
FPGA-based Key Generator for the Niederreiter
Cryptosystem using Binary Goppa Codes

Wen Wang1, Jakub Szefer1, and Ruben Niederhagen2

1 Yale University, New Haven, CT, USA
{wen.wang.ww349, jakub.szefer}@yale.edu

2 Fraunhofer Institute SIT, Darmstadt, Germany
ruben@polycephaly.org

Abstract. This paper presents a post-quantum secure, efficient, and
tunable FPGA implementation of the key-generation algorithm for the
Niederreiter cryptosystem using binary Goppa codes. Our key-generator
implementation requires as few as 896,052 cycles to produce both public
and private portions of a key, and can achieve an estimated frequency
Fmax of over 240 MHz when synthesized for Stratix V FPGAs. To the
best of our knowledge, this work is the first hardware-based implementa-
tion that works with parameters equivalent to, or exceeding, the recom-
mended 128-bit “post-quantum security” level. The key generator can
produce a key pair for parameters m = 13, t = 119, and n = 6960 in
only 3.7 ms when no systemization failure occurs, and in 3.5 · 3.7 ms
on average. To achieve such performance, we implemented an optimized
and parameterized Gaussian systemizer for matrix systemization, which
works for any large-sized matrix over any binary field GF(2m). Our work
also presents an FPGA-based implementation of the Gao-Mateer addi-
tive FFT, which only takes about 1000 clock cycles to finish the evalua-
tion of a degree-119 polynomial at 213 data points. The Verilog HDL code
of our key generator is parameterized and partly code-generated using
Python and Sage. It can be synthesized for different parameters, not just
the ones shown in this paper. We tested the design using a Sage reference
implementation, iVerilog simulation, and on real FPGA hardware.

Keywords: post-quantum cryptography, code-based cryptography, Nie-
derreiter key generation, FPGA, hardware implementation.

1 Introduction

Once sufficiently large and efficient quantum computers can be built, they will
be able to break many cryptosystems used today: Shor’s algorithm [22,23] can
solve the integer-factorization problem and the discrete-logarithm problem in
polynomial time, which fully breaks cryptosystems built upon the hardness of

c©IACR 2017. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on June 26, 2017. The version published by Springer-Verlag
is available at https://doi.org/10.1007/978-3-319-66787-4_13.
Permanent ID of this document: 503b6c5d84a7a196a4fd4ce7034b06ba.
Date: 2017.07.22.

https://doi.org/10.1007/978-3-319-66787-4_13

these problems, e.g., RSA, ECC, and Diffie-Hellman. In addition, Grover’s algo-
rithm [10] gives a square-root speedup on search problems and improves brute-
force attacks that check every possible key, which threatens, e.g, symmetric key
ciphers like AES. However, a “simple” doubling of the key size can be used
as mitigation for attacks using Grover’s algorithm. In order to provide alterna-
tives for the cryptographic systems that are threatened by Shor’s algorithm, the
cryptographic community is investigating cryptosystems that are secure against
attacks by quantum computers using both Shor’s and Grover’s algorithm in a
field called Post-Quantum Cryptography (PQC).

Currently, there are five popular classes of PQC algorithms: hash-based, code-
based, lattice-based, multivariate, and isogeny-based cryptography [3,21]. Most
code-based public-key encryption schemes are based on the McEliece cryptosys-
tem [16] or its more efficient dual variant developed by Niederreiter [18]. This
work focuses on the Niederreiter variant of the cryptosystem using binary Goppa
codes. There is some work based on QC-MDPC codes, which have smaller key
sizes compared to binary Goppa codes [12]. However, QC-MDPC codes can have
decoding errors, which may be exploited by an attacker [11]. Therefore, binary
Goppa codes are still considered the more mature and secure choice despite their
disadvantage in the key size. Until now, the best known attacks on the McEliece
and Niederreiter cryptosystems using binary Goppa codes are generic decoding
attacks which can be warded off by a proper choice of parameters [5].

However, there is a tension between the algorithm’s parameters (i.e., the se-
curity level) and the practical aspects, e.g., the size of keys and computation
speed, resulting from the chosen parameters. The PQCRYPTO project [20] rec-
ommends to use a McEliece cryptosystem with binary Goppa codes with binary
field of size m = 13, adding t = 119 errors, code length n = 6960, and code
rank k = 5413 in order to achieve 128-bit post-quantum security for public-key
encryption when accounting for the worst-case impact of Grover’s algorithm [1].
The classical security level for these parameters is about 266-bit [5]. This rec-
ommended parameter set results in a private key of about 13 kB, and a public
key of about 1022 kB. These parameters provide maximum security for a public
key of at most 1 MB [5]. Our tunable design is able to achieve these parameters,
and many others, depending on the user’s needs.

The Niederreiter cryptosystem consists of three operations: key generation,
encryption, and decryption. In this paper, we are focusing on the implementation
of the most expensive operation in the Niederreiter cryptosystem: the key gener-
ation. The industry PKCS #11 standard defines a platform-independent API for
cryptographic tokens, e.g., hardware security modules (HSM) or smart cards, and
explicitly contains functions for public-private key-pair generation [19]. Further-
more, hardware crypto accelerators, e.g., for IBM’s z Systems, have dedicated
key-generation functions. These examples show that efficient hardware imple-
mentations for key generation will also be required for post-quantum schemes.
We selected FPGAs as our target platform since they are ideal for hardware
development and testing; most parts of the hardware code can also be re-used
for developing an ASIC design.

2

Due to the confidence in the Niederreiter cryptosystem, there are many
publications on hardware implementations related to this cryptosystem, e.g.,
[13,15,24]. We are only aware of one publication [24] that presents a hardware
implementation of the key-generation algorithm. The key-generation hardware
design in [24], however, uses fixed, non-tunable security and design parameters,
which do not meet the currently recommended post-quantum security level, and
has a potential security flaw by using a non-uniform permutation, which may
lead to practical attacks.

Contributions. This paper presents the first post-quantum secure, efficient,
and tunable FPGA-based implementation of the key-generation algorithm for
the Niederreiter cryptosystem using binary Goppa codes. The contributions are:

– a key generator with tunable parameters, which uses code-generation to gen-
erate vendor-neutral Verilog HDL code,

– a constructive, constant-time approach for generating an irreducible Goppa
polynomial,

– an improved hardware implementation of Gaussian systemizer which works
for any large-sized matrix over any binary field,

– a new hardware implementation of Gao-Mateer additive FFT for polynomial
evaluation,

– a new hardware implementation of Fisher-Yates shuffle for obtaining uniform
permutations, and

– design testing using Sage reference code, iVerilog simulation, and output
from real FPGA runs.

Source code. The source code is available as Open Source at http://caslab.
csl.yale.edu/code/keygen.

