and therefore requires a fixed
number of (n−mt) cycles independent of the secret input vector e.

4.3 Decryption

Within the decryption module, as described in Figure 2c, first the evaluation
of the Goppa polynomial g(x) is carried out by use of the optimized additive
FFT module, which was described in Section 3.3. In our implementation, instead
of first computing the double-size parity-check matrix H(2) and then comput-

Case NH NR Cycles Logic Time×Area Mem. Fmax Time

Prior work [28]
logic 40 1 11, 121, 220 29, 711 3.30 · 1011 756 240 MHz 46.43 ms
bal. 80 2 3, 062, 942 48, 354 1.48 · 1011 764 248 MHz 12.37 ms
time 160 4 896, 052 101, 508 9.10 · 1010 803 244 MHz 3.68 ms

Our work
logic 40 1 11, 121, 214 22, 716 2.53 · 1011 819 237 MHz 46.83 ms
bal. 80 2 3, 062, 936 39, 122 1.20 · 1011 827 230 MHz 13.34 ms
time. 160 4 966, 400 88, 715 8.57 · 1010 873 251 MHz 3.85 ms

Table 6: Performance of the key-generation module for parameters m = 13, t = 119,
and n = 6960. All the numbers in the table come from compilation reports of the
Altera tool chain for Stratix V FPGAs.

m t n Cycles Logic Time×Area Mem. Reg. Fmax

13 119 6960 5413 4276 2.31 · 107 0 6977 448 MHz

Table 7: Performance for the encryption module.

ing the double-size syndrome S(2), we combine these two steps together. The
computation of S(2) can be mapped to serial conditional xor operations of the
columns of H(2). Based on the observation that the last (n−mt) bits of vector
(c|0) are all zero, the last (n − mt) columns of H(2) do not need to be com-
puted. Furthermore, the ciphertext c should be a uniformly random bit string.
Therefore, for the first mt columns of H(2), roughly only half of the columns
need to be computed. Finally, we selectively choose which columns of H(2) we
need to compute based on the nonzero bits of the binary vector (c|0). In total,
approximately m× t2 field element multiplications are needed for computing the
double-size syndrome. The computation of the corresponding columns of H(2) is
performed in a similar column-block-wise method as described in [28]. The size
B (1 ≤ B ≤ mt

2) of the column block is a design parameter that users can pick
freely to achieve a trade-off between logic and cycles during computation. Af-
ter the double-syndrome S(2) is computed, it is fed into the Berlekamp-Massey
module described in Section 3.2 and the error-locator polynomial σ(x) is deter-
mined as the output. Next, the error-locator polynomial σ(x) is evaluated using
the additive FFT module (see Section 3.3) at all the data points over GF(2m).
Then, the message bits are determined by checking the data memory contents
within the additive FFT module that correspond to the secret key-element set
(α0, α1, . . . , αn−1). If the corresponding evaluation result for αi, i = 0, 1, ..., n− 1
equals to zero, then the i-th bit of the plaintext is determined as 1, otherwise
is determined as 0. After checking the evaluation results for all the elements in
the set (α0, α1, . . . , αn−1), the plaintext is determined. Table 8 shows the per-
formance of the decryption module with different design parameters. By tuning
design parameters mulBM step, mulBM, and B, a time-area trade-off can be made.

Case B mulBM Cycles Logic Time×Area Mem. Reg. Fmax Time

area 10 10 34, 492 19, 377 6.68 · 108 88 47, 749 289 MHz 0.12 ms
bal. 20 20 22, 768 20, 815 4.74 · 108 88 48, 050 290 MHz 0.08 ms
time 40 40 17, 055 23, 901 4.08 · 108 88 49, 407 300 MHz 0.06 ms

Table 8: Performance for the decryption module for m = 13, t = 119 and n = 6960,
mulBM step is set to mulBM.

5 Testing, Evaluation, and Comparison

Our implementation of the Niederreiter cryptosystem is fully parameterized and
can be synthesized for any choice of reasonable security parameters. However, the
main target of our implementation is the 256-bit (classical) security level, which
corresponds to a level at least “128-bit post-quantum security”. For testing,
we used the parameters suggested in the PQCRYPTO recommendations [2]:
m = 13, t = 119, n = 6960 and k = 5413 (k = n−mt).
Testing. To validate the FPGA implementation, in addition to simulations, we
implemented a serial IO interface for communication between the host computer
and the FPGA. The interface allows us to send data and simple commands from
the host to the FPGA and receive data, e.g., public and private key, ciphertext,
and plaintext, from the FPGA. We verified the correct operation of our design
by comparing the FPGA outputs with our Sage reference implementation (using
the same PRNG and random seeds).

