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ABSTRACT  |  Identifying graph topologies as well as processes 

evolving over graphs emerge in various applications involving 

gene-regulatory, brain, power, and social networks, to name 

a few. Key graph-aware learning tasks include regression, 

classification, subspace clustering, anomaly identification, 

interpolation, extrapolation, and dimensionality reduction. 

Scalable approaches to deal with such high-dimensional tasks 

experience a paradigm shift to address the unique modeling and 

computational challenges associated with data-driven sciences. 

Albeit simple and tractable, linear time-invariant models are 

limited since they are incapable of handling generally evolving 

topologies, as well as nonlinear and dynamic dependencies 

between nodal processes. To this end, the main goal of this paper 

is to outline overarching advances, and develop a principled 

framework to capture nonlinearities through kernels, which are 

judiciously chosen from a preselected dictionary to optimally 

fit the data. The framework encompasses and leverages (non)

linear counterparts of partial correlation and partial Granger 

causality, as well as (non)linear structural equations and vector 

autoregressions, along with attributes such as low rank, sparsity, 

and smoothness to capture even directional dependencies with 

abrupt change points, as well as time-evolving processes over 

possibly time-evolving topologies. The overarching approach 

inherits the versatility and generality of kernel-based methods, 
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and lends itself to batch and computationally affordable 

online learning algorithms, which include novel Kalman filters 

over graphs. Real data experiments highlight the impact of 

the nonlinear and dynamic models on consumer and financial 

networks, as well as gene-regulatory and functional connectivity 

brain networks, where connectivity patterns revealed exhibit 

discernible differences relative to existing approaches.

KEYWORDS  |  Kernel-based models; network topology 

inference; nonlinear modeling; time-varying networks

I.  IN TRODUCTION

The science of networks and networked interactions has 
recently emerged as a major catalyst for understanding 
the behavior of complex systems [28], [67], [90], [109]. 
Such systems are typically described by graphs, and can 
be man-made or natural. For example, human interac-
tion over the web commonly occurs over social networks 
such as Facebook and Twitter, while sophisticated brain 
functions are the result of complex physical interactions 
among neurons; see, e.g., [95] and references therein. 
Other complex networks show up in diverse fields includ-
ing financial markets, genomics, proteomics, power grids, 
and transportation systems, to name a few.

Despite their popularity, single-layer networks may fall 
short in describing complex systems. For instance, mode-
ling interactions between two individuals using a single edge 
weight can be an oversimplification of reality. Generalizing 
their single-layer counterparts, multilayer networks allow 
nodes to belong to different groups, termed layers [10], [66]. 
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These layers could represent different views, such as tempo-
ral snapshots of the same network, distinct subnetworks (e.g., 
family, soccer club, or work-related subnetworks), or different 
units (e.g., infantry, vehicles or airborne units in tactical net-
works) [83]. Multilayer networks can further model systems 
typically impossible to represent by traditional graphs, such as  
heterogeneous information networks [114], [126].

When unknown, the first step in understanding network 
structure is identification of the underlying graph topology—a 
critical task in diverse setups; see [67, Ch. 7], [29], [84], [99], 
and references therein. Applications include the discovery of 
causal links between regions of interest in the brain, as well 
as identifying regulatory and inhibitory interactions among 
genes. Terrorists and fugitives can be unveiled by learning 
hidden links in social interactions, or telephone call graphs; 
see, e.g., [6, Ch. 1] for the intelligence leading to the capture 
of Saddam Hussein. Both undirected as well as directed links 
are of interest to identify. Pertinent tools for directed graph 
connectivity identification include Granger causality [89], 
vector autoregressive models (VARMs) [42], structural equa-
tion models (SEMs) [62], [76], and dynamic causal models 
(DCMs) [37]. The directionality of links cannot be revealed 
using symmetric correlations between nodal random vari-
ables; see, e.g., [36]. Such correlation-based approaches are 
simple and popular as they rely on tractable linear connectiv-
ity models. Linear SEMs have been widely adopted in socio-
metrics [43], psychometrics [79], genetics [12], and dynami-
cally evolving social networks [5], [87], [106]. Despite their 
simplicity, linear models cannot capture complex nonlinear 
interactions that are prevalent in real networks. Here, we 
will outline advances on nonlinear models for graph topology 
inference that also subsume their linear counterparts.

Having acquired or knowing a priori the topology of a graph 
provides statistical information about relationships among 
nodes, and can thus be beneficial for inference of processes 
evolving over networks. Prevalent learning tasks include 
dimensionality reduction, classification, and clustering [50]. 
Dimensionality reduction has been extensively studied [9], 
[60], [93], [98], and principal component analysis (PCA) [60] 
is the “workhorse” method for obtaining low-dimensional rep-
resentations preserving most of the variance present in high-
dimensional data. Multidimensional scaling (MDS) [68] on 
the other hand maintains the pairwise distances between data 
when going from high- to low-dimensional spaces, while local 
linear embedding (LLE) [93] only preserves linear relation-
ships between neighboring data. Information from nonneigh-
boring data, however, influences the performance of ensu-
ing tasks such as reconstruction, regression, classification, 
or clustering [49], [116]. It is also worth stressing that PCA, 
MDS, and LLE account for only linear relationships among 
nodal data. Generalizing PCA, kernel PCA [59] captures non-
linear relationships, while Laplacian eigenmaps [9] preserve 
nonlinear similarities between neighboring data. However, 
all aforementioned learning tools do not account for struc-
tural graph-induced information that is potentially available. 

Such information may be task specific, e.g., provided by some 
“expert” or be dictated by the physics specifying the underly-
ing graph, or be inferred from alternative views of the data. As 
shown in [57], [59], [100], and [101] for PCA, graph awareness 
can be incorporated in the dimensionality reduction process 
through regularization. We will also overview in this tutorial 
nonlinear graph-aware dimensionality reduction approaches 
that build and broaden the scope of graph-regularized PCA in 
our era of big data analytics.

Although early graph topology identification and learning 
presumed static topologies, it became evident that in many 
domains (e.g., consumer recommendations and financial 
interactions, gene regulation, and brain functional connectiv-
ity) accounting for dynamics can offer valuable insights [5], 
[13], [52], [53], [56], [91]. These dynamics emerge when the 
underlying graph topologies are varying, but also when the 
learning tasks over graphs entail nonstationary processes. 
Such tasks include clustering, link prediction, and reconstruc-
tion of dynamic signals on graphs. These themes are moti-
vated by the need of, e.g., tracking communities evolving over 
social networks, leveraging multiple graph snapshots obtained 
across different time slots for improving recommendations, 
as well as achieving higher reconstruction accuracy for (non)
stationary signals over static or dynamic graphs. Here, we will 
overview learning approaches over dynamic graphs along with 
recent works that account for nonlinear dynamical models.

The rest of the paper is organized as follows. Section II 
deals with linear topology identification and learning for 
processes (signals) evolving over graphs. Section III out-
lines general kernel-based nonlinear topology identification 
approaches. Section IV considers generalizations of learning 
tasks such as dimensionality reduction and clustering to non-
linear settings. Section V overviews several methods for topol-
ogy identification of time-varying graphs, whereas Section VI 
outlines learning tasks over such graphs. Finally, Section VII 
uses numerical tests on both real and synthetic data to illus-
trate several of the approaches considered.

Notation: Bold uppercase (lowercase) letters will denote 
matrices (column vectors), while operators ​​(⋅)​​ ⊤​​, ​​λ​    max​​ (⋅)​, and ​
diag(⋅)​ will stand for matrix transposition, maximum eigen-
value, and diagonal matrix, respectively. The identity matrix 
will be represented by ​I​, while ​0(1)​ will denote the matrix or 
vector of all zeros (ones), and their dimensions will be clear in 
context. Finally, the ​​ℓ​p​​​ and Frobenius norms will be denoted 
by ​​∥​​⋅​​∥​​​p​​​, and ​​∥​​⋅​​∥​​​

F
​​​, respectively.

II .   PR ELU DE: LINE A R A ND STATIC 
MODELS

Consider an ​N​-node network ​G(V, ℰ)​, whose topology is cap-
tured by a generally unknown graph adjacency matrix ​A ∈ ​
ℝ​​ N×N​​, having nonzero ​(i, j)​th entry only if a directed edge 
is present from node ​i​ to node ​j​; see Fig. 1. Suppose that the 
network represents an abstraction of a complex system with 
measurable input sample ​{​x​it​​}​ of node ​i​ at time ​t​ scaled by ​​b​ii​​​,  
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and corresponding output ​{ ​y​it​​}​ with endogenous (generally 
directed) links ​​a​ij​​​; clearly, ​​a​ij​​ = ​a​ji​​​ for undirected links. In the 
context of brain networks, ​​y​it​​​ could represent the ​t​-th sample 
from the ​i​th electroencephalogram (EEG) electrode, while ​​
x​it​​​ could be a controlled stimulus that affects a specific region 
of the brain. In social networks (e.g., Twitter) over which 
information diffuses, ​​y​it​​​ could represent the timestamp of 
user ​i​ tweeting about viral story ​t​, while ​​x​it​​​ measures the level 
of interest (quantified by, e.g., the page rank) of node ​i​.

A. Identifying Graph Topologies

Here we outline methods to identify ​{​a​ij​​}​ from ​{​y​it​​}​ (and ​
{​x​it​​}​ if available). A common metric quantifying the adja-
cency ​{​a​ij​​}​ is the (Pearson) correlation coefficient estimated 
from ​T​ nodal samples collected in vector ​​y​i​​ := ​[​ y​i1​​…​y​iT​​]​​ ⊤​​,  
zero-mean compensated by ​​​_ y​​i​​  := ​T​​ −1​ ​∑ t=1​ 

T  ​ ​y​it​​​ 1​, and normal-
ized by the vector norms, to obtain 

	​​ ρ​ ij​​ := ​ 
​( ​y​i​​ − ​​ y ̅ ​​i​​ )​​ ⊤​ ( ​y​j​​ − ​​ y ̅ ​​j​​ )

  _________________  
​∥​​​y​i​​ − ​​ y ̅ ​​i​​​​∥​​​2​​ ​∥​​​y​j​​ − ​​ y ̅ ​​j​​​​∥​​​2​​

 ​​ .� (1)

Given a probability of false alarms, a threshold ​​T​fa​​​ can be 
specified to test whether ​|​ρ​ ij​​| > ​T​fa​​​, and thus assert that an edge 
having strength ​​a​ij​​ = ​ρ​ ij​​​ links nodes ​(i, j)​; see, e.g., [67, Ch. 
7]. The symmetry of ​​ρ​ ij​​​ implies that it can not reveal direc-
tionality of edges. In addition, ​​ρ​ ij​​​ can not discern mediated 
from unmediated dependencies between pairs of nodal vari-
ables. Indeed, consider for instance the three-node toy net-
work ​i → k → j​, where nodes ​i​ and ​j​ are mediated through 
node ​k​. This mediation would imply correlation of variables 
at nodes ​i​ and ​j​ based on ​​ρ​ ij​​​; thus, correlation-based con-
nectivity can incorrectly declare presence of an ​(i, j)​ edge. 
Fortunately, one can cope with mediation via partial cor-
relations (PCs) that correspond to the correlation coef-
ficients of the residual vectors ​​​ ~ y​​i​​ := ​y​i​​ − ​​   y​​i|⧵ij​​​, where ​​​   y​​i|⧵ij​​ =  
f​({​y​k​​ | k ∈ { V    ⧵ij}})​​ denotes the predictor of ​​y​i​​​ formed by a 
function ​f​ of observations from all nodes but ​i​ and ​j​ (this set 
is henceforth abbreviated as ​⧵ij​). PCs regress ​​y​k​​​ out of ​​y​i​​​ and ​​
y​j​​​ to avoid the possibly spurious (due to mediation) edge ​(i, j)​
. The resultant hypothesis test compares with a prescribed 
threshold ​​T​fa​​​ the absolute value of [cf., (1)] 

	​​​ ρ ̃ ​​ij​​ := ​ 
​(​​ ~ y​​i​​ − ​​

_
 ​ ~ y​​​i​​)​​ ⊤​ (​​ ~ y​​j​​ − ​​

_
 ​ ~ y​​​j​​)
  _____________  ‖ ​​ ~ y​​i​​ − ​​

_
 ​ ~ y​​​i​​ ​‖​2​​ ‖ ​​ ~ y​​j​​ − ​​

_
 ​ ~ y​​​j​​ ​‖​2​​

 ​ .​� (2)

PC-based inference of (un)mediated yet undirected 
tooplogies requires testing (2) for ​O​(​N​​ 2​)​​ pairs of nodes, 
which can be challenging as ​N​ grows. Nonetheless, PCs 
offer a principled means of detecting edges with constant 
false-alarm rate.

Interestingly, PCs relying on linear predictor functions 
​f​ are intimately related with the inverse covariance matrix ​​
Θ​​ −1​ := cov(y)​, where ​y  := ​[​y​1​​…​y​N​​]​​ ⊤​​ collects random vari-
ables across nodes. Specifically, if ​​​   y​​i|\ij​​ = ​∑ k≠i,j​​ ​β ​ kj​​​ ​y​k​​​ is  
the linear minimum mean-square error (LMMSE) predictor 
in (2), it holds that (see, e.g., [67, Ch. 7]) 

​​​ρ ̃ ​​ij​​ = − ​[Θ]​ij​​ / ​√ 
________

 ​[Θ]​ii​​ ​[Θ]​jj​​ ​ .​

 If ​y​ is also zero-mean Gaussian distributed, ​y~N(0, ​Θ​​ −1​)​,  
the linear predictor is MMSE optimal, and the variables ​ 
( ​y​i​​, ​y​j​​)​ are independent conditioned on all other nodal vari-
ables, if and only if ​​[Θ]​ij​​ = 0​; that is, e.g., [67, Ch. 7]

​cov(​y​i​​, ​y​j​​ | ​y​ ⧵ij​​) = 0 ⇔ ​[Θ]​ij​​ = 0.​

This link among linear PCs in (2), conditional uncor-
relatedness of nodal variables (or independence in the 
Gaussian case), and (non)zero entries of ​​Θ​​ −1​​ is at the heart 
of the graphical Lasso approach to topology identification 
[36]. The latter starts with the regularized log-likelihood of 
temporally independent Gaussian vectors to form the Lasso 
criterion for inference of sparse yet undirected graphs as 
[36]

	​​    Θ ​ = ​arg max​ 
Θ≻0

​ ​  log (det (Θ))  − tr(​   Σ ​Θ) − λ‖Θ​‖​1​​​� (3)

where ​​[​   Σ​]​ij​​ = ​T​​ −1​ ​∑ t=1​ 
T  ​ ​y​it​​​ ​y​jt​​​ is the sample covariance esti-

mated using ​T​ nodal measurements, and ​‖Θ​‖​1​​​ the ​​ℓ​1​​​-norm 
sparsity regularizer that together with ​λ​ tune the number of 
zero entries ​​[Θ]​ij​​​, and thus the adjacency entries ​​a​ij​​​.

Fig. 1. Illustration of an ​N​-node network with directed edges (in 
blue), and (the ​t​th sample of) exogenous measurements per node 
(red arrows) [105].