2 Niederreiter Cryptosystem and Key Generation

The first code-based public-key encryption system was given by McEliece in
1978 [16]. The private key of the McEliece cryptosystem is a randomly chosen
irreducible binary Goppa code G with a generator matrix G that corrects up to
t errors. The public key is a randomly permuted generator matrix Gpub = SGP
that is computed from G and the secrets P (a permutation matrix) and S (an
invertible matrix). For encryption, the sender encodes the message m as a code-
word and adds a secret error vector e of weight t to get ciphertext c = mGpub⊕e.
The receiver computes cP−1 = mSG⊕ eP−1 using the secret P and decodes m
using the decoding algorithm of G and the secret S. Without knowledge of the
code G, which is hidden by the secrets S and P , it is computationally hard to
decrypt the ciphertext. The McEliece cryptosystem with correct parameters is
believed to be secure against quantum-computer attacks.

In 1986, Niederreiter introduced a dual variant of the McEliece cryptosys-
tem by using a parity check matrix H for encryption instead of a generator
matrix [18]. For the Niederreiter cryptosystem, the message m is encoded as a

3

http://caslab.csl.yale.edu/code/keygen
http://caslab.csl.yale.edu/code/keygen

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.
Output: Private key (g(x), (α0, α1, . . . , αn−1)) and public key K.

1 Choose a random sequence (α0, α1, . . . , αn−1) of n distinct elements in GF(2m).
2 Choose a random polynomial g(x) such that g(α) 6= 0 for all α ∈ (α0, . . . , αn−1).
3 Compute the t× n parity check matrix

H =


1/g(α0) 1/g(α1) · · · 1/g(αn−1)
α0/g(α0) α1/g(α1) · · · αn−1/g(αn−1)

...
...

. . .
...

αt−1
0 /g(α0) αt−1

1 /g(α1) · · · αt−1
n−1/g(αn−1)

 .

4 Transform H to a mt× n binary parity check matrix H ′ by replacing each entry
with a column of m bits.

5 Transform H ′ into its systematic form [Imt|K].
6 Return the private key (g(x), (α0, α1, . . . , αn−1)) and the public key K.

weight-t error vector e of length n; alternatively, the Niederreiter cryptosystem
can be used as a key-encapsulation scheme where a random error vector is used
to derive a symmetric encryption key. For encryption, e is multiplied with H and
the resulting syndrome is sent to the receiver. The receiver decodes the received
syndrome, and obtains e. Originally, Niederreiter used Reed-Solomon codes for
which the system has been broken [25]. However, the scheme is believed to be
secure when using binary Goppa codes. Niederreiter introduced a trick to com-
press H by computing the systemized form of the public key matrix. This trick
can be applied to some variants of the McEliece cryptosystem as well.

We focus on the Niederreiter cryptosystem due to its compact key size and
the efficiency of syndrome decoding algorithms. As the most expensive opera-
tion in the Niederreiter cryptosystem is key generation, it is often omitted from
Niederreiter implementations on FPGAs due to its large memory demand. There-
fore, our paper presents a new contribution by implementing the key-generation
algorithm efficiently on FPGAs.

2.1 Key Generation Algorithm

Algorithm 1 shows the key-generation algorithm for the Niederreiter cryptosys-
tem. The system parameters are: m, the size of the binary field, t, the num-
ber of correctable errors, and n, the code length. Code rank k is determined
as k = n − mt. We implemented Step 2 of the key-generation algorithm by
computing an irreducible Goppa polynomial g(x) of degree t as the minimal
polynomial of a random element r from a polynomial ring over GF(2m) using
a power sequence 1, r, . . . , rt and Gaussian systemization in GF(2m) (see Sec-
tion 5). Step 3 requires the evaluation of g(x) at points {α0, α1, . . . , αn−1}. To
achieve high efficiency, we decided to follow the approach of [4] which evaluates
g(x) at all elements of GF(2m) using a highly efficient additive FFT algorithm

4

Param. Description Size (bits) Config. Description Size (bits)
m Size of the binary field 13 g(x) Goppa polynomial 120× 13
t Correctable errors 119 P Permutation indices 8192× 13
n Code length 6960 H Parity check matrix 1547× 6960
k Code rank 5413 K Public key 1547× 5413

Table 1: Parameters and resulting configuration for the key generator.

(see Section 4.2). Therefore, we evaluate g(x) at all α ∈ GF(2m) and then
choose the required αi using Fisher-Yates shuffle by computing a random se-
quence (α0, α1, . . . , αn−1) from a permuted list of indices P . For Step 5, we use
the efficient Gaussian systemization module for matrices over GF(2) from [26].

2.2 Structure of the Paper

The following sections introduce the building blocks for our key-generator mod-
ule in a bottom-up fashion. First, we introduce the basic modules for arithmetic
in GF(2m) and for polynomials over GF(2m) in Section 3. Then we introduce
the modules for Gaussian systemization, additive FFT, and Fisher-Yates shuffle
in Section 4. Finally, we describe how these modules work together to obtain an
efficient design for key generation in Section 5. Validation of the design using
Sage, iVerilog, and Stratix V FPGAs is presented in Section 6 and a discussion
of the performance is in Section 7.

2.3 Reference Parameters and Reference Platform

We are using the recommended parameters from the PQCRYPTO project [20]
shown in Table 1 as reference parameters; however, our design is fully parame-
terized and can be synthesized for any other valid parameter selection.

Throughout the paper (except for Table 9), performance results are reported
from Quartus-synthesis results for the Altera Stratix V FPGA (5SGXEA7N),
including Fmax (maximum estimated frequency) in MHz, Logic (logic usage) in
Adaptive Logic Modules (ALMs), Mem. (memory usage) in Block RAMs, and
Reg. (registers). Cycles are derived from iVerilog simulation. Time is calculated
as quotient of Cycles and Fmax. Time×Area is calculated as product of Cycles
and Logic.

3 Field Arithmetic

The lowest-level building blocks in our implementation are GF(2m) finite field
arithmetic and on the next higher level GF(2m)[x]/f polynomial arithmetic.

3.1 GF(2m) Finite Field Arithmetic

GF(2m) represents the basic finite field in the Niederreiter cryptosystem. Our
code for all the hardware implementations of GF(2m) operations is generated by

5

Algorithm Logic Reg. Fmax (MHz)

Schoolbook Algorithm 90 78 637
2-split Karatsuba Algorithm 99 78 625
3-split Karatsuba Algorithm 101 78 529
Bernstein 87 78 621

Table 2: Performance of different field multiplication algorithms for GF(213).

code-generation scripts, which take in m as a parameter and then automatically
generate the corresponding Verilog HDL code.

GF(2m) Addition. In GF(2m), addition corresponds to a simple bitwise xor
operation of two m-bit vectors. Therefore, each addition has negligible cost and
can often be combined with other logic while still finishing within one clock cycle,
e.g., a series of additions or addition followed by multiplication or squaring.

GF(2m) Multiplication. Multiplication over GF(2m) is one of the most used
operations in the Niederreiter cryptosystem. A field multiplication in GF(2m) is
composed of a multiplication in GF(2)[x] and a reduction modulo f , where f is a
degree-m irreducible polynomial. For the case of m = 13, we use the pentanomial
f(x) = x13 + x4 + x3 + x+ 1 since there is no irreducible trinomial of degree 13.
We are using plain schoolbook multiplication, which turns out to deliver good
performance. Table 2 shows that the schoolbook version of GF(213) multiplica-
tion achieves a higher Fmax while requiring less logic compared to several of our
implementations using Karatsuba multiplication [14,17]. The performance of the
schoolbook version is similar to Bernstein’s operation-count optimized code [2].
We combine multiplication in GF(2)[x] and reduction modulo f such that one
GF(2m) multiplication only takes one clock cycle.