Evaluation. We synthesized our design using Altera Quartus 17.0 for these
parameters on a Stratix V FPGA (5SGXEA7N). The results are given in Table 9,
with included logic overhead of the IO interface. We provide numbers for three
performance parameter sets, one for small area, one for small runtime, and one
for balanced time and area. The parameters NR and NH control the size of the
systolic array in the Gaussian systemizer modules, which are used for computing
the private Goppa polynomial and the public key. Parameter B is the matrix-
block size used for computing the syndrome. Parameter mulBM determines the
number of multipliers used in the high-level BM decoding module. The number
of multipliers (mulBM step) used in the low-level BM step module is set to mulBM

for the evaluation. The memory requirement varies slightly due the differences in
the memory word size based on the design parameters. These design parameters
can be freely chosen as long as the synthesized result fits on the target FPGA.
For security parameter set m = 13, t = 119, n = 6960, our experiment shows
that the largest design parameter set we can fit on Stratix V FPGA is: NR =
250, NH = 6, mulBM = 60, mulBM step = 60, and B = 60.

Comparison. In the following, we compare our work with previous designs.
First, we compare it with a 103-bit classical security-level hardware-design

described in [26]. This work is the only previously existing hardware implemen-
tation for the whole code-based cryptosystem, including a key generator, that we
have found in literature. To compare with their work, we synthesized our design

Case NH NR B mulBM Logic Mem. Reg. Fmax

area 40 1 10 10 53, 447 (23%) 907 (35%) 118, 243 245 MHz
bal. 80 2 20 20 70, 478 (30%) 915 (36%) 146, 648 251 MHz
time 160 4 40 40 121, 806 (52%) 961 (38%) 223, 232 248 MHz

Table 9: Performance for the entire Niederreiter cryptosystem (i.e., key generation,
encryption, and decryption) including the serial IO interface when synthesized for the
Stratix V (5SGXEA7N) FPGA; mulBM step is set to mulBM.

Cycles Logic Freq. Mem. Time (ms)
Gen. Dec. Enc. (MHz) Gen. Dec. Enc.

m = 11, t = 50, n = 2048, Virtex 5 LX110
[26] 14, 670, 000 210, 300 81, 500 14, 537 163 75 90.00 1.29 0.50
Oura 1, 503, 927 5864 1498 6660 180 68 8.35 0.03 0.01

m = 12, t = 66, n = 3307, Virtex 6 LX240
[17] — 28, 887 — 3307 162 15 — 0.18 —

Ourb — 10, 228 — 6571 267 23 — 0.04 —
Ourc 4, 929, 400 10, 228 2515 17, 331 160 142 30.00 0.06 0.02

m = 13, t = 128, n = 8192, Haswell vs. StratixV
[9] 1, 236, 054, 840 343, 344 289, 152 — 4000 — 309.01 0.09 0.07

Ourd 1, 173, 750 17, 140 6528 129, 059 231 1126 5.08 0.07 0.07

Table 10: Comparison with related work. Logic is given in “Slices” for Xilinx Virtex
FPGAs and in “ALMs” for Altera Stratix FPGAs.

a (NH, NR, B, mulBM, mulBM step) = (20, 2, 20, 20, 20), entire Niederreiter cryptosystem.
b (B, mulBM, mulBM step) = (20, 20, 20), decryption module.
c (NH, NR, B, mulBM, mulBM step) = (20, 2, 20, 20, 20), entire Niederreiter cryptosystem.
d (NH, NR, B, mulBM, mulBM step) = (160, 4, 80, 65, 65), entire Niederreiter cryptosystem.

with the Xilinx tool-chain version 14.7 for a Virtex-5 XC5VLX110 FPGA. Note
that the performance data of [26] in Table 10 includes a CCA2 conversion for
encryption and decryption, which adds some overhead compared to our design.
From Table 10, we can see that our design is much faster when comparing cycles
and time, and also much cheaper in regard to area and memory consumption.

Second, we compare our work with a hardware design from [17], which
presents the previously fastest decryption module for a McEliece cryptosys-
tem. Therefore the comparison of our work with design [17] focuses on the
decryption part. We synthesized our decryption module with the parameters
they used, which correspond to a 128-bit classical security level, for a Virtex-6
XC6VLX240T FPGA. From Table 10, we can see that the time-area product
of our decryption module is 10228 · 6571 = 67, 208, 188, which is 30% smaller
than the time-area product of their design of 28887 · 3307 = 95, 529, 309 when
comparing only the decryption module. Moreover, our design is able to achieve
a much higher frequency and a smaller cycle counts compared to their design.
Overall we are more than 4x faster than [17]. Apart from this, we also provide
the performance of the entire Niederreiter cryptosystem corresponding to secu-

rity parameter set m = 12, t = 66, n = 3307 when synthesized for a Virtex 6
XC6VLX240T FPGA.

Finally, we also compare the performance of our hardware design with the
to-date fastest CPU implementation of the Niederreiter cryptosystem [9]. In this
case, we ran our implementation on our Altera Stratix V FPGA and compare
it to a Haswell CPU running at 4 GHz. Our implementation competes very well
with the CPU implementation, despite the over 10x slower clock of the FPGA.

