

1 Dopant Diffusion in Sequentially Doped Poly(3-hexylthiophene) 2 Studied by Infrared and Photoelectron Spectroscopy

3 Patrick Reiser,^{*,†,‡} Lars Müller,^{‡,§,||,¶} Vipilan Sivanesan,^{‡,§} Robert Lovrincic,^{‡,||,¶} Stephen Barlow,[¶]

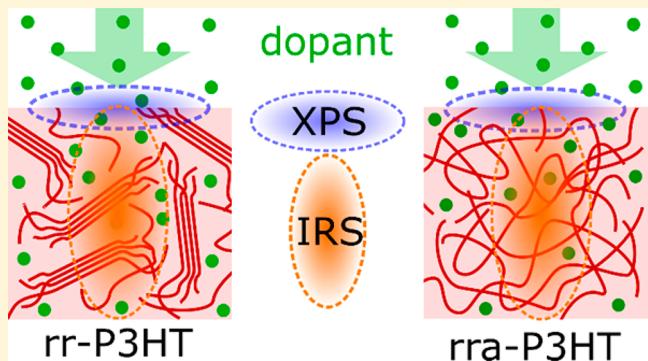
4 Seth R. Marder,[¶] Annemarie Pucci,^{‡,§,¶} Wolfram Jaegermann,^{†,‡} Eric Mankel,^{†,‡,¶}

5 and Sebastian Beck^{*,‡,§,¶}

6 [†]Materials Science Department, Surface Science Division, TU Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany

7 [‡]InnovationLab, Speyerer Straße 4, 69115 Heidelberg, Germany

8 [§]Kirchhoff Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany


9 ^{||}Institute for High-Frequency Technology, TU Braunschweig, Schleinitzstr. 22, 38106 Braunschweig, Germany

10 [¶]Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology,
11 Atlanta, Georgia 30332-0400, United States

12 [#]Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany

13 Supporting Information

14 **ABSTRACT:** The diffusivity of dopants in semiconducting
15 polymers is of high interest as it enables methods of sequential
16 doping but also affects device stability. In this study, we
17 investigate the diffusion of a bulky sequentially deposited p-
18 dopant in poly(3-hexylthiophene) (P3HT) thin films using
19 nondestructive *in situ* infrared (IR) spectroscopy and
20 photoelectron spectroscopy (PES). We probe dopant
21 diffusion into the polymer film at varying coverage by
22 differentially evaluating electron transfer in the bulk and at
23 the surface. Thereby it is possible to determine dopant
24 coverages at which both electron transfer and incorporation of
25 dopants are saturated. By use of PES, neutral and charged
26 dopants can be distinguished, revealing that charged dopants
27 are less mobile in the diffusion process than neutral molecules. We further compare the diffusivity in semicrystalline and fully
28 amorphous P3HT. We find that at high coverage semicrystalline P3HT seems to yield a higher capacity for dopants than fully
29 amorphous P3HT. A temperature-dependent measurement of sequential doping shows directly that the incorporation of
30 dopants is thermally activated and requires temperatures close to room temperature.

31 ■ INTRODUCTION

32 Doping of organic semiconductors can significantly increase
33 the free charge-carrier concentration, which usually results in a
34 rise in conductivity.¹ This allows for specifically designing
35 electronic properties^{1,2} of charge-transport layers^{3,4} and for
36 reducing contact resistances by creating ohmic junctions^{5,6} to
37 various metals or metal-like oxides.^{7,8} By improving the
38 electronic properties of conjugated organic polymers, they
39 also become promising candidates for use in low-cost
40 thermoelectric applications due to their low thermal
41 conductivity.^{9–12}

42 However, the diffusivity of dopants is expected to negatively
43 affect the lifetime and long-term stability of many types of
44 organic electronic devices.¹³ It is known that dopants can cause
45 exciton quenching in photoactive layers^{14–17} and at donor–
46 acceptor interfaces, which reduces the efficiency of organic
47 light-emitting diodes, organic solar cells, or organic photo-
48 diodes. In early studies, halogens¹⁸ and alkali metals¹⁹ were

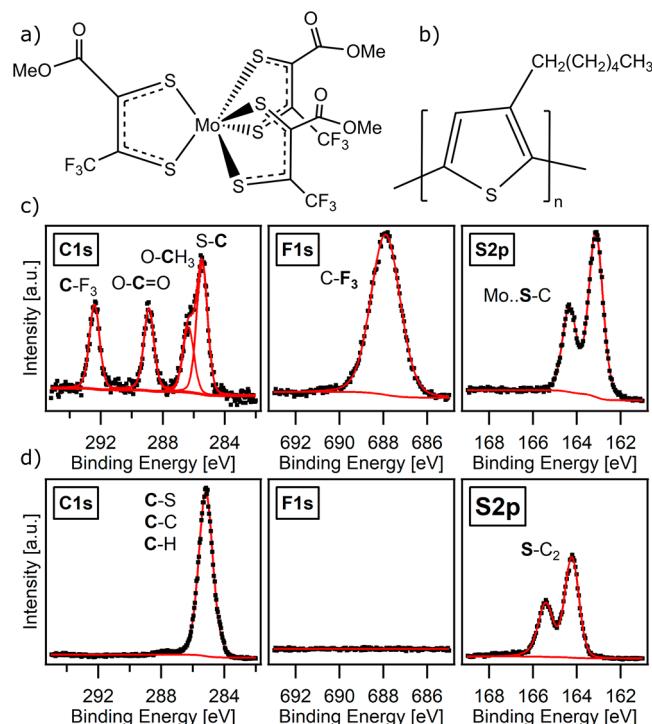
49 used to successfully dope polymers. However, due to their
50 small size and high volatility, in the case of halogens, they were
51 found to be disadvantageous for creating stable p–n
52 structures.²⁰ Small molecular dopants are larger and seemingly
53 less mobile and can achieve doping efficiencies around 40% for
54 low concentrations.²¹ Typical molecules for p-doping like
55 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane
56 (F₄TCNQ) and molybdenum tris(1,2-bis(trifluoromethyl)-
57 ethane-1,2-dithioliene) (Mo(tfd)₃) possess a high electron
58 affinity and enable an integer or partial electron transfer from
59 the host molecule.²² In addition to the exact charge-transfer
60 mechanism,^{22–24} drift and diffusion of molecular dopants and
61 their reactions at interfaces gained more attention re-
62 cently.^{25–30} For conjugated host molecules stable doped layers

