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Abstract—The deluge of networked data motivates the devel-
opment of algorithms for computation- and communication-
efficien information processing. In this context, three data-
adaptive censoring strategies are introduced to considerably
reduce the computation and communication overhead of decen-
tralized recursive least-squares (D-RLS) solvers. The firs relies
on alternating minimization and the stochastic Newton iteration
to minimize a network-wide cost, which discards observations
with small innovations. In the resultant algorithm, each node
performs local data-adaptive censoring to reduce computations,
while exchanging its local estimate with neighbors so as to
consent on a network-wide solution. The communication cost
is further reduced by the second strategy, which prevents a
node from transmitting its local estimate to neighbors when
the innovation it induces to incoming data is minimal. In the
third strategy, not only transmitting, but also receiving estimates
from neighbors is prohibited when data-adaptive censoring is
in effect. For all strategies, a simple criterion is provided for
selecting the threshold of innovation to reach a prescribed
average data reduction. The novel censoring-based (C)D-RLS
algorithms are proved convergent to the optimal argument in
the mean-root deviation sense. Numerical experiments validate
the effectiveness of the proposed algorithms in reducing com-
putation and communication overhead.

Index Terms—Decentralized estimation, networks, recursive
least-squares (RLS), data-adaptive censoring

I. INTRODUCTION

In our big data era, various networks generate massive
amounts of streaming data. Examples include wireless sensor
networks, where a large number of inexpensive sensors
cooperate to monitor, e.g. the environment [21], [22], or
data centers, where a group of servers collaboratively han-
dles dynamic user requests [24]. Since a single node has
limited computational resources, decentralized information
processing is preferable as the network size scales up [6], [8].
In this paper, we focus on a decentralized linear regression
setup, and develop computation- and communication-efficien
decentralized recursive least-squares (D-RLS) algorithms.
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The main tool we adopt to reduce computation and com-
munication costs is data-adaptive censoring, which leverages
the redundancy present especially in big data. Upon receiving
an observation, nodes determine whether it is informative or
not. Less informative observations are discarded, while mes-
sages among neighboring nodes are exchanged only when
necessary. We propose three censoring-based (C)D-RLS al-
gorithms that can achieve estimation accuracy comparable to
D-RLS without censoring, while significantl reducing the
computation and communication overhead.

A. Related works

The merits of RLS algorithms in solving centralized linear
regression problems are well recognized [11], [25]. When
streaming observations that depend linearly on a set of
unknown parameters become available, RLS yields the least-
squares parameter estimates online. RLS reduces the compu-
tational burden of findin a batch estimate per iteration, and
can even allow for tracking time-varying parameters. The
computational cost can be further reduced by data-adaptive
censoring [4], where less informative data are discarded.
On the other hand, decentralized versions of RLS without
censoring have been advocated to solve linear regression
tasks over networks [15]. In D-RLS, a node updates its
estimate that is common to the entire network by fusing its
local observations with the local estimates of its neighbors.
As time evolves, all local estimates consent on the centralized
RLS solution. This paper builds on both [4] and [15] by
developing censoring-based decentralized RLS algorithms,
thus catering to efficien online linear regression over large-
scale networks.

Different from our in-network setting where operation is
fully decentralized and nodes are only able to communicate
with their neighbors, most of the existing distributed censor-
ing algorithms apply to star topology networks that rely on
a fusion center [2], [9], [10], [19], [23]. Their basic idea is
that each node transmits data to the fusion center for further
processing only when its local likelihood ratio exceeds a
threshold [23]; see also [9] where communication constraints
are also taken into account. Information fusion over fading
channels is considered in [10]. Practical issues such as
joint dependence of sensor decision rules, randomization of
decision strategies as well as partially known distributions are
reported in [2], while [19] also explores quantization jointly
with censoring.
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Other than the star topology studied in the aforementioned
works, [20] investigates censoring for a tree structure. If a
node’s local likelihood ratio exceeds a threshold, its local data
is sent to its parent node for fusion. A fully decentralized
setting is considered in [3], where each node determines
whether to transmit its local estimate to its neighbors by
comparing the local estimate with the weighted average of
its neighbors. Nevertheless, [3] aims at mitigating only the
communication cost, while the present work also considers
reduction of the computational cost across the network. Fur-
thermore, the censoring-based decentralized linear regression
algorithm in [13] deals with optimal full-complexity estima-
tion when observations are partially known or corrupted. This
is different from our context, where censoring is deliberately
introduced to reduce computational and communication costs
for decentralized linear regression.

B. Our contributions and organization

The present paper introduces three data-adaptive online
censoring strategies for decentralized linear regression. The
resultant CD-RLS algorithms incur low computational and
communication costs, and are thus attractive for large-scale
network applications requiring decentralized solvers of linear
regressions. Unlike most related works that specificall target
wireless sensor networks (WSNs), the proposed algorithms
may be used in a broader context of decentralized linear
regression using multiple computing platforms. Of particular
interest are cases where a regression dataset is not available
at a single machine, but it is distributed over a network of
computing agents that are interested in accurately estimating
the regression coefficient in an efficien manner.

In Section II, we formulate the decentralized online linear
regression problem (Section II-A), and recast the D-RLS
in [15] into a new form (Section II-B) that prompts the
development of three censoring strategies (Section II-C).
Section III develops the firs censoring strategy (Section
II1-A), analyzes all three censoring strategies (Section I1I-B),
and discusses how to set the censoring thresholds (Section
I1I-C). Numerical experiments in Section [V demonstrate the
effectiveness of the novel CD-RLS algorithms.

Notation. Lower (upper) case boldface letters denote col-
umn vectors (matrices). (-)7, |||, || - ||2 and E[] stand for
transpose, 2-norm, induced matrix 2-norm and expectation,
respectively. Symbols tr(X), A\pin(X) and Apax(X) are used
for the trace, minimum eigenvalue and maximal eigenvalue
of matrix X, respectively. Kronecker product is denoted
by ® and the uniform distribution over [a,b] by U(a,b),
and the Gaussian probability distribution function (pdf) with
mean 4 and variance o by N(u,0?). The standardized
Gaussian pdf is ¢(t) = (1/v/2m)exp(—t2/2), and its the
associated complementary cumulative distribution function is
represented by Q(z) := [ p(t)dt.

z

II. CONTEXT AND ALGORITHMS

This section outlines the online linear regression setup over
networks, and takes a fresh look at the D-RLS algorithm.
Three strategies are then developed using data-adaptive cen-
soring to reduce the computational and communication costs
of D-RLS.

A. Problem statement

Consider a bidirectionally connected network with .J
nodes, described by a graph G := {V,&}, where V is
the set of nodes with cardinality |V| = J, and £ denotes
the set of edges. Each node j only communicates with
its one-hop neighbors, collected in the set A; C V. The
decentralized network is deployed to estimate a real vector
sp € RP. Per time slot ¢ = 1,2,..., node j receives a
real scalar observation x;(t) involving the wanted s, with
a regression row h7 (t), so that x;(t) = hj (t)so + €;(t),
with ¢;(t) ~ N(0,07).

Our goal is to devise efficien decentralized online algo-
rithms to solve the following exponentially-weighted least-
squares (EWLS) problem

t

J
Seuts (£) == angmin o 3 SNy () B ()sP? (1)
r=1j=1

where S¢q15(t) is the EWLS estimate at slot ¢, and A € (0, 1]
is a forgetting factor that de-emphasizes the importance of
past measurements, and thus enables tracking of a non-
stationary process. When A = 1, (1) boils down to a standard
decentralized online least-squares estimate.

B. D-RLS revisited

The D-RLS algorithm of [15] solves (1) as follows. Per
time slot ¢, node j receives x;(t) and hj (t) and uses them
to update the per-node inverse p X p covariance matrix as

—1 _ y—1lg—1
() =A@, (t—1)

ATr@ (¢ — Dhy(H)h! ()@ (1 - 1)

— 2
A+ hT()®; ! (t — 1)hy (1) @

along with the per-node p x 1 cross-covariance vector as
Y;(t) = At = 1) + h; ()z; (1) ©)

Using ‘I>j_1(t) and ;(t), node j then updates its local
parameter estimate using

s;(t) = @7 (1) [¢j(t) . % 3 (v-}'(t — 1)~V (t - 1)) }

JEN;
4

where vg/ (t — 1) denotes the Lagrange multiplier of node j
corresponding to its neighbor 5’ at slot ¢ — 1, that captures the
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accumulated differences of neighboring estimates, recursively
obtained as (p > 0 is a step-size)

Vi (t=1) =V (t=2)+p[s;(t—1) —s;(t = 1)) (5)

Next, we develop an equivalent novel form of D-RLS
recursions (2)—(5) that is convenient for our incorporation
of data-adaptive censoring. Detailed derivation of the equiv-
alence can be found in Appendix A. The inverse covariance
matrix is updated as in (2). However, the update of s;(¢) in
(4) is replaced by

sj(t) = sj(t — 1) + @7 (hy (1) [2;(t) — h] (t)s;(t — 1)]
—p®; (1)d;(t— 1) (6)

where 4,(t) stands for a Lagrange multiplier conveying
network-wide information that is updated as

8i(t)=8;(t=1)+ Y [s;(t) —s;(1)]

J'EN;

=AY [si(t—1) —sp(t = 1)l

J'EN;

(7

Observe that §,(t) stores the weighted sum of differences
between the local estimate of node j, and all estimates of
its neighbors. Interestingly, if the network is disconnected
and the nodes are isolated, then d;(t) = O so long as
0;(0) = 0, and the update of s;(¢) in (6) basically boils
down to the centralized RLS one [11], [25]. That is, the
current estimate is modifie from its previous value using the
prediction error () fth(t)sj (t—1), which is known as the
incoming data innovation. If on the other hand the network
is connected, nodes can leverage estimates of their neighbors
(captured by d;(t)), which provide new information from the
network other than its own observations {z;(¢)}. The term
p@j_l(t)éj (t — 1) can be viewed as a Laplacian smoothing
regularizer, which encourages all nodes of the graph to reach
consensus on their estimates.

Remark 1. In D-RLS, (2) incurs computational complexity
O(p?), since calculating the products ‘I’;l(t — 1)h;(t) and
<I’j_1(t — 1)%p;(t) requires O(p?) multiplications. Similarly,
(6) incurs computational complexity O(p?), that is domi-
nated by the matrix-vector multiplications i’j_l(t)hj(t) and
{);1(t)6j(t — 1). The cost of carrying out (7) is relatively
minor. Regarding communication cost per slot ¢, node j
needs to transmit its local estimate s;() to its neighbors
and receive estimates sj(¢) from all neighbors j' € N.
The computational burden of D-RLS recursions (2)—(5) is
comparable to that of (2), (6) and (7), with the cost of (4)
being the same as what (6) requires. Meanwhile, the original
form requires neighboring nodes j and j’ to exchange v (t)
and v,/ (¢) in addition to s;(t) and s;(¢), which doubles the
communication cost relative to (6) and (7).

C. Censoring-based D-RLS strategies

The D-RLS algorithm has well documented merits for
decentralized online linear regression [15]. However, its com-
putational and communication costs per iteration are fi ed,
regardless of whether observations and/or the estimates from
neighboring nodes are informative or not. This fact motivates
our idea of permeating benefit of data-adaptive censoring
to decentralized RLS, through three novel censoring-based
(C)D-RLS strategies. They are different from the RLS algo-
rithms in [4], where the focus is on centralized online linear
regression.

Our firs censoring strategy (CD-RLS-1) can be intuitively
motivated as follows. If a given datum (z,(¢),h;(t)) is
not informative enough, we do not have to use it since its
contribution to the local estimate of node j, as well as to those
of all network nodes, is limited. With {70,(t)} specifying
proper thresholds to be discussed later, this intuition can be
realized using a censoring indicator variable

Cj (t) = {(1)7

If the absolute value of the innovation is less than 7o;(t),
then (x;(¢),h;(t)) is censored; otherwise (z;(t),h;(t)) is
used. Section III-C will provide rules for selecting the
threshold 7 along with the local noise variance o (t), whose
computations are lightweight. If data censoring is in effect,
we simply throw away the current datum by letting h;(t) = 0
in (2), to obtain

if |2(t) — by (t)s;(t — 1)| < 70;(t)

if |x;(t) — hJT(t)sj(t —1)| > 70;(t). ®

@) =A""® (- 1). 9)
Likewise, letting z;(t) = 0 and h;(¢) = 0 in (6), yields
Si(t) = s;(t—1) — p® (085 —1).  (10)

CD-RLS-1 is summarized in Algorithm 1. If censoring is
in effect, computation cost per node and per slot is a fraction
2/7 of the D-RLS in (4) and (7) without censoring. To
recognize why, observe that the scalar-matrix multiplication
)\*1<I>;1 (t—1) in (9) is not necessary as the update of <I>;1 (t)
can be merged to wherever it is needed, e.g., in (10) and the
next slot. In addition, carrying out the O(p?) multiplications
to obtain ‘I>j_1(t)hj(t) is no longer necessary, while the
O(p?) multiplications required to obtain ‘i'j_l(t)(sj (t—1)
remain the same.

The firs censoring strategy still requires nodes to com-
municate with neighbors per time slot; hence, the communi-
cation cost remains the same. Reducing this communication
cost, motivates our second censoring strategy (CD-RLS-2),
where each node does not perform extra computations rel-
ative to CD-RLS-1, but only receives neighboring estimates
if its current datum is censored. The intuition behind this
strategy is that if a datum is censored, then very likely the
current local estimate is sufficientl accurate, and the node
does not need to account for estimates from its neighbors.
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Algorithm 1 CD-RLS-1

Algorithm 3 CD-RLS-3

1: Initialize §;(0 ) {SJ( )}‘]1:1 and {@;1(0)}‘]7:1
2: fort =1, 2

3 Allje V

4 if |z;(t) —h] (t)s;(t — 1)| < 70;(t) then
5: update <I>j_1(t) using (9)

6 update s;(t) using (10)

7 else

8 update ® ' (t) using (2)

9: update s;(¢) using (6)

10:  end if

11:  transmit s;(¢) to and receive s;/(¢) from all j € N
12:  compute §;(t) using (7)
13: end for

Algorithm 2 CD-RLS-2

1: Initialize 5](0) {sJ( )}/=1 and {®71(0)}/,

2: fort =1,2,.

32 Allje V

4 if |2;(t) — h] (¢)s;(t — 1)| < 70;(t) then

5: receives s,/ (t) from all j' € N;

6:  else

7 set s;/ (¢t — 1) as recently received ones from all j' € N
8: update @ '(¢) using (2)

9: update s;(¢) using (6)

10: transmit s;(t) to and receive s;/(t) from all j* € N
11: compute d;(t) using (7)

12:  end if

13: end for

Estimates from neighbors, are only stored for future usage.
Likewise, neighbors in N do not need node j’s current
estimate either, because they have already received a very
similar estimate. CD-RLS-2 is summarized in Algorithm 2.

The third censoring strategy (CD-RLS-3) given by Algo-
rithm 3 is more aggressive than the second one. If a node
has its datum censored at a certain slot, then it neither
transmits to nor receives from its neighbors, and in that
sense it remains “isolated” from the rest of the network
in this slot. Apparently, we should not allow any node to
be forever isolated. To this end, we can force each node
to receive the local estimate from any of its neighbors at
least once every dy,.x slots, which upper bounds the delay
of information exchange to d,,,x. Interestingly, the ensuing
section will prove convergence of all three strategies to the
optimal argument in the mean-square deviation sense under
mild conditions.

III. DEVELOPMENT AND PERFORMANCE ANALYSIS

This section starts with a criterion-based development
of CD-RLS-1. Convergence analysis of all three censoring
strategies will follow, before developing practical means of
setting the censoring threshold 70 (¢).

1: Initialize §;(0 ) {sj( )}/=1 and {@;1(0)}5’:1

2: fort =1, 2

3: Allje V

4 if |z;(t) —h] (t)s;(t — 1)| < 70;(t) then

5: stay idle

6:  else

7: set s,/ (t — 1) as recently received ones from all j' € N
8: update & L(t) using (2)

9: update s]( ) using (6)

10: transmit s;(¢) to and receive s,/ (¢) from all j' € N
11: compute () using (7)

12:  end if

13:  if do not receive from any j' € N for dmax time then
14: receive s,/ ()

15:  end if

16: end for

A. Derivation of censoring-based D-RLS-1

Consider the following truncated quadratic cost that is
similar to the one used in the censoring-based but centralized
RLS [4]

fii(s) = (11)
{0, |z;(t) — 0T (1)s| < 70 (t)
Laj(t) = hT()s]? — Lr20,(t)%,  |z;(t) — W (t)s| > To;(¢)

which is convex, but non-differentiable on {s : |z;(¢) —
h' (t)s| = 7o;(t)}. Using (11) to replace the quadratic loss
[z;(T) —h] (7)s]? in (1), our CD-RLS-1 criterion is

t o J
msin Z Z N7 fe(s)

r=1j=1

(12)

To solve (12) in a decentralized manner, we introduce a
local estlmate s; per node j, along with auxiliary vectors z
and z zj per edge (j,j’). By constraining all local estlmates
of neighbors to consent, we arrive at the following equivalent
separable convex program per slot ¢

ZZ” " fir(s; (13)
{S }7€v r=1j=1
s.t. sj:Z§/7Sj/:i§I7Z§/:Z?,jev,jlej\/}-.

Next, we employ alternating minimization and the stochas-
tic Newton iteration to derive our firs censoring-based solver
of (13). To this end, consider the Lagrangian of (13) that is
given by

L(s,z,v,u) = ZZ)\t " fin(si)
jeEV r=1
J
+ > (V) s —2)) + () ) (s —25)] (14
J=1j'€N;
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JEJ

where s := {s;};jcy and z := {ZJ, % }]EV are primal
. p1J o J’
variables, while v := {vj €eR }jev 7and u = {uj €

RP}J N5 are dual variables. Consider also the augmented
Lagranglan of (13), namely

Ep(szvu):ﬁ(szuv)

”Z S (s — 2] 12 + sy — 2] |]?]

J=1j'eN;

(15)

where p is a positive regularization scale. Note that the
constraints on z are not ,dualized, but they are collected in
the set C, := {zl|z} =2} ,j€V,j € N;,j#J'}.

To minimize (13) per slot ¢ > 0, we rely on alternating
minimization [27] in an online manner, which entails an
iterative procedure consisting of three steps.

[S1] Local estimate updates:
s(t) = argmsinﬁ(s,z(t —1),v(t—1),u(t—1))
[S2] Auxiliary variable updates:
z(t) = arg ireucri L,(s(t),z,v(t—1),u(t—1))
[S3] Multiplier updates:
VI () =vi(t = 1) + p[s;(t) — 2] (1)]
W () =l (t — 1)+ p[sy (1) — 2 (¢)].

Observe that [S2] 1s a linearly cgnstrained quadratic pro-
gram, for which if v} (t —1) +uj (t — 1) = 0, we always
have

sj () +5(t) =

Therefore, the initial values of vg

zgﬁ'(t) + zgl(t) and z; (t) = Zgl (t).

and ug- n [S3] are
selected to satisfy v’ ,(0) +ul /(0) = 0 (the simplest choice

is vgl(()) =u; I( 0) = 0). It then holds for ¢t > 0 that
Vi (t)+ul (t) = 0.
Using the latter to eliminate w/ in [S3], we obtain

Vi) = VI (t=1) + E[s;(0) — 2] (1) = s () + 2 (1)
(16)

J
3 p
=vi(t-1)+3 [s;(t) —sj(1)]
where the firs equality comes from subtracting the two 11nes
in [S3], and the second equality is due to z] () = zj (1).

-/
and z’ can be also el1m1nated.

J
When vj is initialized by \s (O) = 0, summing up both
sides of (16) from r = 1 to r = ¢, we arrive, after telescopic
cancellation, at

The aux111ary variables z A

I\D\E

—s;/(r)]. (17)

P

Moving on to [S1], observe that it can be split into J per-
node subproblems

t

sj(t) = argn;;nZ)\ RCH

r=1

O

j'EN;

j T

Before solving (11) with the stochastic Newton iteration [1],
eliminate v using (17) to obtain

t
s;(t) = arg HSIEHZ AT i (s5)

t—1
+ pZ z;/ [s;(r) —55:(r)] sy

which after manipulating the double sum yields

s;(t) = argn;inZ)\ i (ss)

r=1

+Z)\t "p Z {

j'EN;

(r—1)—sp(r—1)

r—1

FU-NY (561 s -1)] s,
e=1

If the update in (7) is initialized with §,(0) = 0, summing up
both sides from £ =1 to £ =r — 1, we fin after telescopic

cancellation
6(r=1)= 3" [sjtr=1) = sy(r=1)
j'ENj

FU-NY (56— D —sp(e~1)]. a9
e=1

Thus, optimization of s;(¢) reduces to

t

8;(1) = argng;nzlA "gj.r(85) (19)
where the instantaneous cost per slot ¢ is
9j.i(s5) = fia(s;) + pd; (t —1)s;. (20)

The stochastic gradient of the latter is given by
Vgj(si(t = 1))

— = o5(1) [ (w5(8) — By (0)s; (¢ = 1))y (0)] + p8 (¢ — 1),
In the stochastic Newton method, the Hessian matrix is given
by

M;(t) = E[V?g;.(s;(t —1))] = Elc;(t)hy (t)h] ()]

where the second equality comes from (11) and (8). A
reasonable approximation of the expectation is provided by
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sample averaging. However, presence of A\ # 1 affects
attenuation of regressors, which leads to

M(1) = 30N e (r)hy ()] (r)

_ A%Mj(t 1) %cj(t)hj(t)hr(t).

Applying the matrix inversion lemma, we obtain

_ t_%[/\’le_l(tf 1) @1)

ATIM (= Dby ()R (M (E - 1)
—al) (t— A —hT(£)M; (¢ — 1)hy(1) }

M ()

J

and after adopting a diminishing step size 1/¢, the stochastic
Newton update becomes

(1) = 85t — 1) — M5 (V93055 — 1),

For rational convenience, let ‘I’j_l(t) = Mj_l(t)/t, and
rewrite (21) as (cf. (2))
—1y _ y—lg—1
() = AR (- 1) (22)
(t)A‘1<I>j_1(t — Dh;(t)h? (1)@ (t — 1)
“ A+hT ()@ (t — 1)hy(t)

Substituting Vg; .(s;(t—1)) and <I>;1(t) into the stochastic
Netwon iteration yields (cf. (6))

sj(t) = sj(t — 1) +¢; (1)@ (t)hy (1) [ (t) — hj (t)s;(t — 1)]

— p®; (18t~ 1)

which completes the development of CD-RLS-1.

B. Convergence analysis

Here we establish convergence of all three novel strategies

for A = 1. With A\ < 1, the EWLS estimator can even adapt
to time-varying parameter vectors, but analyzing its tracking
performance goes beyond the scope of this paper. For the
time-invariant case (A = 1), we will rely on the following
assumption.
(as1) Observations obey the linear model x;(t) = h;(t)so +
€j(t), where €;(t) ~ N(0,03) is correlated across j and
t. Rows hJT(t) are uniformly bounded and independent
of €;(t). Covariance matrices Ry, = E[hj(t)hf(t)] -
0,xp are time-invariant and positive definit . Process
{c;(t)h;(t)h] (t)} is mean ergodic, while {e;(t)} and
{c;(t)} are uncorrelated. Eigenvalues of ®;(t)/t, which
approximate the true positive definit Hessian matrices
Elcj(t)h; (t)hJT(t)], are bounded below by a positive con-
stant when t is large enough.

We will assess convergence of our iterative algorithms us-
ing the squared mean-root deviation (SMRD) metric, define

as
2
J 1
2
SMRD(t) i= ¢ B[ (D [1s(6) = soll*) ] (23)
=1
Letting e;(t) := s;(t) —sp € RP denote the estimation
error of node j and e(t) := [e](t),...,eL(t)]T € R/P

the estimation error across all nodes, one can see that
SMRD(t) = {E]|e(t)]|]}>. Observe that SMRD(t) is a
lower-bound approximation of the mean-square deviation
(MSD) metric MSD(t) := E[|le(t)||?] [14], [26], since by
Jensen’s inequality {E[|[e(t)[|]}* < E[[le(t)]?].

Under (asl), convergence of CD-RLS-1 and CD-RLS-2 is
asserted as follows; see Appendix B for the proof.

Theorem 1. For CD-RLS-1 and CD-RLS-2 Algorithms 1
and 2, set oj(t) = o; and '~I>j_1(0) = 1, per node j.
Let p = min{A\min(Ra,),j € V}, and suppose 0 <
p < 1/(3Amax(L)) for CD-RLS-1 and correspondingly
0 < p < po for CD-RLS-2, while L is the network Laplacian
and the constant pg depends on \pmax(L),~, T, 1, and the
upper bound of h;(t). Under (asl), there exists ty > 0 for
which it holds for t > ty that

2
J 1
B[( Xl ) soll) ]
j=1
J —1 2 2
371]18;(0) — sol|2 + ytoo3tr(Ro,)
<
; 2Q(r)ut
707 Amax (R, ) tr(R, ) In(?)
Q2 ey

Theorem 1 establishes that the SMRD in (23) converges
to zero at a rate O(In(¢)/t). The constant of the convergence
rate is related to Ry,; through /\maX(R;jl), tr(Ry,;) and p;
the noise covariance o7, and the threshold 7 through Q(7).
Theorem 1 also indicates the impact of the initial states
(determined by ~ and s;(0)), which disappears at a faster
rate of O(1/t). To guarantee convergence, the step size p
must be small enough.

The proof for CD-RLS-3 is more challenging. Because a
node does not receive any information from its neighbors
when censoring is in effect, it has to rely on outdated
neighboring estimates when the incoming datum is not
censored. This delay in percolating information may cause
computational instability. For this reason, we will impose
an additional constraint to guarantee that all local estimates
do not grow unbounded. In practice, this can be realized
by truncating local estimates when they exceed a certain
threshold.

(as2) Local estimates {sj(t)}jzl are uniformly bounded
vt > 0.

Convergence of CD-RLS-3 is then asserted as follows.
Similar to CD-RLS-1 and CD-RLS-2, the SMRD of CD-
RLS-3 converges to zero with rate O(In(t)/t), as stated in
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the following theorem. The proof is omitted due to space
limitations, but can be found in the arxiv version [28].

Theorem 2. For CD-RLS-3 given by Algorithms 3, set
oj(t) = oj and ‘I>j_1(—1) = I, per node j. Under (asl)
and (as2) with 0 < p < po as in Theorem 1, there exists
to > 0 for which it holds ¥t > t, that

2

E[(j}jjl||sj<t>—s(]|2)5} < o)

where a and b are positive constants that depend on the
upper bounds of h;(t) and s;(t), parameters p and T, the
covariance Ry, (t), the Laplacian matrix L, and to.

(25)

Although the bounds asserted by Theorems 1 and 2 could
be loose, they demonstrate that limsup,_, . SMRD(¢) = 0,
which establishes that the decentralized estimates converge
to the ground truth asymptotically.

C. Threshold setting and variance estimation

The threshold 7 influence considerably the performance
of all CD-RLS algorithms. Its value trades off estimation
accuracy for computation and communication overhead. We
provide a simple criterion for setting 7 using the average
censoring ratio 7*, which is define as the number of
censored data over the total number of data [19]. The goal is
to choose 7 so that the actual censoring ratio approaches 7*
as t goes to infinit — since we are dealing with streaming
big data, such an asymptotic property is certainly relevant.
When t is large enough, s is very close to sg; thus, the
innovation x;(t) — hl (t)s;(t — 1) ~ x;(t) — h] (t)sp =
€;(t) ~ N(O,JJQ-). As a consequence, Pr(c;(t) = 0) =
Pr(|z;(t) — hi (t)s;(t — 1)] < 70;) ~ Pr(let)| <
To;) = Pr(le;(t)/o;] < 1) = 1 — 2Q(7), where the
last equality holds because €;(t)/o; ~ N(0,1). Therefore,
7 = limyee £ 320 Ele;(7)] & 1—2Q(7), which implies
that

r=QM(1-7")/2).

Given the average censoring ratio 7%, Table I compares the
average per step per node communication and computational
costs of D-RLS and the proposed CD-RLS algorithms. We
assume that transmitting or receiving a p-dimensional local
estimate vector to or from a neighboring node incurs a
cost of p. Thus, for D-RLS and CD-RLS-1, the average
communication costs are both 2p|€|/J. In CD-RLS-2, a
node does not transmit to its neighbors when it censors a
datum, which leads to an average communication cost of
2p|&|(1 — 7*)/J. CD-RLS-3 avoids communication over a
link as long as one of the two end nodes censors a datum,
and hence reduces the cost to 2p|E|(1—7*)?/.J. As discussed
in Section II-C, the computational costs of CD-RLS-1 for
the non-censoring and censoring cases are O(7p?/2) and
O(p?), respectively. For the censoring case, CD-RLS-2 and

TABLE I
AVERAGE PER STEP PER NODE COMMUNICATION AND COMPUTATIONAL
COSTS, GIVEN THE AVERAGE CENSORING RATIO 7*.

Algorithm Communication Computation

D-RLS 2p|&]/ T 7p%/2 4+ O(p)
CD-RLS-1 2p|E|/ T 7p2(1 — ) /2 + p*n* + O(p)
CD-RLS-2 | 2p|&|(1 —7*)/J 7p?(1 — ) /2 + O(p)
CD-RLS-3 | 2p|&|(1 — m*)2/J 7p%(1 —7*)/2 + O(p)

1

08r

0.6

0.4r

021

Fig. 1. The network topology used in the numerical experiments.

CD-RLS-3 reduce their computational costs to O(p), and are
more computationally efficient

If the variances {0']2-} were known, one could simply
choose o,(t) = o,. However, o; in practice is often
unknown. In this case, we consider the running average
oF(t+1) m ! 57 [ (7) — ] ()sol® = (t— 1)o7 (1) /t+
[mj.(t +1) - th(t + 1)s0]?/t, which suggests the recursive
variance estimate

o3 (t+1) = (t—1)o2 (t)/t+[x;(t+1)—h] (t+1)s;(t)]*/t .

IV. NUMERICAL EXPERIMENTS

This section provides numerical results to validate the
effectiveness of our novel censoring strategies. We simulate
a network of J = 15 nodes, which are uniformly randomly
deployed over a 1 x 1 square. Two nodes within communica-
tion range 0.3 are deemed as being neighbors. The resultant
network topology is depicted in Fig. 1. We compare six
algorithms: the centralized adaptive censoring (AC)-RLS that
runs in every node independently, the distributed diffusion
least mean-square (Diffusion-LMS) algorithm [5], [16], D-
RLS without censoring [17], and the three censoring-based
D-RLS algorithms, namely CD-RLS-1, CD-RLS-2 and CD-
RLS-3. All algorithms are evaluated on two data sets, one
synthetic and one real. The empirical SMRD is used as
performance metric.

For the synthetic data set, the unknown s is p-dimensional
with p = 4. The setting is the one in [17], where WSN-
based decentralized power spectrum estimation is sought for
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Fig. 2. SMRD of the six algorithms versus number of iterations.

a signal modeled as an autoregressive process. In this context,
consider an auxiliary sequence 7;(t) that evolves according
to rj(t) = (1—q)B;r;(t—1)+/qw;(t). Starting from r;(t),
the row h7(t) is formed by taking the next p observations,
namely hj%(t) = [rj(t +p—1);...;7;(t)]. Parameters are
selected as ¢ = 0.5, 3; ~ U(0,1), and also uniformly
distributed driving white noise w;(t) ~ U(—v/30.,,, V30u,)
with 03)7 ~ U(0,2). Observation of node j is subject to
additive white Gaussian noise, with covariance of =10"%qy,
where a; ~ U(0,1). The true signal vector is sy = 1, for
which A =1 is set for all algorithms. For D-RLS, CD-RLS-
1, CD-RLS-2 and CD-RLS-3, the step size p = 0.01 and
<I’j_1(0) = 71, where v = 30, leading to fastest convergence
of D-RLS. Regarding the four censoring-based algorithms
AC-RLS, CD-RLS-1, CD-RLS-2 and CD-RLS-3, we set the
average censoring ratio to 7* = 0.6, which is approached
using 7 = Q'((1 — 7%)/2) ~ 0.84. The variances o7
are estimated in an online manner as described in Section
I1I-C. AC-RLS uses ®;'(0) = ~I,,, where v = 10° leads
to the fastest convergence. Diffusion-LMS uses the nearest-
neighbor diffusion matrix and 1.5//¢ step size, which is
tuned to obtain fastest convergence. For all curves obtained
by running the algorithms, the ensemble averages are approx-
imated via sample averaging over 100 Monte Carlo runs.
Fig. 2 depicts the SMRD versus the number of iterations.
Not surprisingly, since D-RLS does not censor data, its
convergence rate with respect to the number of iterations
is the fastest. Among the three proposed CD-RLS algo-
rithms, CD-RLS-2 and CD-RLS-3 are slower than CD-RLS-
1, because the former two incur smaller communication cost
than the latter. Though CD-RLS-3 adopts a more aggressive
censoring strategy than CD-RLS-2, its convergence does not
degrade as confirme by Fig. 2. AC-RLS is the slowest
among all except for Diffusion-LMS, because it is run at
all nodes independently, without sharing information over the
network. Even though the SMRD of Diffusion-LMS vanishes

—e— D-RLS
——AC-RLS
= = =CD-RLS-1
2 CD-RLS-2| |
seeeeess CD-RLS-3

10°
10%

Computation cost

Fig. 3. SMRD of the fve algorithms versus computational cost, define as
the number of multiplications.

—e— D-RLS

= = =CD-RLS-1
CD-RLS2

++ CD-RLS3

SMRD

100 . .
102 103 10* 10°
Amount of data transmission

Fig. 4. SMRD of the four decentralized algorithms versus amount of data
transmission in the unicast mode.

as t — oo (with rate 1/t), its finite-sampl SMRD decays
slower than our CD-RLS schemes for which SMRD also
vanishes as ¢ — oo (with rate upper bounded by In(¢)/t).
This is analogous to centralized LMS that for finit samples
exhibits SMRD decaying slower than that of centralized RLS.
Note that due to the non-differentiable cost function (11),
Diffusion-LMS is unable to achieve a linear convergence rate
as in the differentiable case [5], [18]. We shall not compare
with Diffusion-LMS in the rest of the numerical experiments.

The merits of censoring are further appreciated when one
considers computational costs. Recall that the target average
censoring ratio is 7* = 0.6, meaning that 3/5 of the
data are discarded (actual values are 0.6320 for AC-RLS,
0.6292 for CD-RLS-1, 0.6277 for CD-RLS-2, and 0.6237
for CD-RLS-3, averaged over 100 runs). As confirme by
Fig. 3, the three CD-RLS algorithms consume considerably
less computational resources relative to D-RLS that does
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Fig. 5. Computational cost of the four decentralized algorithms for variable
censoring ratios when target SMRD is 0.015.
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Fig. 6. Amount of data transmission of the four decentralized algorithms
for variable censoring ratios when target SMRD is 0.015.

not censor data. Indeed, whenever a datum is censored,
CD-RLS-1 only requires 2/7 of the computations relative
to D-RLS, while CD-RLS-2 and CD-RLS-3 incur minimal
computational overhead. Although AC-RLS is the most com-
putationally efficien algorithm at the beginning, absence of
collaboration undermines its performance in steady state.

Regarding the amount of data exchanged to communi-
cate local estimates in a unicast mode, CD-RLS-1 is the
worst because nodes need to transmit their local estimate
to neighbors, no matter whether local data are censored or
not. Fig. 4 corroborates that CD-RLS-2 and CD-RLS-3 show
significan improvement over D-RLS, demonstrating their
potential for reducing both communication and computation
costs in solving decentralized linear regression problems over
large-scale networks.

We further numerically quantify the savings of compu-
tation and communication that the three censoring-based

T
—6— AC-RLS
- © - CD-RLS-1
CD-RLS-2
Q- CD-RLS-3

10 3 L L L L L L L
02 03 0.4 05 0.6 0.7 08 0.9 1
Censoring ratio

Fig. 7. SMRD after 500 iterations of the four censoring algorithms for
variable censoring ratios.

D-RLS algorithms enjoy over RLS without censoring. We
set the target SMRD to 0.015 and plot the computational
and communication costs required to reach it. According to
Fig. 5, the computational costs of the three censoring-based
algorithms decrease to about half of that of D-RLS as the
censoring ratio grows to 0.7, while CD-RLS-2 outperforms
the other two. Though CD-RLS-2 uses more iterations (hence
more data) to achieve the target SMRD than CD-RLS-1
(see Fig. 2), it requires less computation when a datum is
censored. On the other hand, CD-RLS-3 uses more iterations
to achieve the target SMRD than CD-RLS-2, and hence it
incurs more computational cost. The saving of CD-RLS-3
over CD-RLS-2 is mainly in the communication cost. In
Fig. 6, the communication cost of CD-RLS-2 and CD-RLS-3
decreases as the censoring ratio grows, but that of CD-RLS-1
increases and is larger than that of D-RLS when the censoring
ratio exceeds 0.5. CD-RLS-3 exhibits best performance in
terms of communication cost.

Next, we vary 7w and evaluate its impact on SMRD, as
shown in Fig. 7. The SMRD here is computed after 500
iterations. When 7 is close to 0.5, meaning about 1/2 of
the data is censored, the three proposed CD-RLS algorithms
are still able to reach SMRD of 10~%, which is the limit of
D-RLS without censoring. Among the three algorithms, CD-
RLS-1 exhibits the best SMRD curve, but its computation
and communication costs are the highest. AC-RLS does not
perform well especially for low censoring ratios due to the
lack of network-wide collaboration. CD-RLS-2 and CD-RLS-
3 perform comparably in this experiment.

The effectiveness of the novel censoring-based strategies
is further assessed on a real data set of protein tertiary
structures [12]. The premise here is that a given dataset is
not available at a single location, but it is distributed over
a network whose nodes are interested in obtaining accurate
regression coefficient while suppressing the communication
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Fig. 8. SMRD of the four censoring algorithms versus the censoring ratio
on a real data set of protein tertiary structures.
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Fig. 9. First entries in the vector estimates of the four algorithms versus
number of iterations when A\ = 0.95.

and computational overhead. Again, the graph in Fig. | is
used to model the network of regression-performing agents.
The number of control variables is p = 9. The firs 45,720
(out of 45,730) observations are normalized and divided
evenly into J = 15 parts, one per node. For CD-RLS-1, CD-
RLS-2 and CD-RLS-3, we set p = 0.05 and @' (0) = 5I,,,
while for AC-RLS we choose v = 10. The ground truth
vector sy is estimated by solving a batch least-squares
problem on the entire data set. Similar to what we deduced
from Fig. 7 in the synthetic data set, the novel CD-RLS
algorithms outperform AC-RLS in terms of SMRD, as one
varies the average censoring ratio from 15% to nearly 100%
in Fig. 8.

When A < 1, the three censoring-based strategies are
also able to track time-varying signals well. Note that to
track the signal dynamics in this case, the censoring ratio
cannot be too large. We use the same setting of the synthetic

data but change the true sy such that its ith element is
f3; sin(37t/500) when t < 1000/3, and remains constant
after ¢ = 1000/3. The magnitudes f; are i.i.d. and follow
U(0,1). The parameters of the four decentralized algorithms
are the same as those in the previous synthetic experiments,
except that the censoring ratio is 0.3 when the censoring
strategies are applied. Fig. 9 depicts the evolution of the firs
entries in the vector estimates of the four algorithms. They
show similar tracking performance, but the censoring-based
algorithms incur lower communication and computation costs
over D-RLS.

V. CONCLUDING REMARKS

This paper introduced three data-adaptive censoring strate-
gies that significantl reduce the computation and communi-
cation costs of the RLS algorithm over large-scale networks.
The basic idea behind these strategies is to avoid inefficien
computation and communication when the local observations
and/or the neighboring messages are not informative. We
proved convergence of the resulting algorithms in the mean-
square deviation sense. Numerical experiments validated the
merits of the novel schemes.

The notion of identifying and discarding less informative
observations can be widely used in various large-scale online
machine learning tasks including nonlinear regression, matrix
completion, clustering and classification to name a few.
These constitute our future research directions.

APPENDIX A
EQUIVALENT FORM OF D-RLS

Here we prove that D-RLS recursions (2) - (5) are equiv-
alent to (2), (6) and (7). It follows from (4) that

D;(t)s;(t) — AP, (t—1)s;(t — 1)
= [ -5 3 7 =) v - )]

J'EN;

— [t - 1) -

(26)

1 .
DI
J'EN;

— vt~ 2))]

Applying the matrix inversion lemma to (2) yields
1) +h;(t)h] (1)

Nyt — 1) = hy (2);(¢) from (3) and
;(t) —h;(t)h] (t) from (27) into (26), leads

D;(t) =\t — @7

(
Substituting 1 (t) —
AP;(t—1) =
to

®;(t)[s;(t) — Sj(t -] = h'( )[;(t) = by (t)s;(t — 1)]

— = Z (t—1) - avi'(t—2)
] 'EN;

+% S (VhE-1) =M (t—2). (28)
J'EN;
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Next, we will show that if §(¢) is define as
1

5(t) =3 (VI (1) = Av] (1 - 1))
J'EN;
1 j
_?ijem(vj() AV, (t 1)) (29)

then its update is exactly (7). This can be done by taking the
difference betwegn slots ¢ and ¢ — 1 for (29), and substituting
the update of vj in (5). Due to (29), it follows that (28) is
equivalent to

®;(t)[s;(t) —8;(t — 1)] = hy(t) [2; () — b (t)s;(t — 1)]

— pb(t—1). (30)

Left multiplying (30) with <I>]71(t), yields the update of s;
in (6), and completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Proof: We need the following lemma in [7, Chapter 7,
Theorem 41].

Lemma 1. Let X, X1, Xo, ... be random variables on some
probability space. If X,, — X in probability and Pr(|X,| <
k) =1 for all n and some k, then X,, — X in rth mean for
all r > 1.

Starting with CD-RLS-1, the proof proceeds in fve stages.
Stage 1. We firs investigate the spectral properties of
®(t) when ¢ is sufficientl large. Letting A\ = 1 and applying
the matrix inversion lemma to the censoring form (2), we

have
®;(t) = ®,(t — 1) + ¢;(t)h; (t)h] (1) 31)

Summing up from r = 1 to » = ¢ and using the telescopic
cancellation, (31) yields

Z%

Thanks to the strong law of large numbers, ®;(¢)/t converges
to Ec;(t)h; 4(t)hT(t)] almost surely as t — co. Observe that

(r) +y7'L,. (32)

Ele; <> HOIO) 33
=E[h;(t)h? (¢t E[ ()Ih‘( );8;(t = 1)]]
—E[hy(t th (t) Pr(c;(t) = 1|h (t),s;(t — 1))
T () (s (t—1)—s0)]
_z <1 : ¢<m>dwﬂ -
—740; W () (s; (t—1)—s0)]

Observing the integral in (33), we know that

71 hT(t i (t—1)—s0)]
1>1-— / o(x)dx
71[1’1T(t)(s t—1)—so)]
/ o(x)dz = 2Q(7) (34)

11

where the event set that the second inequality strictly holds
(namely, “>" becomes “>") is with nonzero measure. Thus,
substituting (34) into (33) yields

Ele;(t/h;(t)h] (1)] < E[hy(t)hj (1))

=Ry,

J

and
Ele;(H)h; ()0} ()] = 2Q(7)Elh,(H)h] (t)] = 2Q(1)R

Since ®,(t)/t converges to E[cj(t)hj(t)hjr(t)] almost
surely as ¢ — oo and h;(¢) is uniformly bounded such that
®;(t)/t is also bounded (cf. (32)), we have E[||®;(t)/t| 2]
converges to Elllc;(t)h;(t)h] (t)[|2] as ¢ — oo by Lemma 1.
Therefore, 2Q(7)Rp, < Elc;(t)h; (t)hf(t)] < Ry,; implies
that there exists t; > 0, for which it holds V¢ > ¢, that

2Q(7) R, ll2 < El|®5(t)/t]l2] < [IRa |2

and consequently the expected maximum eigenvalue of ® ()
satisfie

2Q(7) Amax (R, )t < EAmax(®5(£))] < Amax (R, ).

Observe that ttI>j_1(t) converges to { E[c; (t)hj(t)th(t)}}f1
almost surely as ¢ — oo due to the convergence of ®;(t)/t
to Elc;(t)h;(t)h] (t)]. Since eigenvalues of ®;(t)/t are
bounded below by a positive constant when ¢ is large enough,
there exists to > 0 such that t@j_l(t) is bounded V¢ > ts.
Following the same analysis to obtain (35), it holds Vt > ¢y
that

Amas (R, 1)/t < Enax (®51(£))]

(35)

< Amax(Ry,)/(2Q()1).
(36)

Letting to := max(t1,t2), (35) and (36) hold V¢ > t.
Stage 2. Rewrite the update of s; as
sj(t) =s;(t — 1) +¢; ()@ (t)h; (£)[z;(t) — b (t)s;(t — 1)]
— p®; 1 (1)8(t — 1),
Note also that for A = 1, the update of J; is equivalent to

(cf. (18))

Si(t—1)= > [sj(t—1)—s;(t—1)].
JEN;
Letting e;(t) := s;(t) — so, the estimation error obeys the
recursion

e;(t) = ej(t — 1) +c;(t)®; " (t)hy (t)[a; (1) — by (t)s;(t — 1)]
— 071 ) 3 [est—1) eyt — 1))
J'EN;
Substituting z;(t) = h;(t)so + €;(t) to eliminate s;(t — 1),
we obtain
e;j(t) = ej(t—1) = ¢;(t)®; " (t)h
+cj ()@ (H)hy(t)e; (t)
S Jeslt—1)—eplt— 1))

J'EN;

j(t)h] (H)e;(t — 1)

(37
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Left multiplying (37) with ®;(t) yields
®;(t)e;(t)
=®;(t)e;(t —1) — ¢;(t)h;(t)h] (t)e;(t — 1)
+e;(th;(t)e;(t) —p Y [ej(t —1) —ej(t —1)]

(38)

JEN;
=®;(t—1)e 4(t -1)
+¢;(t)h;()e; (t) — p Z ej(t—1) —ep(t—1)].
J'EN;

Our convergence analysis result will rely on a ma-
trix form of (38) that accounts for all nodes j. Defin
vectors e(t) = [ef(t),...,eT ()] € RIP, €t
[€T(t),...,eL(t)]T € RY, as well as block-diagonal matrices
B(t) := diag({®;(t)}) € R/P*P, C(t) := diag({c; (1)}) €
R7*7 and H(t) := diag({h;(¢)}) € R’?*7. Then (38) can
be written in matrix form as

®(t)e(t)
=[®(t—-1)—

pL@I,]e(t — 1)+ H()C(t)e(t) (39)

which after left multiplication with ®~ = (¢) yields

3 (t)e(t) =@ (1) [®(t — 1) — pL @ L,]e(t — 1)

l\?\»—‘ m\»—t

+@72 () H(t)C(t)e(t). (40)
From (40), we have (® denotes Kronecker product)
Ele" (t)®(t)e(t)]
—Ele”(t — 1)(®(t — 1) ~ pL & L,)" (1)
X (®(t— 1)~ pL @ L,)e(t - 1)]
+2E[e”(t — 1)(@(t — 1) — pL @ L) &1 (t)H(t)C(t)e(t)]
+E[e" (t)CT ()HT (1)@~ (1) H(t)C(t)e(t)].

Since C(t) and €(t) are irrelevant under (asl), the second
term on the right hand side is zero; hence,

Ele" () ®(t)e(t)]
=B’ (t-1)(®(t—1) - pLo L) ®"
x(@(t—1) - pL@1,)e(t —1)]

+E[e" () CT()HT (1)@ (1)H(t)C(t)e(t)].

(1)

(41)

Stage 3. Consider the firs term on the right hand side of
(41). Since L is positive semi-definite we can fin a matrix
U = (L®1,)? such that L ® I, = UTU. By the matrix
inversion lemma, it holds that

(®(t—1) - pL@I,)""
=(®(t—-1)—pUutu)~!
=@t 1)+ p@ (¢t — 1)UT

x(Iy, — pUR I (t — 1)U 'US™

Yt—1). 42

12

For A\ = 1, it follows from (2) that ®~1(t — 1) — ®71(¢) =
0,,. Since ®71(0) = 1, it holds that =1 (t —1) < 1,
for all ¢ > 1, and consequently

I;,—pU® 't - 1)UT =1;, - pyUUT =1, - /L ®1,.

If 0 < p < 1/(¥Amax (L)), then for all ¢ > 1 it follows that
I;, — pU 't - 1)UT = 0y,

This implies that the second term of (42) is positive definite
Thus, we have

) =

and hence, the firs term on the right hand side of (41) is
bounded by

() @t —1) 2 (B(t—1) — pLOL) " (43)

Ele”(t—1)(®(t— 1) - pL @ L,)T & (1)
X (®(t—1)—pL®I,)e(t—1)]
<E[e"(t—1)(®(t - 1) - pL@ L) e(t —1)]

_E[ Tt-n@et—1)Tet—1))]. (44)

Stage 4. Now consider the second term on the right hand
side of (41). Manipulating the expectation yields

Bl ()CT()HT (1)@ (t)H(t)C(t)e(t)]

Bltr(e" ()CT (HHT (1)@ () H(1)C(t)e(1))]
Eltr(CT()H" ()@ () H(t)C(t)e(t)e (1))]
Elr(CT()H" ()@ (1)H()C(t)diag({o] })].
where diag({o7}) € R7*” is a diagonal matrix constructed

with {U?} 5’:1 on its diagonal. Expanding the matrix multi-
plications and noting that ¢;(¢) < 1, we obtain

EleT(t)CT()HT (1)@~ (t)H(t)C(t)e(t))]

[
J
<> oIEM] (1)@ (t)h;(t)).

"t—1) = @5

\/\/

Because @ L(t) due to (22), we further have

EleT(t)CT(t)HT

J
<> o?EMT (1)@ (t — 1)hy(1)]
j=1

J
< OB A (B (E —
j=1

()@ (H()C(t)e(t)]
1)1y, ()], (45)

Since @;1 (t—
that

1) and h;(¢) are independent, it holds Vt > ¢

EAmax(®; 1 (t — 1)) [y (£)]1*]
=E[Amax(®; 1 (t — 1) B[y (1)[|?]
Amax(R;, )

“2ai- "

(46)
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The inequality is due to (36) that shows £ [)\max({)j_l(t))] <
Amax (R, 1) /(2Q(7)t), ¥t >t and the fact E[||h;(t)[]?] =
tr(E[h; ( )hT( )]) = tr(Ry,). Using (46) allows one to

deduce from (45) that
Ble(t )CT( t)H

t o 1 ZUQAmaX

T(t)@‘l(t)H(t)C(t)e(t)]

tr(Rh ) (47)

< 2 Q
holds Vt > tg.