Fig. 2. SVARMs postulate that dependencies between the nodal 
time series may be due to instantaneous effects (blue links), and/or 
time-lagged effects (red links) [104].
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Albeit not able to deal with directionality, the upshot of 
graphical Lasso and variants (e.g., [29]) is that they reveal 
edges simultaneously, at complexity ​O(​N​​ 3​)​ comparable to 
that required by the PC-based tests.1 An alternative that also 
pursues all edges simultaneously and can deal with direc-
tionality entails SEMs. Linear SEMs postulate that each ​​y​jt​​​ 
depends on two sets of variables: endogenous ​​{ ​y​it​​}​i≠j​​​ and 
exogenous ​{​x​jt​​}​, with the unknown structure identified by ​
{​a​ij​​, ​b​jj​​}​ [62]

	​​ y​jt​​ = ​∑ 
i≠j

​ ​​ a​ij​​​ ​y​it​​ + ​b​jj​​ ​x​jt​​ + ​e​jt​​ ,     j = 1, …, N​� (4)

where ​​e​jt​​​ captures unmodeled dynamics. Given samples  
​{​y​it​​, ​x​it​​}​, the topology coefficients ​{​a​ij​​}​ can be obtained using 
least squares (LS) estimation possibly regularized as in [12] 
to effect sparsity. Note that the output ​​y​jt​​​ of node ​j​ depends 
only on its input ​​x​jt​​​, and its single-hop neighbors. Conditions 
for identifiability of directional edges ​{​a​ij​​ ≠ ​a​ji​​}​ can be found 
in [7], where the critical role played by the exogenous terms 
is also highlighted. Such a role in SEMs will be expanded by 
multilayer SEMs, and (non)linear SVARMs.

A second popular approach to identifying directed 
topologies relies on Granger causality (GC) [44], whereby 
a directed edge from node ​j​ to ​i​ corresponds to a causal 
dependence of ​i​ on ​j​. To assess such dependence, linear GC 
builds on the following two regression hypotheses (see, e.g., 
[47, Ch. 11]): 

	​​ ℋ​0​​ : ​y​i​​ [t ] = ​​
_

 y​​ \j​ 
⊤​ [t ] ​γ ​  i​​ + ​ϵ​i|⧵ j​​ [t ] ​ � (5a)

	​​ ℋ​1​​ : ​y​i​​ [t ] = [​​
_

 y​​ \j​ 
⊤​ [t ] , ​y​j​​ [t​−​1 ] , …, ​y​j​​ [t​−​L ]  ] ​​γ ′ ​​i​​ + ​ϵ​i​​ [t ]​� (5b)

where ​​​
_
 y​​\j​​ [t ] := ​[​y​ \ij​ 

⊤ ​ [t − 1] …​y​ \ij​ 
⊤ ​ [t − L ] , ​y​i​​ [t − 1 ] …​y​i​​ [t −  

L]]​​ ⊤​​; subscript ​\ij​ denotes all nodal measurements but ​
i​ and ​j​; and ​L​ is the model order. After estimating ​​γ ​ i​​​ and 
​​​γ  ′ ​​i​​​ using LS, the estimated residuals can be obtained along 
with their scaled variances as ​​​ s ̂ ​​ 0​ 2 ​ := ​∑ t=L+1​ 

T  ​ ​​ϵ ̂ ​​ i|\j​ 
2 ​ ​ [t ]​, and ​​​ s ̂ ​​ 1​ 

2​  :=  
​∑ t=L +1​ 

T
  ​ ​​ϵ ̂ ​​ i​ 2​​ [t ]​. The test statistic ​​F​ij​​ = ​(​​ s ̂ ​​ 0​ 2 ​ − ​​ s ̂ ​​ 1​ 

2​ )​/ ​​ s ̂ ​​ 1​ 
2​​ is com-

pared to a threshold ​​T​fa​​​ found for a prescribed false-alarm 
probability. If ​​F​ij​​ > ​T​fa​​​, model ​​ℋ​1​​​ is in effect, and ​{ ​y​j​​}​ is said 
to “Granger cause” ​{ ​y​i​​}​. Intuitively, ​{ ​y​j​​}​ causes ​{ ​y​i​​}​ if includ-
ing past values of ​​{ ​y​j​​ [​t ′ ​]}​

​t ′ ​<t
​​​ in the regressors for predicting ​​

y​i​​ [t ]​ lowers the prediction error variance.
Our final class of linear models for topology identifi-

cation is that of SVARMs, which postulate that each ​​y​jt​​​ is  
represented as a linear combination of instantaneous meas-
urements at the remaining nodes ​​{ ​y​it​​}​i≠j​​​, and their time-
lagged counterparts ​{​{ ​y​i(t−ℓ)​​}​ i=1​ 

N ​ }​ ℓ=1​ 
L
 ​​  [16]. Specifically, ​​y​jt​​​ 

obeys the model 

	​​ y​jt​​ = ​∑ 
i≠j

​ ​​a​ ij​ 
(0)​​ ​y​it​​ + ​ ∑ 

i=1
​ 

N
 ​​ ∑ 
 ℓ=1

​ 
L
  ​​a​ ij​ 

(ℓ)​​​ ​y​i(t−ℓ)​​ + ​e​jt​​ ​ � (6)

where ​​a​ ij​ 
(ℓ)​​ for ​ℓ ≠ 0​ captures the causal influence of node ​

i​ on node ​j​ over a lag of ​ℓ​ slots, while ​​a​ ij​ 
(0)​​ encodes the 

corresponding instantaneous relationship between the 
two. A link is present from node ​i​ to node ​j​ either when  
​​a​ ij​ 

(0)​ ≠ 0​, or, when there exists some ​ℓ ∈ { 1, …, L}​ for 
which ​​a​ ij​ 

(ℓ)​ ≠ 0​. Order ​L​ can be determined via model 
selection methods such as the Bayesian information [17], 
or Akaike’s criterion [11].

If ​​a​ ij​ 
(ℓ)​ = 0      ∀ i, j, ℓ ≠ 0​, then (6) boils down to (4) with ​

B = 0​; hence, SVARMs subsume SEMs without exogenous 
inputs. In addition, with ​​a​ ij​ 

(0)​ = 0   ∀ i, j​, (6) reduces to the 
model considered in (5b) [89].

With ​​y​t​​ := ​​[​y​1t​​ … ​y​Nt​​]​​​ 
⊤​​, ​​e​t​​  := ​​[​e​1t​​…​e​Nt​​]​​​ 

⊤​​, and the lagged 
adjacencies ​​​[​A​​ (ℓ)​]​​ij​​  := ​a​ ij​ 

(ℓ)​​, the matrix–vector version of (6) is ​​
y​t​​ = ​A​​ (0)​ ​y​t​​ + ​∑ ℓ=1​ 

L  ​ ​A​​ (ℓ)​​ ​y​t−ℓ​​ + ​e​t​​​, where ​​A​​ (0)​​ has ​​{​a​ ii​ 
(0)​ = 0}​ i=1​ 

N
 ​​ .  

Broadening the scope of PC, SEM, and Granger mod-
els, SVARM unveils the sought topology of (un)directed 
graphs by estimating via ordinary LS [16] the matrices ​​
{​A​​ (ℓ)​}​ ℓ=0​ 

L
 ​​  based on the vector time series ​​{​y​t​​}​ t=1​ 

T ​​ ; see also 
[77] for a recent approach. Alternatively, as with PCs multi-
ple hypotheses can be tested to detect individual links under 
prescribed false-alarm rates [89]; see also [67, Ch. 7.2] for 
approaches to predicting missing links.

Even though attractive in its simplicity, the linear time-
invariant (static) SVARM falls short in capturing nonlinear 
dependencies inherent to complex networks. To this end, 
generalizations of the linear SVARMs to nonlinear kernel-
based SVARMs will be considered in Sections III-A and 
III-B.

B. Reducing Dimensionality via Graph Regularization

This section deals with a paradigm of learning over 
static graphs, namely linear dimensionality reduction, 
when the topology is known and can be employed as prior 
information. Consider ​N​ vectors, each centered by subtract-
ing ​​N​​ −1​ ​∑ n=1​ 

N  ​ ​ y​n​​​​, and collected as columns of the ​D × N​ 
matrix ​Y  := [​y​1​​…​y​N​​]​. Dimensionality reduction seeks ​d × 1​  
vectors ​​{​ψ​ i​​}​ i=1​ 

N ​​ , with ​d < D​, that preserve certain proper-
ties of the original data ​{​y​i​​}​. MDS, for instance, aims at  
low-dimensional representations ​{​ψ​ i​​}​ that preserve the pair-
wise distances among ​{​y​i​​}​ [68], while LLE maintains local 
linear relationships within neighborhoods [93]. It is known 
that all these dimensionality reduction schemes are spe-
cial cases of kernel-based PCA, which will be presented in 
Section IV-B [39]; but first, it is instructive to outline PCA 
and its dual form.

Given ​Y​, PCA obtains the low-dimensional representa-
tions ​​ψ​ i​​ = ​U​ d​ ⊤​ ​y​i​​​, where ​​U​d​​​ has columns the eigenvectors of  
​Y ​Y​​ ⊤​ = UΣ ​U​​ ⊤​​ corresponding to its ​d​ largest eigenvalues 
[50]. Matrix ​U​ can equivalently be obtained via the singu-
lar value decomposition (SVD) ​Y = UΣ ​V​​ ⊤​​, and the original 
vectors can be recovered as ​​y​i​​ = ​U​d​​ ​ψ​ i​​​. PCA thrives when the 

1Trading off generality for complexity, Segarra et al. [99] postulated 
smooth polynomial maps of adjacencies to correlations that are linked to 
diffusions, and a notion of “graph stationarity.” Different from (1)–(3), 
[99] and [29] are not linked to connectivity-related (un)conditional corre-
lations between nodal vectors.
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data lie close to a ​d​-dimensional hyperplane. Its complexity 
is that of eigendecomposing ​Y ​Y​​ ⊤​​, namely ​O(N ​D​​ 2​)​, which 
means that PCA is more affordable when ​D ≪ N​ [60].

In contrast, for small sets of high-dimensional vectors ​
(D ≫ N)​ dual PCA is more attractive. Indeed, the SVD of ​
Y​ implies that ​U = YV ​Σ​​ −1​​, which in turn yields the low-
dimensional vectors as ​​ψ​ i​​ = ​U​ d​ ⊤​ ​y​i​​ = ​Σ​ d​ −1​ ​V​ d​ ⊤​ ​Y​​ ⊤​ ​y​i​​​. It fol-
lows that ​Ψ = ​U​ d​ ⊤​ Y = ​Σ​ d​​ ​V​ d​ ⊤​​, where ​​Σ​ d​​ ∈ ​ℝ​​ d×d​​ is a diagonal 
matrix containing the ​d​ leading eigenvalues of ​​Y​​ ⊤​ Y​, and  
​​V​d​​ ∈ ​ℝ​​ N×d​​ is the submatrix of ​V​ collecting the correspond-
ing eigenvectors of ​​Y​​ ⊤​ Y​. The complexity of dual PCA is  
​O(D ​N​​ 2​)​; it is thus preferred over PCA when ​D ≫ N​. It can  
be readily verified that dual PCA is also the optimal solution 
to ​​min​Ψ:Ψ​Ψ​​ ⊤​=​Λ​ d​​​​ ‖ ​Y​​ ⊤​ Y − ​Ψ​​ ⊤​ Ψ ​‖​ F​ 2 ​​, a fact that we will be used 
in Section IV-B; see, e.g., [108].

In some application scenarios, side information avail-
able by the graph structure can be potentially useful for 
dimensionality reduction. Suppose, for instance, that there 
is a graph ​G​ over which the data are smooth; that is, vec-
tors ​{​y​i​​}​ on connected nodes of ​G​ are also close to each other 
in Euclidean distance. The Laplacian of ​G​ is ​​L​G​​ := D − A​,  
where ​D​ is a diagonal matrix with entries ​​[D]​ii​​ = ​d​ii​​ = ​
∑ j​​ ​a​ij​​​​, and ​​[A]​ij​​ = ​a​ij​​ ≠ 0​ if node ​i​ is connected with node ​j​. 
Consider now the term ​tr(Ψ ​L​G​​ ​Ψ​​ ⊤​) = ​∑ i=1​ 

N  ​ ​​ ​∑ j≠i​ 
N  ​ ​a​ij​​​ ‖​ψ​ i​​ − ​ψ​ j​​​‖​​ 2​​,  

which is a sum of the distances of pairs of ​​ψ​ i​​​’s, weighted by 
the corresponding edge weight of the pair in ​G​. Invoking this 
term as regularizer promotes low-dimensional representa-
tions corresponding to pairs of nodes connected with large 
edge weights ​​a​ij​​​ to stay close to each other. Augmenting the 
PCA cost function with this regularizer yields the graph-
regularized PCA [59]

	​ ​ min
​ ​U​d,​​ Ψ​
 ‖Y − ​U​d​​ Ψ ​‖​ F​ 2 ​ + λtr​(Ψ ​L​G​​ ​Ψ​​ ⊤​)​​ � (7)

where ​λ > 0​ controls the strength of regularization. Building 
upon (7), robust versions of graph-regularized PCA have 
also been developed in, e.g., [100]and [101].

III .   NONLINE A R MODELS FOR 
TOPOLOGY IDEN TIFIC ATION

Going beyond linearity, this section generalizes the lin-
ear models outlined in Section II-A to capture nonlinear 
dependencies among nodal variables of a graph.

A. Undirected Graphs

The linear PC coefficient in (2) is tailored to assess-
ing only linear mediating dependencies. To overcome this 
limitation, a nonlinear PC metric has been introduced 
recently [63], using a dictionary of known (so termed ker-
nel) basis functions to replace the linear predictor ​​​y ̂ ​​i|⧵ij​​ [t ]​ 
in (2) with a nonlinear function of ​​y​ ⧵ij​​ [t] := { ​y​kt​​ |k ∈ V   ⧵ij}​.  
To this end, consider the kernel-based regression model ​​
y​i​​ [t] = ​f​i​​ (​y​ \ij​​ [t ]) + ​ϵ​i|j​​ [t]​, where ​​f​i​​ ∈ ℋ​ is a function from  

the reproducing kernel Hilbert space (RKHS) ​ℋ  :=  
​{f|  f(​y ​⧵ij​​ [t ])  = ​∑ ​t ′ ​=1​ 

∞  ​ ​β ​​t ′ ​​​​   κ (​y​⧵ij​​ [t ] , ​y ​\ij​​ [​t ′ ​])}​​, where the ker-
nel ​κ​ measures the similarity between ​​y ​\ij​​ [t ]​ and ​​y ​\ij​​ [​t ′ ​]​. The 
functional optimization problem of interest is 

	​ ​​f ̂ ​​i​​ =  ​argmin ​ 
f  ∈ℋ

​ ​  ​∑ ​t ′ ​=1​ 
T  ​ ( ​y​i​​ [​t ′ ​] − f (​ ​y ​\ij​​ [​t ′ ​]))​​ 2​ + λ‖f ​‖​ ℋ​ 2 ​ ​ � (8)

where ​λ​ is a regularization scalar, and ​‖⋅​‖​ℋ​​​ denotes the 
norm induced by ​ℋ​. The representer theorem asserts that 
the solution to (8) is ​​​f ̂ ​​i​​ (​y ​ \ij​​ [t ]) = ​∑ ​t ′ ​=1​ 

T  ​ ​β ​ i​t ′ ​​​​  κ (​y ​\ij​​ [t] , ​y​ \ij​​ [​t ′ ​])​ 
[50, p. 169], which upon substituting into (8) boils down to 
estimating the ​T​ parameters in ​​β ​ i​​  := ​[​β ​ i1​​ , …, ​β ​ iT​​]​​ ⊤​​.

Clearly, selecting ​κ​ specifies ​ℋ​, and hence it affects 
critically the estimation performance. The nontrivial task of 
choosing ​κ​ can be addressed using the data-driven approach 
known as multi-kernel learning (MKL), where an optimal 
linear combination of kernels from a preselected diction-
ary ​​{​κ​ p​​}​ p=1​ 

P ​​  is learned; see, e.g., [19]. That is, ​κ = ​∑ p=1​ 
P  ​ ​θ​ p​​​ ​κ​ p​​​ 

with ​​θ​ p​​ ≥ 0   ∀   p​. Since for vectors ​​v​1​​​ and ​​v​2​​​ it is possible to 
include the linear kernel ​​κ​ lin​​ (​v​1​​ , ​v​2​​) := ​v​ 1​ 

⊤​ ​v​2​​​, this RKHS-
based PC approach subsumes its linear counterpart in (2).

As far as dictionary selection, it depends on the amount 
of prior information available, and the complexity that can 
be afforded by the MKL optimization that follows up. For 
instance, one can adopt a family of smoothness-promoting, 
linear, Gaussian, heat, or, diffusion kernels (over a grid of 
their parameters), and many more that can be available as 
prior information in the application at hand.

Jointly optimizing (8) over ​​β ​ i​​​ and over the MKL param-

eters ​θ  := ​[​θ​ 1​​ , …, ​θ​ P​​]​​ ⊤​​ turns out to be equivalent to [63]

	​​  arg min​ 
θ∈ ​C​q​​, ​β ​ i ​​∈ ​ℝ​​ T​

​​   ‖(1 / ​√ 
__

 λ ​) ​y​i​​ − ​√ 
__

 λ ​ ​β ​ i​​ ​‖​​ 2​ + ​ ∑ 
p=1

​ 
P
  ​​θ​ p​​​ ​β ​ i​ 

⊤​ ​K​p\ij​​ ​β ​ i​​​� (9)

where ​​[​K​p\ij​​]​t​t ′ ​​​ = ​κ​ p​​ (​y ​\ij​​ [t ] , ​y ​\ij​​ [​t ′ ​])​ and ​​C​q​​  := {θ ≽ 0, ‖θ − ​θ​ 0​​ ​
‖​q​​ ≤ c}​ with ​c​ controlling the regularization. Solving with 
respect to ​​β ​ i​​​ and eliminating it from (9) yields [125]

	​​ arg min​ 
θ ∈ ​C​q​​

​ ​ ​ y​ i​ 
⊤​ ​​(λI + ​ ∑ 

p=1
​ 

P
  ​​θ​ p​​​ ​K​p\ij​​)​​​ 

−1

​ ​y​i​​ .​� (10)

This is a convex program that can be solved using the 
projected gradient descent iteration [20], namely ​​θ​ ν+1​​ = ​
P​​C​q​​​​ (​θ​ ν​​ − ηg(​θ​ ν​​))​, where ​g(θ)​ stands for the gradient with 
respect to ​θ​ of the cost in (10), ​​P​​C​q​​​​ (⋅)​ is a projection oper-
ator on the ​q​th-norm constraint set ​​C​q​​​, and ​η​ denotes the 
step size. The iterative algorithm converges to the global 
optimum at a rate of ​O(1 / ν)​ [20], [125]; see also [102] for a 
recent efficient alternative.

Once the estimates ​​​y ̂ ​​i|⧵ij​​ [t ] := ​​f ̂ ​​i​​ (​y​ \ij​​ [t ])​ for ​t = 1, …, T​ are 
obtained (and likewise for ​​​y ̂ ​​j|⧵ij​​ [t ]​), the kernel PC of ​i​ and ​j​  
with respect to the rest of the nodes can readily be found 
by substituting into (2). A hypothesis test is then performed 
to decide whether an ​(i, j)​ edge is present as described in 
Section II-A. Even though the kernel-based PC captures 
(un)mediated nonlinear interactions, it does so pairwise; 
thus, it is more computationally attractive for predicting 
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only a few edges. In addition, it cannot reveal directionality, 
which motivates the nonlinear SVARMs considered next.

B. Directed Graphs

Recognizing the limitations of linear methods for mod-
eling nonlinear dependencies, several nonlinear variants of 
SEMs have emerged; see, e.g., [48], [58], [61], [65], [69] 
[104], and [121]. Unfortunately, these works assume that 
the graph topology is known a priori, and the algorithms 
developed only estimate the unknown edge weights. On the 
other hand, several variants of nonlinear GC and VARMs 
have well-documented merits in unveiling links that often 
remain undiscovered by traditional linear models; see, e.g., 
[72], [74], [75], and [113]. Linear and nonlinear GC metrics 
on the other hand entail multiple pairwise tests. These con-
siderations motivate the ensuing approach that jointly iden-
tifies edges by leveraging sparse nonlinear SVARMs.

Consider the multivariate nonlinear regression [cf., (6)] ​​
y​t​​ = ​

_
 f​(​y​\jt​​, ​{​y​t−ℓ​​}​ ℓ=1​ 

L ​ ) + ​e​t​​​, and its entry-wise form, ​​y​jt​​ = ​​ f ̅ ​​j​​  
(​y​\jt​​, ​{​y​t−ℓ​​}​ ℓ=1​ 

L ​ ) + ​e​jt​​ ,   j = 1, …, N​.
To circumvent the “curse of dimensionality” in estimat-

ing a ​[(L + 1) N − 1 ]​-variate function, we will confine our 
multivariate function ​​​ f ̅ ​​j​​​ to be separable with respect to each 
of its ​(L + 1) N − 1​ variables. Such a simplification amounts 
to adopting a generalized additive model [50, Ch. 9], here 
of the form ​​​ f ̅ ​​j​​ (​y​\jt​​, ​{​y​t−ℓ​​}​ ℓ=1​ 

L ​ ) = ​∑ i≠j​ 
​ ​  ​​ f ̅ ​​ ij​ 

0​​ (​ y​it​​) + ​∑ i=1​ 
N  ​ ​∑ ℓ=1​ 

L  ​ ​​ f ̅ ​​ ij​ 
(ℓ)​​​  

(​ y​i(t−ℓ)​​)​, where ​{​​ f ̅ ​​ ij​ 
(ℓ)​}​ will be specified later. With ​​​ f ̅ ​​ ij​ 

(ℓ)​ ( y) := ​

a​ ij​ 
(ℓ)​ ​f​ ij​ 

(ℓ)​ ( y)​, and postulating that the node ​j​ measurement at ​
t​ depends on instantaneous spatial and time lagged effects, 
one arrives at [cf., (6)] 

	​​ y​jt​​ = ​∑ 
i≠j

​ ​​a​ ij​ 
(0)​​ ​f​ ij​ 

(0)​ ( ​y​it​​) + ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=1

​ 
L
  ​​a​ ij​ 

(ℓ)​​​ ​f​ ij​ 
 (ℓ)​ ​(​y​i(t−ℓ)​​)​ + ​e​jt​​​� (11)

where similar to (6), ​{​a​ ij​ 
(ℓ)​}​ specify the lag-adjacency matri-

ces ​​{​A​​ (ℓ)​}​ ℓ=0​ L ​​ . Rather than the ​[(L + 1) N − 1 ]​-variate ​​​ f ̅ ​​j​​​, (11) 
requires estimating ​(L + 1) N − 1​ univariate functions ​{​f​ ij​ 

(ℓ)​}​.
The linear SVARM in (6) assumes that ​{​f​ ij​ 

(ℓ)​}​ in (11) are 
linear, what can be generalized by resorting again to an 
RKHS model of the nonlinear ​{​f​ ij​ 

(ℓ)​}​ [105]. Let each univari-
ate ​​f ​ ij​ 

(ℓ)​ (.)​ in (11) belong to the RKHS ​​ℋ​ i​ 
(ℓ)​  := ​{​f​ ij​ 

(ℓ)​ | ​f​ ij​ 
(ℓ)​ (y)  =  

​∑ t=1​ 
∞  ​ ​β ​ ijt​ 

(ℓ)​​ ​κ​ i​ 
(ℓ)​ ( y, ​y​i(t−ℓ)​​)}​​. Considering the measurements at 

node ​j​, and ​​f​ ij​ 
(ℓ)​ ∈ ​ℋ​ i​ 

(ℓ)​​, for ​i = 1, …, N​ and ​ℓ = 0, 1, …, L​, the 
regularized LS estimates of these functions are 

​​{​​f ̂ ​​ ij​ 
(ℓ)

​}​ = arg ​  min​ 
​​​{​f​ ij​ (ℓ)​∈​ℋ​ i​ 

(ℓ)​}​​
​​ ​ 1 __ 2 ​ ​ ∑ 

t=1
​ 

T
  ​ ​​[​y​jt​​ − ​∑ 

i≠j
​ ​​a​ ij​ 

(0)​​ ​f​ ij​ 
(0)​ (​ y​it​​) 

	 − ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=1

​ 
L
  ​​a​ ij​ 

(ℓ)​​​ ​f​ ij​ 
(ℓ)​ ​(​y​i(t−ℓ)​​)​​​ 

2
​]​  

+ λ ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=0

​ 
L
  ​Ω​​​(‖ ​a​ ij​ 

(ℓ)​ ​f​ ij​ 
(ℓ)​ ​‖​​ℋ​​ (ℓ)​​​)​​� (12)

where the regularizer ​Ω(z)​ can be chosen to effect different 
attributes, such as sparsity using the ​Ω(ζ)  = ‖ζ ​‖​1​​​ surrogate 
of the ​​ℓ​0​​​-norm [26]. Invoking again the representer theorem  

[50, p. 169], the optimal ​​​f ̂ ​​ ij​ 
(ℓ)

​ (y)  = ​∑ t=1​ 
T  ​ ​β ​ ijt​ 

(ℓ)​​ ​κ​ i​ 
(ℓ)​ (y, ​y​i(t−ℓ)​​)​ 

can be substituted into (12), and with ​​β ​ ij​ 
(ℓ)​ := ​[​β ​ ij1​ 

(ℓ)​ , …, ​β ​ ijT​ (ℓ)​]​​ 
⊤

​​, ​​ 

α ​ ij​ 
(ℓ)​  := ​a​ ij​ 

(ℓ)​ ​β ​ ij​ 
(ℓ)​​, the functional minimization in (12) boils 

down to optimizing over vectors ​{​α ​ ij​ 
(ℓ)​}​ to find 

​​{​​   α​​ ij​ 
(ℓ)​}​ = arg ​ min​ 

{​α​ ij​ 
(ℓ)​}

​​ ​ 1 __ 2 ​ z∥y​j​​ − ​∑ 
i≠j

​ ​​K​ i​ 
(0)​​ ​α​ ij​ 

(0)​ − ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=1

​ 
L
  ​​K​ i​ 

(ℓ)​​​ ​α​ ij​ 
(ℓ)​ ​​∥​​​ 2​ 

2
​ ​ 

  ​   + λ ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=0

​ 
L
  ​Ω​​ ​(​√ 

_____________

  ​​(​α​ ij​ 
(ℓ)​)​​​ 

⊤
​ ​K​ i​ 

(ℓ)​ ​α​ ij​ 
(ℓ)​ ​)​​� (13)

where the ​T × T​ matrices ​{​K​ i​ 
(ℓ)​}​ have entries ​​[​K​ i​ 

(ℓ)​]​t,​t ′ ​​​ = ​κ​ i​ 
(ℓ)​  

(​ y​it​​ , ​y​i(​t ′ ​−ℓ)​​)​. The nonzero ​​a​ ij​ 
(ℓ)​​ specifying the topology can be 

found as the solution of (13) using the alternating direction 
method of multipliers (ADMM); see, e.g., [40].

As with the kernel-based PC, rather than preselecting ​
{​κ​ i​ 

(ℓ)​}​ a data-driven MKL alternative applies here as well 
[105]. Consider just for notational simplicity that ​​κ​ i​ 

(ℓ)​ = 
κ ∈ K​, for ​ℓ = 0, 1, …, L​ and ​i = 1, …, N​ in (12); and thus, ​​

ℋ​ i​ 
(ℓ)​ = ​ℋ​​ (κ)​​. With ​​ℋ​p​​​ denoting the RKHS induced by ​​κ​ p​​​, the 

optimal ​{​​f ̂ ​​ ij​ 
(ℓ)

​}​ is expressible in a separable form as ​​​f ̂ ​​ ij​ 
(ℓ)

​ (y) :=  

​∑ p=1​ 
P  ​ ​f​ ij​ 

(ℓ,p)​​ (y)​, where ​​f​ ij​ 
(ℓ,p)​​ belongs to RKHS ​​ℋ​p​​​, for ​p = 

1, …, P​ [8], [78]. Hence, (12) with data-driven kernel selec-
tion reduces to 

​​{​​f ̂ ​​ ij​ 
(ℓ)

​}​ = arg ​  min​ 
​​​{​f​ ij​ (ℓ,p)​∈​ℋ​p​​}​​

​​ ​ 1 __ 2 ​ ​ ∑ 
t=1

​ 
T
  ​ ​​[ ​y​jt​​ − ​ ∑ 

i ≠ j
​​​ ∑ 
 p = 1

​ 
P
  ​​a​ ij​ 

(0)​​​ ​f​ ij​ 
(0,p)​ (​y​it​​) 

	 − ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=1

​ 
L
  ​​ ∑ 

p=1
​ 

P
  ​​a​ ij​ 

(ℓ)​​​​ ​f​ ij​ 
(ℓ,p)​ (​y​it​​)​]​​ 

2
​ 

+ λ ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
ℓ=0

​ 
L
  ​​ ∑ 

p=1
​ 

P
  ​Ω​​​​(‖ ​a​ ij​ 

(ℓ)​ ​f​ ij​ 
(ℓ,p)​​‖​​ℋ​p​​​​)​​.​� (14)

As (14) and (12) are only different in the extra summa-
tion over ​P​ kernels, (14) can also afford an efficient solver 
[105].

The kernel-based SVARM outlined here can identify the 
topology of directed graphs. By simply including linear ker-
nels in the dictionary, it subsumes also linear SVARMs. It can 
further account for nonlinear interactions, as well as sparsity 
and low rank of adjacency matrices, while at the same time it 
scales well with the number of data and the graph size. In a 
nutshell, the MKL-based RKHS methodology offers a princi-
pled overarching approach to topology identification.