Received: March 19, 2018

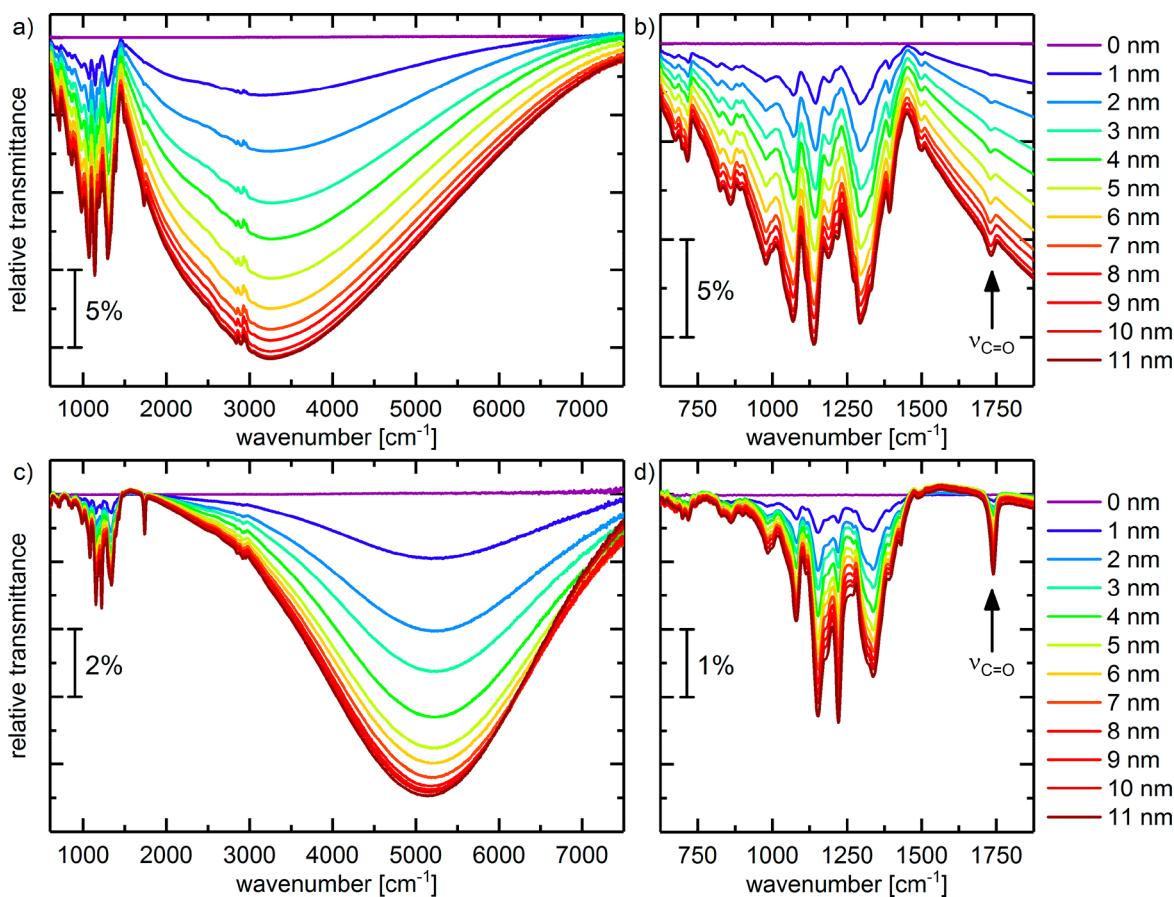
Revised: June 7, 2018

Published: June 8, 2018

have been achieved with F_4TCNQ and $Mo(tfd)_3$ in N,N' -di(1-naphthyl)- N,N' -diphenyl-(1,1'-biphenyl)-4,4'-diamine (α -NPD).^{31,32} In more crystalline materials like zinc phthalocyanine (ZnPc) and 4,4'-bis(*N*-carbazolyl)-1,1'-biphenyl (CBP), F_4TCNQ was still found to diffuse toward a metal electrode modifying its surface potential.^{27,28} In polymers, however, a much higher diffusivity of dopants is usually observed than in small molecular host materials, which makes stable doping more difficult. On the other hand, the high mobility of dopants in polymers can be beneficially used for sequential doping.^{11,33,34} Here, it is possible to evaporate or solution-process mobile dopants on top of already produced thin films. This enables at the same time doped and, at least in some cases, highly ordered polymer films with coherent charge transport.^{26,35} In order to prevent unwanted diffusion after sequential doping, certain strategies have been proposed.^{29,36,37} To suppress an intermixing of adjacent layers, an additional dopant-confining interlayer can be introduced by soft-contact transfer lamination.³⁶ The interlayer is formed from a blend of a polymer and a fullerene acceptor, which presumably fills the diffusion path of the dopant.³⁶


In general, it is perceived that the diffusion depends on both size and shape of the dopant as well as on the host material. In this context, observations of thermally activated diffusion of dopants in conjugated molecular hosts generally show that larger dopants have better morphological stability.²⁵ Regarding blends for organic solar-cell applications, the diffusion of a fullerene derivative in the hole-transporting polymer poly(3-hexylthiophene) (P3HT) was quantitatively analyzed, and diffusion constants D of $\sim 10^{-11}$ and $\sim 10^{-14} \text{ cm}^2 \text{ s}^{-1}$ at around 140 °C were obtained.^{38–40} As another example, the diffusion constants of ions in polymers from electrolyte dielectrics used in organic thin-film transistors were evaluated to be 10^{-12} – $10^{-14} \text{ cm}^2 \text{ s}^{-1}$ at room temperature.^{41,42} Very recently, also the diffusion constant of the dopant F_4TCNQ and a derivative in which one of the cyano moieties is replaced by an alkyl ester group was measured in P3HT using confocal fluorescence microscopy.⁴³ It was found that charged F_4TCNQ ($D = \sim 10^{-13} \text{ cm}^2 \text{ s}^{-1}$) is less mobile than neutral F_4TCNQ ($D = \sim 10^{-11} \text{ cm}^2 \text{ s}^{-1}$) and that its monoester-substituted derivative is more than 1 order of magnitude less mobile than the parent F_4TCNQ .⁴³ However, fewer studies have focused on how the host morphology and doping concentration may affect the diffusivity of dopants. Diffusion of solvents and other liquid small molecules in rubbery or glassy polymers has been widely studied in the literature.^{44,45} The penetration of solvents into polymers is frequently described by models based on free-volume^{46,47} and partial immobilization concepts.^{48–50} The temperature dependence of the diffusion in such systems can be best described by Arrhenius law and involves an activation energy for transport.⁴⁴ Consequently, similar phenomena could be expected for solid-state dopants, taking into account neutral and charged penetrants.

In this study, the diffusion of the soluble $Mo(tfd)_3$ derivative molybdenum tris(1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene) ($Mo(tfd-CO_2Me)_3$)^{51,52} is investigated following its evaporation onto P3HT thin films with varying crystallinity in a sequential doping scheme. We use *in situ* IR spectroscopy during the sequential dopant deposition and subsequent photoemission spectroscopy to monitor the whole diffusion process since both techniques are capable of detecting bulk and interface doping.^{53–55} As $Mo(tfd-CO_2Me)_3$ is larger than, for example, F_4TCNQ , the dopant


is expected to be unable to enter the π - π stacking of P3HT¹²⁶ crystallites below the glass-transition temperature, which may affect the diffusion behavior when comparing different morphologies.¹²⁷ By applying *in situ* IR spectroscopy during the preparation process, an instantaneous doping, independent of the polymer crystallinity, was observed for low coverage. By cooling the substrate and the polymer film prior to dopant evaporation and *in situ* monitoring during the warm-up, the thermal activation of the diffusion process was identified.¹³⁴ Further X-ray photoelectron spectroscopy (XPS) measurements show a difference in the diffusion properties for high coverage of $Mo(tfd-CO_2Me)_3$ in regioregular P3HT (rr-P3HT) compared to regiorandom P3HT (rra-P3HT) thin films.¹³⁷ The changes observed in the molar doping ratios at the surface of the polymer film can be described by a simple analytical diffusion model and suggest a lower diffusivity in rra-P3HT for high concentrations. A possible explanation could involve a higher free volume in grain boundaries or connecting amorphous regions of the semicrystalline P3HT.¹⁴⁴

EXPERIMENT

Materials. For all films discussed below, rr-P3HT from Merck (>93% regularity, $M_W = 24 \text{ kg mol}^{-1}$) and rra-P3HT from Rieke Metals ($M_W = 57 \text{ kg mol}^{-1}$) were used without further treatment. The dopant $Mo(tfd-CO_2Me)_3$ was synthesized and purified as previously described.⁵¹ The chemical structures of P3HT and $Mo(tfd-CO_2Me)_3$ can be found in Figure 1. The polymer materials were dissolved in analytical grade chlorobenzene and were stirred on a hot plate at 50 °C

Figure 1. Figure shows the structural formula of $Mo(tfd-CO_2Me)_3$ (a) and P3HT (b) with corresponding XPS core-level spectra of a pure $Mo(tfd-CO_2Me)_3$ layer in (c) and a pure P3HT layer in (d). The peak components of the C 1s emission of $Mo(tfd-CO_2Me)_3$ can be clearly assigned to the distinct carbon species in binding energy and intensity ratio. The C 1s inset in (c) is expanded in intensity compared to the C 1s spectrum in (d).

Figure 2. Relative transmission spectra of a sequentially doped rr-P3HT layer for varying dopant coverage from 0 to 11 nm in the whole MIR range (a) and in the fingerprint range (b). Relative transmission spectra of a sequentially doped rra-P3HT layer for varying dopant coverage from 0 to 11 nm in the whole MIR range (c) and in the fingerprint range (d). The characteristic C=O stretching vibration of Mo(tfd-CO₂Me)₃ is marked on the right. Note the different ordinate scales of (a–d).

154 for at least 20 h. The concentrations of rra-P3HT and rr-P3HT
 155 solutions were set to 11 and 13.5 mg mL⁻¹, respectively. We
 156 used 1.5 × 1.5 cm² cut silicon wafers (intrinsic, $\sigma > 5000 \Omega$
 157 cm) with a native oxide layer as substrates. The silicon
 158 substrates were cleaned with acetone and isopropanol in an
 159 ultrasonic bath for 30 min.

160 **Sample Fabrication.** The P3HT solutions were directly
 161 spin-cast at 1200 rpm for 30 s in a nitrogen glovebox with both
 162 water content and oxygen concentration below ca. 10 ppm.
 163 Subsequently, the backside of the substrate was cleaned with
 164 chlorobenzene, and the sample was briefly exposed to ambient
 165 conditions in a clean room during transfer to the evaporation
 166 chamber. After evaporation, ultrahigh vacuum (UHV)
 167 conditions were maintained for XPS and IR studies. The
 168 initial film thickness was measured with ellipsometry and a
 169 DEKTAK profilometer to be $L_0 = 50 \pm 6$ nm. The dopant
 170 Mo(tfd-CO₂Me)₃ was evaporated at a pressure of 10⁻⁸ mbar
 171 and adsorbs on organic materials as well as on silicon at room
 172 temperature in UHV.

173 **IR Spectroscopy.** All samples for IR transmission measure-
 174 ments were prepared and measured in situ in an UHV chamber
 175 that is connected to a Fourier-transform IR spectrometer
 176 (Vertex 80v) from Bruker. The complete beam path was
 177 evacuated to 3 mbar to prevent absorption from ambient air
 178 (water and CO₂). A mercury–cadmium–telluride (MCT)
 179 detector and a resolution of 4 cm⁻¹ were used for spectra
 180 acquisition, and 200 scans were averaged for each spectrum.

181 The deposition rates for the dopant molecules were set 181
 182 between 0.1 and 1 nm min⁻¹ and were monitored by a quartz 182
 183 crystal microbalance. The resulting nominal layer thickness L_d 183
 184 then provides a measure of the total amount of dopants 184
 185 deposited.

186 **X-ray Photoemission Spectroscopy (XPS).** For XPS 186
 187 measurements Mo(tfd-CO₂Me)₃ was evaporated at a rate of 187
 188 ca. 1 nm min⁻¹ onto the pristine P3HT films, which were 188
 189 subsequently transferred to the XPS chamber. Core-level 189
 190 spectra were recorded over time employing a PHI 5000 Versa 190
 191 probe scanning photoelectron spectrometer equipped with a 191
 192 monochromated Al K α X-ray source. The binding energy is 192
 193 referenced to the Fermi edge of a sputter-cleaned silver surface. 193
 194 The focused X-ray beam (200 μ m diameter) was moved along 194
 195 the surface within one data series to avoid radiation damage. 195
 196 The combined background-subtracted core-level emission of 196
 197 carbon, sulfur, and fluorine, shown in Figure 1, can be used to 197
 198 determine the molar concentration at the surface. 198

199 **Data Analysis.** In order to calculate element ratios, the 199
 200 area of each core level peak I is weighted with atomic 200
 201 sensitivity factors $\tilde{I} = I/ASF$, which are specific to the 201
 202 spectrometer and account for analyzer transmission, cross 202
 203 section, and average electron mean free path. Since both 203
 204 dopant and matrix contain sulfur and carbon, the molar ratio of 204
 205 dopants n_d to matrix monomers n_m is inferred from solving 205

$$206 \quad \frac{\bar{I}(F\ 1s)}{\bar{I}(C\ 1s, S\ 2p)} = \frac{N_d(F)n_d}{N_m(C, S)n_m + N_d(C, S)n_d} \quad (1)$$

207 where $N_d(C, F, S)$ and $N_m(C, S)$ denote the number of atoms
 208 (C, F, S) in dopant and matrix monomers, respectively.
 209 Uncertainties in carbon and sulfur intensities lead to
 210 comparably large errors at high molar ratios of dopants.
 211 Therefore, a peak component fit of the C 1s emission is used
 212 instead of eq 1, attributing the carbon species to Mo(tfd-
 213 CO_2Me_3) or P3HT (see Figure 1).

214 ■ RESULTS

215 **IR Analysis.** The diffusion of dopant molecules into P3HT
 216 layers throughout the sequential doping process was
 217 monitored by *in situ* IR spectroscopy. For this purpose, IR
 218 spectra of P3HT layers on silicon substrates were measured in
 219 transmission geometry before and continuously during the
 220 thermal deposition of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me}_3)$. In Figure 2 relative
 221 transmission spectra of sequentially doped P3HT layers for
 222 varying dopant coverage from 0 to 11 nm are shown. The
 223 spectrum of the undoped P3HT was used as reference and is
 224 given in the *Supporting Information* (see Figure S1). Broad
 225 polaronic absorption bands around 3250 cm^{-1} for rr-P3HT
 226 and around 5000 cm^{-1} for rra-P3HT, as well as strong IR-
 227 active vibrational (IRAV) modes below 1500 cm^{-1} , which are
 228 typical doping-induced spectral changes, can be observed with
 229 increasing dopant coverage for both types of P3HT.⁵⁶ These
 230 spectral features are attributed to electron transfer from the
 231 P3HT to the dopant molecules, resulting in a positively
 232 charged polymer backbone, i.e., the formation of positive
 233 polarons. The blue-shift in the excitation energy of the polaron
 234 feature for rra-P3HT compared to rr-P3HT is caused by the
 235 stronger localization of the polaron due to the lower
 236 conjugation length along the polymer chain and the suppressed
 237 intermolecular $\pi-\pi$ stacking.⁵⁶ Most of the vibrational modes
 238 of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me}_3)$ are relatively weak compared to the
 239 strong IRAV modes of the polymer (see *Supporting*
 240 *Information* or Figure 3b for IR spectrum of $\text{Mo}(\text{tfd}-$
 $\text{CO}_2\text{Me}_3)$). Therefore, only the characteristic C=O stretching
 242 vibration at 1735 cm^{-1} , which is well-separated from the IRAV
 243 modes of P3HT, can be used as indicator of the presence of
 244 dopant molecules in the doped layer (see Figure 2b,d). The
 245 spectra reveal that the doping and, thus, also the diffusion of
 246 dopant molecules start simultaneously with the evaporation for
 247 both types of P3HT. The strongest spectral changes can be
 248 observed for low coverage followed by a continuous saturation
 249 for higher coverages. For very high coverages above 8 nm there
 250 are almost no additional doping-induced changes, but the
 251 vibrational modes of neutral dopant molecules can be detected
 252 (see Figures S2 and S3). This observation does not depend on
 253 the polymer crystallinity and implies that a further deposition
 254 of dopant molecules does not induce additional electron-
 255 transfer reactions. Because IR spectroscopy probes the whole
 256 layer stack and the spectral resolution of the experiments is
 257 limited to 4 cm^{-1} , we cannot distinguish between the
 258 formation of an adlayer of neutral $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me}_3)$ on top
 259 of the P3HT layer and neutral dopant molecules that are
 260 diffusing into the P3HT layer.

261 To ensure that the observed doping of P3HT at room
 262 temperature (RT) is not only a surface-doping effect and to
 263 demonstrate the thermally activated character of the proposed
 264 diffusion process, we performed temperature-dependent IR
 265 measurements. Prior to dopant evaporation the substrate

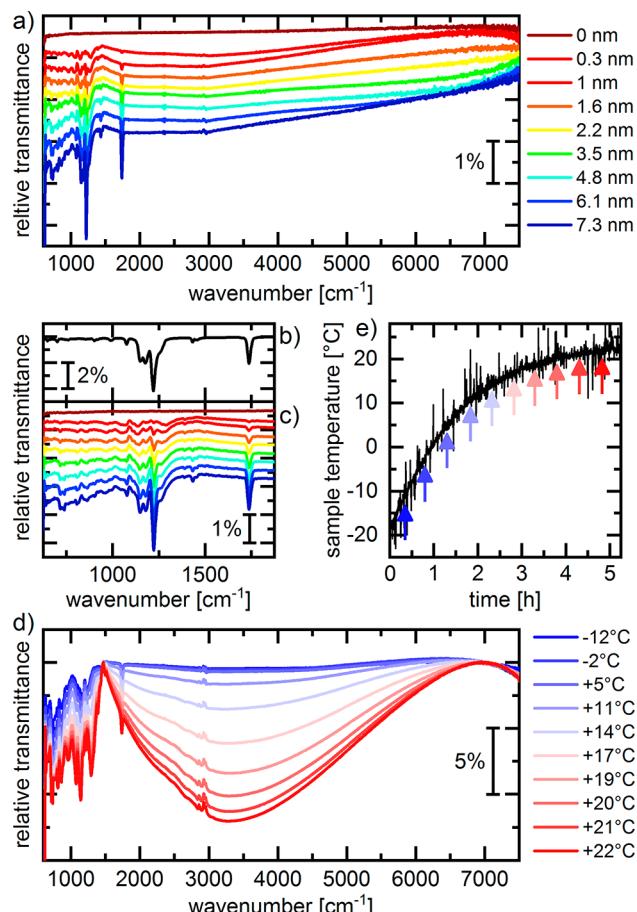
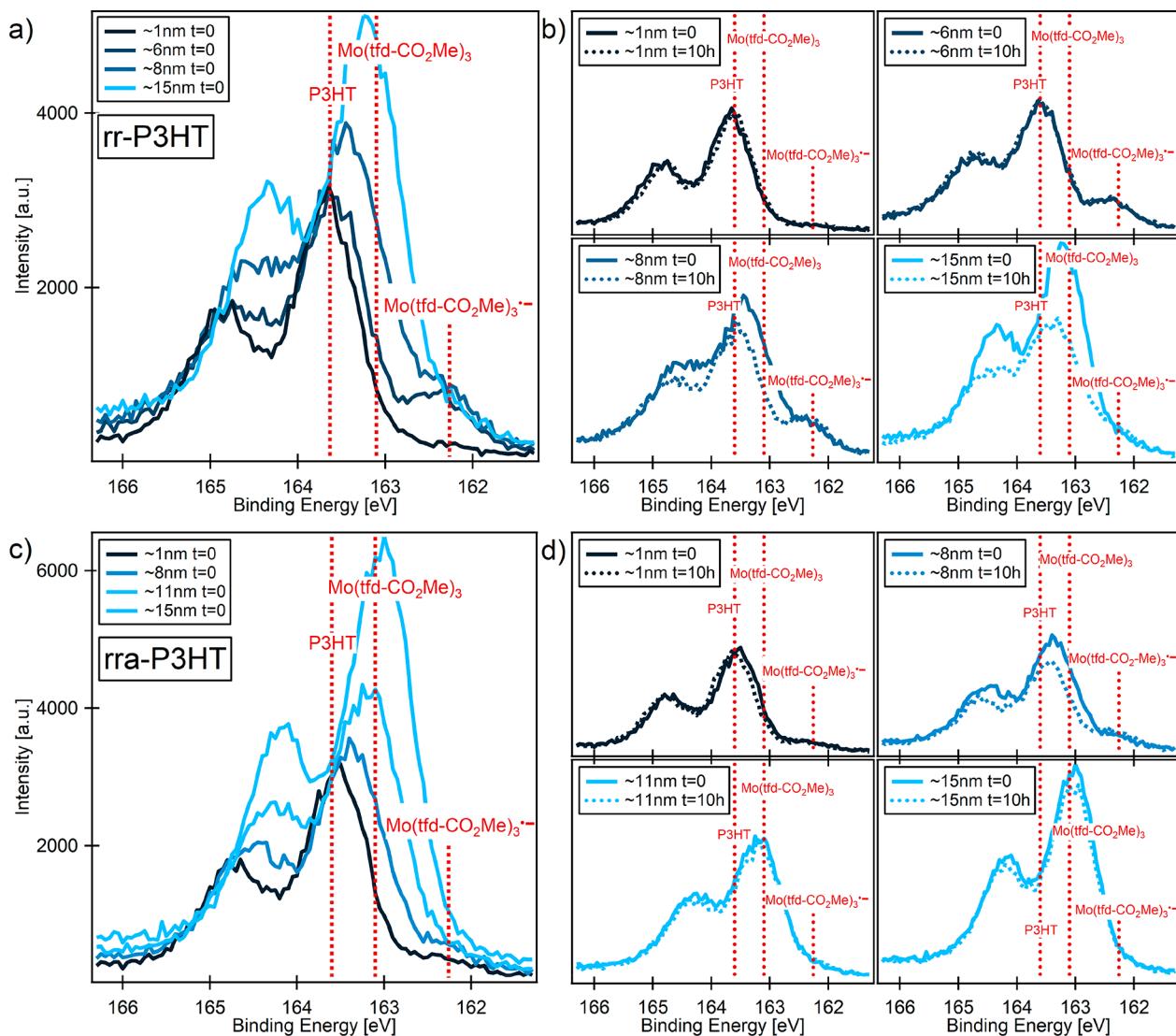



Figure 3. Relative transmission spectra of a sequentially doped rr-P3HT layer (cooled to $-80\text{ }^\circ\text{C}$ during $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me}_3)$ deposition) for varying dopant coverage from 0 to 7.3 nm in the whole MIR range (a) and in the fingerprint range (c). For comparison, a relative transmission spectrum of a thermally deposited 19 nm thick $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me}_3)$ layer is shown in (b). Baseline corrected relative transmission spectra of a cooled and sequentially doped rr-P3HT layer measured during warm-up to RT are given in (d). (e) Evolution of the sample temperature during the warm-up. The temperatures for the shown spectra in (d) are marked with arrows and are coded by colors given in the legend.

(silicon + rr-P3HT) was cooled to $-80\text{ }^\circ\text{C}$ using liquid 266 nitrogen, and IR spectra were measured in transmission 267 geometry before and continuously during the deposition 268 process as shown in Figure 3. 269

Because of the decreased substrate temperature, the ability 270 for dopant diffusion into the P3HT should be strongly 271 suppressed, and a layer of the pure dopant on top of the pure 272 rr-P3HT layer can be expected. The spectrum for a nominal 273 dopant coverage of 0.3 nm shows the characteristic spectral 275 changes (IRAV modes + polaron), indicating electron transfer 275 at the interface between P3HT and the dopant adlayer. For 276 higher coverages the vibrational modes of the neutral dopant 277 molecule clearly can be observed as deduced from the 278 comparison of the spectra in the fingerprint range in Figure 279 3c and the spectrum of a layer consisting only of $\text{Mo}(\text{tfd}-$ 280 $\text{CO}_2\text{Me}_3)$ in Figure 3b. When the sample is warmed up, drastic 281 spectral changes occur as shown in Figure 3d. With increasing 282 sample temperature the polaron feature at around 3250 cm^{-1} , 283 and the IRAV modes below 1500 cm^{-1} , significantly increase 284 in intensity. Both features saturated when the sample reached 285

Figure 4. Sulfur 2p core-level spectra for rr-P3HT (a) and rra-P3HT (c) with varying dopant coverage directly after dopant evaporation. Time-dependent sulfur 2p core-level spectra for rr-P3HT (b) and rra-P3HT (d). The solid lines show the spectra recorded directly after evaporation, and the dashed lines show the spectra recorded 10 h later. The assignment of the $S 2p_{3/2}$ emission line for different chemical components is marked in red in each plot. The shift of the core level line with deposited amounts of $Mo(tfd-CO_2Me)_3$ is also affected by a Fermi level shift in the sample with doping, especially compared to pure P3HT (not shown here).⁵⁹

286 RT (after 3 h). This observation clearly reveals that a thermally
 287 activated diffusion process takes place. By evaluating the
 288 relative transmittance at IRAV mode and polaron peak
 289 positions with respect to the sample temperature, the onset
 290 temperature for the diffusion can be determined to occur in the
 291 range from 5 to 10 °C (see Figure S4). In addition to the
 292 increased thermal energy of the dopant molecules, the
 293 initiation of the diffusion process might also be related to a
 294 glass transition in the P3HT layer which was reported to take
 295 place in this temperature range.⁵⁷ Interestingly, from the
 296 comparison of IR spectral features of different sequentially
 297 doped rr-P3HT layers (from solution or evaporation at RT or
 298 at -80 °C and warming up afterward) it is evident that the
 299 total number of transferred electrons does not depend on the
 300 doping conditions details within the limits of accuracy (see
 301 Figure S5).

302 In conclusion, IR spectroscopy revealed doping-induced
 303 spectral changes indicating the diffusion of dopant molecules
 304 into neat layers of P3HT. At RT the instantaneous evolution of

305 these features during the short evaporation procedure (20–30
 306 min) implies a rather fast diffusion, at least of the small amount
 307 of dopant molecules that are relevant for the doping process,
 308 independent of the P3HT crystallinity. For higher coverages a
 309 further deposition of dopant molecules does not induce
 310 additional electron transfer, and presumably a dopant adlayer is
 311 formed. Thermal activation of the diffusion process was
 312 demonstrated by monitoring the deposition of $Mo(tfd-CO_2Me)_3$
 313 onto a cooled rr-P3HT layer and the subsequent
 314 warming up of the bilayer to RT. But, since IR spectroscopy
 315 probes the whole layer stack, this method is not able to detect
 316 the diffusion profile of neutral and charged dopant molecules
 317 inside the P3HT layer. Because the migration of dopants is an
 318 important degradation mechanism in organic electronic
 319 devices,^{13,16} in the following it will be inspected with XPS
 320 how chemical composition in a limited surface region changes
 321 with time for various initial dopant layer thicknesses.³²¹

XPS Analysis. Photoemission spectroscopy provides
 322 information complementary to that obtained from IR spec-
 323

324 troscopy after deposition, as it is a surface-sensitive technique.
 325 Chemical states are detected only at the surface with an
 326 information depth of only a few nanometers, and neutral and
 327 charged dopants can be distinguished.

328 In Figure 4a,b the high-resolution spectra of the sulfur S 2p
 329 emission of sequentially doped rr-P3HT and rra-P3HT are
 330 plotted for varying nominal dopant coverage. The relative
 331 amount of sulfur in a $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ molecule is higher
 332 than in a P3HT monomer, which leads to an overall increase in
 333 the S 2p intensity as the molar density of sulfur increases with
 334 increasing dopant concentration. Moreover, electron transfer
 335 from P3HT to the dopant molecule leads to an additional
 336 negative charge on the functional core of the metal complex, in
 337 particular on the C_2S_2 portions of dithiolene ligands.^{32,58}
 338 Consequently, the core-level energy of the sulfur atoms of the
 339 complex is significantly affected, and the shoulder toward lower
 340 binding energy can be assigned to $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3^{\bullet-}$, as
 341 marked in Figure 4. First, the amount of charged dopants at
 342 the surface increases with increasing coverage, meaning that
 343 most dopants detected at the surface are charged. This holds
 344 up to a coverage which corresponds to an equivalent nominal
 345 thickness of pure dopant of $L_d \approx 5 \text{ nm}$, monitored by a
 346 microbalance. For higher coverages of rr-P3HT with $\text{Mo}(\text{tfd}-$
 347 $\text{CO}_2\text{Me})_3$, additional charge transfer does not occur at the
 348 surface, which suggests an accumulation of neutral dopants.
 349 Moreover, the total amount of charged dopants seems to be
 350 lower in the case of rra-P3HT in comparison to rr-P3HT.

351 To study the further evolution of dopant concentration at
 352 the thin-film surface, XPS measurements were performed for
 353 various waiting times with the sample being at room
 354 temperature. For rr-P3HT these measurements reveal a clear
 355 continuous decrease of the uncharged surface fraction for
 356 coverages above 6 nm (see Figure S6). The decrease can be
 357 clearly seen in Figure 4b, where the S 2p core level spectra are
 358 plotted directly after the evaporation and 10 h later. This
 359 observation indicates that the dopants diffuse into the rr-P3HT
 360 layer. The corresponding measurements on rra-P3HT show
 361 that this effect is much less pronounced (see Figure 4d). But, it
 362 should be mentioned that the shoulder toward lower binding
 363 energies does not further decrease with waiting time for either
 364 type of P3HT regardless of the dopant coverage, which
 365 suggests that charged dopants do not leave the probed area
 366 although we do not expect an even dopant distribution in the
 367 film. This indicates that neutral dopants are more mobile than
 368 charged dopants, which are likely Coulombically bound to the
 369 host matrix.

370 To investigate the diffusion process of the neutral molecular
 371 species in more detail, a comprehensive analysis of the surface
 372 ratio of dopant molecules to P3HT monomers was conducted
 373 according to eq 1. In Figure 5, the surface fraction as obtained
 374 from XPS data analysis is plotted versus waiting time (on a log
 375 scale) for the various nominal dopant coverages (quantified by
 376 a corresponding dopant layer thickness, L_d). A dense adlayer of
 377 dopants could be expected if there were only dopant molecules
 378 detected within the inelastic electron mean free path of a few
 379 nanometers. But, the measured molar ratio of $\text{Mo}(\text{tfd}-$
 380 $\text{CO}_2\text{Me})_3$ to P3HT monomers at the surface shows that
 381 there is in fact no dense adlayer of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ present at
 382 the surface (already at the first XPS measurement) up to a
 383 nominal dopant layer thickness of 18 nm for rr-P3HT and 14
 384 nm for rra-P3HT. This observation agrees with IR results
 385 where the penetration of dopant molecules into the P3HT film
 386 was already seen during evaporation. A further decrease of the

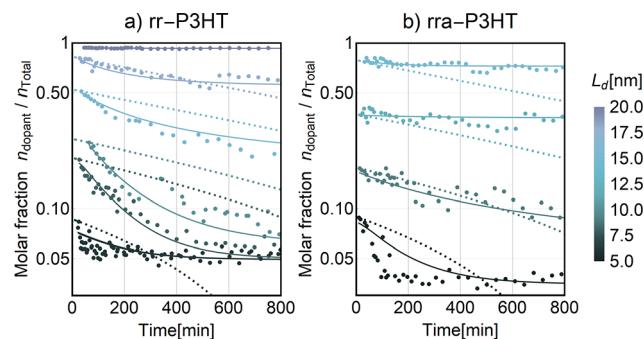


Figure 5. Surface molar fractions of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ to P3HT monomers for rr-P3HT (a) and rra-P3HT (b). The color legend on the right side indicates the approximate nominal layer thickness L_d of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$. The solid lines represent the fit according to the model in eqs 2–4. Relative errors for molar ratios can be estimated to be as high as 15%. The dashed lines represent an estimate of desorption considering a top layer of dopants on pure P3HT with a desorption rate $r = 0.05 \text{ nm h}^{-1}$ (for details see the Supporting Information).

dopant surface concentration, derived from F 1s and C 1s emission spectra, can be observed in Figure 5 for rr-P3HT and less pronounced for rra-P3HT at certain coverages. The decreasing amount of dopants in the surface layer can be explained by either desorption or slow diffusion of the dopant molecules into the bulk. From a desorption measurement of a thin film of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ on Si we estimated a desorption rate $r \lesssim 0.05 \text{ nm h}^{-1}$ (see Figure S7). This estimate is further corroborated by IR measurements and suggests that the decrease in dopant concentration seen in the XPS data is primarily due to diffusion.

Time-dependent changes of the surface concentration of a solution-doped P3HT film (with a similar average but homogeneous dopant distribution) were not observed in UHV (see Figure S8).

The decrease in molar surface fraction as it is depicted in Figure 5 is now compared to a one-dimensional model that is formulated in terms of concentration c and accounts for dopant absorption, bulk diffusion of dopants, charging of dopants, and a finite sorption capacity of the thin film. The model is applied to XPS data taken with the samples at room temperature, i.e., about 5–10 min after the deposition process that likely differs in temperature and kinetics. From the nominal dopant layer thicknesses L_d (calculated from the deposition rate and time) of the various samples we estimated the amount of dopants n_d from which molar fractions $n_d / (n_d + n_m)$ is calculated by using the respective molecular weight and an approximate density for $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ and P3HT (for details see the Supporting Information). Molar fractions are locally proportional to molar concentrations c if a mean density and molar weight is introduced. Therefore, molar concentrations directly correspond to the experimentally derived molar fractions plotted in Figure 5. The total film thickness L for this simulation is approximated by $L = L_d + L_0$, where L_0 denotes the initial thickness of the pristine P3HT film. Within the model we distinguish between the concentration of charged dopants c_c , neutral mobile dopants c_n , and dopants adsorbed only at the surface c_a . The surface region at which c_a is defined is set to 3 nm, which roughly matches the information depth of XPS as well as the surface roughness of P3HT. In this region, dopants from the surface are expected to be absorbed and, in our model, transformed to neutral, mobile dopants. From Figure

429 4b,d we have deduced that changes in surface concentration
 430 are mainly governed by neutral dopants and that the amount of
 431 charged dopants remain constant with time. Consequently, we
 432 treat charged dopants as immobile and only neutral dopants to
 433 be diffusive. The bulk diffusion of neutral dopants is
 434 approximated by a Fickian diffusion with a diffusion constant
 435 D_c that is independent of concentration and the diffusion
 436 current is set to zero at the boundary of the thin film. For
 437 simplicity, absorption or uptake of dopants and charging of
 438 neutral dopants are modeled by linear isothermal sorption (in
 439 eqs 3 and 4) including a saturation capacity.⁶⁰ The total
 440 capacity of dopants in P3HT is denoted by S_{tot} and the upper
 441 bound of the charged fraction is given by S_c . The coupled
 442 system of differential equations then reads as

$$443 \quad \partial_t c_n(x, t) = D_c \partial_x^2 c_n(x, t) - \partial_t c_c(x, t) - \partial_t c_a(x, t) \quad (2)$$

$$444 \quad \partial_t c_c(x, t) = k_c c_n(x, t) \left(1 - \frac{c_c(x, t)}{S_c} \right) \quad (3)$$

$$445 \quad \partial_t c_a(x, t) = -k_a c_a(x, t) \left(1 - \frac{c_c(x, t) + c_n(x, t)}{S_{\text{tot}}} \right) \quad (4)$$

446 Here, the sorption constants are denoted by k_c and k_a for
 447 charged and adsorbed dopants, respectively. The initial
 448 conditions for modeling assume that the dopants adsorbed
 449 on the surface match the molar fraction first measured by XPS
 450 directly after evaporation, and because of the fast incorporation
 451 of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ into the P3HT film during the
 452 evaporation process as observed with IR spectroscopy, a
 453 remaining dopant fraction is already distributed evenly within
 454 the P3HT film (for details see the *Supporting Information*).
 455 The total concentration of dopants $c(0, t)$ is fitted to the data in
 456 Figure 5. For the fitting routine we set S_c fixed since it can be
 457 inferred from the data in Figure 4a,c that there is a maximal
 458 number of charged dopants. We chose $S_c = 0.05$ for rr-P3HT
 459 and $S_c = 0.035$ for rr-P3HT. The sorption constant k_c was set
 460 sufficiently high to allow for an immediate charge transfer as
 461 observed with IR spectroscopy. From the model fit we then
 462 obtain a value of $k_a \approx 0.015 \text{ min}^{-1}$ for both types of P3HT but
 463 different values for the total capacity S_{tot} . We get a larger value
 464 of S_{tot} for rr-P3HT than for rr-P3HT, meaning that rr-P3HT
 465 has a higher capacity or free volume for dopants. The fitted
 466 molar fraction of S_{tot} is given by 0.084 for rr-P3HT and 0.058
 467 for rr-P3HT. In order to achieve the best agreement with our
 468 experimentally derived data, the diffusion constant D_c has to be
 469 high enough to allow for a very fast movement into the bulk,
 470 which means that in this case the diffusion process is limited by
 471 the dopant uptake. A lower limit of D_c can be estimated and
 472 yields $D_c \gtrsim 10^{-15} \text{ cm}^2 \text{ s}^{-1}$ for rr-P3HT and $D_c \gtrsim 3 \times 10^{-16} \text{ cm}^2$
 473 s^{-1} for rr-P3HT (for details see the *Supporting Information*).
 474 To understand the differences in $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ capacity
 475 S_{tot} between rr- and rr-P3HT at high concentrations, it is
 476 necessary to consider the morphology of such thin films.
 477 Electron diffraction measurements (see Figure S12) show that
 478 rr-P3HT does not exhibit any signature of crystalline packing.
 479 In contrast, the diffraction patterns of rr-P3HT reveal a clear
 480 signature of a semicrystalline morphology with crystallites
 481 being embedded in an amorphous matrix. These measure-
 482 ments on the materials confirm the results of previous
 483 studies.⁶¹ As an amorphous matrix with a slightly lower
 484 density rr-P3HT likely has a larger fractional free volume,
 485 which would suggest that rr-P3HT would provide a higher

486 free volume than rr-P3HT. However, the observed behavior of
 487 the diffusion of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ in rr- and rr-P3HT does
 488 not follow this trend. There is evidence⁶² that the noncrystal-
 489 line phase in rr-P3HT between the crystalline grains has a
 490 lower density than fully amorphous rr-P3HT. 490

Hence, the regions at grain boundaries in ordered polymers
 491 might be important for the diffusion of $\text{Mo}(\text{tfd}-\text{CO}_2\text{Me})_3$ in rr-
 492 P3HT and as such could offer an explanation for a higher
 493 dopant acceptance of rr-P3HT in comparison to rr-P3HT,
 494 here observed for dopant layers with $L_d > 14 \text{ nm}$. The free
 495 volume in such regions should also affect the mobility of
 496 dopants at low concentrations (in this study, in the beginning
 497 of the dopant layer deposition). For example, the mobility
 498 model of solvent molecules in polymers (as derived from a
 499 statistical treatment) proposes a volatility^{44,47} which is given by
 500 the relation 501

$$502 \quad m_d = A_d e^{-B_d/f} \quad (5) \quad 502$$

where m_d denotes the mobility, A_d is a shape-dependent
 503 proportionality factor, f the fractional free volume, and B_d
 504 refers to the void size that dopants require to perform a
 505 jump.⁴⁶ However, at present there is no proof for this
 506 hypothesis which would require the direct identifying and
 507 imaging of dopant pathways. 507

■ CONCLUSION

In summary, we analyzed the penetration of a bulky metal-
 510 organic complex acting as p-dopant into a common polymer
 511 matrix. The dopant was sequentially evaporated in UHV on rr-
 512 P3HT and rr-P3HT films at room temperature. We conclude
 513 that the dopant is readily diffusing into the polymer matrix and
 514 doping the P3HT film, which is resolved by identifying
 515 electron transfer due to characteristic absorption bands in IR
 516 spectra and chemical states from XPS binding energies. The
 517 diffusion process requires thermal activation energy close to
 518 room temperature, which was shown by evaporating dopants
 519 on a liquid-nitrogen-cooled rr-P3HT film and subsequent
 520 rewarming of the substrate. With IR spectroscopy we can
 521 monitor electron transfer during evaporation, which suggests
 522 that both rr-P3HT and rr-P3HT quickly incorporate dopants.
 523 Differences of the diffusion behavior between rr- and rr-P3HT
 524 could be observed from a certain coverage on. Time-
 525 dependent XPS measurements allow for determining changes
 526 in doping ratios at the surface for varying dopant coverage. We
 527 observed a decrease of neutral dopants at the surface for rr-
 528 P3HT with time at higher coverage, which is much less
 529 apparent for rr-P3HT. The time dependency of sorption and
 530 diffusion was numerically modeled, which yields total
 531 capacities for dopant uptake in the polymer layers and limits
 532 for the diffusion constant at room temperature. Our data show
 533 that the sequential doping approach is clearly applicable to the
 534 p-doping of P3HT films. On the other hand, in order to
 535 prevent an unwanted diffusion of dopants into the full depth of
 536 a P3HT film, a fully amorphous interlayer and a controlled
 537 filling of voids using a second suitable molecular transport
 538 material or redox-inactive molecule could be viable strategies. 539

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the
 542 ACS Publications website at DOI: 10.1021/acs.jpcc.8b02657. 543

544 IR and XPS data, TEM data, and additional information
545 on data analysis ([PDF](#))

546 ■ AUTHOR INFORMATION

547 Corresponding Authors

548 *E-mail: sebastian.beck@kip.uni-heidelberg.de (S.B.).
549 *E-mail: preiser@surface.tu-darmstadt.de (P.R.).

550 ORCID

551 Lars Müller: [0000-0001-7321-4702](https://orcid.org/0000-0001-7321-4702)

552 Robert Lovrincic: [0000-0001-5429-5586](https://orcid.org/0000-0001-5429-5586)

553 Stephen Barlow: [0000-0001-9059-9974](https://orcid.org/0000-0001-9059-9974)

554 Seth R. Marder: [0000-0001-6921-2536](https://orcid.org/0000-0001-6921-2536)

555 Annemarie Pucci: [0000-0002-9038-4110](https://orcid.org/0000-0002-9038-4110)

556 Eric Mankel: [0000-0001-6566-157X](https://orcid.org/0000-0001-6566-157X)

557 Sebastian Beck: [0000-0003-2194-6842](https://orcid.org/0000-0003-2194-6842)

558 Present Address

559 V.S.: Ruprecht-Karls-Universität Heidelberg, Physikalisch-
560 Chemisches Institut, Im Neuenheimer Feld 253, 69120
561 Heidelberg, Germany.

562 Notes

563 The authors declare no competing financial interest.

564 ■ ACKNOWLEDGMENTS

565 We acknowledge the German Federal Ministry of Education
566 and Research (BMBF) for financial support within the
567 InterPhase project (FKZ 13N13656, 13N13657, and
568 13N13658) and the US National Science Foundation for
569 support through the DMREF program (DMR-1729737). L.M.
570 gratefully acknowledges the scholarship granted by the Carl
571 Zeiss Foundation.

572 ■ ABBREVIATIONS

573 Mo(tfd-CO₂Me)₃, molybdenum tris(1-(methoxycarbonyl)-2-
574 (trifluoromethyl)ethane-1,2-dithiolene); P3HT, poly(3-hex-
575 yliophene); rr-P3HT, regioregular P3HT; rra-P3HT, regior-
576 andom P3HT.