6 Conclusion

This paper presented a complete hardware implementation of Niederreiters’s
code-based cryptosystem based on binary Goppa codes, including key genera-
tion, encryption and decryption. The presented design can be configured with
tunable parameters, and uses code-generation to generate vendor-neutral Ver-
ilog HDL code for any set of reasonable parameters. This work presented hard-
ware implementations of an optimization of the Gao-Mateer additive FFT for
polynomial evaluation, of merge sort used for obtaining uniformly distributed
permutations, and of a constant-time Berlekamp-Massey algorithm.

Open-Source Code. The source code for this project is available under an
open-source license at http://caslab.csl.yale.edu/code/niederreiter/.

Acknowledgments. This work was supported in part by United States’ Na-
tional Science Foundation grant 1716541. We would like to acknowledge FPGA
hardware donations form Altera (now part of Intel). We also want to thank
Tung (Tony) Chou for his invaluable help. This paper has been greatly im-
proved thanks to feedback from our shepherds Lajla Batina and Pedro Maat
Costa Massolino and the anonymous reviewers.

References

1. Alkadri, N.A., Buchmann, J., Bansarkhani, R.E., Krämer, J.: A framework to se-
lect parameters for lattice-based cryptography. Cryptology ePrint Archive, Report
2017/615 (2017), https://eprint.iacr.org/2017/615

2. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck,
W., Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A., Lange, T., Mo-
hamed, M.S.E., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F.,
Yang, B.Y.: Initial recommendations of long-term secure post-quantum systems.
Tech. rep., PQCRYPTO ICT-645622 (2015), https://pqcrypto.eu.org/docs/

initial-recommendations.pdf.
3. Avanzi, R., Hoerder, S., Page, D., Tunstall, M.: Side-channel attacks on the

McEliece and Niederreiter public-key cryptosystems. JCEN 1(4), 271–281 (2011)
4. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.

Springer, Heidelberg (2009)
5. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based

cryptography. In: Bertoni, G., Coron, J.S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
250–272. Springer, Heidelberg (2013)

http://caslab.csl.yale.edu/code/niederreiter/
https://eprint.iacr.org/2017/615
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf

6. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

7. Chen, L., Moody, D., Liu, Y.K.: NIST post-quantum cryptography standard-
ization, https://csrc.nist.gov/projects/post-quantum-cryptography/post-

quantum-cryptography-standardization/.
8. Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random

number generator with entropy assessment. In: Bertoni, G., Coron, J.S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 179–196. Springer, Heidelberg (2013)

9. Chou, T.: McBits revisited. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 213–231. Springer, Heidelberg (2017)

10. DasGupta, A.: The matching, birthday and the strong birthday problem: a con-
temporary review. J. Stat. Plan. Inference 130(1), 377–389 (2005)

11. Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical
research. Oliver and Boyd (1948)

12. Gao, S., Mateer, T.: Additive fast Fourier transforms over finite fields. IEEE Trans-
actions on Information Theory 56(12), 6265–6272 (2010)

13. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016)

14. Heyse, S., Güneysu, T.: Code-based cryptography on reconfigurable hardware:
tweaking Niederreiter encryption for performance. JCEN 3(1), 29–43 (2013)

15. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Niederre-
iter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1),
271–273 (1994)

16. Massey, J.: Shift-register synthesis and BCH decoding. IEEE transactions on In-
formation Theory 15(1), 122–127 (1969)

17. Massolino, P.M.C., Barreto, P.S.L.M., Ruggiero, W.V.: Optimized and scalable co-
processor for McEliece with binary Goppa codes. ACM Transactions on Embedded
Computing Systems 14(3), 45 (2015)

18. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report 42–44, 114—116 (1978)

19. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15, 19–34 (1986)

20. Patterson, N.: The algebraic decoding of Goppa codes. IEEE Transactions on In-
formation Theory 21(2), 203–207 (1975)

21. Post-quantum cryptography for long-term security, PQCRYPTO, ICT-645622,
https://pqcrypto.eu.org/.

22. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

23. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Foundations of Computer Science – FOCS ’94. pp. 124–134. IEEE (1994)

24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

25. Shoufan, A., Strenzke, F., Molter, H.G., Stöttinger, M.: A timing attack against
Patterson Algorithm in the McEliece PKC. In: ICISC. vol. 5984, pp. 161–175.
Springer, Heidelberg (2009)

26. Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A novel processor ar-
chitecture for McEliece cryptosystem and FPGA platforms. IEEE Transactions on
Computers 59(11), 1533–1546 (2010)

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
https://pqcrypto.eu.org/

27. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)

28. Wang, W., Szefer, J., Niederhagen, R.: FPGA-based key generator for the Nieder-
reiter cryptosystem using binary Goppa codes. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 253–274. Springer, Heidelberg (2017)

	FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes

