INVITED
PAPER

Topology Identification and
Learning Over Graphs:
Accounting for Nonlinearities

and Dynamics

This article focuses on the problem of learning graphs from data, in particular, to

capture the nonlinear and dynamic dependencies.

By GeorGios B. GIANNAKIS

, Fellow IEEE, YANNING SHEN, Student Member IEEE,

AND GEORGIOS VASILEIOS KARANIKOLAS, Student Member IEEE

ABSTRACT | Identifying graph topologies as well as processes
evolving over graphs emerge in various applications involving
gene-regulatory, brain, power, and social networks, to name
a few. Key graph-aware learning tasks include regression,
classification, subspace clustering, anomaly identification,
interpolation, extrapolation, and dimensionality reduction.
Scalable approaches to deal with such high-dimensional tasks
experience a paradigm shift to address the unique modeling and
computational challenges associated with data-driven sciences.
Albeit simple and tractable, linear time-invariant models are
limited since they are incapable of handling generally evolving
topologies, as well as nonlinear and dynamic dependencies
between nodal processes. To this end, the main goal of this paper
is to outline overarching advances, and develop a principled
framework to capture nonlinearities through kernels, which are
judiciously chosen from a preselected dictionary to optimally
fit the data. The framework encompasses and leverages (non)
linear counterparts of partial correlation and partial Granger
causality, as well as (non)linear structural equations and vector
autoregressions, along with attributes such as low rank, sparsity,
and smoothness to capture even directional dependencies with
abrupt change points, as well as time-evolving processes over
possibly time-evolving topologies. The overarching approach
inherits the versatility and generality of kernel-based methods,
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and lends itself to batch and computationally affordable
online learning algorithms, which include novel Kalman filters
over graphs. Real data experiments highlight the impact of
the nonlinear and dynamic models on consumer and financial
networks, as well as gene-regulatory and functional connectivity
brain networks, where connectivity patterns revealed exhibit
discernible differences relative to existing approaches.

KEYWORDS | Kernel-based models;
inference; nonlinear modeling; time-varying networks

network topology

I. INTRODUCTION

The science of networks and networked interactions has
recently emerged as a major catalyst for understanding
the behavior of complex systems [28], [67], [90], [109].
Such systems are typically described by graphs, and can
be man-made or natural. For example, human interac-
tion over the web commonly occurs over social networks
such as Facebook and Twitter, while sophisticated brain
functions are the result of complex physical interactions
among neurons; see, e.g., [95] and references therein.
Other complex networks show up in diverse fields includ-
ing financial markets, genomics, proteomics, power grids,
and transportation systems, to name a few.

Despite their popularity, single-layer networks may fall
short in describing complex systems. For instance, mode-
ling interactions between two individuals usinga single edge
weight can be an oversimplification of reality. Generalizing
their single-layer counterparts, multilayer networks allow
nodes to belong to different groups, termed layers [10], [66].

0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 106, No. 5, May 2018 | PROCEEDINGS OF THE IEEE 787


https://orcid.org/0000-0002-0196-0260

Giannakis et al.: Topology Identification and Learning Over Graphs: Accounting for Nonlinearities and Dynamics

These layers could represent different views, such as tempo-
ral snapshots of the same network, distinct subnetworks (e.g.,
family, soccer club, or work-related subnetworks), or different
units (e.g., infantry, vehicles or airborne units in tactical net-
works) [83]. Multilayer networks can further model systems
typically impossible to represent by traditional graphs, such as
heterogeneous information networks [114], [126].

When unknown, the first step in understanding network
structure is identification of the underlying graph topology—a
critical task in diverse setups; see [67, Ch. 7], [29], [84], [99],
and references therein. Applications include the discovery of
causal links between regions of interest in the brain, as well
as identifying regulatory and inhibitory interactions among
genes. Terrorists and fugitives can be unveiled by learning
hidden links in social interactions, or telephone call graphs;
see, e.g., [6, Ch. 1] for the intelligence leading to the capture
of Saddam Hussein. Both undirected as well as directed links
are of interest to identify. Pertinent tools for directed graph
connectivity identification include Granger causality [89],
vector autoregressive models (VARM:s) [42], structural equa-
tion models (SEMs) [62], [76], and dynamic causal models
(DCMs) [37]. The directionality of links cannot be revealed
using symmetric correlations between nodal random vari-
ables; see, e.g., [36]. Such correlation-based approaches are
simple and popular as they rely on tractable linear connectiv-
ity models. Linear SEMs have been widely adopted in socio-
metrics [43], psychometrics [79], genetics [12], and dynami-
cally evolving social networks [5], [87], [106]. Despite their
simplicity, linear models cannot capture complex nonlinear
interactions that are prevalent in real networks. Here, we
will outline advances on nonlinear models for graph topology
inference that also subsume their linear counterparts.

Having acquired or knowing a priori the topology of a graph
provides statistical information about relationships among
nodes, and can thus be beneficial for inference of processes
evolving over networks. Prevalent learning tasks include
dimensionality reduction, classification, and clustering [50].
Dimensionality reduction has been extensively studied [9],
[60], [93], [98], and principal component analysis (PCA) [60]
is the “workhorse” method for obtaining low-dimensional rep-
resentations preserving most of the variance present in high-
dimensional data. Multidimensional scaling (MDS) [68] on
the other hand maintains the pairwise distances between data
when going from high- to low-dimensional spaces, while local
linear embedding (LLE) [93] only preserves linear relation-
ships between neighboring data. Information from nonneigh-
boring data, however, influences the performance of ensu-
ing tasks such as reconstruction, regression, classification,
or clustering [49], [116]. It is also worth stressing that PCA,
MDS, and LLE account for only linear relationships among
nodal data. Generalizing PCA, kernel PCA [59] captures non-
linear relationships, while Laplacian eigenmaps [9] preserve
nonlinear similarities between neighboring data. However,
all aforementioned learning tools do not account for struc-
tural graph-induced information that is potentially available.

788 PROCEEDINGS OF THE IEEE | Vol. 106, No. 5, May 2018

Such information may be task specific, e.g., provided by some
“expert” or be dictated by the physics specifying the underly-
ing graph, or be inferred from alternative views of the data. As
shown in [57], [59], [100], and [101] for PCA, graph awareness
can be incorporated in the dimensionality reduction process
through regularization. We will also overview in this tutorial
nonlinear graph-aware dimensionality reduction approaches
that build and broaden the scope of graph-regularized PCA in
our era of big data analytics.

Although early graph topology identification and learning
presumed static topologies, it became evident that in many
domains (e.g., consumer recommendations and financial
interactions, gene regulation, and brain functional connectiv-
ity) accounting for dynamics can offer valuable insights [5],
[13], [52], [53], [56], [91]. These dynamics emerge when the
underlying graph topologies are varying, but also when the
learning tasks over graphs entail nonstationary processes.
Such tasks include clustering, link prediction, and reconstruc-
tion of dynamic signals on graphs. These themes are moti-
vated by the need of, e.g., tracking communities evolving over
social networks, leveraging multiple graph snapshots obtained
across different time slots for improving recommendations,
as well as achieving higher reconstruction accuracy for (non)
stationary signals over static or dynamic graphs. Here, we will
overview learning approaches over dynamic graphs along with
recent works that account for nonlinear dynamical models.

The rest of the paper is organized as follows. Section II
deals with linear topology identification and learning for
processes (signals) evolving over graphs. Section III out-
lines general kernel-based nonlinear topology identification
approaches. Section IV considers generalizations of learning
tasks such as dimensionality reduction and clustering to non-
linear settings. Section V overviews several methods for topol-
ogy identification of time-varying graphs, whereas Section VI
outlines learning tasks over such graphs. Finally, Section VII
uses numerical tests on both real and synthetic data to illus-
trate several of the approaches considered.

Notation: Bold uppercase (lowercase) letters will denote
matrices (column vectors), while operators O, Amax (), and
diag(-) will stand for matrix transposition, maximum eigen-
value, and diagonal matrix, respectively. The identity matrix
will be represented by I, while 0(1) will denote the matrix or
vector of all zeros (ones), and their dimensions will be clear in
context. Finally, the £y and Frobenius norms will be denoted
by [l and [l s respectively.

II. PRELUDE: LINEAR AND STATIC
MODELS

Consider an N-node network G(V, £), whose topology is cap-
tured by a generally unknown graph adjacency matrix A €
R™N having nonzero (i,j)th entry only if a directed edge
is present from node i to node j; see Fig. 1. Suppose that the
network represents an abstraction of a complex system with
measurable input sample {x;;} of node i at time t scaled by by;,
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Fig. 1. Hlustration of an N-node network with directed edges (in
blue), and (the tth sample of) exogenous measurements per node
(red arrows) [105].

and corresponding output {y;} with endogenous (generally
directed) links a;j; clearly, a; = a;; for undirected links. In the
context of brain networks, y;; could represent the t-th sample
from the ith electroencephalogram (EEG) electrode, while
x;; could be a controlled stimulus that affects a specific region
of the brain. In social networks (e.g., Twitter) over which
information diffuses, y;; could represent the timestamp of
user i tweeting about viral story t, while x;; measures the level
of interest (quantified by, e.g., the page rank) of node i.

A. Identifying Graph Topologies

Here we outline methods to identify {a;} from {y;} (and
{x;;} if available). A common metric quantifying the adja-
cency {a;} is the (Pearson) correlation coefficient estimated
from T nodal samples collected in vector y; := [ yil...yiT]T,

zero-mean compensated by y; := T~ Z=1it1, and normal-
ized by the vector norms, to obtain

_ (vi— Vi)T(Yj -Y) )
yi=villa v = vill2
Given a probability of false alarms, a threshold 7;, can be

@

Pij -

specified to test whether |p;j| >7,, and thus assert that an edge
having strength a;; = p;; links nodes (i, ); see, e.g., [67, Ch.
7]. The symmetry of p; implies that it can not reveal direc-
tionality of edges. In addition, p;j can not discern mediated
from unmediated dependencies between pairs of nodal vari-
ables. Indeed, consider for instance the three-node toy net-
work i = k — j, where nodes i and j are mediated through
node k. This mediation would imply correlation of variables
at nodes i and j based on py; thus, correlation-based con-
nectivity can incorrectly declare presence of an (i,j) edge.
Fortunately, one can cope with mediation via partial cor-
relations (PCs) that correspond to the correlation coef-
ficients of the residual vectors §; := y; — )\, where §;\; =
f(tye| k € {V\ij}}) denotes the predictor of y; formed by a
function f of observations from all nodes but i and j (this set
is henceforth abbreviated as \ij). PCs regress yj out of y; and
y; to avoid the possibly spurious (due to mediation) edge (i, )
. The resultant hypothesis test compares with a prescribed
threshold 7;, the absolute value of [cf., (1)]
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Fig. 2. SVARMSs postulate that dependencies between the nodal
time series may be due to instantaneous effects (blue links), and/or
time-lagged effects (red links) [104].

PC-based inference of (un)mediated yet undirected
tooplogies requires testing (2) for o(N?) pairs of nodes,
which can be challenging as N grows. Nonetheless, PCs
offer a principled means of detecting edges with constant
false-alarm rate.

Interestingly, PCs relying on linear predictor functions
f are intimately related with the inverse covariance matrix
e l:= cov(y), where y := [yl...yN]T collects random vari-
ables across nodes. Specifically, if §;,; = Yk#ij Brjyy, is
the linear minimum mean-square error (LMMSE) predictor
in (2), it holds that (see, e.g., [67, Ch. 7])

pi=—[®]; 1 /[e];[e];.

If yis also zero-mean Gaussian distributed, y~A{(0, 9_1),
the linear predictor is MMSE optimal, and the variables
(yi-y;) are independent conditioned on all other nodal vari-
ables, if and only if [e]ij =0; that is, e.g., [67, Ch. 7]

cov(ysyjl y\i) =0 < [@];; = 0.

This link among linear PCs in (2), conditional uncor-
relatedness of nodal variables (or independence in the
Gaussian case), and (non)zero entries of © ! is at the heart
of the graphical Lasso approach to topology identification
[36]. The latter starts with the regularized log-likelihood of
temporally independent Gaussian vectors to form the Lasso
criterion for inference of sparse yet undirected graphs as

(36]

6 = arg max log(det(®)) — tr(£@) — 1||©]; 3)
>0

a 1y T . . .
where [£]; = T~ Zi=1)itjt is the sample covariance esti-

ij
mated using T nodal measurements, and ||®||; the #;-norm
sparsity regularizer that together with 4 tune the number of

zero entries [@];;, and thus the adjacency entries a;;.
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Albeit not able to deal with directionality, the upshot of
graphical Lasso and variants (e.g., [29]) is that they reveal
edges simultaneously, at complexity O(N 3) comparable to
that required by the PC-based tests.! An alternative that also
pursues all edges simultaneously and can deal with direc-
tionality entails SEMs. Linear SEMs postulate that each y;;
depends on two sets of variables: endogenous {y;};zj and
exogenous {x;}, with the unknown structure identified by
{aij bjj} [62]

Vit = zaq)’u"' bl] j=1,...,N (4)

+ej,
where e;; captures unmodeled dynamics. Given samples
{Vie- Xit}, the topology coefficients {a;} can be obtained using
least squares (LS) estimation possibly regularized as in [12]
to effect sparsity. Note that the output y;, of node j depends
only on its input x;;, and its single-hop neighbors. Conditions
for identifiability of directional edges {a;; # a;;} can be found
in [7], where the critical role played by the exogenous terms
is also highlighted. Such a role in SEMs will be expanded by
multilayer SEMs, and (non)linear SVARM:s.

A second popular approach to identifying directed
topologies relies on Granger causality (GC) [44], whereby
a directed edge from node j to i corresponds to a causal
dependence of i on j. To assess such dependence, linear GC
builds on the following two regression hypotheses (see, e.g.,
[47, Ch. 11]):

Hoy;[t] =7\ [t]7i + €[] (52)
Hyyi[t] =7V [e]y[t-1]1. ...y, [t=L]]7i + &[t]  (5b)
where p\[t] = [y\[t—1]...yG[t — L]yt — 1]...y;[t —

L]] ; subscript \ij denotes all nodal measurements but
i and j; and L is the model order. After estimating y; and
7{ using LS, the estimated residuals can be obtained along
with their scaled variances as 83 := Tl éizl\i [t],and 3% :=
Tilr+1@? i [t]. The test statistic F;; = (3% - §%)/§% is com-
pared to a threshold 7;, found for a prescribed false-alarm
probability. If Fj; > Tf,, model 7, is in effect, and {y;} is said
to “Granger cause” {y;}. Intuitively, { y;} causes {y;} if includ-
ing past values of {y; [t,]}r’q in the regressors for predicting
y;[t] lowers the prediction error variance.

Our final class of linear models for topology identifi-
cation is that of SVARMs, which postulate that each it is
represented as a linear combination of instantaneous meas-
urements at the remaining nodes {y;};z, and their time-
lagged counterparts {{ yl(t_f)}l—l}f =1 [16]. Specifically, yj;
obeys the model

Yjt = Zaq Yie + Z Z al) yl(t o) tej 6)

i=1¢=1

Trading off generality for complexity, Segarra et al. [99] postulated
smooth polynomial maps of adjacencies to correlations that are linked to
diffusions, and a notion of “graph stationarity.” Different from (1)-(3),
[99] and [29] are not linked to connectivity-related (un)conditional corre-
lations between nodal vectors.
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where a(f) for # # 0 captures the causal influence of node
i on node j over a lag of # slots, while a<0) encodes the
corresponding instantaneous relatlonshlp between the
two. A link is present from node i to node j either when
ai(-o) # 0, or, when there exists some ¢ € {1,...,L} for
which al.(f) # 0. Order L can be determined via model
selection methods such as the Bayesian information [17],
or Akaike’s criterion [11].

If al(jf) =0 Vi,j,# # 0, then (6) boils down to (4) with
B = 0; hence, SVARM:s subsume SEMs without exogenous
inputs. In addition, with a(O) = 0 vi,j, (6) reduces to the
model considered in (5b) [89].

Withy, :=[yy .. er]T eNt]T
adjacencies [A(/)] ij= a(f) the matrix—vector version of (6) is
V= =A0 )yt+ >k 1A(f>yt ¢+ et,whereA(O)has{a(o)—0}1 1
Broadening the scope of PC, SEM, and Granger mod-
els, SVARM unveils the sought topology of (un)directed

e, 1= [ey.. and the lagged

graphi by estimating via ordinary LS [16] the matrices

{A('f)}f o based on the vector time series {yt} see also

[77] for a recent approach. Alternatively, as w1tf1 %’Cs multi-
ple hypotheses can be tested to detect individual links under
prescribed false-alarm rates [89]; see also [67, Ch. 7.2] for
approaches to predicting missing links.

Even though attractive in its simplicity, the linear time-
invariant (static) SVARM falls short in capturing nonlinear
dependencies inherent to complex networks. To this end,
generalizations of the linear SVARM:s to nonlinear kernel-
based SVARMs will be considered in Sections III-A and
III-B.

B. Reducing Dimensionality via Graph Regularization

This section deals with a paradigm of learning over
static graphs, namely linear dimensionality reduction,
when the topology is known and can be employed as prior
information. Consider N vectors, each centered by subtract-
ing N"1yN, yn» and collected as columns of the DX N
matrix Y := [y;...yy]. Dimensionality reduction seeks d X 1
vectors {y}Y, with d < D, that preserve certain proper-
ties of the original data {y;}. MDS, for instance, aims at
low-dimensional representations {y;} that preserve the pair-
wise distances among {y;} [68], while LLE maintains local
linear relationships within neighborhoods [93]. It is known
that all these dimensionality reduction schemes are spe-
cial cases of kernel-based PCA, which will be presented in
Section IV-B [39]; but first, it is instructive to outline PCA
and its dual form.

Given Y, PCA obtains the low-dimensional representa-
uJ > where Uy has columns the eigenvectors of
YY' = UusUT corresponding to its d largest eigenvalues

tions y; =

[50]. Matrix U can equivalently be obtained via the singu-
lar value decomposition (SVD) Y = UzV', and the original
vectors can be recovered as y; = Uy y:. PCA thrives when the
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data lie close to a d-dimensional hyperplane. Its complexity
is that of eigendecomposing YYT, namely O(NDZ), which
means that PCA is more affordable when D < N [60].

In contrast, for small sets of high-dimensional vectors
(D > N) dual PCA is more attractive. Indeed, the SVD of
Y implies that U = YVE !, which in turn yields the low-
dimensional vectors as y; = Ugyi = }:d_lV}YTyi. It fol-
lows that ¥ = UdTY = de}, where Z; € R™d js a diagonal
matrix containing the d leading eigenvalues of Y'Y, and
V, € RN is the submatrix of V collecting the correspond-
ing eigenvectors of Y'Y. The complexity of dual PCA is
O(DNZ); it is thus preferred over PCA when D > N. It can
be readily verified that dual PCA is also the optimal solution
to ming.pyT—y, || Y'Y — ¥ "% afact that we will be used
in Section IV-B; see, e.g., [108].

In some application scenarios, side information avail-
able by the graph structure can be potentially useful for
dimensionality reduction. Suppose, for instance, that there
is a graph G over which the data are smooth; that is, vec-
tors {y;} on connected nodes of G are also close to each other
in Euclidean distance. The Laplacian of G is L; := D — A,
where D is a diagonal matrix with entries [D]; = d; =

Z) ij, and[ ]
Consider now the term tr(¥ Lg‘I‘T) o Z];tl ij ||y — y/|| ,

which is a sum of the distances of pairs of y;’s, weighted by
the corresponding edge weight of the pair in G. Invoking this
term as regularizer promotes low-dimensional representa-
tions corresponding to pairs of nodes connected with large
edge weights a;; to stay close to each other. Augmenting the
PCA cost function with this regularizer yields the graph-
regularized PCA [59]

a;j # 0 if node i is connected with node j ]

min|[Y — Ug¥ 12+ atr(wLyweT) (7)
d,

where 4> 0 controls the strength of regularization. Building
upon (7), robust versions of graph-regularized PCA have
also been developed in, e.g., [100]and [101].

III. NONLINEAR MODELS FOR
TOPOLOGY IDENTIFICATION

Going beyond linearity, this section generalizes the lin-
ear models outlined in Section II-A to capture nonlinear
dependencies among nodal variables of a graph.

A. Undirected Graphs

The linear PC coefficient in (2) is tailored to assess-
ing only linear mediating dependencies. To overcome this
limitation, a nonlinear PC metric has been introduced
recently [63], using a dictionary of known (so termed ker-
nel) basis functions to replace the linear predictor $;\;[t]
= {yie|k € V\ij}-
To this end, consider the kernel-based regression model

= fi(y\j[t]) + €;;[t], where f; € 1 is a function from

in (2) with a nonlinear function of y\j][t]

Topology Identification and Learning Over Graphs: Accounting for Nonlinearities and Dynamics

the reproducing kernel Hilbert space (RKHS) H® :=
{fl fir\slt) = Y218y x(nilt] ylt )} where the ker-
nel x measures the similarity between y\;[t] and y\;[t']. The
functional optimization problem of interest is

M2+ ®

f: = argmin Zt 1(yilt] = f( Y\U

fen
where 2 is a regularization scalar, and ||-||,, denotes the
norm induced by H. The representer theorem asserts that
the solution to (8) is fi(y\ij[t]) = X1 x (yvii [t i [E])
[50, p. 169], which upon substituting into (8) boijl_s down to
[Birs--> Bir] -

Clearly, selecting « specifies H, and hence it affects

estimating the T parameters in f; :=

critically the estimation performance. The nontrivial task of
choosing « can be addressed using the data-driven approach
known as multi-kernel learning (MKL), where an optimal
linear combination of kernels from a preselected diction-
ary {x }p 1 is learned; see, e.g., [19]. That is, x = 5 16 %
with g, > 0 ¥ p. Since for vectors v; and vz it is possible to
include the linear kernel xy, (vi,vy) = V1 v, this RKHS-
based PC approach subsumes its linear counterpart in (2).

As far as dictionary selection, it depends on the amount
of prior information available, and the complexity that can
be afforded by the MKL optimization that follows up. For
instance, one can adopt a family of smoothness-promoting,
linear, Gaussian, heat, or, diffusion kernels (over a grid of
their parameters), and many more that can be available as
prior information in the application at hand.

Jointly optimizing (8) over B; and over the MKL param-

[6,..., HP]T turns out to be equivalent to [63]

eters 6 :=

argmin [|[(1/VA)y; — VAB; 1%+ Z%ﬁ; KpiBi 9

6€C, . Bi er’

where [K| p\l]]tt p(Y\l][ I Y\l)[ ]) and Cq = =1{6>0,]l6 — 6
Il < ¢} with ¢ controlling the regulanzatlon Solving with
respect to B; and eliminating it from (9) yields [125]
P -1
arg min y;r </II + Y HPKP\I'I) Yi- (10)
0€Cq p=1

This is a convex program that can be solved using the
projected gradient descent iteration [20], namely 6,7 =
P, (6, — ng(s,)), where g(8) stands for the gradient with
respect to @ of the cost in (10), ch() is a projection oper-
ator on the gth-norm constraint set Cop and 71 denotes the
step size. The iterative algorithm converges to the global
optimum at a rate of O(1/v) [20], [125]; see also [102] for a

recent efficient alternative.

Once the estimates §;\; [ ...,Tare

fl(Y\l] )fOI‘t—
obtained (and likewise for yl|\q[ 1), the kernel PC of iand j
with respect to the rest of the nodes can readily be found
by substituting into (2). A hypothesis test is then performed
to decide whether an (i,j) edge is present as described in
Section II-A. Even though the kernel-based PC captures
(un)mediated nonlinear interactions, it does so pairwise;

thus, it is more computationally attractive for predicting
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only a few edges. In addition, it cannot reveal directionality,
which motivates the nonlinear SVARMs considered next.

B. Directed Graphs

Recognizing the limitations of linear methods for mod-
eling nonlinear dependencies, several nonlinear variants of
SEMs have emerged; see, e.g., [48], [58], [61], [65], [69]
[104], and [121]. Unfortunately, these works assume that
the graph topology is known a priori, and the algorithms
developed only estimate the unknown edge weights. On the
other hand, several variants of nonlinear GC and VARMs
have well-documented merits in unveiling links that often
remain undiscovered by traditional linear models; see, e.g.,
[72], [74], [75
on the other hand entail multiple pairwise tests. These con-
siderations motivate the ensuing approach that jointly iden-
tifies edges by leveraging sparse nonlinear SVARMs.

], and [113]. Linear and nonlinear GC metrics

Consider the multivariate nonlinear regression [cf., (6)]
Vi = 7f(y\jt, Yi—rti)) + e, and its entry-wise form, Vi = E
(e {Yi—e}im) + et j=1,....N.

To circumvent the “curse of dimensionality” in estimat-
ing a [(L + 1) N — 1]-variate function, we will confine our
multivariate function }Tj to be separable with respect to each
of its (L + 1) N — 1 variables. Such a simplification amounts
to adopting a generahzed additive model [50, Ch 9] here
of the form f} (Y\]t’ {Yt f}f 1) Zlq’:}fl] ()’n) + Zl 12/’ lf ({)
(Yi(t—s))» where {f gjf)} will be specified later. With f 1(;f> (y):=

(‘”) fm (y), and postulating that the node j measurement at
t depends on instantaneous spatial and time lagged effects,
one arrives at [cf., (6)]

Za(o) O (i) + ZZG(”  ie—ey) + €t

where similar to (6), {a(f)} specify the lag-adjacency matri-
ces {Aw}f o- Rather than the [(L + 1) N — 1]-variate f), (11)
requires estimating (L + 1) N — 1 univariate functions {f; ).
The linear SVARM in (6) assumes that {f(f)} in (11) are
linear, what can be generalized by resortlng again to an
RKHS model of the nonlinear {f(f)} [105]. Let each univari-
atef(f) (i 1n (11) belong to the RKHS HO = { () |fl(]f) (y) =
Zt— ﬁlgtf)

an

(y Yi(t— f))} Considering the measurements at

node j, and fis.f) € Hl(f), fori=1,....Nand#=0,1,...,L, the
regularized LS estimates of these functions are
7 (0) £(0)
{flJ } - {f("’) H<f>} YA Z [)’1 Zaij fij (i)
2
—Z Za(”}) 1; Vi(t-2)) ]
+ AZ 2 2 (llaf £ 1) (12)

where the regularizer Q(z) can be chosen to effect different
attributes, such as sparsity using the Q(¢) = ||{]|; surrogate
of the #y-norm [26]. Invoking again the representer theorem
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[50, p. 169], the optimal fl) (y) =3 1ﬂl]t K (y, Vi(— Z/,))
can be substituted into (12), and with ,ngf) = [,85.{) yer .,ﬂi(j?] ,
al%f) = agjf) B ig.‘f), the functional minimization in (12) boils

down to optimizing over vectors {ai@} to find

N L 2
(0) (0)_ @) (©)
- 2K 22K e

a\ — 1
{a } argmqln} z

13 Sa({(«) k0w) a3
where the T X T matrices {Kf )} have entries [Kl(f)]t,tr =«
(Yit»Yi(¢—¢))- The nonzero al(f) specifying the topology can be
found as the solution of (13) using the alternating direction
method of multipliers (ADMM); see, e.g., [40].

As with the kernel-based PC, rather than preselecting
{K('ﬁ)} a data-driven MKL alternative applies here as well
[105]. C
k€K, for z =0,1,.

Consider just for notational sunpl1c1ty that K(f) =
LLandi=1,...,Nin (12); and thus

Hl@ =1, With Hy denoting the RKHS induced by «,, the
optimal {f l(f)} is expressible in a separable form as f fjf) (y):=
Zp— f(f 2 (), where f(/ P) belongs to RKHS H,, for p =

1,...,P[8], [78]. Hence, (12) with data-driven kernel selec-
tion reduces to

Aw)} _ 1w
{fl, =arg min 2 2%

[y,t > z 0§03,
5> za<f>f<fp><yl ]

i=1¢/=1

HZ ) Zsz(u a0 f Pl )-

1=17=0

(14)

As (14) and (12) are only different in the extra summa-
tion over P kernels, (14) can also afford an efficient solver
[105].

The kernel-based SVARM outlined here can identify the
topology of directed graphs. By simply including linear ker-
nels in the dictionary, it subsumes also linear SVARMs. It can
further account for nonlinear interactions, as well as sparsity
and low rank of adjacency matrices, while at the same time it
scales well with the number of data and the graph size. In a
nutshell, the MKL-based RKHS methodology offers a princi-
pled overarching approach to topology identification.

C. Multilayer Graphs

While single-layer graphs are useful for modeling various
networks, additional structural information may be revealed
if certain networks are modeled via multilayer graphs. Take
social networks as an example, where each layer represents a
network constructed based on connections on either Facebook,
LinkedIn, or Twitter. Nodes in different layers may be related
when they correspond to accounts belonging to the same per-
son. This motivates well the focus of this section on modeling
and topology identification of multilayer networks.
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Intra-layer a®

s

Layerl’

Fig. 3. Example of a multilayer network.

Inter-layer
connections

.

Consider an L-layer network, consisting of N = ZIE=1NK
nodes with N, nodes per layer ¢; see also Fig. 3. Each layer
¢ can be modeled as a graph G (V((),S(’f)), where V) is
the set of nodes, and £(“) the set of edges. Each ¢ can be
described using its adjacency A whose (i, j)-th entry a(‘/ﬂ) #0
if (i,j) € £); hence, a( ) is nonzero if there is a d1rected
edge from node j to node i of the ¢-th layer. To capture con-
nectivity between nodes belonging to different layers, say
¢ and ¢', consider the N, X N, matrix A, with entries

(”) # 0if (i,j) € &%) where £7) is the set of edges
between layers # and ¢'.

Consider a process observed over the entire network
with y( ) denoting the tth observation at node i of the #-th
layer. For L > 1, the so-termed multilayer (mule)-SEM is

[cf., (4)]

90= Zaf 0+ T EA O+ )

where the intralayer term Zj;éi%‘f))’,(f ) captures the influ-
ence from same- layer nelghbormg nodes, while the inter-
layer term DIV Y 1061(;: ”’>ykt models the influence of
neighboring nodes from different layers. Nodes are not
allowed to connect with themselves per layer. Defining the

T X 1 vectors y(f) = [yff) - ,y[(?] and the T X N, matri-
ces Y : =y} ), (f)] forz=1,...,L, the matrix mule-SEM
s YO = YOAOL S YOAC) 15O, o 21,1,
where E() collects all noise variables for layer #.

Given {Y(f)}l;zl, topology identification here seeks the
unknown {A¢ )}f_l, as well as the interlayer connectivity

matrices {A( )}f —1,/'#¢- Since many real-world networks
are sparse, {A( )}f 1 and {A(f )}f =14, are clearly also
expected to be sparse. Leveraging this attribute, the topol-
ogy of multilayer graphs can be estimated via [119]

min L ” YO —YOAO _ 3y AC) ||12:
A, Fe (16)
{A(ff>

+A{O[|AO] + 2 T [|aCI]|; s. to diagla®) =0
'+

where ||Z||; denotes the sum of the absolute values of the
entries of matrix Z. Problem (16) is convex, and can be
solved efficiently in a distributed fashion using ADMM
[40], [97].

The nonlinear SVARM approach of the previous sec-
tion can be readily adapted to multilayer networks by intro-
ducing an additional summation over the layers [cf., (11)
and (15)].

At this point, it is also worth reflecting on the role of
exogenous variables in linear SEMs that are known to aid
identifiability of single-layer topologies [7]. This role can
be played by mule-SEMs/SVARMs, where multiple lay-
ers can represent lagged terms in (non)linear SVARMs or
snapshots of dynamic networks across time, as will be seen
in Section V.

IV. NONLINEAR MODELS FOR GRAPH-
AWARE LEARNING

With the adjacency matrices at hand, this section studies
how various learning tasks can benefit from incorporating
dependence information conveyed by graphs. Although
graph-aware (semi)supervised classification has been
also actively pursued [15], [111], due to space limitations,
the ensuing sections will touch on graph-aware nonlinear
reconstruction, dimensionality reduction, and clustering
approaches.

A. Nonparametric Regression for Signal
Reconstruction

Various applications involve inference of a function
defined over a graph naturally, or, as a result of encoding
probabilistic dependence among variables viewed as “sig-
nals” taking values over the nodes of a graph [32]. Depending
on the application, one may have available only limited
nodal measurements. In social networks, for instance, indi-
viduals may be reluctant to share private information. Such
settings could benefit from inference methods that estimate
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the nodal features based on samples observed at a subset of
the nodes.

A real-valued function (or signal) on a graph is a map
y : V= R, where Vis the set of vertices. The value y(v) rep-
resents a feature of v € V, e.g., age, political alignment, or
annual income of person v in a social network. Suppose
that a collection of noisy samples {z,, = y(vy) + e} oy is
available, where e,, models noise, and M < N is the num-
ber of measurements. Given {z,,}_;, and assuming that the
graph topology is known, the goal is to estimate y, and thus
reconstruct the graph signal at unobserved vertices. Letting
z :=[zq,.. .,zM]T, the observation vector obeys z = My + e,
where y = [y(vy), ...,y(vN)]T, e = [el,...,eM]T, and
M € {0,1}™N is a sampling matrix with binary entries
[M],,, =1form=1,....M, and 0 elsewhere.

Permeating our overarching RKHS approach from
topology identification to signal reconstruction, consider
Hy = {y| yv) = T, k(v,vy), o, € R} defined over the
graph of N nodes. If y € H,, it can always be represented
as y = Ke, where [K];
Given z, RKHS-based function estimators are found as

= &(v;,vy), and @ := [ar,...,on] .

§=argmin £(z,y) + A2 (llyll,) a7)
where £ (e.g., the quadratic loss in LS) measures how the
estimated function values at the observed vertices {v,,} Y, fit
the data z; while ||y/|| %y := a | Ka; and, the regularizer Q(.)
can be chosen to promote desired properties, e.g., smooth-
ness with Q(&) = ¢2. Appealing again to the representer the-
orem, the solution of (17) is §(v) = Xm=1%m x(v,v,,), where
K is a graph-aware kernel, e.g., representing edge weights.
With ¢ := [&,..., dM]T, and a := MT &, it follows that
y=Ka=KM" &[53],[92]. Substituting into (17), and with
£ selected as the LS loss, one finds

&= arg min ||z—Kd||%+AQ((dTK&)1/2) (18)
o

where K := MKM . With & available, the reconstructed
signal is § = KM'é. Generalizing (18), an MKL scheme
can be developed by letting K = Z;I;=1 0,KP, where
{K(p)}izl is a dictionary of graph kernels. To this end,
{Gq},l;:l can be incorporated as variables over which to
optimize in (18) in order to find the best kernel combina-
tion as in Section III-A [92].

B. Graph-Aware Dimensionality Reduction

To deal with large-scale graphs and high-dimensional
data in the learning tasks discussed so far, a task of para-
mount importance is dimensionality reduction, typically
handled by PCA as outlined in Section II-B. While PCA per-
forms well for data close to a hyperplane, this may not hold
for many data sets [59]. In such cases, one may resort to ker-
nel (K)PCA, which first “lifts” {y;} using a nonlinear map-
ping ¢, onto a higher (possibly infinite) dimensional space.
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The premise is that with an appropriate ¢ the data will lie on
or near a hyperplane in the latter space. KPCA then finds the
low-dimensional representations {}, by solving
i wK; e 1
v, e a9)
where [Ky]i,i =« (vi- ;) = (¢(y0)s ¢(y})) is the prescribed ker-
nel [46], and Ay a diagonal matrix containing the d largest
eigenvalues of K. If a linear kernel is adopted, (19) is equiv-
alent to the dual PCA approach reviewed in Section II-B.
While K, in (19) depends only on Y, extra dependencies
conveyed by graphs, potentially available, can be accounted
for in the dimensionality reduction task. Toward that end,
(19) can be regularized by a graph-aware term [cf. (7)]
min

20
Yy T=Ay 20)

(WK ") + atr(wLow")
where 1 is a positive scalar, and A4 collects the d small-
est eigenvalues of K 14+ AL, = VAV'. Combining the
Laplacian regularizer with the KPCA cost, (20) is capable
of finding {y;} that preserve the “lifted” covariance captured
by K, while at the same time exhibiting smoothness over
the graph G. Problem (20) admits the closed-form solution
¥ = A)>V], where V; denotes the submatrix of V formed
with columns the eigenvectors corresponding to the eigen-
values in Ay.

When « is not prescribed, once again data-driven MKL
approaches can be developed along the lines of Section
III-B. In addition, instead of directly using L, a family of
graph kernels r(Lg) := Ugr(A) Ug can be employed, where
r(.) is a scalar function of the eigenvalues of L. By properly
selecting r(.), different properties of signals evolving over
graphs can be accounted for. As an example, when r(.) sets
eigenvalues above a certain threshold to 0, it acts as a sort
of “low pass” filter over the graph; see also [53]and [92].
Incorporating r(.) in (20) yields

~ .
¥ =arg min

\y;qzq:T:AdtrCPr(Ky_ 1) \PT) + ltr(\Pr(Lg)‘PT)- @A)

Even though only a single graph regularizer is introduced
in (20), this scheme has the flexibility to include multiple
graph regularizers based on different graphs [108].

C. Graph-Aware Subspace Clustering

Using either ¥ or Y, this section will deal with unsuper-
vised learning when data are constrained by a graph model.
The focus will be on generalizing subspace clustering, which
is known to subsume ordinary clustering (e.g., K-means), to
account for nonlinear manifolds. In the absence of exogenous
inputs (x; = 0), (4) bears remarkable resemblance to sparse
subspace clustering (SSC) [30], [118], whose goal is to cluster
high-dimensional data belonging to a union of low-dimen-
sional subspaces. In particular, given {y; € R” }ilsmnpled from
the union of d-dimensional subspaces embedded in RP, with
d < D, SSC postulates that y; = Xj%jy; + €;, where a;; # 0 only
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if i and j belong to the same subspace, while €; captures noise
and unmodeled dynamics. SSC seeks a sparsity-promoting LS
estimator for {a;} by solving

min ”Yi - Zai;Y;||§+lZ|aij|
{ay, j#i} j j

ajj, j#

s.t. %alj =1, Vi=1,....N (22)
=1
which promotes only a few nonzero coefficients {a;} per i.
Given [A];; = aj;, spectral clustering is performed, followed
by PCA to identify the constituent linear subspaces [30].
Clearly, estimating SSC weights is reminiscent of iden-
tifying {a;} in linear SEMs [cf., (4)]. Viewing SSC as an
approximate linear approach to manifold learning (compare
also with LLE in, e.g., [93]), the kernel-based SEM advo-
cated in [105] could also be adopted in the first SSC step to
estimate {a;;}, with the goal of exploiting nonlinear relation-
ships between data samples, and thus improving clustering
accuracy.

D. Graph-Aware Recommender Systems

In Section IV-A, a graph with known topology was lever-
aged to reconstruct missing nodal samples. Here, we will
pursue a similar imputation task for recommender systems,
where the topology is generally unknown, but can be esti-
mated from the limited available data. To this end, a popu-
lar approach known as sparse linear method (SLIM) for
top-N, recommendations starts by representing ratings of
each item as a linear combination of ratings of other items
with weights {a;} [81]. With vector r; collecting ratings of
the i-th item by all users (those not rating the ith item enter
0 ratings), SLIM solves the following problem per item i:

2

min ”fi - 2ayry ”2 + 22 air|
aii} i’ i’

s.t. a;; = 0, a;y Z O Vi/. (23)

Upon obtaining the {a;;}, the estimated rating of item i
by user u is found as 7,; = Xi%ii'rui. A top N, list for user u
can then be created by the rank-ordered collection (Pt
Again, estimating a;y in (23) is similar to identifying linear
SEM coefficients in (4). Thus, a sparse nonlinear method
(SNLM) can henceforth be developed along the lines of non-
linear SEMs to improve the accuracy of recommendations.

E. Joint Inference of Signals and Graphs

So far, the tasks of topology identification and learn-
ing signals over graphs were accomplished by solving two
separate yet related subproblems. Indeed, they are related
because topology identification relied on measurements at
all nodes, while signal learning relied on knowing the graph

topology.

Here, joint inference of signals and graphs is pursued
using limited data z; = M;yj, with M, denoting the measure-
ment matrix at slot [. Given z; and M, the goal is to find the
missing features y; and the graph adjacency via [55]

L 2 L 2
min ”l—Al” + ”ZI—MH”
min 2 {lyi— Anill, 1=21 vill,

+allAll+az A llE (24)
where 1, and 1, are positive constants. Block coordinate
descent can be used to solve (24) with guaranteed conver-
gence to a stationary point. Thus, one can jointly estimate
the topology and reconstruct unobserved nodal samples,
just based on a subset of observations.

The tacit assumption so far is that the graph topology
remains invariant over the observation interval. If this
is violated, topology identification methods will yield an
“average topology,” whereas the associated learning tasks
will perform suboptimally since they do not fully leverage
the information provided by the temporal dimension. This
motivates the methods outlined in the ensuing sections that
can cope with dynamic topologies, as well as with dynamic
nodal processes.

V. DYNAMIC MODELS FOR TOPOLOGY
IDENTIFICATION

In this section, several methods will be outlined for time-
varying (TV) graph topology identification, each speci-
fied by the model describing the topology per time slot.
A TV graph in this context is defined as G; := {V, &}, with
&, denoting the set of (possibly directed) edges present at
time t.

A. Graphical Lasso-Based Methods

Here, we review how the static graphical Lasso in Section
I1-A can be adapted to TV topologies [36]. The time-depend-
ent counterpart of the cost in (3) becomes ¢,(6,,£,) :=
log(det(®,)) — tr(£,6,) — || €, ||;, where A|| 8, ||; adjusts the
sparsity of the sought topology. Matrices {©,} across slots are
estimated as [cf., (3)]

T T
{@t} = ar%n(l)ax Yc(e.8)—u Y R(0,0,1) (25)
-0 ¢=1 t=2

where £, denotes a (possibly weighted) estimate of the
covariance matrix; R(-) is an optional term promoting simi-
larity between temporally adjacent topologies; and u, A con-
trol the respective strength of regularization. Clearly, edge
(i,j) is deemed present at slot ¢, if [@r]ij #0.

The relevant dynamic graphical Lasso schemes either
assume that @, is continuously (albeit slowly) changing, or,
it exhibits switching behavior, meaning ©;, = ... = 0,1 F#
©,=6,,1...6,_1#6, =0, =...= Or, for change points
7,..., % of the dynamic topology.
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The first subclass of methods appeals to smooth topol-
ogy variations. Among these, e.g., [127], entails R = 0, and
3, = Zex(|t = 1)y yI/Z (|t = 7]), where () is a sym-
metric nonnegative kernel. Alternatively, [41] adopts
R(6;,8,_1) = || ©; — ©;_1 ||; with the aforementioned goal of
explicitly promoting smooth evolution of the graph topol-
ogy; see also [45] for additional choices of R(-), each effect-
ing a topology evolution with different characteristics.

In the second subclass of methods, [3] estimates opti-
mally the change points, as well as the corresponding
topologies between pairs of change points, using dynamic
programming. Per segment, the approach in [3] adopts
R = 0, and relies on £, = (7441 — rk)‘lzfétfly,ﬂfor
te [Tk: Tpt+1 —1].

Graphical Lasso-based approaches can identify the topolo-
gies of dynamic, but only undirected graphs. For dynamic
directed graphs, one can resort to the methods presented next.

B. SEM-Based Methods

In order to identify dynamic directional connectivity,
approaches here adopt a static linear SEM per slot. The
switched dynamic SEM in [4] postulates that the adjacency
and input scaling matrices {A,B} jump among S states
{A,B*}5_;. Let o(t) denote the state per slot with indicator
Zis = 1 {o(t) = s}, and suppose that L-variate (instead of
univariate) observations {ygtl)}lel are available per node i at
slot t. Given data Y, := [ygl). . .ygL)], the change points and
states are obtained by solving the following problem:

S
m Z Zﬂas Y, - AY, - B X[+ XAl Ay
A B}s 1t=1s=1 s=1

{ltx}t,x=1 S
st. Aj=0,Bjj=0, Vs,i#], Y =1Vt
s=1

With {Y,} acquired sequentially, this NP-hard mixed inte-
ger program can be relaxed and solved with a two -step alter-

nating scheme. Using the most recent {A B }s 1» the state
is estimated as &(t) = argmms_l SslY = AY, - B.X, |2
Having &(t) (and thus { ;(ts}t _1) avaﬂable solve decoupled

problems per ¢ and s to update {A B } s=1-

In domains where a slow-varying topology is deemed
more plausible than an abruptly switching one, the expo-
nentially weighted LS estimator can be used instead as
detailed in [5].

Regarding generalizations, since SEMs are memoryless,
one is prompted to pursue dynamic SVARMs and Bayesian
models that account for lagged observations.

C. SVARM-Based Methods

In matrix—vector form, the TV counterpart of the (S)
VARM in Section II-A obeys the relationship

L
= IZOAED i+ € (26)
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where [Agl)]ij captures the link of y;; with y;;_, L is the order,
and €; accounts for noise and modeling inaccuracies.

The primary differentiation between alternatives comes
from the inference process involved. For instance, Fox
et al. [34] assume that AV e {A(ls)} _, vt with AD =

A®) if 5(t) = 5. The state is assumed to follow a hierarchi-
cal Dirichlet process hidden Markov model (HDP-HMM),
while the state sequence is inferred using a Gibbs sampler.

D. Bayesian-Network-Based Methods

Given the broad scope of dynamic Bayesian networks
(DBNs) a multitude of methods are available in this cate-
gory. The resultant algorithms produce directed graphs with
edge directionality assuming a causality interpretation.

For instance, Robinson and Hartemink [88] consider
that the transitions between temporally adjacent graphs
are restricted to changes from a predefined “move set” that
comprises, e.g., the introduction or removal of edges. The
Bayesian—Drichlet equivalent metric is taken as the likeli-
hood p(y;|G) of the observations y, given a particular graph
topology G. A Markov chain Monte Carlo (MCMC) sam-
pler is then employed to sample from the posterior of the
sequence of graphs and corresponding change points, condi-

tionedonY := [yir eees y-Tr] T. HMDMs can also be considered
as a special case of DBNs. In HMM-based methods, the net-
work structure is assumed to be dictated by a hidden state.
The hierarchical Dirichlet process HMM is adopted by [117]
to model the distribution of the hidden states. Conditioned
on the state, the observations are then assumed to follow a
Gaussian Bayesian network model. Inference is performed
using an MCMC sampling based algorithm.

E. Graphical-Regression-Based Approaches

Since the task of inferring the topology of a graph is tan-
tamount to obtaining the neighborhood of each node, a class
of methods have emerged that operate on a per-node basis,
following this principle.

Logistic regression can be employed to model the
(binary) observation(s) at node i and slot t as a function of
the observations at the rest of the nodes at t [2]. The logis-
tic regression cost is augmented with an #;-norm regular-
izer and a fusion penalty, to respectively promote sparsity
for each G;, and smooth temporal evolution of the sequence

{G1,.... 61}

F. Tensor-Based Methods

Here the graph is postulated to have a piecewise-con-
stant topology, modeled by a sequence of unkncﬁvn adja-
cency matrices {A e RNt e [z, tpy —
M time segments. The (i,j)-th entry [A,,]; = ajf
only if a directed edge links node i to j. The observations
obey time-varying SEMs; that is, yj = 3 iiaf'yi¢ + bjl x;e + ¢j¢
M, with e;

1] § =1, Over
is nonzero

for t € [, Tye1 — 1] per segment m = 1,...,



Giannakis et al.:

)
Rm+1

m

Fig. 4. Tensor RY with frontal slices {R), }1.;.

capturing unmodeled dynamics, while coefficients {ajj'} and
{bji} are unknown. The noise-free matrix-vector SEM is

then Yt = AnY: + By x;, where [A,]; = a and B, := Diag
(b1i,....bNN)- Suppose also that the exogenous 1nputs {x(m)}

are piecewise stationary over segments t € [, G, — 1],
m=1,...,M + 1, each with a fixed correlation matrix {R’,ﬁ1 =
E [x§m> (xg'”))T]}ff:l. Under these conditions, an online
algorithm can be developed for tracking {A,,, B, M, using
measured endogenous variables, and the correlation matri-
ces {RIIM_; [103], [106].

To this end, let \A,, := (I—A,,)"'B,,, and consider a
tensor R? with its m-th slice R}, = A, R5, AL, t € [z,
Tn+1 — 1] sequentially appended at t = 7,1, form =1, ..., M.
If E{x;x;i} = 0,Vi # j, the mth slice can be expressed as a
weighted sum of rank-one matrices

R}, = A, Diag(p}) A 27)
[p,’ﬁﬂ pfqu] T, with pf; = [E(xl-Zt), fort € [,
1]; see also Fig. 4.

where p;, 1=
Tm+1 —

Allowing R to grow sequentially along one mode is
well motivated for real-time operation, where data may be
acquired in a streaming manner. In this case, unveiling the
evolving topology calls for approaches capable of tracking
tensor factors A,,. Given the tensor R”, and possibly R, algo-
rithms for tracking dynamic tensor factors, e.g., PARAFAC
via recursive least-squares tracking (PARAFAC-RLST), can
be employed; see, e.g., [82], [103], and [106] for details.

Once A, is obtained, A,, can be estimated on the fly as

~ =1\ Lt
R, =1- (Diag(a))) A, [106].

Tensor-based topology identification along these lines
applies to both dynamic and static graphs, so long as (even a
subset of) second-order statistics of the exogenous inputs are
available, and change across segments; see [106], and [107]
where identifiability is studied under low-rank and sparsity
constraints on the adjacency matrix. Thus, piecewise input
stationary correlations play a role analogous to multiple lay-
ers, time-lagged and nonlinear terms in SVARMs, or, the
exogenous variables themselves in linear SEMs—what can be
critical for identifability when inputs cannot be available (e.g.,
due to privacy concerns), but their statistics can be measured.
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G. Change Point Detection Methods

Methods in this class typically rely on the likelihood
of the observations pg, (y¢), t =1, ...,
in the topology-specifying parameters @, per slot t. An
example of such parameters is the inverse covariance
matrix @, for multivariate Gaussian observations. At
their core, these test whether the constancy hypothesis

T, to detect changes

@ = --- = @ris broken at certain change points, and esti-
mate their locations.

One specific approach assumes that the graphs at each
instance come from the distribution defined by a generalized
hierarchical random graph model [85]. A (bootstrapped)
hypothesis test for constancy of {®}; is performed to
detect change points. Alternatives model the per-slot topol-
ogy as a Markov random field [94], or rely on the graphical
Lasso [22].

A multi-kernel approach to detecting changes in the gen-
erally nonlinear relationships among nodal samples is out-
lined next [64]. Per node i and for t € [ 7,1, 5, — 1], suppose
samples obey y;; = fl )(y\n) + e (m), where fi(m) is a nonlin-
ear function, and y\; := [y\it , Yt—l yeees ytT_L]T, with the usual
notational convention on the subscripts and memory L.
Function fi(m) can be estimated using MKL-based ridge
regression [cf. (8)-(10)]. With such estimates available,
=y — fim (¥\it) can be used to infer the
presence, and estimate the locations of change points.

Consider first the base case of having at most one
change point, and let £m .= [fl(m). .. fISIm)]T collect the
functions characterizing the segment m across nodes. Here

the residuals &{™

m € {0,1,2}, with m = 0 corresponding to the whole data
record [1,T]. Deciding whether a change point is present
amounts to performing the composite hypothesis test

Ho: ED=£@ =f© 3. fO2£@  (29)

where according to H; there is a change point 7 (the loca-
tion of which is to be estimated) when the vector functions
differ for segments [1,7 — 1] and [7,T]. According to Ho,
no such 7 is present. Toward specifying a test statistic for
(28), let G(€; 4, %) denote the probability density function
of a Gaussian variable € with mean x and variance o°. The
approximate likelihood with {e(m)} Gaussian, under H, is
p(Y; Ho) = [T [T 1G @05 0,529); and under H;, p(Y; 7,
)~ T [TE=16 (660: 0,6702) [T 6 (625 0,672,

with 520 =771 Zt:leit( >, and O_i2(1,2) (=T" (er— i +

?:réi%@)). The corresponding approximate generalized

likelihood ratio test statistic of change point # is

A(Y; 2) :

max
we(1T)

Iax, (T12) logz 595 5" 2)( ).

log p(Y; 7, H1)/p(Y 5 Hg)

(29)

We decide that H; is in effect if A exceeds a certain
threshold, which for a given probability of false alarms is
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obtained from the distribution of A under H,. This distribu-
tion is estimated using a model-based bootstrap, as detailed
in [64].

The case of an unknown number of change points can be
tackled using a variant of the binary segmentation approach
of [120] that builds on (28) and (29) [64]. At the beginning
of iteration k, the interval [1, T] is split into k segments with
Aiseesy
the maximum over these statistics correspond to the seg-
k& n A hypothesis test is then
conducted over this segment to assess whether a change

Ay, denoting the corresponding test statistics. Let

ment n*:= argmax,_;
point lies therein. If H; is accepted, the proposed point is
appended to the discovered change points and the process
moves on to iteration k + 1; otherwise it stops, with k seg-
ments discovered.

With the change points and corresponding segments
available, any of the static topology identification methods
of Section II-A or Section III can be applied per segment.

VI. DYNAMIC MODELS FOR LEARNING
OVER GRAPHS

In this section, a sample of learning tasks over dynamic
graphs will be reviewed. Some of the methods can afford
online implementation allowing nodes to (dis)appear as
time progresses, which explains the t-dependent notation V;
for the set of nodes. Most methods further assume that the
(generally varying) topology of the graph is either known,
or, it has been acquired using the methods outlined in the
previous section.

A. Dynamic Graph-Aware Link Prediction

Temporal link or edge prediction amounts to infer-
ring the (dis)appearance of edges ahead of time by leveraging
currently available graph snapshots. Let o, = {A;,...,A}
denote this set of snapshots with [A]; € {0,1} V i,j.t,
and [A];; = 1 if the edge i — j is present at time t. This is
in contrast to the ordinary link prediction setup, where a
single snapshot is used [71], thereby ignoring temporal pat-
terns potentially present in the data.

Given o, the goal is to predict Ay A, for At > 1. Supposing
At =1 for brevity, we will rely on an N X N matrix R+
comprising “edge scores,” based on which link i — j will be
deemed present in A4, if [Rt 1]1) exceeds a certain thresh-
old. An early work combined per-snapshot spatial predictors
with temporal predictors across snapshots [51]. Specifically,
Huang and Lin [51] postulate that the time series {[A4];;,...,
[Aiy} per (i,j) obeys an autoregressive integrated mov-

ing average (ARIMA) model. Predicting [A;y]; is thus

converted to a score [RfIﬁIMA]ﬁ, and the overall score is
obtained as [R™];; := [RiRiva i [RiGc]j» where the sec-

ond factor is found after applying a static link predictor to
At = ZT_lA
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Matrix and tensor factorization methods have also been
considered for dynamic link prediction [27]. Matrix R™ is
found as a low-rank approx1mat10n to the weighted aver-
age adjacency A(W> = YW At, with w € (0,1) being
the forgetting factor. Alternatively, one can form a three-
way tensor with entries [A];, and invoke its low K-com-
ponent CANDECOMP/PARAFAC approximant through
the decomposition Zk_ﬂlkak B°7, where m, > 0; ay,
Br» 7k denote the factors; and o is the Khatrl Rao product
R = Zk 15knkakﬁk with
6, =To 1Y e To+17y (1), where Ty represents the moving

[27]. The score matrix is then

window size over which the entries of the temporal profiles
yg are averaged. In other words, [R™!]; ij is a weighted sum of
the relationships between the pair (i, ) across the K compo-
nents {[ak By ]ij}k=1 with the contribution of component k
weighted by the recent “average activity” &, thereof.

A provably consistent nonparametric temporal link
predictor is developed in [96] by assuming that [Ay]]
A ~Bernoulli(g(e, (i,7))), where ¢,(i,j) comprises features
specific to the (i,}) pair (e.g., number of common neighbors
shared by the pair and the time instance of the last appear-
ance of the edge), as well as to the local neighborhood of
node i. A kernel-based estimator g is developed, using which
the score of the edge i — j is obtained as [Rtﬂ]j =8(9,(j, 1))
[96]. Recently, a deep learning approach to temporal link
prediction has been also developed [70].

B. Dynamic Graph-Aware Clustering

Paralleling Section IV-C, this section deals with estima-
tion of dynamically evolving clusters that exhibit TV graph-
encoded similarities between nodal objects. Many of the
methods presented hereafter are geared toward discovering
communities, that is clusters of nodes exhibiting dense intra-
cluster connectivity—a key task in network science, e.g., [33].

With y;, denoting the observation vector (object) of node
i at slot t, the corresponding set of objects for the same slot
is V), = {y} X or in matrix form Y, := [yy,.. -Yn)- The TV
(dis)similarity between y; and yj; is encoded in the TV edge
weights [A];; € R. If pairwise dissimilarities are measured
by Euclidean distances, as in the K-means clustering algo-
rithm, then [A]; = |lyy — Y1r||2 Suppose that K; = K clus-
ters are formed vt, and let I; := [ny;...n;| denote the N; X K
membership matrix at slot ¢t with binary entries [IT, ]y, = 1, if
node i belongs to cluster k at slot t, and [IL];; = 0 V k' # k.
This corresponds to hard clustering, but soft (or probabilis-
tic) clustering [50, Ch. 14] can be also accommodated with
YhaMle=1fori= 1,...,N,.

A class of dynamic graph-aware clustering approaches
relies on two functions of (A, IT;), namely the snapshot qual-
ity and the history cost [14]. The snapshot quality sq(IT, A;)
measures how well the objects ), are represented by the clus-
tering IT,, with respect to the (dis)similarities given by A,. In
K-means, for example, sq(I;,A;) = Thet 2&1[Ht]ik (1 — |l
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Vit — (n—krtl)_lYtnktHg), where nodal vectors are normal-
ized so that ||y; I3=1V it Here, sq(I;, A,) is proportional
to the negative of the sum of distances of each {y;} from
the cluster centroid it is assigned to. The history cost hc
(11;,10,_,) is a measure of the distance between IT; and II,_1,
thereby promoting similarity between temporally adjacent
clusterings. For K-means, hc(Il;, 1) = mingg. kj—1...K

YEall(age1) lYt“kt - (’TfT(kxf—n 1) 1Yr—1 (k) (t—1) 5. In
words, hc(IT,II;_;) is the sum of the Euclidean distances
of each centroid at time t to the corresponding one at t — 1.
Combining the two metrics, the optimal clustering at slot t is

1, = arg maxy o sq(T;, Ay) — (1 — ) he(T;, 1;)  (30)
where o € [0,1] controls the weight between the two costs.
Note that (30) entails a criterion naturally suited for streaming
graphs, since IT; does not depend on A, with 7> t. This class of
methods is typically referred to as “evolutionary clustering.”

The approach in (30) detailed for dynamic K-means, gen-
eralizes to clustering algorithms that correspond to different
choices of sq(-). In particular, nonnegative matrix factoriza-
tion [73], and several spectral clustering costs have been con-
sidered in, e.g., [18]. As far as tuning o, it depends on the
dynamic scenario at hand, but Folino and Pizzuti [31] have
advocated data-driven genetic algorithms to optimize its value.

Instead of adjusting clustering algorithms to graph
dynamics, one can rely on generative models to describe the
evolution of clusters, and infer the associated model param-
eters. Examples include Dirichlet process mixture models
[115], as well variants of the stochastic blockmodel (SBM)
possibly augmented with a state evolution model [38],
[122]. In particular, Xu and Hero [122] assume that the SBM
parameters are dictated by the system state whose evolution
is governed by a stochastic dynamical system. Inference is
then performed using a variant of the extended Kalman fil-
ter, and the cluster memberships are estimated using label-
switching methods. Detectability limits of dynamic SBMs
along with belief propagation algorithms that attain these
limits have been also reported [38].

One last model postulates that the community struc-
ture is piecewise constant, that is I} = ... =, _; # I, =
M, ; # M, = M, = ... =My for some change
7. Such an approach based on the minimum
description length (MDL) criterion is developed in [112].
The community structure is obtained by minimizing the
model complexity with respect to the cluster assignments,
as assessed by the MDL criterion. A change point 7 is

...
points 7,...,

declared if assigning the current graph snapshot G, to the
current segment [7_1,t — 1], does not reduce the overall
model complexity.

The parallelism between multilayer and dynamic SEMs
mentioned by the end of Section III-C can permeate benefits
of multilayer clustering [24] to dynamic clustering [123].

Topology Identification and Learning Over Graphs: Accounting for Nonlinearities and Dynamics

C. Dynamic Graph-Aware Reconstruction

Reconstructing signals on TV graphs amounts to estimat-
ing a function defined over the nodes, based on observations
from a subset of nodes collected at possibly different time
instances. The associated methods rely on function proper-
ties across nodes (e.g., smoothness or band-limitedness),
and leverage the TV graph topology to perform the recon-
struction task (also known as interpolation or imputation).

Specifically, let z, = M,y; + €, denote a noisy subset of
nodal measurements at slot t collected at nodes specified by
the binary M, X N wide (M, < N) matrix M. For the dynam-
ics of state y, affected by the known graph transition adja-
cency matrix A;,_;, consider the superimposed model

@ = = A 1Y<l)1 +

y=y+y?, (31
where the space-only component yg") is temporally uncor-
related to account for “fast” dynamics across slots; while the
spatio-temporal correlated VARM component y(l) captures
the “slow” dynamics (also known as trend). The state evo-
lution model in (31) is suitable for capturing variations in,
e.g., packet delays, stock prices, and temperature, measured
respectively at Internet, financial markets, and sensor net-
works [54], [87].

Using {z4}, (31), as well as graph kernels {K(”)} and
{K(V)} a space-time approach to reconstructing {yt} is

arg min ZM ”Zt’_Mt y(X) Mt’YEfv)Hz 32)
¥ Y(V)}
+#12||Y()‘) Apyp- 1Y ||K<">+#2Z||Yf>||K<V>

t'=1 t'=1

where the first sum is an LS measurement error; the sec-
ond sum is a spatiotemporal graph weighted LS state tran-
sition error; and the last sum is a spatial graph weighted
(so-termed kriging) regularizer. Although (32) can be solved
in batch form, its complexity grows prohibitively with the
time horizon. However, it has been shown that the sequence
of estimates {’}?ET?,,AM} can be obtained online using
what is called in [54] kernel kriged Kalman filtering; see also

[91] and [23].

VII. NUMERICAL TESTS

This section presents numerical tests conducted on both
synthetic and real data to demonstrate the effectiveness of
some of the approaches considered.

A. Synthetic Tests for SVARMs

We first test the performance of the approach in Section
III-B using synthetic data. Setting L = 1 in (11), samples
were generated via a random Erd6s—Rényi graph having
N = 20 nodes, with probability of edge presence set to 0.4.
Nodal samples were generated using linear and nonlinear

NXT

models. For several values of T, entries of Y € R were
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Fig. 5. EIER versus measurements-to-nodes ratio (T/N) for
simulated data generated using polynomial kernel of order P = 2.
K-SVARMs consistently outperform linear (L)SVARMSs.

randomly drawn from the standardized normal distribution,
that is y;; ~A(0, 1). Matrices {Kgf) } were formed with entries
[Kgf)]ij = x(yir»Yjr) for some kernel «. The entries of o;;; € RT
were drawn independently from A0, 1), while noise terms
were generated independent identically distributed (i.i.d.)
as g ~N (O, Gez). For all tests, error plots were averaged over
100 independent runs.

We evaluated performance using the edge identifica-
tion error rate (EIER) defined as EIER := (||A—fA:||o)/
(N(N— 1)) X 100, where || -||o denotes the number of
nonzero entries of its argument. Fig. 5 plots EIER against
the measurements-to-nodes ratio (T/N) under variable
signal-to-noise ratios (SNRs), for a polynomial kernel. The
synthetic graph was generated with edge probability 0.3.
Fig. 5 plots the EIER when data are generated by (11), using
a polynomial kernel of order P = 2. It is clear that nonlin-
ear SVARMs exhibit markedly improved performance rela-
tive to linear SVARMs. This corroborates the effectiveness
of the former in identifying the network topology when the
dependencies among nodes are nonlinear.

In order to assess the edge detection performance,
receiver operating characteristic (ROC) curves are plotted
under different modeling assumptions in Fig. 6. With Pp

and Learning Over Graphs: Accounting for Nonlinearities and Dynamics

denoting the probability of detection, and Pg, the probabil-
ity of false alarms, each point on the ROC corresponds to a
pair (Pgs , Pp) for a prescribed threshold. Fig. 6(a) is obtained
from tests run on data generated by Gaussian kernels with
o? =1, while Fig. 6(b) corresponds to polynomial kernels
of order P = 2. Using the area under the curve (AUC) as the
edge-detection performance metric, Fig. 6(a) and (b) illus-
trates the benefits of accounting for nonlinearities. In both
plots, kernel-based approaches result in higher AUC metrics
as compared to approaches relying on linear SVARMs.

Fig. 6(c) depicts ROC curves parameterized by 4 for lin-
ear and kernel-based SVARMs, with simulated data gener-
ated using a linear SVARM. Not surprisingly, kernel-based
SVARMs with polynomial kernels underperform the linear
SVARM, due to the inherently present model mismatch.
However, the kernel SVARM endowed with a multikernel
learning scheme (MK-SVARM) is shown to attain compara-
ble performance to the linear SVARM when the prescribed
dictionary comprises both linear and polynomial kernels.

B. Real Gene Expression Data

This section tests the performance of kernel-based
SEMs, which can be viewed as a special case of the kernel-
based SVARM in Section III-B. The experiments were car-
ried out on gene regulatory data collected form 69 unrelated
Nigerian individuals, under the International HapMap pro-
ject [35]. From the 929 identified genes, expression levels
and the genotypes of the expression quantitative trait loci
(eQTLs) of 39 immune-related genes were selected and
normalized; see [12] and [86] for detailed descriptions.
Genotypes of eQTLs were adopted as exogenous inputs X,
and gene expression levels were treated as the endogenous
variables Y.

The underlying gene regulatory network topology was
inferred by adopting both linear and nonlinear SEMs. For
each algorithm, 1 was selected by fivefold cross validation.
Fig. 7 shows the identified topologies, with the nodes anno-
tated by their corresponding gene IDs. Fig. 7(a) depicts the
resulting network based on a linear SEM, while Fig. 7(b)
and (c) results from nonlinear SEMs based on a polynomial

0 4 ——KSVARM, 2=0.01] |
4 ——KSVARM, A=0.1

KSVARM, A=1

’ - = LSVARM, A=0.01

~ = LSVARM, \=0.1

—— MKLSVARM, A=0.01 | |
——MKLSVARM, \=0.1 ||
MKLSVARM, A=1
= = LSVARM, 1=0.01
- — LSVARM, A=0.1
LSVARM, A=1

——KSVARM, A=0.1
—— KSVARM, A=1
KSVARM, A=10
- = LSVARM, A=0.1
~ = LSVARM, A=1
LSVARM, A\=10

------ KSVARM, A=0.01
........ KSVARM, A=0.1
KSVARM, A=1
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05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 09 1

P
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Fig. 6. ROC curves for data generated under different modeling assumptions: (a) K-SVARM based on a Gaussian kernel with 0 = 1;
(b) K-SVARM based on a polynomial kernel of order P = 2; and (c) Linear SVARM.
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Fig. 7. Inferred gene regulatory networks for 39 immune-related genes based on gene expression data of T = 69 individuals using:
(a) a linear SEM; (b) a kernel-based SEM using polynomial kernels of order 2; and (c) a kernel-based SEM using Gaussian kernels with

o2 =1[105].

kernel of order 2, and a Gaussian kernel with 6?>=1.Inall
cases, the identified networks are very sparse, and the non-
linear approaches unveil all edges identified by the linear
SEMs, alongside with a number of additional edges. Clearly,
considering the possibility that interactions among genes
may be driven by nonlinear dynamics, nonlinear frame-
works encompass linear approaches, and facilitate discovery
of causal patterns not captured by linear SEMs.

C. Inference of Real Temperature Data

This section tests the functional learning over graphs
discussed in Section IV-A on a real data set. The data set
comprises 24 signals corresponding to the average tempera-
ture per month in the intervals 1961-1990 and 1981-2010
measured by 89 stations in Switzerland [1]. The training set
contains the first 12 signals, corresponding to the interval
1961-1990, whereas the test set contains the remaining 12.
Each station is represented by a vertex and the graph was
constructed using the algorithm in [25] based on the train-
ing signals. Given samples on a test signal on a randomly
chosen subset of M vertices, the values at the remaining
N — M vertices were estimated. NMSE is averaged across
the test signals [92]. Fig. 8 compares the performance of
the MKL schemes, along with single-kernel ridge regression
(KRR), and estimators for bandlimited signals (BL) with dif-
ferent bandwidth B; see, e.g., [80]. The MKL adopts a dic-
tionary consisting of ten diffusion kernels with parameter
o uniformly spaced between 1 and 20. Single-kernel ridge
regression uses diffusion kernels for different values of 2.
It is clear from Fig. 8 that the MKL approach outperforms
all other approaches.

D. Recommendations for MovieLens

Here we evaluate the performance of the algorithm in
Section IV-D on MovieLens 1M data set, which contains
3706 users, 6040 movies, and 1M ratings. The training and
testing procedure follows that in [21]. Specifically, the data

set is randomly split into training and testing sets, and a
probe set is then formed by collecting only the five-star rat-
ings in the testing set. The nonlinear model is then trained
based on the training set, and for each user a list with top-N,
recommended items is provided by the model. Performance
of the novel sparse nonlinear method (SNLM) is compared
with PureSVD with 50 and 100 leading eigenvectors [21],
as well as SLIM [81], in terms of the recall and precision
metrics defined, respectively, as recall(N,) := #hits/#probe,
and precision(N,) := N, Lrecall(N,), where #hits counts the
number of ratings in the probe set that also appear in the
recommendation list; and #probe is the number of ratings in
the probe set. It can be readily observed from Fig. 9 and (10)
that the nonlinear approach outperforms other approaches
in both recall and precision.

E. Resting State fMRI Synthetics—Static Topology

The MKL-based PC approach in Section III-A was
evaluated on DCM-based synthetics [110]; see [63] for the
choice of DCM parameters and a short description of the
model. The upper triangular ground truth adjacency matrix

-

s, \ =~ Multi-kernel ¥
=0~ KRR,0%=1.00 \

= 0= KRR, 02=2.00 \
=9~ KRR,+%=500 \
—@==BLforB=5 \J
—#—=BLforB=10 %
—=—=BLfor B=20, r

| |
10 15 20 25 30 35 40 45 50 55 60
Sample size (S)

Fig. 8. NMSE obtained on the temperature data set.
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Fig. 9. Recall versus top N..

A € R3%39 contains 100 non-zero entries, each drawn as
[A];j~1(0.25,0.6) with U denoting the uniform distribu-
tion, and placed at a random entry of the matrix. The result-
ing DCM-based time courses were of length T = 200.

The kernel dictionary consisted of a single linear ker-
nel and 19 Gaussian kernels with variances belonging to
[107°,1]. The optimal regularization parameters were cho-
sen via five-fold cross validation. ROC curves highlight-
ing the performance gains over linear PC can be found in
Fig. 11.

F. Topology Identification for Meshed Power Grids

The MKL-based PC approach in Section III-A was fur-
ther evaluated on the task of inferring meshed power grid
topologies from voltage angle data [124]. The ground truth
topology was that of the IEEE 14-bus benchmark system,
whereas the (real) load data utilized were obtained from
the 2012 Global Energy Forecasting Competition [124]. The
voltage angles per bus, which in this context constitute the

0.09
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Fig. 10. Precision versus recall.
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Fig. 11. ROC curves obtained on synthetic resting state fMRI data.
The red curve corresponds to multi-kernel based partial correlation
whereas the green one stands for ordinary PC [63].

observations {y;}, were computed via the alternating cur-
rent (AC) power flow equations. The performance improve-
ment achieved by the MKL-based PC approach over existing
approaches is evident in Fig. 14.

G. Resting State fMRI Synthetics—Time-Varying
Topology

The performance of the MKL-based change point
detection approach in Section V-G was assessed on DCM-
based synthetics similar to the ones in Section VII-E, but
here with a time-varying topology. It is assumed that
A e R0 g4 replaced by its time-varying counterpart
A, with A, =A™ fort € 5,1, 5, — 1] and m = 1,...,N,,
where N,, denotes the number of segments; that is, A,
exhibits a switching behavior. The kernel dictionary used
consisted of ten Gaussian kernels and a linear one. Letting
the vector of change points 7 := [7...7y ] with 75 = 1 and
o, =T, the following five temporal configurations were

—8— DL SR B-2
—&— DLSR B=6
=0 LMSB=2
=& LMS B=6
b o. =0-- KKF
= TO--g--p--p--89--

s e, SRS S WP S

1 1 I 1 1

0.3 : :
1998 2000 2002 2004 2006 2008 2010 2012 2014

Time [year]

Fig. 12. NMSE obtained on the economic sectors data set [91].
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Fig. 13. Graphs of “Reid Hoffman” memes at t =5 (left) t = 30 weeks (center); inferred edges per week (right) [5].

considered: r =[1,60,110], [1,40,70,180], [1,60,175,250],
[1,50,90,130,180], [1,60,120,180,240]. For each con-
figuration, five data sets were generated, and the topology
corresponding to each segment was randomly drawn as in
Section VII-E. The number of change points N,,, — 1 was also
inferred by the method. Finally, the minimum allowed seg-
ment length was set equal to 25.

The MKL-based change detection approach assigned
83% of the time points to the correct segment, achiev-
ing both accurate change point presence detection (avg.
| N, = Ny | of 0.4) and change point location estimation (avg.
|2 — 7| of 13 time points).

H. Inferring the Production of Economy Sectors

The reconstruction approach in [91] was evaluated on
a data set provided by the Bureau of Economic Analysis
of the U.S. Department of Commerce. In particular, given
a set of graph snapshots {A[t]} with [A[t]],, denoting
the investment in trillions of U.S. dollars between sectors
n and m during the year 1995 + 2tfort =1, ...,9, the goal is
to track the total production of sector n’, call it f,,,[t], during
the year 1996 + 2t for t =1, ...,9. The results are depicted
in Fig. 12 that plots the normalized mean-square error
for each year 1996 + 2t for the approach in [91] (KKF).
For comparison purposes, the performance achieved by
distributed least-squares reconstruction (DLSR) scheme,
as well as by the least mean-squares algorithm (LMS)
when applied to the temporally averaged graph A = (1/9)
S o1A[t] (since these methods cannot handle TV topolo-
gies) is also provided. Note that KKF successfully leverages
the TV topology, and significantly outperforms the rest of
the approaches considered.

I. Time-Varying Topology Inference
From Information Cascades

The data set examined in [5] consists of memes (popular
text phrases), and the time of their appearance on certain
websites from March 2011 to February 2012. The subset of

memes associated with the keyword “Reid Hoffman,” the
cofounder of LinkedIn, was considered. The observation ygf)
corresponds to the timestamp of the appearance of meme
¢ on website i, if such an appearance occurred during the
t-th week; otherwise, yftc) is set to a fixed large value. It is
seen from Fig. 13 that there is an increase in the number of
edges in the estimated networks coinciding with the initial
public offering (IPO) of LinkedIn in May 2011. As time pro-
gresses, with other technology company IPOs emerging, this
trend stops.

VIII. CONCLUDING SUMMARY AND
RESEARCH OUTLOOK

This paper outlined approaches to inferring connectiv-
ity of graphs and learning signals over graphs, while tak-
ing into account nonlinear and dynamic effects present.
A reproducing-kernel Hilbert space framework for topology
identification based on nodal observations was presented
first to encompass a number of existing topology inference
methods, and markedly broaden their scope. With the graph

0.8
2
[ N I
g 067 Pr) (T
S gl e
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e 04r
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0.2 - - = Kemel-based PC - £, MKL
---------- Linear PC-based method
ol ) Concetration matrix-based method
0 0.2 04 0.6 0.8 1
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Fig. 14. ROC curves for topology inference of a meshed power grid
from voltage angle data (adapted from [124]).
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topologies in hand, key learning tasks over graphs were
considered to argue that accounting for nonlinear depend-
encies of signals residing on graphs generalizes existing
learning methods and further improves their performance.
Moreover, connectivity and inference over dynamic graphs

was considered.

ber of exciting directions for future research, includ-
ing: 1) broadening the scope of the nonlinear approach
to dynamic settings; 2) establishing identifiability of the
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