For t < ty, we have <I>;
(43), and thus

'(t) = ®;1(0) = 41, because to

j=1
J J
<> o2 BT ()b ()] =+ 3 o%r(Ry, ).
Jj=1 j=1
Therefore, for ¢t <ty (45) yields
Ble" ()CT(HH" (1)@ (t)H(t)C(t)e(t)]
J
<~ Z aftr(th). (48)
j=1

Stage 5. Substituting (44), (47) and (48) into (41) implies
for t >ty that

1 J
2Q(7)(t—1) Z Amax tr(Rh]) (49)

while for t < ¢

Ele" () ®(t)e(t)]
J
<E[e"(t - 1)®(t—1e(t —1)] +v Y _ojtr(Ry,). (50)
j=1
Summing (49) from r =ty + 1 to » =t and (50) from r = 1
to r = tq, applying telescopic cancellation, and noticing that
®(0) = v '1;,, yields for t > tg
Ele" () ®(t)e(t)] (51)

max Ri
<~ 1He( )H2 'YtO"‘ Z 2(2(;(1‘,—1 ZO’ tr Rh

r=to+1
/\max(R_
Dma T ) Zaum

2Q(t

On the other hand, it holds
Ele" (t)®(t)e(t)] > E[[le(t)1?/ Amax(® 1 (1))]

E[lle®)1?/EAmax (@ (1))]

<y le()|* + (vto +

AVANAY,

where the last line is due to Cauchy-Schwarz inequality
Elle®)]I*/Amax(B~ ()] EAmax (@7 (1))]
=E1(Ile®ll/ Amax (@1 (6)F ) TB(Amax(@ 7 (1)) ]
Ellle()I*.

From (36), BlAmax(®; ' (1)] < Amax(R;,1)/(2Q(7)1)

1/(Amin (Rp; )2Q(7)t) holds asymptotically. Defininin 1 :=
min{Amin(Rp; ), j € V}, we establish that

2Q(m)utEf|le(t)|]’] < Ele” (1) @()e(t)], t>to. (52)
Combining (51) and (52) implies
2Q(7)utE(|e(t)[)? (53)

<y Hle()|* + (vto +

/\max R;jl) J
200 In(t)) ; J?tr(th ).

Finally, with [le()][2 == >7_, [le;(1)][2 = Y7, Ils, (¢) -
so||? this leads to (24), which completes the proof of CD-
RLS-1.

Consider next CD-RLS-2. Stage 1 of the proof remains the
same, while for Stage 2, e;(t — 1) — ej/(t — 1) is replaced
by ¢;(t)[ej(t — 1) — ej(t — 1)] in (38) to arrive at

&, (t)e; (1) (54)
=®;(t - 1)ej(t— 1) = ¢;(t)h;(t)h] (t)e;(t — 1)
+c;(0)h; (t)e; (¢ PZCJ [ej(t —1) —ej(t = 1)].

j'EN;

Its matrix form (41) can be expressed as

Ele” (H)®(t)e(t)]

=Ele”(t = 1)(®(t — 1) — p(C()L) @ L,) 77 (1)
x (@t —1) = p(C(HL) @ L )e(t — 1)]
+E[e" (t)CT ()H" (1)~ () H()C(t)e(t)). (55)

Observe that the right hand sides of (41) and (55) are only
different in their firs terms. Similar to Stage 3 (cf. (44)), we
need to show that the firs term satisfie

Ele”(t - 1)(®(t - 1) - p(C()L) © 1) &~ (1)
X (®(t — 1) — p(C(HL) @ T, et — 1)

<EleT(t - 1)®(t — 1)e(t — 1)]. (56)

Substituting the update (22) with A = 1 into (56), it suffice
to prove that

Ele™(t —1)C(t) @ LH(H)HT (t)
x (I;+HT ()@ 1 (t — 1)H(t))~
>pElel (t — 1)We(t — 1)]

(57)
Yo Te(t—1)]
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where

W =W, + WI' - W, — (LC(t)) ®1 —(CHL)®1,
+pL @ 1L,@ (t — 1)(C(t)L) ®

W, :=C(t) e LHHOH" (t)® ' (t — 1)
(L +HI ()@ (¢t - DH(1) L)@ 1,

W :=(LC(1)) @ L, (t - YH(HH' ()@~ (t — 1)
x((L; +HI ()@t - DH(t))'L) @ I,

For the left hand side of (57), use the lower bound of the

conditional expectation 2Q (1) < E[c;(¢)|h;(¢t),s;(t —1)] to
eliminate C(t), and arrive at
Ble"(t = 1)C(t) @ L,H(HH' (t) (58)
x (I + HI ()@ (t — DH() ' @ Le(t — 1)]
2Q(7)Ele” (t - )H ( JHT (1)
x (L + HI ()@ (t — DH(®) ™ @ Te(t —1)].

By (43), it holds that ® (¢t — 1) <
thus

®-1(0) = 71,,, and

(L +HY ()@ (¢t - DH(t)] = [ +H ()H(1)]

By assumption {h;(t)} are uniformly bounded. If

hY(t)h;(t) < K forall j =1,...,J, we fin
- 1
L+HIO@ - DHO] - —— 1, (5
(L +H ()@~ (t — DH(?)] TR (59)

Substituting (59) into (58), we obtain a lower bound for the
left hand side of (57) given by

Ele"(t — 1)C(t) @ L,H(H)HT (t) (60)
x (Iy+H' ()@t — 1D)H®) ' @ Le(t —1)]
> 290 preT (¢ — 1y HE (te(t — 1))
T14+4K?
=12f2§22E[eT(t — 1)diag{Ru, }e(t —1)]
S 2Q(m)p 5
—1+ T~z Bllle( = DIF].

As for the right hand side of (57), it is upper bounded by

pEeT (t — 1)We(t — 1)] (61)
<pE[(2[|Wi]l2 + [[W2]l2 + 2||L]|2

+plILIZN®T (¢t = Dll2)lle(t — 1]

where we used that all the diagonal elements ¢;(t) of C(t)
are within the range [0, 1] while |[W||2 is upper bounded

by
W12 <[[C@)[2l[H(t)|[5]|@ 7 (t = 1)||2
||y +HT ()@ (¢ — 1)H(t) ™ [2|[L||2-

-1

Noticing that ||C(t)||» < 1, ||[H(#)||2 < K? by assumption,
1271t — D2 < [[27(0)]|2 = 7, ||(Ts + HI ()@~ (t —
DH(#)) Y|z <1 and ||L||2 < Amax(L), we fin that

[Will2 < yAmax (L) K.
Similarly, [[W2]|2 is upper bounded by
[[Wall2 < 7 Amax (L) K.
Therefore, (61) reduces to
pE[e” (t — 1)We(t — 1))
<Pp(2YAmax (L) K2 + 7 Anax (L) K + 2Amax (L)
+07Amax(L)*) E[lle(t — 1)]].

Considering a positive constant

o 2Q(7)p VK2
" '_\/wmax@)?(l R

vK?  4K?+1
—(——+ )
2 Y Amax (L)
and combining (60) with (62), we see that if p is chosen
within [0, po], then (57) holds for all ¢ > 1; and so does
(56).
Following Stages 4 and 5 in the proof for CD-RLS-1, we
can show that (24) holds almost surely for CD-RLS-2 Vt >
to. This completes the proof of the entire theorem. |

(62)

vK? 41

VAmaX(L) )2
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