GF(2m) Squaring. Squaring over GF(2m) can be implemented using less logic
than multiplication and therefore an optimized squaring module is valuable for
many applications. However, in the case of the key-generation algorithm, we
do not require a dedicated squaring module since an idle multiplication mod-
ule is available in all cases when we require squaring. Squaring using GF(2m)
multiplication takes one clock cycle.

GF(2m) Inversion. Inside the GF(2m) Gaussian systemizer, elements over
GF(2m) need to be inverted. An element a ∈ GF(2m) can be inverted by com-
puting a−1 = a|GF(2m)|−2. This can be done with a logarithmic amount of squar-
ings and multiplications. For example, inversion in GF(213) can be implemented
using twelve squarings and four multiplications. However, this approach requires
at least one multiplication circuit (repeatedly used for multiplications and squar-
ings) plus some logic overhead and has a latency of at least several cycles in order
to achieve high frequency. Therefore, we decided to use a pre-computed lookup
table for the implementation of the inversion module. For inverting an element
α ∈ GF(2m), we interpret the bit-representation of α as an integer value and
use this value as the address into the lookup table. For convenience, we added
an additional bit to each value in the lookup table that is set high in case the

6

input element α can not be inverted, i.e., α = 0. This saves additional logic that
otherwise would be required to check the input value. Thus, the lookup table
has a width of m+ 1 and a depth of 2m, and each entry can be read in one clock
cycle. The lookup table is read-only and therefore can be stored in either RAM
or logic resources.

3.2 GF(2m)[x]/f Polynomial Arithmetic

Polynomial arithmetic is required for the generation of the secret Goppa poly-
nomial. GF(2m)[x]/f is an extension field of GF(2m). Elements in this extension
field are represented by polynomials with coefficients in GF(2m) modulo an irre-
ducible polynomial f . We are using a sparse polynomial for f , e.g., the trinomial
x119 + x8 + 1, in order to reduce the cost of polynomial reduction.

Polynomial Addition. The addition of two degree-d polynomials with d+1 co-
efficients is equivalent to pair-wise addition of the coefficients in GF(2m). There-
fore, polynomial addition can be mapped to an xor operation on two m(d+ 1)-bit
vectors and finishes in one clock cycle.

Polynomial Multiplication. Due to the relatively high cost of GF(2m) multi-
plication compared to GF(2m) addition, for polynomials over GF(2m) Karatsuba
multiplication [14] is more efficient than classical schoolbook multiplication in
terms of logic cost when the size of the polynomial is sufficiently large.

Given two polynomials A(x) =
∑5

i=0 aix
i and B(x) =

∑5
i=0 bix

i, schoolbook
polynomial multiplication can be implemented in hardware as follows: Calculate
(a5b0, a4b0, . . . , a0b0) and store the result in a register. Then similarly calculate
(a5bi, a4bi, . . . , a0bi), shift the result left by i ·m bits, and then add the shifted
result to the register contents, repeat for all i = 1, 2, . . . , 5. Finally the result
stored in the register is the multiplication result (before polynomial reduction).
One can see that within this process, 6 × 6 GF(2m) multiplications are needed.

Karatsuba polynomial multiplication requires less finite-field multiplications
compared to schoolbook multiplication. For the above example, Montgomery’s
six-split Karatsuba multiplication [17] requires only 17 field element multipli-
cations over GF(2m) at the cost of additional finite field additions which are
cheap for binary field arithmetic. For large polynomial multiplications, usually
several levels of Karatsuba are applied recursively and eventually on some low
level schoolbook multiplication is used. The goal is to achieve a trade-off between
running time and logic overhead.

The multiplication of two polynomials of degree d = t − 1 is a key step in
the key-generation process for computing the Goppa polynomial g(x). Table 3
shows the results of several versions of polynomial multiplication for t = 119,
i.e., d = 118, using parameterized six-split Karatsuba by adding zero-terms in
order to obtain polynomials with 120 and 24 coefficients respectively. On the
lowest level, we use parameterized schoolbook multiplication. The most efficient
approach for the implementation of degree-118 polynomial multiplication turned
out to be one level of six-split Karatsuba followed by schoolbook multiplication,
parallelized using twenty GF(213) multipliers. Attempts using one more level of

7

Algorithm Mult. Cycles Logic Time×Area Fmax (MHz)

1-level Karatsuba 17×(20×20) 20 377 11, 860 4.47 · 106 342
2-level Karatsuba 17×17×(4×4) 16 632 12, 706 8.03 · 106 151
2-level Karatsuba 17×17×(4×4) 4 1788 11, 584 2.07 · 107 254

Table 3: Performance of different multiplication algorithms for degree-118 polynomials.

six-split Karatsuba did not notably improve area consumption (or even worsened
it) and resulted in both more cycles and lower frequency. Other configurations,
e.g., five-split Karatsuba on the second level or seven-split Karatsuba on the
first level, might improve performance, but our experiments do not indicate that
performance can be improved significantly.

In the final design, we implemented a one-level six-split Karatsuba multipli-
cation approach, which uses a size-

⌈
d+1
6

⌉
schoolbook polynomial multiplication

module as its building block. It only requires 377 cycles to perform one multi-
plication of two degree-118 polynomials.

4 Key Generator Modules

The arithmetic modules are used as building blocks for the units inside the key
generator, shown later in Figure 2. The main components are: two Gaussian
systemizers for matrix systemization over GF(2m) and GF(2) respectively, Gao-
Mateer additive FFT for polynomial evaluation, and Fisher-Yates shuffle for
generating uniformly distributed permutations.

4.1 Gaussian Systemizer

Matrix systemization is needed for generating both the private Goppa polyno-
mial g(x) and the public key K. Therefore, we require one module for Gaussian
systemization of matrices over GF(213) and one module for matrices over GF(2).
We use a modified version of the highly efficient Gaussian systemizer from [26]
and adapted it to meet the specific needs for Niederreiter key generation. As
in [26], we are using an N × N square processor array to compute on column
blocks of the matrix. The size of this processor array is parameterized and can
be chosen to either optimize for performance or for resource usage.

The design from [26] only supports systemization of matrices over GF(2). An
important modification that we applied to the design is the support of arbitrary
binary fields — we added a binary-field inverter to the diagonal “pivoting” el-
ements of the processor array and binary-field multipliers to all the processors.
This results in a larger resource requirement compared to the GF(2) version but
the longest path still remains within the memory module and not within the
computational logic for computations on large matrices.

8

4.2 Gao-Mateer Additive FFT

Evaluating a polynomial g(x) =
∑t

i=0 gix
i at n data points over GF(2m) is an

essential step for generating the parity check matrix H. Applying Horner’s rule
is a common approach for polynomial evaluation. For example, a polynomial
f(x) =

∑7
i=0 fix

i of degree 7 can be evaluated at a point α ∈ GF(2m) using
Horner’s rule as

f(α) = f7α
7 + f6α

6 + · · ·+ f1α+ f0

= (((f7α+ f6)α+ f5)α+ f4) . . .)α+ f0

using 7 field additions and 7 field multiplications by α. More generically speaking,
one evaluation of a polynomial of degree d requires d additions and d multipli-
cations. Evaluating several points scales linearly and is easy to parallelize. The
asymptotic time complexity of polynomial evaluation of a degree-d polynomial
at n points using Horner’s rule is O(n · d).