C. Multilayer Graphs

While single-layer graphs are useful for modeling various 
networks, additional structural information may be revealed 
if certain networks are modeled via multilayer graphs. Take 
social networks as an example, where each layer represents a 
network constructed based on connections on either Facebook, 
LinkedIn, or Twitter. Nodes in different layers may be related 
when they correspond to accounts belonging to the same per-
son. This motivates well the focus of this section on modeling 
and topology identification of multilayer networks.
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Consider an  ​L​-layer network, consisting of ​N = ​∑ ℓ=1​ 
L  ​ ​N​ℓ​​​​ 

nodes with ​​N​ℓ​​​ nodes per layer ​ℓ​; see also Fig. 3. Each layer ​
ℓ​ can be modeled as a graph ​​G​​ (ℓ)​ (​V​​ (ℓ)​, ​ℰ​​ (ℓ)​)​, where ​​V​​ (ℓ)​​ is 
the set of nodes, and ​​ℰ​​ (ℓ)​​ the set of edges. Each ​​G​​ (ℓ)​​ can be 
described using its adjacency ​​A​​ (ℓ)​​ whose ​(i, j)​-th entry ​​a​ ij​ 

(ℓ)​ ≠ 0  
if (i, j)  ∈ ​ℰ​​ (ℓ)​​; hence, ​​a​ ij​ 

(ℓ)​​ is nonzero if there is a directed 
edge from node ​j​ to node ​i​ of the ​ℓ​-th layer. To capture con-
nectivity between nodes belonging to different layers, say ​
ℓ​ and ​​ℓ ′ ​​, consider the ​​N​ℓ​​ × ​N​​ℓ ′ ​​​​ matrix ​​A​​ (ℓ,​ℓ ′ ​)​​, with entries ​​
α​ ij​ 

(ℓ,​ℓ ′ ​)​ ≠ 0 if (i, j) ∈ ​ℰ​​ (ℓ,​ℓ ′ ​)​​, where ​​ℰ​​ (ℓ,​ℓ ′ ​)​​ is the set of edges 
between layers ​ℓ​ and ​​ℓ ′ ​​.

Consider a process observed over the entire network 
with ​​y​ it​ 

(ℓ)​​ denoting the ​t​th observation at node ​i​ of the ​ℓ​-th 
layer. For ​L > 1​, the so-termed multilayer (mule)-SEM is 
[cf., (4)] 

	​​ y​ it​ 
(ℓ)​ = ​∑ 

j≠i
​ ​​α​ ij​ 

(ℓ)​​ ​y​ jt​ 
(ℓ)​ + ​ ∑ 

​ℓ ′ ​≠ℓ
​​​ ∑ 
k=1

​ 
​N​​ℓ ′ ​​​

 ​​α​ ik​ (​ℓ ′ ​,ℓ)​​​ ​y​ kt​ 
(​ℓ ′ ​)​ + ​e​ it​ 

(ℓ)​​� (15)

where the intralayer term ​​∑ j≠i​​ ​α​ ij​ 
(ℓ)​​ ​y​ jt​ 

(ℓ)
​​ captures the influ-

ence from same-layer neighboring nodes, while the inter-
layer term ​​∑ ​ℓ ′ ​≠ℓ​​ ​∑ k=1​ 

​N​​ℓ ′ ​​​ ​  ​α​ ik​ (​ℓ ′ ​,ℓ)​​​ ​y​ kt​ 
(​ℓ ′ ​)​​ models the influence of 

neighboring nodes from different layers. Nodes are not 
allowed to connect with themselves per layer. Defining the ​
T × 1​ vectors ​​y​ i​ 

(ℓ)​  := ​[ ​y​ i1​ 
(ℓ)​ , …, ​y​ iT​ (ℓ)​]​​ ⊤​​, and the ​T × ​N​ℓ​​​ matri-

ces ​​Y​​ (ℓ)​  := [​y​ 1​ 
(ℓ)​…​y​ ​N​ℓ​​​ 

(ℓ)​]​ for ​ℓ = 1, …, L​, the matrix mule-SEM 
is ​​Y​​ (ℓ)​ = ​Y​​ (ℓ)​ ​A​​ (ℓ)​ + ​∑ ​ℓ ′ ​≠ℓ​​ ​Y​​ (​ℓ ′ ​)​​ ​A​​ (​ℓ ′ ​,ℓ)​ + ​E​​ (ℓ)​​, ​ℓ = 1, …, L​,  
where ​​E​​ (ℓ)​​ collects all noise variables for layer ​ℓ​.

Given ​​{​Y​​ (ℓ)​}​ ℓ=1​ 
L
 ​​ , topology identification here seeks the 

unknown ​​{​A​​ (ℓ)​}​ ℓ=1​ 
L
 ​​ , as well as the interlayer connectivity 

matrices ​​{​A​​ (ℓ,​ℓ ′ ​)​}​ ​ℓ ′ ​=1,​ℓ ′ ​≠ℓ​ 
L
 ​​ . Since many real-world networks 

are sparse, ​​{​A​​ (ℓ)​}​ ℓ=1​ 
L ​​  and ​​{​A​​ (ℓ,​ℓ ′ ​)​}​ ​ℓ ′ ​=1,​ℓ ′ ​≠ℓ​ L ​​  are clearly also 

expected to be sparse. Leveraging this attribute, the topol-
ogy of multilayer graphs can be estimated via [119]

​​ min​ 
​ ​A​​ (ℓ)​,​ 
{​A​​ (ℓ,ℓ)​}

​​
​​   ​ 1 __ 2 ​ ​∥​​ ​Y​​ (ℓ)​ − ​Y​​ (ℓ)​ ​A​​ (ℓ)​ − ​ ∑ 

​ℓ ′ ​≠ℓ
​​​Y​​ (​ℓ ′ ​)​​ ​A​​ (​ℓ ′ ​,ℓ)​ ​‖​ F​ 

2
 ​​�

(16)

 ​ +​λ​ 1​ 
(ℓ)​ ‖​A​​ (ℓ)​​‖​1​​ + ​λ​ 2​ (ℓ)​ ​ ∑ 

​ℓ ′ ​≠ℓ
​​‖​A​​ (​ℓ ′ ​,ℓ)​​‖​1​​​   s. to diag​(​A​​ (ℓ)​)​ = 0​

where ​‖Z ​‖​1​​​ denotes the sum of the absolute values of the 
entries of matrix ​Z​. Problem (16) is convex, and can be 
solved efficiently in a distributed fashion using ADMM 
[40], [97].

The nonlinear SVARM approach of the previous sec-
tion can be readily adapted to multilayer networks by intro-
ducing an additional summation over the layers [cf., (11)  
and (15)].

At this point, it is also worth reflecting on the role of 
exogenous variables in linear SEMs that are known to aid 
identifiability of single-layer topologies [7]. This role can 
be played by mule-SEMs/SVARMs, where multiple lay-
ers can represent lagged terms in (non)linear SVARMs or 
snapshots of dynamic networks across time, as will be seen 
in Section V.

I V.   NONLINE A R MODELS FOR GR A PH-
AWA R E LE A R NING

With the adjacency matrices at hand, this section studies 
how various learning tasks can benefit from incorporating 
dependence information conveyed by graphs. Although 
graph-aware (semi)supervised classification has been 
also actively pursued [15], [111], due to space limitations, 
the ensuing sections will touch on graph-aware nonlinear 
reconstruction, dimensionality reduction, and clustering 
approaches.

A. Nonparametric Regression for Signal 
Reconstruction

Various applications involve inference of a function 
defined over a graph naturally, or, as a result of encoding 
probabilistic dependence among variables viewed as “sig-
nals” taking values over the nodes of a graph [32]. Depending 
on the application, one may have available only limited 
nodal measurements. In social networks, for instance, indi-
viduals may be reluctant to share private information. Such 
settings could benefit from inference methods that estimate 

Fig. 3. Example of a multilayer network.
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the nodal features based on samples observed at a subset of 
the nodes.

A real-valued function (or signal) on a graph is a map ​
y  :  V → ℝ​, where ​V​ is the set of vertices. The value ​y(v)​ rep-
resents a feature of ​v ∈ V​, e.g., age, political alignment, or 
annual income of person ​v​ in a social network. Suppose 
that a collection of noisy samples ​​{​z​m​​ = y(​v​m​​) + ​e​m​​}​ m=1​ 

M ​​  is 
available, where ​​e​m​​​ models noise, and ​M ≤ N​ is the num-
ber of measurements. Given ​​{​z​m​​}​ m=1​ 

M ​​ , and assuming that the 
graph topology is known, the goal is to estimate ​y​, and thus 
reconstruct the graph signal at unobserved vertices. Letting ​
z  := ​[​z​1​​ , …, ​z​M​​]​​ ⊤​​, the observation vector obeys ​z = My + e​,  
where ​y  := ​[y(​v​1​​), …, y(​v​N​​) ]​​ ⊤​​, ​e  := ​[​e​1​​ , …, ​e​M​​]​​ ⊤​​, and  
​M ∈ ​{ 0, 1}​​ M×N​​ is a sampling matrix with binary entries ​​
[M ]​m,​v​m​​​​ = 1​ for ​m = 1, …, M​, and 0 elsewhere.

Permeating our overarching RKHS approach from 
topology identification to signal reconstruction, consider ​​

ℋ​y​​  := ​{y|   y(v)  = ​∑ n=1​ 
N  ​ ​α ​ n​​​ κ(v, ​v​n​​), ​α ​ n​​ ∈ ℝ}​​ defined over the 

graph of ​N​ nodes. If ​y ∈ ​ℋ​y​​​, it can always be represented 
as ​y = Kα​, where ​​[K ]​ij​​  := κ(​v​i​​ , ​v​j​​)​, and ​α  := ​[​α ​ 1​​ , …, ​α ​ N​​]​​ ⊤​​.  
Given ​z​, RKHS-based function estimators are found as 

	​ ​   y​ = arg ​min​ 
y∈​H​y​​

​ ​ ℒ(z, y) + λΩ​(‖y​‖​​H​y​​​​)​​� (17)

where ​ℒ​ (e.g., the quadratic loss in LS) measures how the 
estimated function values at the observed vertices ​​{​v​m​​}​ m=1​ 

M ​​ , fit 
the data ​z​; while ​‖y ​‖​ ​H​y​​​ 

2 ​   := ​α​​ ⊤​ Kα​; and, the regularizer ​Ω(.)​ 
can be chosen to promote desired properties, e.g., smooth-

ness with ​Ω(ζ)  = ​ζ​​ 2​​. Appealing again to the representer the-

orem, the solution of (17) is ​​y ̂ ​(v)  = ​∑ m=1​ 
M  ​ ​​α​​ ˇ​​m​​​ κ(v, ​v​m​​)​, where ​

κ​ is a graph-aware kernel, e.g., representing edge weights. 
With ​​α​​ ˇ​  := ​[​​α​​ ˇ​​1​​ , …, ​​α​​ ˇ​​M​​]​​ ⊤​​, and ​α  := ​M​​ ⊤​ ​α​​ ˇ​​, it follows that  
​y = Kα = K ​M​​ ⊤​ ​α​​ ˇ​​ [53], [92]. Substituting into (17), and with ​
ℒ​ selected as the LS loss, one finds 

	​  ​α​​ ​̌̂ = ​arg  min​ 
​α​​ ˇ​
​ ​  ‖z − ​K​​ ˇ ​ ​α​​ ˇ​ ​‖​ 2​ 2​ + λΩ​(​(​​​α​​ ˇ​​​ ⊤​ ​K​​ ˇ ​​α​​ ˇ ​​​ 

 
​)​ 1/2)​​� (18)

where ​​K​​ ˇ ​  := MK ​M​​ ⊤​​. With ​​​​α​​ ​​  available, the reconstructed 
signal is ​​   y​ = K ​M​​ ⊤​​α​​ ​̌̂ ​. Generalizing (18), an MKL scheme 
can be developed by letting ​K = ​∑ p=1​ P  ​ ​θ​ p​​​ ​K​​ (p)​​, where  

​​{​K​​ (p)​}​ p=1​ 
P
 ​​  is a dictionary of graph kernels. To this end, ​​ 

{​θ​ q​​}​ p=1​ P ​​  can be incorporated as variables over which to 
optimize in (18) in order to find the best kernel combina-
tion as in Section III-A [92].

B. Graph-Aware Dimensionality Reduction

To deal with large-scale graphs and high-dimensional 
data in the learning tasks discussed so far, a task of para-
mount importance is dimensionality reduction, typically 
handled by PCA as outlined in Section II-B. While PCA per-
forms well for data close to a hyperplane, this may not hold 
for many data sets [59]. In such cases, one may resort to ker-
nel (K)PCA, which first “lifts” ​{​y​i​​}​ using a nonlinear map-
ping ​ϕ​, onto a higher (possibly infinite) dimensional space. 

The premise is that with an appropriate ​ϕ​ the data will lie on 
or near a hyperplane in the latter space. KPCA then finds the 
low-dimensional representations ​{​ψ​ i​​}​, by solving 

	​​   min​ 
Ψ:Ψ​Ψ​​ ⊤=​Λ​d​​​

​​ tr​(Ψ ​K​ y​ 
−1​ ​Ψ​​ ⊤​)​​ � (19)

where ​​[​K​y​​]​i,j​​ = κ  (​y​i​​, ​y​j​​) = 〈ϕ(​y​i​​), ϕ (​y​j​​)〉​ is the prescribed ker-
nel [46], and ​​Λ​ d​​​ a diagonal matrix containing the ​d​ largest 
eigenvalues of ​​K​y​​​. If a linear kernel is adopted, (19) is equiv-
alent to the dual PCA approach reviewed in Section II-B.

While ​​K​y​​​ in (19) depends only on ​Y​, extra dependencies 
conveyed by graphs, potentially available, can be accounted 
for in the dimensionality reduction task. Toward that end, 
(19) can be regularized by a graph-aware term [cf. (7)] 

	​​   min​ 
Ψ:Ψ​Ψ​​ ⊤=​Λ​d​​​

​​ tr​(Ψ ​K​ y​ 
−1​ ​Ψ​​ ⊤​)​ + λtr​(Ψ ​L​G​​ ​Ψ​​ ⊤​)​​ � (20)

where ​λ​ is a positive scalar, and ​​Λ​ d​​​ collects the ​d​ small-
est eigenvalues of ​​K​ y​ 

−1​ + λ ​L​G​​ = ​
_

 V​Λ​​
_

 V​​​ ⊤​​. Combining the 
Laplacian regularizer with the KPCA cost, (20) is capable 
of finding ​{​ψ​ i​​}​ that preserve the “lifted” covariance captured  
by ​​K​y​​​, while at the same time exhibiting smoothness over 
the graph G. Problem (20) admits the closed-form solution ​
Ψ = ​Λ​ d​ 1/2​ ​​

_
 V​​ d​ ⊤​​, where ​​​

_
 V​​d​​​ denotes the submatrix of ​​

_
 V​​ formed 

with columns the eigenvectors corresponding to the eigen-
values in ​​Λ​ d​​​.

When ​κ​ is not prescribed, once again data-driven MKL 
approaches can be developed along the lines of Section 
III-B. In addition, instead of directly using ​​L​G​​​, a family of 
graph kernels ​r(​L​G​​)  := ​U​G​​ r(Λ) ​U​ G​ 

⊤​​ can be employed, where 
​r(.)​ is a scalar function of the eigenvalues of ​​L​G​​​. By properly 
selecting ​r(.)​, different properties of signals evolving over 
graphs can be accounted for. As an example, when ​r(.)​ sets 
eigenvalues above a certain threshold to 0, it acts as a sort 
of “low pass” filter over the graph; see also [53]and [92]. 
Incorporating ​r(.)​ in (20) yields 

​​   Ψ ​ = arg ​  min​ 
Ψ:Ψ​Ψ​​ ⊤=​Λ​d​​​

​​ tr​(Ψr​(​K​ y​ 
−1​)​ ​Ψ​​ ⊤​)​ + λtr​(Ψr​(​L​G​​ )​​Ψ​​ ⊤​)​.​� (21)

Even though only a single graph regularizer is introduced 
in (20), this scheme has the flexibility to include multiple 
graph regularizers based on different graphs [108].

C. Graph-Aware Subspace Clustering

Using either ​​   Ψ ​​ or ​Y​, this section will deal with unsuper-
vised learning when data are constrained by a graph model. 
The focus will be on generalizing subspace clustering, which 
is known to subsume ordinary clustering (e.g., ​K​-means), to 
account for nonlinear manifolds. In the absence of exogenous 
inputs ​(​x​it​​ = 0)​, (4) bears remarkable resemblance to sparse 
subspace clustering (SSC) [30], [118], whose goal is to cluster 
high-dimensional data belonging to a union of low-dimen-
sional subspaces. In particular, given ​​{​y​i​​ ∈ ​ℝ​​ D​}​ i=1​ 

 N ​​  sampled from 
the union of ​d​-dimensional subspaces embedded in ​​ℝ​​ D​​, with ​
d ≪ D​, SSC postulates that ​​y​i​​ = ​∑ j​​ ​a​ij​​​ ​y​j​​ + ​ϵ​i​​​, where ​​a​ij​​ ≠ 0​ only 
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if ​i​ and ​j​ belong to the same subspace, while ​​ϵ​i​​​ captures noise 
and unmodeled dynamics. SSC seeks a sparsity-promoting LS 
estimator for ​{​a​ij​​}​ by solving 

​​  min​ 
{​a​ij​​, j≠i}

​​ ​∥​​ ​y​i​​ − ​∑ 
j
​ ​ ​a​ij​​​ ​y​j​​ ​​∥​​​ 2​ 

2
​ + λ ​∑ 

j
​ ​ | ​a​ij​​ |​  ​

    ​s.t. ​ ∑ 
j=1

​ 
N

 ​​a​ij​​​ = 1,   ∀ i = 1, …, N​ � (22)

which promotes only a few nonzero coefficients ​{​a​ij​​}​ per ​i​. 
Given ​​[A] ​ij​​ = ​a​ij​​​, spectral clustering is performed, followed 
by PCA to identify the constituent linear subspaces [30].

Clearly, estimating SSC weights is reminiscent of iden-
tifying ​{​a​ij​​}​ in linear SEMs [cf., (4)]. Viewing SSC as an 
approximate linear approach to manifold learning (compare 
also with LLE in, e.g., [93]), the kernel-based SEM advo-
cated in [105] could also be adopted in the first SSC step to 
estimate ​{​a​ij​​}​, with the goal of exploiting nonlinear relation-
ships between data samples, and thus improving clustering 
accuracy.

D. Graph-Aware Recommender Systems

In Section IV-A, a graph with known topology was lever-
aged to reconstruct missing nodal samples. Here, we will 
pursue a similar imputation task for recommender systems, 
where the topology is generally unknown, but can be esti-
mated from the limited available data. To this end, a popu-
lar approach known as sparse linear method (SLIM) for  
top-​​N​r​​​ recommendations starts by representing ratings of 
each item as a linear combination of ratings of other items 
with weights ​{​a​ij​​}​ [81]. With vector ​​r​i​​​ collecting ratings of 
the ​i​-th item by all users (those not rating the ​i​th item enter 
0 ratings), SLIM solves the following problem per item ​i​:

​​min​ 
{​a​i​i ′ ​​​}

​ ​​​ ​∥
​

​​r​i​​ − ​∑ 
​i ′ ​
​ ​ ​a​i​i ′ ​​​​ ​r​​i ′ ​​​ ​​∥​​​ 2​ 

2
​ + λ ​∑ 

​i ′ ​
​ ​ | ​a​i​i ′ ​​​ |​​

​s.t.  ​a​ii​​ = 0,    ​a​i​i ′ ​​​ ≥ 0   ∀ ​i ′ ​.​ � (23)

Upon obtaining the ​{​a​i​i ′ ​​​}​, the estimated rating of item ​i​ 
by user ​u​ is found as ​​​r ̂ ​​ui​​ = ​∑ ​i ′ ​​​ ​a​i​i ′ ​​​​ ​r​u​i ′ ​​​​. A top ​​N​r​​​ list for user ​u​ 
can then be created by the rank-ordered collection ​​{​​r ̂ ​​ui​​}​ i=1​ 

​N​r​​ ​​ . 
Again, estimating ​​a​i​i ′ ​​​​ in (23) is similar to identifying linear 
SEM coefficients in (4). Thus, a sparse nonlinear method 
(SNLM) can henceforth be developed along the lines of non-
linear SEMs to improve the accuracy of recommendations.

E. Joint Inference of Signals and Graphs

So far, the tasks of topology identification and learn-
ing signals over graphs were accomplished by solving two 
separate yet related subproblems. Indeed, they are related 
because topology identification relied on measurements at 
all nodes, while signal learning relied on knowing the graph 
topology.

Here, joint inference of signals and graphs is pursued 
using limited data ​​z​l​​ = ​M​l​​ ​y​l​​​, with ​​M​l​​​ denoting the measure-
ment matrix at slot ​l​. Given ​​z​l​​​ and ​​M​l​​​, the goal is to find the 
missing features ​​y​l​​​ and the graph adjacency via [55]

​​min​ 
A,Yl

​ ​ ​ ∑ 
l=1

​ 
L
  ​‖​y​l​​ − A ​y​l​​​‖​ 2​ 

2
​​ + ​ ∑ 

l=1
​ 

L
  ​‖ ​z​l​​ − ​M​l​​ ​y​l​​ ​‖​ 2​ 

2
​​ 

� (24) 

 

+ ​λ​ 1​​ ‖A ​‖​1​​​+​​λ ​ 2​​ ‖A ​‖​ F​ 2 ​​​​​​ 

where ​​λ​ 1​​​ and ​​λ ​ 2​​​ are positive constants. Block coordinate 
descent can be used to solve (24) with guaranteed conver-
gence to a stationary point. Thus, one can jointly estimate 
the topology and reconstruct unobserved nodal samples, 
just based on a subset of observations.

The tacit assumption so far is that the graph topology 
remains invariant over the observation interval. If this 
is violated, topology identification methods will yield an 
“average topology,” whereas the associated learning tasks 
will perform suboptimally since they do not fully leverage 
the information provided by the temporal dimension. This 
motivates the methods outlined in the ensuing sections that 
can cope with dynamic topologies, as well as with dynamic 
nodal processes.

V.  DY NA MIC MODELS FOR TOPOLOGY 
IDEN TIFIC ATION

In this section, several methods will be outlined for time-
varying (TV) graph topology identification, each speci-
fied by the model describing the topology per time slot.  
A TV graph in this context is defined as ​​G​t​​  := {V, ​ℰ​t​​}​, with  
​​ℰ​t​​​ denoting the set of (possibly directed) edges present at 
time ​t​.

A. Graphical Lasso-Based Methods

Here, we review how the static graphical Lasso in Section 
II-A can be adapted to TV topologies [36]. The time-depend-
ent counterpart of the cost in (3) becomes ​​C​t​​ (​Θ​ t​​ , ​​   Σ ​​t​​)  :=  
log (det (​Θ​ t​​))  − tr(​​   Σ ​​t​​ ​Θ​ t​​) − λ‖ ​Θ​ t​​ ​‖​1​​​, where ​λ‖ ​Θ​ t​​ ​‖​1​​​ adjusts the 
sparsity of the sought topology. Matrices ​{​Θ​ t​​}​ across slots are 
estimated as [cf., (3)] 

	​ {​​   Θ ​​t​​} = ​arg max​ 
​Θ​ t ​​≻0

​ ​ ​  ∑ 
t=1

​ 
T
  ​​C​t​​​ (​Θ​ t​​ , ​​   Σ ​​t​​) − μ ​ ∑ 

t=2
​ 

T
  ​R​ (​Θ​ t​​ , ​Θ​ t−1​​)​� (25)

where ​​​   Σ ​​t​​​ denotes a (possibly weighted) estimate of the 
covariance matrix; ​R(⋅)​ is an optional term promoting simi-
larity between temporally adjacent topologies; and ​μ, λ​ con-
trol the respective strength of regularization. Clearly, edge ​
(i, j)​ is deemed present at slot ​t​, if ​​[​​   Θ ​​t​​]​ij​​ ≠ 0​.

The relevant dynamic graphical Lasso schemes either 
assume that ​​Θ​ t​​​ is continuously (albeit slowly) changing, or, 
it exhibits switching behavior, meaning ​​Θ​ 1​​ = … = ​Θ​ ​τ​ 1​​−1​​ ≠ ​
Θ​ ​τ​ 1​​​​ = ​Θ​ ​τ​ 1​​+1​​…​Θ​ ​τ​ k​​−1​​ ≠ ​Θ​ ​τ​ k​​​​ = ​Θ​ ​τ​ k​​+1​​ = … = ​Θ​ T​​​, for change points ​​
τ​ 1​​ , …, ​τ​ k​​​ of the dynamic topology.
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The first subclass of methods appeals to smooth topol-
ogy variations. Among these, e.g., [127], entails ​R = 0​, and  
​​​   Σ​​t​​ = ​∑ τ​ 

​ ​ ​​κ (| t − τ |) ​y​τ​​ ​y​ τ​ ⊤​ ⁄ ​∑ τ​ 
​ ​ ​​κ (| t − τ |)​, where ​κ    (⋅)​ is a sym-

metric nonnegative kernel. Alternatively, [41] adopts  
​R(​Θ​ t​​ , ​Θ​ t−1​​) = ‖ ​Θ​ t​​ − ​Θ​ t−1​​ ​‖​1​​​ with the aforementioned goal of 
explicitly promoting smooth evolution of the graph topol-
ogy; see also [45] for additional choices of ​R(⋅)​, each effect-
ing a topology evolution with different characteristics.

In the second subclass of methods, [3] estimates opti-
mally the change points, as well as the corresponding 
topologies between pairs of change points, using dynamic 
programming. Per segment, the approach in [3] adopts  
​R = 0​, and relies on ​​​   Σ ​​t​​ = ​(​τ​ k+1​​ − ​τ​ k​​)​​ −1​ ​∑ τ=​τ​ k​​​ 

​τ​ k+1​​−1​ ​y​τ​​​ ​y​ τ​ ⊤​ for  
t ∈ [​τ​ k​​ , ​τ​ k+1​​ −1 ]​.

Graphical Lasso-based approaches can identify the topolo-
gies of dynamic, but only undirected graphs. For dynamic 
directed graphs, one can resort to the methods presented next.

B. SEM-Based Methods

In order to identify dynamic directional connectivity, 
approaches here adopt a static linear SEM per slot. The 
switched dynamic SEM in [4] postulates that the adjacency 
and input scaling matrices ​{ A, B}​ jump among ​S​ states ​​
{​A​​ s​ , ​B​​ s​}​ s=1​ 

S ​​ . Let ​σ (t)​ denote the state per slot with indicator ​​
χ ​ ts​​  := 1 {σ(t) = s}​, and suppose that ​​L​​ ˇ ​​-variate (instead of 
univariate) observations ​​{​y​ it​ 

(l)​}​ l=1​ 
​L​​ ˇ ​
 ​​  are available per node ​i​ at  

slot ​t​. Given data ​​Y​t​​  := [​y​ t​ 
(1)​…​y​ t​ 

(​L​​ ˇ ​)​]​, the change points and 
states are obtained by solving the following problem: 

​​  min​ 
​
​{​A​​ s​,​B​​ s​}​ s=1​ 

S ​
​ 

​{​χ​ ts​​}​ t,s=1​ 
T,S ​

 ​

​​ ​ ∑ 
t=1

​ 
T
  ​​ ∑ 

s=1
​ 

S
  ​​χ​ ts​​​​ ‖ ​Y​t​​ − ​A​​ s​ ​Y​t​​ − ​B​​ s​ X ​‖​ F​ 2 ​ + ​ ∑ 

s=1
​ 

S
  ​​λ​ s​​​ ‖ ​A​​ s​ ​‖​1​​​

​s.t.  ​ A​ ii​ 
s ​ = 0, ​B​ ij​ 

s ​ = 0,   ∀ s, i ≠ j,  ​  ∑ 
s=1

​ 
S
  ​​χ​ ts​​​ = 1   ∀ t.​

With  ​{​Y​t​​}​ acquired sequentially, this NP-hard mixed inte-
ger program can be relaxed and solved with a two-step alter-

nating scheme. Using the most recent ​​​{​​  A​​​ 
s
​ , ​​   B​​​ 

s
​}​​ s=1​ 

S
  ​​, the state 

is estimated as ​​σ ̂ ​ (t)  = arg ​min​s=1,…,S​​ ‖ ​Y​t​​ − ​​  A​​s​​ ​Y​t​​ − ​​   B​​s​​ ​X​t​​ ​‖​ F​ 2 ​​.  
Having ​​σ ̂ ​ (t)​ (and thus ​​{​​χ ̂ ​​​t ′ ​s​​}​ ​t ′ ​,s=1​ 

t,S ​​ ) available, solve decoupled 

problems per ​​t ′ ​​ and ​s​ to update ​​​{​​  A​​​ 
s
​ , ​​   B​​​ 

s
​}​​ s=1​ 

S
  ​​.

In domains where a slow-varying topology is deemed 
more plausible than an abruptly switching one, the expo-
nentially weighted LS estimator can be used instead as 
detailed in [5].

Regarding generalizations, since SEMs are memoryless, 
one is prompted to pursue dynamic SVARMs and Bayesian 
models that account for lagged observations.

C. SVARM-Based Methods

In matrix–vector form, the TV counterpart of the (S)
VARM in Section II-A obeys the relationship 

	​​ y​t​​ = ​ ∑ 
l=0

​ 
L
  ​​A​ t​ 

(l)​​ ​y​t−l​​ + ​ϵ​t​​​� (26)

where ​​[​A​ t​ 
(l)​]​ij​​​ captures the link of ​​y​it​​​ with ​​y​jt−l​​​, ​L​ is the order, 

and ​​ϵ​t​​​ accounts for noise and modeling inaccuracies.
The primary differentiation between alternatives comes 

from the inference process involved. For instance, Fox  
et al. [34] assume that ​​A​ t​ 

(l)​ ∈ ​{​A​​ (ls)​}​ s=1​ 
S
 ​    ∀ l, t​ with ​​A​ t​ 

(l)​ = ​
A​​ (ls)​​ if ​σ (t) = s​. The state is assumed to follow a hierarchi-
cal Dirichlet process hidden Markov model (HDP-HMM), 
while the state sequence is inferred using a Gibbs sampler.

D. Bayesian-Network-Based Methods

Given the broad scope of dynamic Bayesian networks 
(DBNs) a multitude of methods are available in this cate-
gory. The resultant algorithms produce directed graphs with 
edge directionality assuming a causality interpretation.

For instance, Robinson and Hartemink [88] consider 
that the transitions between temporally adjacent graphs 
are restricted to changes from a predefined “move set” that 
comprises, e.g., the introduction or removal of edges. The 
Bayesian–Drichlet equivalent metric is taken as the likeli-
hood ​p(​y​t​​ |G)​ of the observations ​​y​t​​​ given a particular graph 
topology ​G​. A Markov chain Monte Carlo (MCMC) sam-
pler is then employed to sample from the posterior of the 
sequence of graphs and corresponding change points, condi-
tioned on ​Y  := ​[​y​ 1​ 

⊤​ , …, ​y​ T​ ⊤​]​​ 
⊤

​​. HMMs can also be considered 
as a special case of DBNs. In HMM-based methods, the net-
work structure is assumed to be dictated by a hidden state. 
The hierarchical Dirichlet process HMM is adopted by [117] 
to model the distribution of the hidden states. Conditioned 
on the state, the observations are then assumed to follow a 
Gaussian Bayesian network model. Inference is performed 
using an MCMC sampling based algorithm.

E. Graphical-Regression-Based Approaches

Since the task of inferring the topology of a graph is tan-
tamount to obtaining the neighborhood of each node, a class 
of methods have emerged that operate on a per-node basis, 
following this principle.

Logistic regression can be employed to model the 
(binary) observation(s) at node ​i​ and slot ​t​ as a function of 
the observations at the rest of the nodes at ​t​ [2]. The logis-
tic regression cost is augmented with an ​​ℓ​1​​​-norm regular-
izer and a fusion penalty, to respectively promote sparsity 
for each ​​G​t​​​, and smooth temporal evolution of the sequence  
​{​G​1​​ , …, ​G​T​​}​.

F. Tensor-Based Methods

Here the graph is postulated to have a piecewise-con-
stant topology, modeled by a sequence of unknown adja-
cency matrices ​​{​A​m​​ ∈ ​ℝ​​ N×N​ ,   t ∈ [​τ​ m​​, ​τ​ m+1​​ − 1]}​ m=1​ 

M
 ​​ , over  

​M​ time segments. The ​(i, j)​-th entry ​​[​A ​m​​]​ij​​ = ​a​ ij​ 
m​​ is nonzero 

only if a directed edge links node ​i​ to ​j​. The observations 
obey time-varying SEMs; that is, ​​y​jt​​ = ​∑ i≠j​​ ​a​ ij​ 

m​​ ​y​it​​ + ​b​ jj​ 
m​ ​x​jt​​ + ​e​jt​​​  

for ​t ∈ [​τ​ m​​, ​τ​ m+1​​ − 1 ]​ per segment ​m = 1, …, M​, with ​​e​jt​​​ 
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capturing unmodeled dynamics, while coefficients ​{​a​ ij​ 
m​}​ and ​

{​b​ jj​ 
m​}​ are unknown. The noise-free matrix–vector SEM is 

then ​​y​t​​ = ​A​m​​ ​y​t​​ + ​B​m​​ ​x​t​​​, where ​​[​A​m​​]​ij​​ = ​a​ ij​ 
m​​ and ​​B​m​​  := Diag 

(​b​ 11​ 
m ​ , …, ​b​ NN​ m ​ )​. Suppose also that the exogenous inputs ​{​x​ t​ 

(m)​}​  
are piecewise stationary over segments ​t ∈ [​τ​ m​​ , ​τ​ m+1​​ − 1 ] ,  
m = 1, …, M + 1​, each with a fixed correlation matrix ​{​R​ m​ x ​  :=  
𝔼 ​[​x​ t​ 

(m)​ (​x​ t​ 
(m)​)​​ ⊤​]}​ m=1​ 

M ​​ . Under these conditions, an online 
algorithm can be developed for tracking ​​{​A​m​​ , ​B​m​​}​ m=1​ 

M ​​  using 
measured endogenous variables, and the correlation matri-
ces ​​{​R​ m​ x ​}​ m=1​ 

M ​​  [103], [106].
To this end, let ​​​m​​ := ​(I − ​A​m​​)​​ −1​ ​B​m​​​, and consider a 

tensor ​​​R _​​​ y​​ with its ​m​-th slice ​​R​ m​ y ​ = ​A​m​​ ​R​ m​ x ​ ​A​ m​ ⊤ ​ ,   t ∈ [​τ​ m​​, ​
τ​ m+1​​ − 1 ]​ sequentially appended at ​t = ​τ​ m+1​​​, for ​m = 1, …, M​.  
If ​𝔼{​x​it​​ ​x​jt​​} = 0,  ∀ i ≠ j​, the ​m​th slice can be expressed as a 
weighted sum of rank-one matrices 

	​​ R​ m​ y ​ = ​A​m​​ Diag(​ρ​ m​ x ​) ​A​ m​ ⊤ ​​� (27)

where ​​ρ​ m​ x ​  := ​[​ρ​ m1​ 
x ​  … ​ρ​ mN​ x ​ ]​​ 

⊤
​​, with ​​ρ​ mi​ 

x ​   := 𝔼(​x​ it​ 
2 ​)​, for ​t ∈ [​τ​ m​​ , ​

τ​ m+1​​ − 1 ]​; see also Fig. 4. 
Allowing ​​​R _​​​ y​​ to grow sequentially along one mode is 

well motivated for real-time operation, where data may be 
acquired in a streaming manner. In this case, unveiling the 
evolving topology calls for approaches capable of tracking 
tensor factors ​​A​m​​​. Given the tensor ​​​R _​​​ y​​, and possibly ​​R​x​​​, algo-
rithms for tracking dynamic tensor factors, e.g., PARAFAC 
via recursive least-squares tracking (PARAFAC-RLST), can 
be employed; see, e.g., [82], [103], and [106] for details. 
Once ​​​  A​​m​​​ is obtained, ​​A​m​​​ can be estimated on the fly as  

​​​  A​​m​​ = I − ​​(Diag(​​  A​​ m​ 
−1

​))​​​ 
−1

​ ​​  A​​ m​ 
−1

​​ [106].
Tensor-based topology identification along these lines 

applies to both dynamic and static graphs, so long as (even a 
subset of) second-order statistics of the exogenous inputs are 
available, and change across segments; see [106], and [107] 
where identifiability is studied under low-rank and sparsity 
constraints on the adjacency matrix. Thus, piecewise input 
stationary correlations play a role analogous to multiple lay-
ers, time-lagged and nonlinear terms in SVARMs, or, the 
exogenous variables themselves in linear SEMs—what can be 
critical for identifability when inputs cannot be available (e.g., 
due to privacy concerns), but their statistics can be measured.

G. Change Point Detection Methods

Methods in this class typically rely on the likelihood 
of the observations ​​p​​Φ​ t​​​​ (​y​t​​)​, ​t = 1, …, T​, to detect changes 
in the topology-specifying parameters ​​Φ​ t​​​ per slot ​t​. An 
example of such parameters is the inverse covariance 
matrix ​​Θ​ t​​​ for multivariate Gaussian observations. At 
their core, these test whether the constancy hypothesis  
​​Φ​ 1​​ = ⋯ = ​Φ​ T​​​ is broken at certain change points, and esti-
mate their locations.

One specific approach assumes that the graphs at each 
instance come from the distribution defined by a generalized 
hierarchical random graph model [85]. A (bootstrapped) 
hypothesis test for constancy of ​​{​Φ​ t​​}​ t=1​ 

T ​​  is performed to 
detect change points. Alternatives model the per-slot topol-
ogy as a Markov random field [94], or rely on the graphical 
Lasso [22].

A multi-kernel approach to detecting changes in the gen-
erally nonlinear relationships among nodal samples is out-
lined next [64]. Per node ​i​ and for ​t ∈ [​τ​ m−1​​ , ​τ​ m​​ − 1 ]​, suppose 
samples obey ​​y​it​​ = ​f​ i​ 

(m)​ (​​y​​ ˘ ​​\it​​) + ​ϵ​ it​ 
(m)​​, where ​​f​ i​ 

(m)​​ is a nonlin-
ear function, and ​​​y​​ ˘ ​​ \it​​  := ​[​y​ \it​ 

⊤ ​ , ​y​ t−1​ 
⊤ ​  , …, ​y​ t−L​ ⊤ ​ ]​​ ⊤​​, with the usual 

notational convention on the subscripts and memory ​L​.  
Function ​​f​ i​ 

(m)​​ can be estimated using MKL-based ridge 
regression [cf. (8)–(10)]. With such estimates available, 
the residuals ​​​ϵ ̂ ​​ it​ (m)​  := ​y​it​​ − ​​f ̂ ​​ i​ 

(m)
​ (​​y​​ ˘ ​​\it​​)​ can be used to infer the 

presence, and estimate the locations of change points.
Consider first the base case of having at most one 

change point, and let ​​f​​ (m)​  := ​[​f​ 1​ 
(m)​…  ​ f​ N​ (m)​]​​ 

⊤
​​ collect the 

functions characterizing the segment ​m​ across nodes. Here  
​m ∈ { 0, 1, 2}​, with ​m = 0​ corresponding to the whole data 
record ​[1, T ]​. Deciding whether a change point is present 
amounts to performing the composite hypothesis test 

	​​ ℋ​0​​ :  ​ f​​ (1)​ = ​f​​ (2)​  := ​f​​ (0)​            ​      ℋ​1​​ :  ​ f​​ (1)​ ≠ ​f​​ (2)​​� (28)

where according to ​​ℋ​1​​​ there is a change point ​​τ​ 1​​​ (the loca-
tion of which is to be estimated) when the vector functions 
differ for segments ​[1, ​τ​ 1​​ − 1 ]​ and ​[​τ​ 1​​ , T ]​. According to ​​ℋ​0​​​, 
no such ​​τ​ 1​​​ is present. Toward specifying a test statistic for 
(28), let ​G(ϵ; μ, ​σ​​ 2​)​ denote the probability density function 
of a Gaussian variable ​ϵ​ with mean ​μ​ and variance ​​σ​​ 2​​. The 
approximate likelihood with ​​{​​ϵ ̂ ​​ it​ (m)​}​​ Gaussian, under ​​ℋ​0​​​ is ​
p(Y; ​ℋ​0​​) ≈ ​∏ i=1​ 

N  ​ ​​ ​∏ t=1​ 
T  ​ G​ (​​ϵ ̂ ​​ it​ (0)​ ; 0, ​​σ ̂ ​​ i​ 

2(0)​)​; and under ​​ℋ​1​​​, ​p(Y; τ, ​ 
ℋ​1​​) ≈ ​∏ i=1​ 

N  ​ ​​​[​∏ t=τ​ 
τ−1​ G​ ​(​​ϵ ̂ ​​ it​ (1)​ ; 0, ​​σ  ̂ ​​ i​ 2(1,2)​)​ ​∏ t=τ​ 

T  ​ G​ ​(​​ϵ ̂ ​​ it​ (2)​ ; 0, ​​σ ̂ ​​ i​ 
2(1,2)​)​]​​,  

with ​​​σ ̂ ​​ i​ 
2(0)​ = ​T​​ −1​ ​∑ t=1​ 

T  ​ ​​ϵ ̂ ​​ it​ 2(0)​​​, and ​​​σ ̂ ​​ i​ 
2(1,2)​ (τ)  = ​T​​ −1​​(​∑ t=1​ 

τ−1​ ​​ϵ ̂ ​​ it​ 2(1)​​ +  
​∑ t=τ​ 

T  ​ ​​ϵ ̂ ​​ it​ 2(2)​​)​​. The corresponding approximate generalized 
likelihood ratio test statistic of change point ​​τ  ̂ ​​ is 

​Λ(Y; ​τ  ̂ ​)  :=  ​ max​ 
τ ∈(1,T)

​​      log p(Y; τ, ​ℋ​1​​) / p(Y ; ​ℋ​0​​)​

​=   ​ max​ 
τ ∈(1,T)

​​      (T / 2)  log ​ ∑ 
i=1

​ 
N

 ​​​σ ̂ ​​ i​ 
2(0)​​ / ​​σ ̂ ​​ i​ 

2(1,2)
​ (τ) .​� (29)

We decide that ​​ℋ​1​​​ is in effect if ​Λ​ exceeds a certain 
threshold, which for a given probability of false alarms is 

Fig. 4. Tensor ​​​R _ ​​​ y​​ with frontal slices ​​{​R​ m​ y ​}​ m=1​ M ​​ .
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obtained from the distribution of ​Λ​ under ​​ℋ​0​​​. This distribu-
tion is estimated using a model-based bootstrap, as detailed 
in [64].

The case of an unknown number of change points can be 
tackled using a variant of the binary segmentation approach 
of [120] that builds on (28) and (29) [64]. At the beginning 
of iteration ​k​, the interval ​[1, T ]​ is split into ​k​ segments with ​​
Λ​1​​ , …, ​Λ​k​​​ denoting the corresponding test statistics. Let 
the maximum over these statistics correspond to the seg-
ment ​​n​​ *​ := ​arg max​ n=1,…,k​ ​  ​  Λ​n​​​. A hypothesis test is then 
conducted over this segment to assess whether a change 
point lies therein. If ​​ℋ​1​​​ is accepted, the proposed point is 
appended to the discovered change points and the process 
moves on to iteration ​k + 1​; otherwise it stops, with ​k​ seg-
ments discovered.

With the change points and corresponding segments 
available, any of the static topology identification methods 
of Section II-A or Section III can be applied per segment.

V I.   DY NA MIC MODELS FOR LE A R NING 
OV ER GR A PHS

In this section, a sample of learning tasks over dynamic 
graphs will be reviewed. Some of the methods can afford 
online implementation allowing nodes to (dis)appear as 
time progresses, which explains the ​t​-dependent notation ​​V​t​​​ 
for the set of nodes. Most methods further assume that the 
(generally varying) topology of the graph is either known, 
or, it has been acquired using the methods outlined in the 
previous section.

A. Dynamic Graph-Aware Link Prediction

Temporal link or edge prediction amounts to infer-
ring the (dis)appearance of edges ahead of time by leveraging 
currently available graph snapshots. Let ​​𝒜​t​​  := {​A​1​​ , …, ​A​t​​}​  
denote this set of snapshots with ​​[​A​t​​]​ij​​ ∈ { 0, 1}   ∀   i, j, t​,  
and ​​[​A​t​​]​ij​​ = 1​ if the edge ​i → j​ is present at time ​t​. This is 
in contrast to the ordinary link prediction setup, where a 
single snapshot is used [71], thereby ignoring temporal pat-
terns potentially present in the data.

Given ​​𝒜​t​​​, the goal is to predict ​​A​t+Δt​​​ for ​Δt ≥ 1​. Supposing ​
Δt = 1​ for brevity, we will rely on an ​N × N​ matrix ​​​R​​ ˇ ​​​ t+1​​ 
comprising “edge scores,” based on which link ​i → j​ will be 
deemed present in ​​A​t+1​​​, if ​​[​​R​​ ˇ ​​​ t+1​]​ij​​​ exceeds a certain thresh-
old. An early work combined per-snapshot spatial predictors 
with temporal predictors across snapshots [51]. Specifically, 
Huang and Lin [51] postulate that the time series ​{​[​A​1​​]​ij​​ , …, ​
[​A​t​​]​ij​​}​ per ​(i, j)​ obeys an autoregressive integrated mov-
ing average (ARIMA) model. Predicting ​​[​A​t+1​​]​ij​​​ is thus 
converted to a score ​​[​​R​​ ˇ ​​ ARIMA​ t+1 ​ ]​ij​​​, and the overall score is 
obtained as ​​[​​R​​ ˇ ​​​ t+1​]​ij​​  := ​[​​R​​ ˇ ​​ ARIMA​ t+1 ​ ]​ij​​ ​[​​R​​ ˇ ​​ static​ 

t+1 ​ ]​ij​​​, where the sec-
ond factor is found after applying a static link predictor to 
​​​
_

 A​​t​​  := ​∑ τ=1​ 
t  ​ ​A​τ​​​​.

Matrix and tensor factorization methods have also been 
considered for dynamic link prediction [27]. Matrix ​​​R​​ ˇ ​​​ t+1​​ is 
found as a low-rank approximation to the weighted aver-
age adjacency ​​​

_
 A​​ t​ 
(w)​  := ​∑ τ =1​ 

t  ​ ​w​​ t−τ​​ ​A​t​​​, with ​w ∈ (0, 1)​ being 
the forgetting factor. Alternatively, one can form a three-
way tensor with entries ​​[​A​t​​]​ij​​​, and invoke its low ​K​-com-
ponent CANDECOMP/PARAFAC approximant through 
the decomposition ​​∑ k=1​ 

K  ​ ​η​ k​​​ ​α ​ k​​° ​β ​ k​​° ​γ​ k​​​, where ​​η​ k​​ > 0​; ​​α ​ k​​ , ​
β​ k​​ , ​γ​ k​​​ denote the factors; and ​°​ is the Khatri–Rao product 
[27]. The score matrix is then ​​​R​​ ˇ ​​​ t+1​ = ​∑ k=1​ 

K  ​ ​δ​  k​​​ ​η​ k​​ ​α ​ k​​ ​β ​ k​ ⊤​​ with  
​​δ​ k​​ = ​T​ 0​ −1​ ​∑ τ =t−​T​0​​+1​ 

t
  ​ ​γ​ k​​​ (τ)​, where ​​T​0​​​ represents the moving 

window size over which the entries of the temporal profiles ​​
γ ​ k​​​ are averaged. In other words, ​​[​​R​​ ˇ ​​​ t+1​]​ij​​​ is a weighted sum of 
the relationships between the pair ​(i, j)​ across the ​K​ compo-
nents ​{​[​α ​ k​​ ​β ​ k​ ⊤​]​ij​​}​ k=1​ 

K
 ​​  with the contribution of component ​k​ 

weighted by the recent “average activity” ​​δ​ k​​​ thereof.
A provably consistent nonparametric temporal link 

predictor is developed in [96] by assuming that ​​[​A​t+1​​]​ji​​ | ​
𝒜​t​​ ~Bernoulli(g(​ϕ​ t​​ (i, j)))​, where ​​ϕ​ t​​ (i, j)​ comprises features 
specific to the ​(i, j)​ pair (e.g., number of common neighbors 
shared by the pair and the time instance of the last appear-
ance of the edge), as well as to the local neighborhood of 
node ​i​. A kernel-based estimator ​​g ̂ ​​ is developed, using which 
the score of the edge ​i → j​ is obtained as ​​[​​R​​ ˇ ​​​ t+1​]​ij​​ = ​g ̂ ​(​ϕ​ t​​ (j, i))​ 
[96]. Recently, a deep learning approach to temporal link 
prediction has been also developed [70].

B. Dynamic Graph-Aware Clustering

Paralleling Section IV-C, this section deals with estima-
tion of dynamically evolving clusters that exhibit TV graph-
encoded similarities between nodal objects. Many of the 
methods presented hereafter are geared toward discovering 
communities, that is clusters of nodes exhibiting dense intra-
cluster connectivity—a key task in network science, e.g., [33].

With ​​y​it​​​ denoting the observation vector (object) of node ​
i​ at slot ​t​, the corresponding set of objects for the same slot 
is ​​Y​t​​  := ​{​y​it​​}​ i=1​ 

​N​t​​ ​​  or in matrix form ​​Y​t​​  := [​y​1t​​…​y​​N​t​​t​​]​. The TV 
(dis)similarity between ​​y​it​​​ and ​​y​jt​​​ is encoded in the TV edge 
weights ​​[​A​t​​]​ij​​ ∈ ℝ​. If pairwise dissimilarities are measured 
by Euclidean distances, as in the ​K​-means clustering algo-
rithm, then ​​[​A​t​​]​ij​​ = ‖​y​it​​ − ​y​jt​​​‖​ 2​ 2​​. Suppose that ​​K​t​​ = K​ clus-
ters are formed ​∀ t​, and let ​​Π​ t​​  := [​π​1t​​…​π​Kt​​]​ denote the ​​N​t​​ × K​ 
membership matrix at slot ​t​ with binary entries ​​[​Π​ t​​]​ik​​ = 1​, if 
node ​i​ belongs to cluster ​k​ at slot ​t​, and ​​[​Π​ t​​]​i​k ′ ​​​ = 0  ∀  ​k ′ ​ ≠ k​. 
This corresponds to hard clustering, but soft (or probabilis-
tic) clustering [50, Ch. 14] can be also accommodated with ​​
∑ k=1​ 

K  ​ ​[​Π​ t​​]​ik​​ = 1​​ for ​i = 1, …, ​N​t​​​.
A class of dynamic graph-aware clustering approaches 

relies on two functions of ​(​A​t​​, ​Π​ t​​)​, namely the snapshot qual-
ity and the history cost [14]. The snapshot quality ​sq(​Π​t​​, ​A​t​​)​ 
measures how well the objects ​​Y​t​​​ are represented by the clus-
tering ​​Π​ t​​​, with respect to the (dis)similarities given by ​​A​t​​​. In ​

K​-means, for example, ​sq(​Π​ t​​ , ​A​t​​) = ​∑ k=1​ 
K  ​ ​​ ​∑ i=1​ 

​N​t​​ ​  ​[​Π​ t​​]​ik​​​ (1 − ‖ ​
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y​it​​ − ​(​π​ kt​ 
⊤ ​ 1)​​ 

−1
​ ​Y​t​​ ​π​kt​​ ​​‖​2​​​​ 2​)​, where nodal vectors are normal-

ized so that ​‖​y​it​​ ​‖​ 2​ 2​ = 1   ∀   i, t​. Here, ​sq(​Π​ t​​ , ​A​t​​)​ is proportional 
to the negative of the sum of distances of each ​{​y​it​​}​ from 
the cluster centroid it is assigned to. The history cost ​hc 
(​Π​ t​​ , ​Π​ t−1​​)​ is a measure of the distance between ​​Π​ t​​​ and ​​Π​ t−1​​​,  
thereby promoting similarity between temporally adjacent 
clusterings. For ​K​-means, ​hc(​Π​ t​​ , ​Π​ t−1​​) = ​min​f:{1…K}→{1…K}​​   ​

∑ k=1​ 
K  ​ ​∥​​(​ ​π​ kt​ 

⊤ ​ 1)​​ −1
​ ​Y​t​​ ​π​kt​​ − ​(​π​ f (k)(t−1)​ 

⊤ ​  1)​​ 
−1

​ ​Y​t−1​​ ​π​f (k)(t−1)​​ ​​∥​​​ 2​ 2​​. In 

words, ​hc(​Π​t​​, ​Π​ t−1​​)​ is the sum of the Euclidean distances 
of each centroid at time ​t​ to the corresponding one at ​t − 1​. 
Combining the two metrics, the optimal clustering at slot ​t​ is 

	​​ Π​ t​ 
*​ = ​arg max​​Π​ t​​​​ α   sq(​Π​ t​​ , ​A​t​​) − (1 − α) hc(​Π​ t​​ , ​Π​ t−1​​)​� (30)

where ​α ∈ [0, 1 ]​ controls the weight between the two costs. 
Note that (30) entails a criterion naturally suited for streaming 
graphs, since ​​Π ​ t​​​ does not depend on ​​A​τ​​​ with ​τ > t​. This class of 
methods is typically referred to as “evolutionary clustering.”

The approach in (30) detailed for dynamic ​K​-means, gen-
eralizes to clustering algorithms that correspond to different 
choices of ​sq(⋅)​. In particular, nonnegative matrix factoriza-
tion [73], and several spectral clustering costs have been con-
sidered in, e.g., [18]. As far as tuning ​α​, it depends on the 
dynamic scenario at hand, but Folino and Pizzuti [31] have 
advocated data-driven genetic algorithms to optimize its value.

Instead of adjusting clustering algorithms to graph 
dynamics, one can rely on generative models to describe the 
evolution of clusters, and infer the associated model param-
eters. Examples include Dirichlet process mixture models 
[115], as well variants of the stochastic blockmodel (SBM) 
possibly augmented with a state evolution model [38], 
[122]. In particular, Xu and Hero [122] assume that the SBM 
parameters are dictated by the system state whose evolution 
is governed by a stochastic dynamical system. Inference is 
then performed using a variant of the extended Kalman fil-
ter, and the cluster memberships are estimated using label-
switching methods. Detectability limits of dynamic SBMs 
along with belief propagation algorithms that attain these 
limits have been also reported [38].

One last model postulates that the community struc-
ture is piecewise constant, that is ​​Π​ 1​​ = … = ​Π​ ​τ​ 1​​−1​​ ≠ ​Π​ ​τ​ 1​​​​ = ​ 
Π​ ​τ​ 1​​+1​​…​Π​ ​τ​ k​​−1​​ ≠ ​Π​ ​τ​ k​​​​ = ​Π​ ​τ​ k​​+1​​ = … = ​Π​ T​​​ for some change 
points ​​τ​ 1​​ , …, ​τ​ k​​​. Such an approach based on the minimum 
description length (MDL) criterion is developed in [112]. 
The community structure is obtained by minimizing the 
model complexity with respect to the cluster assignments, 
as assessed by the MDL criterion. A change point ​​τ​ l​​​ is 
declared if assigning the current graph snapshot ​​G​t​​​ to the 
current segment ​[​τ​ l−1​​ , t − 1]​, does not reduce the overall 
model complexity.

The parallelism between multilayer and dynamic SEMs 
mentioned by the end of Section III-C can permeate benefits 
of multilayer clustering [24] to dynamic clustering [123].

C. Dynamic Graph-Aware Reconstruction

Reconstructing signals on TV graphs amounts to estimat-
ing a function defined over the nodes, based on observations 
from a subset of nodes collected at possibly different time 
instances. The associated methods rely on function proper-
ties across nodes (e.g., smoothness or band-limitedness), 
and leverage the TV graph topology to perform the recon-
struction task (also known as interpolation or imputation).

Specifically, let ​​z​t​​ = ​M​t​​ ​y​t​​ + ​ϵ​t​​​ denote a noisy subset of 
nodal measurements at slot ​t​ collected at nodes specified by 
the binary ​​M​t​​ × N​ wide (​​M​t​​ < N​) matrix ​​M​t​​​. For the dynam-
ics of state ​​y​t​​​ affected by the known graph transition adja-
cency matrix ​​A​t,t−1​​​, consider the superimposed model 

	​​ y​t​​ = ​y​ t​ 
(ν)​ + ​y​ t​ 

(χ)​ ,          ​     y​ t​ 
(χ)​ = ​A​t,t−1​​ ​y​ t−1​ 

(χ) ​ + ​η​ t​​​� (31)

where the space-only component ​​y​ t​ 
(ν)​​ is temporally uncor-

related to account for “fast” dynamics across slots; while the 
spatio-temporal correlated VARM component ​​y​ t​ 

(χ)​​ captures 
the “slow” dynamics (also known as trend). The state evo-
lution model in (31) is suitable for capturing variations in, 
e.g., packet delays, stock prices, and temperature, measured 
respectively at Internet, financial markets, and sensor net-
works [54], [87].

Using ​{​z​​t ′ ​​​}​, (31), as well as graph kernels ​{​K​ ​t ′ ​​ 
(η)​}​ and  

​{​K​ ​t ′ ​​ 
(ν)​}​, a space-time approach to reconstructing ​{​y​​t ′ ​​​}​ is 

​​ arg  min​ 
​{​y​ 

​t ′ ​​ 
(χ)​,​y​ 

​t ′ ​​ 
(ν)​}​ ​t ′ ​=1​ 

t
 ​

​​ ​ ∑ 
​t ′ ​=1

​ 
t
  ​​  1 ___ ​M​​t ′ ​​​

 ​​ ‖ ​z​​t ′ ​​​ − ​M​​t ′ ​​​ ​y​ ​t ′ ​​ 
(χ)​ − ​M​​t ′ ​​​ ​y​ ​t ′ ​​ 

(ν)​ ​‖​ 2​ 
2
​​� (32)

​+ ​μ​ 1​​ ​ ∑ 
​t ′ ​=1

​ 
t
  ​‖ ​y​ ​t ′ ​​ 

(χ)​ − ​A​​t ′ ​,​t ′ ​−1​​ ​y​ ​t ′ ​−1​ 
(χ) ​ ​ ‖​ ​K​ 

​t ′ ​​ 
(η)​​ 

2
 ​ ​ + ​μ​ 2​​ ​ ∑ 

​t ′ ​=1
​ 

t
  ​‖​y​ ​t ′ ​​ 

(ν)​ ​‖​ ​K​ 
​t ′ ​​ 
(ν)​​ 

2
 ​ ​​

where the first sum is an LS measurement error; the sec-
ond sum is a spatiotemporal graph weighted LS state tran-
sition error; and the last sum is a spatial graph weighted  
(so-termed kriging) regularizer. Although (32) can be solved 
in batch form, its complexity grows prohibitively with the 
time horizon. However, it has been shown that the sequence 
of estimates ​​{​​   y​​ ​t ′ ​|​t ′ ​​ 

(χ) ​ , ​​   y​​ ​t ′ ​|​t ′ ​​ 
(ν) ​}​ 

​t ′ ​=1
​ 

t
 ​​  can be obtained online using 

what is called in [54] kernel kriged Kalman filtering; see also 
[91] and [23].

V II.   N UMER IC A L TESTS

This section presents numerical tests conducted on both 
synthetic and real data to demonstrate the effectiveness of 
some of the approaches considered.

A. Synthetic Tests for SVARMs

We first test the performance of the approach in Section 
III-B using synthetic data. Setting ​L = 1​ in (11), samples 
were generated via a random Erd́ós–Rényi graph having ​ 
N = 20​ nodes, with probability of edge presence set to 0.4. 
Nodal samples were generated using linear and nonlinear 
models. For several values of ​T​, entries of ​Y ∈ ​ℝ​​ N×T​​ were 
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randomly drawn from the standardized normal distribution, 
that is ​​y​it​​ ~N(0, 1)​. Matrices ​{​K​ t​ 

(ℓ)​}​ were formed with entries ​​
[​K​ t​ 

(ℓ)​]​ij​​ = κ   (​y​it​​ , ​y​jt​​)​ for some kernel ​κ​. The entries of ​​α ​ ij​​ ∈ ​ℝ​​ T​​ 
were drawn independently from ​N(0, 1)​, while noise terms 
were generated independent identically distributed (i.i.d.) 
as ​​e​ij​​ ~N (0, ​σ​ e​ 

2​)​. For all tests, error plots were averaged over 
100 independent runs.

We evaluated performance using the edge identifica-
tion error rate (EIER) defined as ​EIER  := (‖A − ​  A​ ​‖​0​​)/ 
(N(N − 1)) × 100​, where ​‖ ⋅ ​‖​0​​​ denotes the number of 
nonzero entries of its argument. Fig. 5 plots EIER against 
the measurements-to-nodes ratio (​T / N​) under variable 
signal-to-noise ratios (SNRs), for a polynomial kernel. The 
synthetic graph was generated with edge probability 0.3.  
Fig. 5 plots the EIER when data are generated by (11), using 
a polynomial kernel of order ​P = 2​. It is clear that nonlin-
ear SVARMs exhibit markedly improved performance rela-
tive to linear SVARMs. This corroborates the effectiveness 
of the former in identifying the network topology when the 
dependencies among nodes are nonlinear.

In order to assess the edge detection performance, 
receiver operating characteristic (ROC) curves are plotted 
under different modeling assumptions in Fig. 6. With ​​P​D​​​ 

denoting the probability of detection, and ​​P​FA​​​ the probabil-
ity of false alarms, each point on the ROC corresponds to a 
pair ​(​P​FA​​ , ​P​D​​)​ for a prescribed threshold. Fig. 6(a) is obtained 
from tests run on data generated by Gaussian kernels with ​​
σ​​ 2​ = 1​, while Fig. 6(b) corresponds to polynomial kernels 
of order ​P = 2​. Using the area under the curve (AUC) as the 
edge-detection performance metric, Fig. 6(a) and (b) illus-
trates the benefits of accounting for nonlinearities. In both 
plots, kernel-based approaches result in higher AUC metrics 
as compared to approaches relying on linear SVARMs. 

Fig. 6(c) depicts ROC curves parameterized by ​λ​ for lin-
ear and kernel-based SVARMs, with simulated data gener-
ated using a linear SVARM. Not surprisingly, kernel-based 
SVARMs with polynomial kernels underperform the linear 
SVARM, due to the inherently present model mismatch. 
However, the kernel SVARM endowed with a multikernel 
learning scheme (MK-SVARM) is shown to attain compara-
ble performance to the linear SVARM when the prescribed 
dictionary comprises both linear and polynomial kernels.

B. Real Gene Expression Data

This section tests the performance of kernel-based 
SEMs, which can be viewed as a special case of the kernel-
based SVARM in Section III-B. The experiments were car-
ried out on gene regulatory data collected form 69 unrelated 
Nigerian individuals, under the International HapMap pro-
ject [35]. From the 929 identified genes, expression levels 
and the genotypes of the expression quantitative trait loci 
(eQTLs) of 39 immune-related genes were selected and 
normalized; see [12] and [86] for detailed descriptions. 
Genotypes of eQTLs were adopted as exogenous inputs ​X​, 
and gene expression levels were treated as the endogenous 
variables ​Y​.

The underlying gene regulatory network topology was 
inferred by adopting both linear and nonlinear SEMs. For 
each algorithm, ​λ​ was selected by fivefold cross validation. 
Fig. 7 shows the identified topologies, with the nodes anno-
tated by their corresponding gene IDs. Fig. 7(a) depicts the 
resulting network based on a linear SEM, while Fig. 7(b) 
and (c) results from nonlinear SEMs based on a polynomial 

Fig. 5. EIER versus measurements-to-nodes ratio ​(T / N)​ for 
simulated data generated using polynomial kernel of order ​P = 2​. 
K-SVARMs consistently outperform linear (L)SVARMs.

Fig. 6. ROC curves for data generated under different modeling assumptions: (a) K-SVARM based on a Gaussian kernel with ​​σ​​ 2​ = 1​;  
(b) K-SVARM based on a polynomial kernel of order ​P = 2​; and (c) Linear SVARM.
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kernel of order 2, and a Gaussian kernel with ​​σ​​ 2​ = 1​. In all 
cases, the identified networks are very sparse, and the non-
linear approaches unveil all edges identified by the linear 
SEMs, alongside with a number of additional edges. Clearly, 
considering the possibility that interactions among genes 
may be driven by nonlinear dynamics, nonlinear frame-
works encompass linear approaches, and facilitate discovery 
of causal patterns not captured by linear SEMs.

C. Inference of Real Temperature Data

This section tests the functional learning over graphs 
discussed in Section IV-A on a real data set. The data set 
comprises 24 signals corresponding to the average tempera-
ture per month in the intervals 1961–1990 and 1981–2010 
measured by 89 stations in Switzerland [1]. The training set 
contains the first 12 signals, corresponding to the interval 
1961–1990, whereas the test set contains the remaining 12. 
Each station is represented by a vertex and the graph was 
constructed using the algorithm in [25] based on the train-
ing signals. Given samples on a test signal on a randomly 
chosen subset of ​M​ vertices, the values at the remaining ​
N − M​ vertices were estimated. NMSE is averaged across 
the test signals [92]. Fig. 8 compares the performance of 
the MKL schemes, along with single-kernel ridge regression 
(KRR), and estimators for bandlimited signals (BL) with dif-
ferent bandwidth ​B​; see, e.g., [80]. The MKL adopts a dic-
tionary consisting of ten diffusion kernels with parameter ​​
σ​​ 2​​ uniformly spaced between 1 and 20. Single-kernel ridge 
regression uses diffusion kernels for different values of ​​σ​​ 2​​. 
It is clear from Fig. 8 that the MKL approach outperforms 
all other approaches. 

D. Recommendations for MovieLens

Here we evaluate the performance of the algorithm in 
Section IV-D on MovieLens 1M data set, which contains 
3706 users, 6040 movies, and 1M ratings. The training and 
testing procedure follows that in [21]. Specifically, the data 

set is randomly split into training and testing sets, and a 
probe set is then formed by collecting only the five-star rat-
ings in the testing set. The nonlinear model is then trained 
based on the training set, and for each user a list with top-​​N​r​​​ 
recommended items is provided by the model. Performance 
of the novel sparse nonlinear method (SNLM) is compared 
with PureSVD with 50 and 100 leading eigenvectors [21], 
as well as SLIM [81], in terms of the recall and precision 
metrics defined, respectively, as ​recall(​N​r​​)  := #hits / #probe​,  
and ​precision(​N​r​​)  := ​N​ r​ 

−1​ recall(​N​r​​)​, where ​#​hits counts the 
number of ratings in the probe set that also appear in the 
recommendation list; and ​#​probe is the number of ratings in 
the probe set. It can be readily observed from Fig. 9 and (10) 
that the nonlinear approach outperforms other approaches 
in both recall and precision.

E. Resting State fMRI Synthetics—Static Topology

The MKL-based PC approach in Section III-A was 
evaluated on DCM-based synthetics [110]; see [63] for the 
choice of DCM parameters and a short description of the 
model. The upper triangular ground truth adjacency matrix ​

Fig. 7. Inferred gene regulatory networks for 39 immune-related genes based on gene expression data of ​T = 69​ individuals using:  
(a) a linear SEM; (b) a kernel-based SEM using polynomial kernels of order 2; and (c) a kernel-based SEM using Gaussian kernels with  
​​σ​​ 2​ = 1​ [105].

Fig. 8. NMSE obtained on the temperature data set.
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A ∈ ​ℝ​​ 30×30​​ contains 100 non-zero entries, each drawn as ​​
[A ]​ij​​ ~U(0 . 25, 0 . 6)​ with ​U​ denoting the uniform distribu-
tion, and placed at a random entry of the matrix. The result-
ing DCM-based time courses were of length ​T = 200​.

The kernel dictionary consisted of a single linear ker-
nel and 19 Gaussian kernels with variances belonging to  
​[​10​​ −6​ , 1 ]​. The optimal regularization parameters were cho-
sen via five-fold cross validation. ROC curves highlight-
ing the performance gains over linear PC can be found in  
Fig. 11. 

F. Topology Identification for Meshed Power Grids

The MKL-based PC approach in Section III-A was fur-
ther evaluated on the task of inferring meshed power grid 
topologies from voltage angle data [124]. The ground truth 
topology was that of the IEEE 14-bus benchmark system, 
whereas the (real) load data utilized were obtained from 
the 2012 Global Energy Forecasting Competition [124]. The 
voltage angles per bus, which in this context constitute the 

observations ​{ ​y​it​​}​, were computed via the alternating cur-
rent (AC) power flow equations. The performance improve-
ment achieved by the MKL-based PC approach over existing 
approaches is evident in Fig. 14. 

G. Resting State fMRI Synthetics—Time-Varying 
Topology

The performance of the MKL-based change point 
detection approach in Section V-G was assessed on DCM-
based synthetics similar to the ones in Section VII-E, but 
here with a time-varying topology. It is assumed that  
​A ∈ ​ℝ​​ 10×10​​ is replaced by its time-varying counterpart ​​
A​t​​​, with ​​A​t​​ = ​A​​ (m)​​ for ​t ∈ ​[​τ​ m−1​​ , ​τ​ m​​ − 1]​​ and ​m = 1, …, ​N​m​​​,  
where ​​N​m​​​ denotes the number of segments; that is, ​​A​t​​​ 
exhibits a switching behavior. The kernel dictionary used 
consisted of ten Gaussian kernels and a linear one. Letting 
the vector of change points ​τ  := [​τ​ 0​​…​τ​ ​N​m​​​​]​ with ​​τ​ 0​​ = 1​ and ​​
τ​ ​N​m​​​​ = T​, the following five temporal configurations were 

Fig. 9. Recall versus top ​​N​r​​​.

Fig. 10. Precision versus recall.

Fig. 11. ROC curves obtained on synthetic resting state fMRI data. 
The red curve corresponds to multi-kernel based partial correlation 
whereas the green one stands for ordinary PC [63].

Fig. 12. NMSE obtained on the economic sectors data set [91].
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considered: ​τ = [1, 60, 110 ] ,  [1, 40, 70, 180 ] ,   [1, 60, 175, 250 ] ,    
[1, 50, 90, 130, 180 ] ,    [1, 60, 120, 180, 240 ]​. For each con-
figuration, five data sets were generated, and the topology 
corresponding to each segment was randomly drawn as in 
Section VII-E. The number of change points ​​N​m​​ − 1​ was also 
inferred by the method. Finally, the minimum allowed seg-
ment length was set equal to 25.

The MKL-based change detection approach assigned 
83% of the time points to the correct segment, achiev-
ing both accurate change point presence detection (avg.  
​| ​​N ̂ ​​m​​ − ​N​m​​ |​ of 0.4) and change point location estimation (avg.  
​|​τ  ̂ ​ − τ |​ of 13 time points).

H. Inferring the Production of Economy Sectors

The reconstruction approach in [91] was evaluated on 
a data set provided by the Bureau of Economic Analysis 
of the U.S. Department of Commerce. In particular, given 
a set of graph snapshots ​{ A [t ] }​ with ​​[A [t ]  ]​nm​​​ denoting 
the investment in trillions of U.S. dollars between sectors  
​n​ and ​m​ during the year ​1995 + 2t​ for ​t = 1, …, 9​, the goal is 
to track the total production of sector ​​n ′ ​​, call it ​​f​​n ′ ​​​ [t ]​, during 
the year ​1996 + 2t​ for ​t = 1, …, 9​. The results are depicted 
in Fig. 12 that plots the normalized mean-square error 
for each year ​1996 + 2t​ for the approach in [91] (KKF). 
For comparison purposes, the performance achieved by 
distributed least-squares reconstruction (DLSR) scheme, 
as well as by the least mean-squares algorithm (LMS) 
when applied to the temporally averaged graph ​​

_
 A​ = (1 / 9) ​

∑ t =1​ 
9 ​  A​ [t ]​ (since these methods cannot handle TV topolo-

gies) is also provided. Note that KKF successfully leverages 
the TV topology, and significantly outperforms the rest of 
the approaches considered.

I. Time-Varying Topology Inference  
From Information Cascades

The data set examined in [5] consists of memes (popular 
text phrases), and the time of their appearance on certain 
websites from March 2011 to February 2012. The subset of 

memes associated with the keyword “Reid Hoffman,” the 
cofounder of LinkedIn, was considered. The observation ​​y​ it​ 

(c)​​ 
corresponds to the timestamp of the appearance of meme  
​c​ on website ​i​, if such an appearance occurred during the ​
t-​th week; otherwise, ​​y​ it​ 

(c)​​ is set to a fixed large value. It is 
seen from Fig. 13 that there is an increase in the number of 
edges in the estimated networks coinciding with the initial 
public offering (IPO) of LinkedIn in May 2011. As time pro-
gresses, with other technology company IPOs emerging, this  
trend stops.

V III.   CONCLU DING SUM M A RY A ND 
R ESE A RCH OU TLOOK

This paper outlined approaches to inferring connectiv-
ity of graphs and learning signals over graphs, while tak-
ing into account nonlinear and dynamic effects present.  
A reproducing-kernel Hilbert space framework for topology 
identification based on nodal observations was presented 
first to encompass a number of existing topology inference 
methods, and markedly broaden their scope. With the graph 

Fig. 14. ROC curves for topology inference of a meshed power grid 
from voltage angle data (adapted from [124]).

Fig. 13. Graphs of ªReid Hoffmanº memes at  ​t = 5​  (left)  ​t = 30​ weeks (center); inferred edges per week (right) [5].
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topologies in hand, key learning tasks over graphs were 
considered to argue that accounting for nonlinear depend-
encies of signals residing on graphs generalizes existing 
learning methods and further improves their performance. 
Moreover, connectivity and inference over dynamic graphs 
was considered.

The vantage point of this overview opens up a num-
ber of exciting directions for future research, includ-
ing: 1) broadening the scope of the nonlinear approach 
to dynamic settings; 2) establishing identifiability of the 

novel nonlinear and dynamic models for separate, as well 
as joint inference of signals and graphs; 3) exploring more 
efficient nonlinear inference algorithms via, e.g., online, 
parallel, and distributed implementations that are well 
motivated for large-scale networks; 4) analyzing the per-
formance of nonlinear models for recommender systems; 
and 5) developing approaches for graph-aware detection, 
classification, and subspace clustering that account for 
nonlinearities and dynamics, both in semisupervised and 
unsupervised settings.� 
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