In order to reduce this cost, we use a characteristic-2 additive FFT algorithm
introduced in 2010 by Gao and Mateer [9], which was used for multipoint poly-
nomial evaluation by Chou in 2013 [4]. This algorithm evaluates a polynomial
at all elements in the field GF(2m) using a number of operations logarithmic
in the length of the polynomial. Most of these operations are additions, which
makes this algorithm particularly suitable for hardware implementations. The
asymptotic time complexity of additive FFT is O

(
2m · log2 (d)

)
.

The basic idea of this algorithm is to write f in the form f(x) = f (0)(x2 +
x) + xf (1)(x2 + x), where f (0)(x) and f (1)(x) are two half-degree polynomials,
using radix conversion. The form of f shows a large overlap between evaluating
f(α) and f(α+ 1). Since (α+ 1)2 + (α+ 1) = α2 + α for α ∈ GF(2m), we have:

f(α) = f (0)(α2 + α) + αf (1)(α2 + α)

f(α+ 1) = f (0)(α2 + α) + (α+ 1)f (1)(α2 + α).

Once f (0) and f (1) are evaluated at α2 +α, it is easy to get f(α) by performing
one field multiplication and one field addition. Now, f(α + 1) can be easily
computed using one extra field addition as f(α + 1) = f(α) + f (1)(α2 + α).
Additive FFT applies this idea recursively until the resulting polynomials f (0)

and f (1) are 1-coefficient polynomials (or in another word, constants). During the
recursive operations, in order to use the α and α+ 1 trick, a twisting operation
is needed for all the subspaces, which is determined by the new basis of f (0) and
f (1). Finally, the 1-coefficient polynomials of the last recursion step are used to
recursively evaluate the polynomial at all the 2m data points over GF(2m) in a
concluding reduction operation.

Radix Conversion. Radix conversion converts a polynomial f(x) of coefficients
in GF(2m) into the form of f(x) = f (0)(x2 + x) + xf (1)(x2 + x). As a basic
example, consider a polynomial f(x) = f0 + f1x + f2x

2 + f3x
3 of 4 coefficients

with basis {1, x, x2, x3}. We compute the radix conversion as follows: Write the
coefficients as a list [f0, f1, f2, f3]. Add the 4th element to the 3rd element and

9

add the new 3rd element to the 2nd element to obtain [f0, f1+f2+f3, f2+f3, f3].
This transforms the basis to {1, x, (x2 + x), x(x2 + x)}, we have

f(x) = f0 + (f1 + f2 + f3)x+ (f2 + f3)(x2 + x) + f3x(x2 + x)

=
(
f0 + (f2 + f3)(x2 + x)

)
+ x
(
(f1 + f2 + f3) + f3(x2 + x)

)
= f (0)(x2 + x) + xf (1)(x2 + x)

with f (0)(x) = f0 + (f2 + f3)x and f (1)(x) = (f1 + f2 + f3) + f3x.
For polynomials of larger degrees, this approach can be applied recursively:

Consider a polynomial g(x) = g0 +g1x+g2x
2 +g3x

3 +g4x
4 +g5x

5 +g6x
6 +g7x

7

of 8 coefficients. Write g(x) as a polynomial with 4 coefficients, i.e.,

g(x) = (g0 + g1x) + (g2 + g3x)x2 + (g4 + g5x)x4 + (g6 + g7x)x6.

Perform the same operations as above (hint: substitute x2 with y and re-substitute
back in the end) to obtain

g(x) = (g0 + g1x) +
(
(g2 + g3x) + (g4 + g5x) + (g6 + g7x)

)
x2

+
(
(g4 + g5x) + (g6 + g7x)

)
(x2 + x)2 + (g6 + g7x)x2(x2 + x)2

= (g0 + g1x) +
(
(g2 + g4 + g6) + (g3 + g5 + g7)x

)
x2

+
(
(g4 + g6) + (g5 + g7)x

)
(x2 + x)2 + (g6 + g7x)x2(x2 + x)2

with basis {1, x, x2, x3, (x2 + x)2, x(x2 + x)2, x2(x2 + x)2, x3(x2 + x)2}.
Now, recursively apply the same process to the 4-coefficient polynomials

g(L)(x) = g0 + g1x+ (g2 + g4 + g6)x2 + (g3 + g5 + g7)x3 and g(R)(x) = (g4 + g6) +
(g5 + g7)x+ g6x

2 + g7x
3. This results in

g(L)(x) = g0 + (g1 + g2 + g3 + g4 + g5 + g6 + g7)x

+ (g2 + g3 + g4 + g5 + g6 + g7)(x2 + x) + (g3 + g5 + g7)x(x2 + x), and

g(R)(x) = (g4 + g6) + (g5 + g6)x+ (g6 + g7)(x2 + x) + g7x(x2 + x).

Substituting g(L)(x) and g(R)(x) back into g(x), we get

g(x) = g0

+ (g1 + g2 + g3 + g4 + g5 + g6 + g7)x

+ (g2 + g3 + g4 + g5 + g6 + g7)(x2 + x)

+ (g3 + g5 + g7)x(x2 + x)

+ (g4 + g6)(x2 + x)2

+ (g5 + g6)x(x2 + x)2

+ (g6 + g7)(x2 + x)3

+ (g7)x(x2 + x)3.

with basis {1, x, (x2 +x)1, x(x2 +x)1, . . . , (x2 +x)3, x(x2 +x)3}. This representa-
tion can be easily transformed into the form of g(x) = g(0)(x2+x)+xg(1)(x2+x).

10

In general, to transform a polynomial f(x) of 2k coefficients into the form
of f = f (0)(x2 + x) + xf (1)(x2 + x), we need 2i size-2k−i, i = 0, 1, .., k radix
conversion operations. We will regard the whole process of transforming f(x)
into the form of f (0)(x2 + x) + xf (1)(x2 + x) as one complete radix conversion
operation for later discussion.

Twisting. As mentioned above, additive FFT applies Gao and Mateer’s idea
recursively. Consider the problem of evaluating an 8-coefficient polynomial f(x)
for all elements in GF(24). The field GF(24) can be defined as: GF(24) =
{0, a, . . . , a3 +a2 +a, 1, a+1, . . . , (a3 +a2 +a)+1} with basis {1, a, a2, a3}. After
applying the radix conversion process, we get f(x) = f (0)(x2+x)+xf (1)(x2+x).
As described earlier, the evaluation on the second half of the elements (“...+ 1”)
can be easily computed from the evaluation results of the first half by using the
α and α+ 1 trick (for α ∈ {0, a, . . . , a3 + a2 + a}). Now, the problem turns into
the evaluation of f (0)(x) and f (1)(x) at points {0, a2 + a, . . . , (a3 + a2 + a)2 +
(a3 + a2 + a)}. In order to apply Gao and Mateer’s idea again, we first need to
twist the basis: By computing f (0

′)(x) = f (0)((a2 + a)x), evaluating f (0)(x) at
{0, a2 + a, . . . , (a3 + a2 + a)2 + (a3 + a2 + a)} is equivalent to evaluating f (0

′)(x)
at {0, a2 + a, a3 + a, a3 + a2, 1, a2 + a+ 1, a3 + a+ 1, a3 + a2 + 1}. Similarly for
f (1)(x), we can compute f (1

′)(x) = f (1)((a2 +a)x). After the twisting operation,
f (0
′) and f (1

′) have element 1 in their new basis. Therefore, this step equivalently
twists the basis that we are working with. Now, we can perform radix conversion
and apply the α and α+ 1 trick on f (0

′)(x) and f (1
′)(x) recursively again.

The basis twisting for f (0)(x) and f (1)(x) can be mapped to a sequence of
field multiplication operations on the coefficients. Let β = α2 +α. fi denotes the
i-th coefficient of a polynomial f(x). For a degree-7 polynomial f(x), we get

[f
(1′)
3 , f

(1′)
2 , f

(1′)
1 , f

(1′)
0 , f

(0′)
3 , f

(0′)
2 , f

(0′)
1 , f

(0′)
0]

= [β3f
(1)
3 , β2f

(1)
2 , βf

(1)
1 , f

(1)
0 , β3f

(0)
3 , β2f

(0)
2 , βf

(0)
1 , f

(0)
0].

When mapping to hardware, this step can be easily realized by an entry-wise
multiplication between the polynomial coefficients and powers of β, which are
all independent and can be performed in parallel. Given a polynomial of 2k

coefficients from GF(2m), each twisting step takes 2k GF(2m) multiplication
operations. In our implementation, we use a parameterized parallel multiplier
module that is composed of multiple GF(2m) multipliers. The number of GF(2m)
multipliers is set as a parameter in this module, which can be easily adjusted to
achieve an area and running time trade-off, as shown in Table 4.

Reduction. Evaluating a polynomial f(x) ∈ GF(2m)[x] of 2k coefficients at all
elements in GF(2m) requires k twisting and k radix conversion operations. The
last radix conversion operation operates on 2k−1 polynomials of 2 coefficients of
the form g(x) = a+bx. We easily write g(x) as g(x) = g(0)(x2+x)+xg(1)(x2+x)
using g(0)(x) = a, g(1)(x) = b. At this point, we finish the recursive twist-then-
radix-conversion process, and we get 2k polynomials with only one coefficient.
Now we are ready to perform the reduction step. Evaluation of these 1-coefficient
polynomials simply returns the constant values. Then by using g(α) = g(0)(α2 +

11

g(x) Evaluation (Additive FFT)

g(x) = f(x)
R

f(βx)
Twisting

(f(0),f(1))Radix
Conversion

Reduction

data
memory

const.
memory

to
 H

 G
en

e
ra

to
r

F
ro

m
 G

a
u

s
s.

 S
ys

.

Fig. 1: Dataflow diagram of our hardware version of Gao-Mateer additive FFT. Func-
tional units are represented as white boxes and memory blocks are represented as grey
boxes.

Multipliers
Twist Reduction Cycles Logic Time×Area Mem. Reg. Fmax (MHz)

4 32 1188 11, 731 1.39 · 107 63 27, 450 399
8 32 1092 12, 095 1.32 · 107 63 27, 470 386

16 32 1044 12, 653 1.32 · 107 63 27, 366 373
32 32 1020 14, 049 1.43 · 107 63 26, 864 322

Table 4: Performance of additive FFT using different numbers of multipliers for twist.

α) +αg(1)(α2 +α) and g(α+ 1) = g(α) + g(1)(α2 +α), we can recursively finish
the evaluation of the polynomial f at all the 2m points using dlog2(t)e recursion
steps and 2m−1 multiplications in GF(2m) in each step.

Non-recursive Hardware Implementation. We mapped the recursive al-
gorithm to a non-recursive hardware implementation shown in Figure 1. Given
a polynomial of 2k coefficients, the twist-then-radix-conversion process is re-
peated for k times, and an array containing the coefficients of the resulting
1-coefficient polynomials is fed into the reduction module. Inside the reduction
module, there are two memory blocks: A data memory and a constants mem-
ory. The data memory is initialized with the 1-coefficient polynomials and gets
updated with intermediate reduction data during the reduction process. The
constants memory is initialized with elements in the subspace of f (0) and f (1),
which are pre-generated via Sage code. Intermediate reduction data is read from
the data memory while subspace elements are read from the constants memory.
Then the reduction step is performed using addition and multiplication sub-
modules. The computed intermediate reduction results are then written back to
the data memory. The reduction step is repeated until the evaluation process is
finished and the final evaluation results are stored in the data memory.

Performance. Table 4 shows performance and resource-usage for our additive
FFT implementation. For evaluating a degree-119 Goppa polynomial g(x) at all
the data points in GF(213), 32 finite filed multipliers are used in the reduction
step of our additive FFT design in order to achieve a small cycle count while
maintaining a low logic overhead. The twisting module is generated by a Sage
script such that the number of multipliers can be chosen as needed. Radix con-

12

Algorithm 2: Fisher-Yates shuffle

Output: Shuffled array A
Initalize: A = {0, 1, . . . , n− 1}

1 for i from n− 1 downto 0 do
2 Generate j uniformly from range[0, i]
3 Swap A[i] and A[j]

m Size (= 2m) Cycles (avg.) Logic Time×Area Mem. Reg. Fmax (MHz)

13 8192 23, 635 149 3.52 · 106 7 111 335

Table 5: Performance of the Fisher-Yates shuffle module for 213 elements.

version and twisting have only a small impact in the total cycle count; therefore,
using only 4 binary filed multipliers for twisting results in good performance,
with best Fmax. The memory required for additive FFT is only a small fraction
of the overall memory consumption of the key generator.

4.3 Random Permutation: Fisher-Yates Shuffle

Computing a random list of indices P = [π(0), π(1), . . . , π(2m− 1)] for a permu-
tation π ∈ S2m (here, Si denotes the symmetric group on {0, 1, . . . , i − 1}), is
an important step in the key-generation process. We compute P by performing
Fisher-Yates shuffle [8] on the list [0, 1, . . . , 2m − 1] and then using the first n
elements of the resulting permutation. We choose Fisher-Yates shuffle to perform
the permutation, because it requires only a small amount of computational logic.
Algorithm 2 shows the Fisher-Yates shuffle algorithm.

We implemented a parameterized permutation module using a dual-port
memory block of depth 2m and width m. First, the memory block is initialized
with contents [0, 1, . . . , 2m − 1]. Then, the address of port A decrements from
2m−1 to 0. For each address A, a PRNG keeps generating new random numbers
as long as the output is larger than address A. Therefore, our implementation
produces a non-biased permutation (under the condition that the PRNG has no
bias) but it is not constant-time. Once the PRNG output is smaller than address
A, this output is used as the address for port B. Then the contents of the cells
addressed by A and B are swapped. We improve the probability of finding a
random index smaller than address A by using only dlog2(A)e bits of the PRNG
output. Therefore, the probability of finding a suitable B always is at least 50%.

Since we are using a dual-port memory in our implementation, the memory
initialization takes 2m−1 cycles. For the memory swapping operation, for each
address A, first a valid address B is generated and data stored in address A and B
is read from the memory in one clock cycle, then one more clock cycle is required

for updating the memory contents. On average, 2m−1 +
∑m

i=1

∑2i−1−1
j=0 (2i

2i−j +1)
cycles are needed for our Fisher-Yates shuffle implementation. Table 5 shows
performance data for the Fisher-Yates shuffle module.

13

��������������

������
������	
�

����

�
����
��������
���	������

���
�	�
�

����
������	�
�
�� �	����

!�

�
������	
�

�"
�	

�
������	
�

�
��#���$�	����#�%%���

�

�"
�	

�
���
��������
���	������

&"
�	

����

�����	�	�
�����'

�
�����
���
��������'

��(��)�&���&����'

&��
�	�
�

Fig. 2: Dataflow diagram of the key generator. Functional units are represented as white
boxes and memory blocks are represented as grey boxes. The ports g out and P out

are for the private-key data, and the port K out is for the public-key data.

5 Key Generator for the Niederreiter Cryptosystem

Using two Gaussian systemizers, Gao-Mateer additive FFT, and Fisher-Yates
shuffle, we designed the key generator as shown in Figure 2. Note that the design
uses two simple PRNGs to enable deterministic testing. For real deployment,
these PRNGs must be replaced with a cryptographically secure random number
generator, e.g., [6]. We require at most m random bits per clock cycle per PRNG.

5.1 Private Key Generation

The private key consists of an irreducible Goppa polynomial g(x) of degree t
and a permuted list of indices P .

Goppa Polynomial g(x). The common way for generating a degree-d irre-
ducible polynomial is to pick a polynomial g of degree d uniformly at random,
and then to check whether it is irreducible or not. If it is not, a new polynomial
is randomly generated and checked, until an irreducible one is found. The den-
sity of irreducible polynomials of degree d is about 1/d [16]. When d = t = 119,
the probability that a randomly generated degree-119 polynomial is irreducible
gets quite low. On average, 119 trials are needed to generate a degree-119 ir-
reducible polynomial in this way. Moreover, irreducibility tests for polynomials
involve highly complex operations in extension fields, e.g., raising a polynomial
to a power and finding the greatest common divisor of two polynomials. In the
hardware key generator design in [24], the Goppa polynomial g(x) was generated
in this way, which is inefficient in terms of both time and area.

We decided to explicitly generate an irreducible polynomial g(x) by us-
ing a deterministic, constructive approach. We compute the minimal (hence
irreducible) polynomial of a random element in GF(2m)[x]/h with deg(h) =
deg(g) = t: Given a random element r from the extension field GF(2m)[x]/h,
the minimal polynomial g(x) of r is defined as the non-zero monic polynomial

14

of least degree with coefficients in GF(2m) having r as a root, i.e., g(r) = 0. The
minimal polynomial of a degree-(t−1) element from field GF(2m)[x]/h is always
of degree t and irreducible if it exists.

The process of generating the minimal polynomial g(x) = g0 + g1x + · · · +
gt−1x

t−1+xt of a random element r(x) =
∑t−1

i=0 rix
i is as follows: Since g(r) = 0,

we have g0 + g1r + · · · + gt−1r
t−1 + rt = 0 which can be equivalently writ-

ten using vectors as: (1T , rT , . . . , (rt−1)T , (rt)T) · (g0, g1, . . . , gt−1, 1)T = 0. Note
that since R = (1T , rT , . . . , (rt−1)T , (rt)T) is a t × (t + 1) matrix while g =
(g0, g1, . . . , gt−1, 1)T is a size-(t+ 1) vector, we get

R · g =


0 rt−1 · · · (rt)t−1
0 rt−2 · · · (rt)t−2
...

...
. . .

...
0 r1 · · · (rt)1
1 r0 · · · (rt)0




g0
g1
...

gt−1
1

 = 0.

Now, we can find the minimal polynomial of r by treating g as variable and
by solving the resulting system of linear equations for g. By expanding this
matrix-vector multiplication equation, we get t linear equations which uniquely
determine the solution for (g0, g1, . . . , gt−1). Solving systems of linear equations
can be easily transformed into a matrix systemization problem, which can be
handled by performing Gaussian elimination on the coefficient matrix R.

In our hardware implementation, first a PRNG is used, which generates t
random m-bit strings for the coefficients of r(x) =

∑t−1
i=0 rix

i. Then the coeffi-
cient matrix R is calculated by computing the powers of 1, r, . . . , rt, which are
stored in the memory of the GF(2m) Gaussian systemizer. We repeatedly use
the polynomial multiplier described in Section 3.2 to compute the powers of r.
After each multiplication, the resulting polynomial of t coefficients is written
to the memory of the GF(2m) Gaussian systemizer. (Our Gaussian-systemizer
module operates on column-blocks of width NR. Therefore, the memory contents
are actually computed block-wise.) This multiply-then-write-to-memory cycle is
repeated until R is fully calculated. After this step is done, the memory of the
GF(2m) Gaussian systemizer has been initialized with the coefficient matrix R.

After the initialization, the Gaussian elimination process begins and the co-
efficient matrix R is transformed into its reduced echelon form [It|g]. Now, the
right part of the resulting matrix contains all the unknown coefficients of the
minimal polynomial g.

The part of memory which stores the coefficients of the Goppa polynomial
g(x) is shown as the “g-portion” in Figure 2. Later the memory contents stored
in the g-portion are read out and sent to the g(x) evaluation step, which uses
the additive FFT module to evaluate the Goppa polynomial g(x) at every point
in field GF(2m).

Table 6 shows the impact of different choices for the Gaussian-systemizer
parameter NR for a matrix of size 119× 120 in GF(213). NR defines the size of
the NR ×NR processor array of the Gaussian systemizer [26] and implicitly the
width of the memory that is used to store the matrix. It has an impact on the

15

NR Cycles Logic Time×Area Mem. Reg. Fmax (MHz)

1 922, 123 2539 2.34 · 109 14 318 308
2 238, 020 5164 1.23 · 109 14 548 281
4 63, 300 10, 976 6.95 · 108 13 1370 285

Table 6: Performance of the GF(2m) Gaussian systemizer for m = 13 and t = 119, i.e.,
for a 119× 120 matrix with elements from GF(213).

number of required memory blocks, because the synthesis tools usually require
more memory blocks for wider memory words to achieve good performance.
Furthermore, have to add zero-columns to the matrix to make the number of
columns a multiple of NR. However, for these parameters, the memory is used
most efficiently for NR = 4. When doubling NR, the number of required cycles
should roughly be quartered and the amount of logic should roughly be quadru-
pled. However, the synthesis results show a doubling pattern for the logic when
NR = 1, 2 and 4, which is probably due to some logic overhead that would
vanish for larger NR.

Random Permutation P . In our design, a randomly permuted list of indices
of size 213 is generated by the Fisher-Yates shuffle module and the permutation
list is stored in the memory P in Figure 2 as part of the private key. Later
memory P is read by the H generator which generates a permuted binary form
the parity check matrix. In our design, since n ≤ 2m, only the contents of the
first n memory cells need to be fetched.

5.2 Public Key Generation

As mentioned in Section 2, the public key K is the systemized form of the binary
version of the parity check matrix H. In [24], the generation of the binary version
of H is divided into two steps: first compute the non-permuted parity check
matrix and store it in a memory block A, then apply the permutation and write
the binary form of the permuted parity-check matrix to a new memory block
B, which is of the same size as memory block A. This approach requires simple
logic but needs two large memory blocks A and B.

In order to achieve better memory efficiency, we omit the first step, and
instead generate a permuted binary form H ′ of the parity check matrix in one
step. We start the generation of the public key K by evaluating the Goppa
polynomial g(x) at all α ∈ GF(2m) using the Gao-Mateer additive FFT module.
After the evaluation finishes, the results are stored in the data memory of the
additive FFT module.

Now, we generate the permuted binary parity check matrix H ′ and store it in
the memory of the GF(2) Gaussian systemizer. Suppose the permutation indices

16

NH Cycles Logic Time×Area Mem. Reg. Fmax (MHz)

10 150, 070, 801 826 1.24 · 1011 663 678 257
20 38, 311, 767 1325 5.08 · 1010 666 1402 276
40 9, 853, 350 3367 3.32 · 1010 672 4642 297
80 2, 647, 400 10, 983 2.91 · 1010 680 14, 975 296

160 737, 860 40, 530 2.99 · 1010 720 55, 675 290
320 208, 345 156, 493 3.26 · 1010 848 213, 865 253

Table 7: Performance of the GF(2) Gaussian systemizer for a 1547 × 6960 matrix.

stored in memory P are [p0, p1, . . . , pn−1, . . . , p2m−1], then

H ′ =


1/g(αp0) 1/g(αp1) · · · 1/g(αpn−1)
αp0/g(αp0) αp1/g(αp1) · · · αpn−1/g(αpn−1)

...
...

. . .
...

αt−1
p0

/g(αp0
) αt−1

p1
/g(αp1

) · · · αt−1
pn−1

/g(αpn−1
)

 .
To generate the first column of H ′, the first element p0 from P is fetched and
stored in a register. Then, the corresponding polynomial evaluation value g(αp0

)
is read out from the data memory of the additive FFT module. This value is
then inverted using a GF(2m) inverter. After inversion, we get 1/g(αp0) which is
the first entry of the column. The second entry is calculated by a multiplication
of the first entry row and αp0

, the third entry again is calculated by a multiplica-
tion of the previous row and αp0

and so on. Each time a new entry is generated,
it is written to the memory of the GF(2) Gaussian systemizer (bit-wise, one bit
per row). This computation pattern is repeated for all p0, p1, . . . , pn−1 until H ′ is
fully calculated. After this step, the memory of the GF(2) Gaussian systemizer
contains H ′ and the Gaussian systemization process is started. (Again, this pro-
cess is actually performed on column-blocks of width NH due to the architecture
of the Gaussian systemizer.)

If a fail signal from the GF(2) Gaussian systemizer is detected, i.e., the matrix
cannot be systemized, key generation needs to be restarted. Otherwise, the left
part of the matrix has been transformed into a mt×mt identity matrix and the
right side is the mt× k public key matrix K labeled as “K-portion” in Figure 2.

Success Probability. The number of invertible mt×mt matrices over GF(2) is

the order of the general linear group GL(mt,GF(2)), i.e.,
∏mt−1

j=0 2mt−2j . The to-

tal number of mt×mt matrices over GF(2) is 2(mt)2 . Therefore, the probability of

a randommt×mtmatrix over GF(2) being invertible is (
∏mt−1

j=0 2mt − 2j)/2(mt)2 .
For mt = 13 · 119 = 1547, the probability is about 29%. Thus, on average we
need about 3.5 attempts to successfully generate a key pair.

Performance. Table 7 shows the effect of different choices for parameter NH

on a matrix of size 1547 × 6960 in GF(2). Similar to the GF(2m) Gaussian
systemizer, NH has an impact on the number of required memory blocks. When
doubling NH , the number of required cycles should roughly be quartered (which

17

is the case for small NH) and the amount of logic should roughly be quadrupled
(which is the case for large NH). The best time-area product is achieved for
NH = 80, because for smaller values the non-computational logic overhead is
significant and for larger values the computational logic is used less efficiently.
Fmax is mainly limited by the paths within the memory.

6 Design Testing

We tested our hardware implementation using a Sage reference implementation,
iVerilog, and an Altera Stratix V FPGA (5SGXEA7N) on a Terasic DE5-Net
FPGA development board.

Parameters and PRNG Inputs. First, we chose a set of parameters, which
were usually the system parameters of the cryptosystem (m, t, and n, with
k = n−mt). In addition, we picked two design parameters, NR and NH , which
configure the size of the processor arrays in the GF(2m) and GF(2) Gaussian
systemizers. In order to guarantee a deterministic output, we randomly picked
seeds for the PRNGs and used the same seeds for corresponding tests on different
platforms. Given the parameters and random seeds as input, we used Sage code
to generate appropriate input data for each design module.

Sage Reference Results. For each module, we provide a reference implemen-
tation in Sage using built-in Sage functions for field arithmetic, etc. Given the
parameters, seeds, and input data, we used the Sage reference implementation
to generate reference results for each module.

iVerilog Simulation Results. We simulated the Verilog HDL code of each
module using a “testbench” top module and the iVerilog simulator. At the end of
the simulation, we stored the simulation result in a file. Finally, we compared the
simulation result with the Sage reference result. If these reference and simulation
results matched repeatedly for different inputs, we assumed the Verilog HDL
code to be correct.

FPGA Results. After we tested the hardware design through simulation, we
synthesized the design for an Altera Stratix V FPGA using the Altera Quar-
tus 16.1 tool chain. We used a PCIe interface for communication with the FPGA.
After a test finished, we wrote the FPGA output to a file. Then we compared
the output from the FPGA testrun with the output of the iVerilog simulation
and the Sage reference results. If the outputs matched, we assumed the hardware
design to be correct.

7 Evaluation

We synthesized the final design for an Altera Stratix V FPGA (5SGXEA7N) and
for comparison for a Xilinx UltraScale+ VUP9 FPGA (e.g., used in the Amazon
EC2 F1 instances). Based on the PQCRYPTO project [20] recommendations,
the following system parameters were selected: m = 13, t = 119, n = 6960 and

18

Case NH NR Cycles Logic Time×Area Mem. Fmax Time

Altera Stratix V
logic 40 1 11, 121, 220 29, 711 3.30 · 1011 756 240 MHz 46.43 ms
bal. 80 2 3, 062, 942 48, 354 1.48 · 1011 764 248 MHz 12.37 ms
time 160 4 896, 052 101, 508 9.10 · 1010 803 244 MHz 3.68 ms

Xilinx Virtex Ultrascale+
logic 40 1 11, 121, 220 42, 632 4.74 · 1011 348.5 200 MHz 55.64 ms
bal. 80 2 3, 062, 942 60, 989 1.87 · 1011 356 221 MHz 13.85 ms
time 160 4 896, 052 112, 845 1.01 · 1011 375 225 MHz 3.98 ms

Table 8: Performance of the key generator for parameters m = 13, t = 119, and
n = 6960. All the numbers in the table come from compilation reports of the Altera
and Xilinx tool chains respectively. For Xilinx, logic utilization is counted in LUTs.

Design m t n Cycles (avg.) Freq. Time (avg.) Arch.

Shoufan et al. [24] 11 50 2048 1.47 · 107 163 MHza 90 ms Virtex V

this work 11 50 2048 2.72 · 106 168 MHzb 16 ms Virtex V

Chou [7] 13 128 8192 1.24 · 109 1–4 GHzc 1236–309 ms Haswell
this work 13 128 8192 4.30 · 106 215 MHza 20 ms Stratix V

Table 9: Comparison with related work. Cycles and Time are average values, taking
into account failure cases. aActual frequency running on FPGAs. bFmax reported by
the Xilinx tool chain. cAvailable for a range of frequencies.

k = 5413 (note k = n−mt). These parameters were specified in [5] for a target
public key size of about 1 MB. They provide a classical security level of about
266-bit which corresponds to a post-quantum security level of at least 128-bit.

Due to the large size of the permuted parity check matrix H, generating the
public key K by doing matrix systemization on the binary version of H is usually
the most expensive step both in logic and cycles in the key-generation algorithm.
In our key generator, independently of the security parameters, the design can
be tuned by adjusting NR and NH , which configure the size of the processor
array of the GF(2m) and GF(2) Gaussian systemizer respectively. Table 6 and
Table 7 show that by adjusting NR and NH in the two Gaussian systemizers,
we can achieve a trade-off between area and performance for the key generator.

Table 8 shows performance data for three representative parameter choices:
The logic case targets to minimize logic consumption at the cost of performance,
the time case focuses on maximising performance at the cost of resources, and
the balanced case (bal.) attempts to balance logic usage and execution time.

Comparison of our results with other Niederreiter key-generator implemen-
tations on FPGAs is not easy. Table 9 gives an attempt of comparing our result
to the performance data given in [24]. The design in [24] occupies about 84%
of the target FPGA for their entire Niederreiter-cryptosystem implementation
including key generation, encryption, decryption, and IO. Our design requires

19

only about 52% of the logic (for NH = 30 and NR = 2), but only for the key
generation. The design in [24] practically achieves a frequency of 163 MHz while
we can only report estimated synthesis results for Fmax of 168 MHz for our
design. Computing a private-public key pair using the design in [24] requires
about 90 ms on average (their approach for generating the Goppa polynomial is
not constant time and the key-generation procedure needs to be repeated several
times until the Gaussian systemization of the public key succeeds). Our design
requires about 16 ms on average at 168 MHz.

We also compare our design to a highly efficient CPU implementation from [7]
in Table 9. The results show that our optimized hardware implementation com-
petes very well with the CPU implementation. In this case, we ran our imple-
mentation on an Altera Stratix V FPGA. The actual frequency that we achieved
fits well to the estimated frequencies for Stratix V in Table 8.

8 Conclusion

This work presents a new FPGA-based implementation of the key-generation
algorithm for the Niederreiter cryptosystem using binary Goppa codes. It is
the first hardware implementation of a key generator that supports currently
recommended security parameters (and many others due to tunable parameters).
Our design is based on novel hardware implementations of Gaussian systemizer,
Gao-Mateer additive FFT, and Fisher-Yates shuffle.

Acknowledgments. We want to thank Tung Chou for his invaluable help, in
particular for discussions about the additive FFT implementation.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck,
W., Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A., Lange, T., Mo-
hamed, M.S.E., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F.,
Yang, B.Y.: Initial recommendations of long-term secure post-quantum systems.
Tech. rep., PQCRYPTO ICT-645622 (2015), https://pqcrypto.eu.org/docs/

initial-recommendations.pdf, accessed June 22, 2017
2. Bernstein, D.J.: High-speed cryptography in characteristic 2, http://binary.cr.

yp.to/m.html, accessed March 17, 2017
3. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.

Springer (2009)
4. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based

cryptography. In: Bertoni, G., Coron, J.S. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2013. LNCS, vol. 8086, pp. 250–272. Springer (2013)

5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mceliece
cryptosystem. In: Buchmann, J., Ding, J. (eds.) Post-Quantum Cryptography —
PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer (2008)

6. Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random
number generator with entropy assessment. In: Bertoni, G., Coron, J.S. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2013. LNCS, vol. 8086,
pp. 179–196. Springer (2013)

20

https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://binary.cr.yp.to/m.html
http://binary.cr.yp.to/m.html

7. Chou, T.: McBits revisited. In: Fischer, W., Homma, N. (eds.) Cryptographic Hard-
ware and Embedded Systems. LNCS, Springer (2017), to appear with this paper.

8. Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical
research. Oliver and Boyd (1948)

9. Gao, S., Mateer, T.: Additive fast fourier transforms over finite fields. IEEE Trans-
actions on Information Theory 56(12), 6265–6272 (2010)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on the Theory of Computing – STOC ’96. pp. 212–219. ACM (1996)

11. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) Advances in
Cryptology – ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer (2016)

12. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G.,
Coron, J.S. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2013.
LNCS, vol. 8086, pp. 273–292. Springer (2013)

13. Hu, J., Cheung, R.C.C.: An application specific instruction set processor (ASIP)
for the Niederreiter cryptosystem. Cryptology ePrint Archive, Report 2015/1172
(2015)

14. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7, 595–596 (1963)

15. Massolino, P.M.C., Barreto, P.S.L.M., Ruggiero, W.V.: Optimized and scalable co-
processor for McEliece with binary Goppa codes. ACM Transactions on Embedded
Computing Systems 14(3), 45 (2015)

16. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report 42–44, 114—116 (1978)

17. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans-
actions on Computers 54(3), 362–369 (2005)

18. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15, 19–34 (1986)

19. PKCS #11 base functionality v2.30, ftp://ftp.rsasecurity.com/pub/pkcs/

pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf (page 172), accessed June 20, 2017
20. Post-quantum cryptography for long-term security PQCRYPTO ICT-645622,

https://pqcrypto.eu.org/, accessed March 17, 2017
21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-

tology ePrint Archive, Report 2006/145 (2006)
22. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-

ing. In: Foundations of Computer Science – FOCS ’94. pp. 124–134. IEEE (1994)
23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)
24. Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A novel processor ar-

chitecture for McEliece cryptosystem and FPGA platforms. IEEE Transactions on
Computers 59(11), 1533–1546 (2010)

25. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gener-
alized Reed-Solomon codes. Discrete Mathematics and Applications 2(4), 439–444
(1992)

26. Wang, W., Szefer, J., Niederhagen, R.: Solving large systems of linear equations
over GF(2) on FPGAs. In: Reconfigurable Computing and FPGAs – ReConFig
2016. pp. 1–7. IEEE (2016)

21

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf
https://pqcrypto.eu.org/

	FPGA-based Key Generator for the Niederreiter Cryptosystem using Binary Goppa Codes