577 ■ REFERENCES

- (1) Pfeiffer, M.; Fritz, T.; Blochwitz, J.; Nollau, A.; Plönnigs, B.; Beyer, A.; Leo, K. Controlled Doping of Molecular Organic Layers: Physics and Device Prospects. In *Advances in Solid State Physics* 39; Kramer, B., Ed.; Springer: Berlin, 1999; pp 77–90.
- (2) Gao, W.; Kahn, A. Effect of Electrical Doping on Molecular Level Alignment at Organic–organic Heterojunctions. *Appl. Phys. Lett.* **2003**, *82* (26), 4815–4817.
- (3) Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. *Chem. Rev.* **2007**, *107* (4), 1233–1271.
- (4) Pfeiffer, M.; Leo, K.; Zhou, X.; Huang, J. S.; Hofmann, M.; Werner, A.; Blochwitz-Nimoth, J. Doped Organic Semiconductors: Physics and Application in Light Emitting Diodes. *Org. Electron.* **2003**, *4* (2–3), 89–103.
- (5) Shen, Y.; Hosseini, A. R.; Wong, M. H.; Malliaras, G. G. How To Make Ohmic Contacts to Organic Semiconductors. *ChemPhysChem* **2004**, *5* (1), 16–25.
- (6) Gross, M.; Müller, D. C.; Nothofer, H.-G.; Scherf, U.; Neher, D.; Bräuchle, C.; Meerholz, K. Improving the Performance of Doped π -Conjugated Polymers for Use in Organic Light-Emitting Diodes. *Nature* **2000**, *405* (6787), 661–665.
- (7) Ganzorig, C.; Fujihira, M. Improved Drive Voltages of Organic Electroluminescent Devices with an Efficient P-Type Aromatic Diamine Hole-Injection Layer. *Appl. Phys. Lett.* **2000**, *77* (25), 4211–4213.

- (8) Zhou, X.; Pfeiffer, M.; Blochwitz, J.; Werner, A.; Nollau, A.; Fritz, T.; Leo, K. Very-Low-Operating-Voltage Organic Light-Emitting Diodes Using a P-Doped Amorphous Hole Injection Layer. *Appl. Phys. Lett.* **2001**, *78* (4), 410–412.
- (9) Glaudell, A. M.; Cochran, J. E.; Patel, S. N.; Chabinyc, M. L. Impact of the Doping Method on Conductivity and Thermopower in Semiconducting Polythiophenes. *Adv. Energy Mater.* **2015**, *5* (4), 609–1401072.
- (10) Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer poly(3,4-Ethylenedioxothiophene). *Nat. Mater.* **2011**, *10*, 429.
- (11) Hynynen, J.; Kiefer, D.; Muller, C. Influence of Crystallinity on the Thermoelectric Power Factor of P3HT Vapour-Doped with F4TCNQ. *RSC Adv.* **2018**, *8* (3), 1593–1599.
- (12) Liu, J.; Qiu, L.; Portale, G.; Koopmans, M.; ten Brink, G.; Hummelen, J. C.; Koster, L. J. A. N-Type Organic Thermoelectrics: Improved Power Factor by Tailoring Host–Dopant Miscibility. *Adv. Mater.* **2017**, *29* (36), 1701641.
- (13) D'Andrade, B. W.; Forrest, S. R.; Chwang, A. B. Operational Stability of Electrophosphorescent Devices Containing P and N Doped Transport Layers. *Appl. Phys. Lett.* **2003**, *83* (19), 3858–3860.
- (14) Arkhipov, V. I.; Emelianova, E. V.; Bässler, H. Quenching of Excitons in Doped Disordered Organic Semiconductors. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2004**, *70* (20), 205205.
- (15) Arkhipov, V. I.; Emelianova, E. V.; Bässler, H. On the Role of Spectral Diffusion of Excitons in Sensitized Photoconduction in Conjugated Polymers. *Chem. Phys. Lett.* **2004**, *383* (1–2), 166–170.
- (16) Tyagi, P.; Tuli, S.; Srivastava, R. Study of Fluorescence Quenching due to 2, 3, 5, 6-Tetrafluoro-7, 7', 8, 8'-Tetracyanoquinodimethane and Its Solid State Diffusion Analysis Using Photoluminescence Spectroscopy. *J. Chem. Phys.* **2015**, *142* (5), 054707.
- (17) Ferguson, A. J.; Kopidakis, N.; Shaheen, S. E.; Rumbles, G. Quenching of Excitons by Holes in Poly(3-Hexylthiophene) Films. *J. Phys. Chem. C* **2008**, *112* (26), 9865–9871.
- (18) Yamamoto, Y.; Yoshino, K.; Inuishi, Y. Electrical Properties of Phthalocyanine-Halogen Complexes. *J. Phys. Soc. Jpn.* **1979**, *47* (6), 1887–1891.
- (19) Kido, J.; Matsumoto, T. Bright Organic Electroluminescent Devices Having a Metal-Doped Electron-Injecting Layer. *Appl. Phys. Lett.* **1998**, *73* (20), 2866–2868.
- (20) Parthasarathy, G.; Shen, C.; Kahn, A.; Forrest, S. R. Lithium Doping of Semiconducting Organic Charge Transport Materials. *J. Appl. Phys.* **2001**, *89* (9), 4986–4992.
- (21) Tietze, M. L.; Burtone, L.; Riede, M.; Lüssem, B.; Leo, K. Fermi Level Shift and Doping Efficiency in P-Doped Small Molecule Organic Semiconductors: A Photoelectron Spectroscopy and Theoretical Study. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2012**, *86* (3), 35320.
- (22) Pingel, P.; Neher, D. Comprehensive Picture of P-Type Doping of P3HT with the Molecular Acceptor F4TCNQ. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2013**, *87* (11), 115209.
- (23) Mityashin, A.; Olivier, Y.; Van Regemorter, T.; Rolin, C.; Verlaak, S.; Martinelli, N. G.; Beljon, D.; Cornil, J.; Genoe, J.; Heremans, P. Unraveling the Mechanism of Molecular Doping in Organic Semiconductors. *Adv. Mater.* **2012**, *24* (12), 1535–1539.
- (24) Salzmann, I.; Heimel, G.; Oehzelt, M.; Winkler, S.; Koch, N. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. *Acc. Chem. Res.* **2016**, *49* (3), 370–378.
- (25) Li, J.; Rochester, C. W.; Jacobs, I. E.; Friedrich, S.; Stroeve, P.; Riede, M.; Moulé, A. J. Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures. *ACS Appl. Mater. Interfaces* **2015**, *7* (51), 28420–28428.
- (26) Kang, K.; Watanabe, S.; Broch, K.; Sepe, A.; Brown, A.; Nasrallah, I.; Nikolka, M.; Fei, Z.; Heeney, M.; Matsumoto, D.; et al. 2D Coherent Charge Transport in Highly Ordered Conducting

671 Polymers Doped by Solid State Diffusion. *Nat. Mater.* **2016**, *15* (8),
672 896–902.

673 (27) Gao, W.; Kahn, A. Controlled P-Doping of Zinc Phthalocya-
674 nine by Coevaporation with Tetrafluorotetracyanoquinodimethane: A
675 Direct and Inverse Photoemission Study. *Appl. Phys. Lett.* **2001**, *79*
676 (24), 4040–4042.

677 (28) Duhm, S.; Salzmann, I.; Bröker, B.; Glowatzki, H.; Johnson, R.
678 L.; Koch, N. Interdiffusion of Molecular Acceptors through Organic
679 Layers to Metal Substrates Mimics Doping-Related Energy Level
680 Shifts. *Appl. Phys. Lett.* **2009**, *95* (9), 093305.

681 (29) Mor, G. K.; Jones, D.; Le, T. P.; Shang, Z.; Weathers, P. J.;
682 Woltermann, M. K. B.; Vakhshouri, K.; Williams, B. P.; Tohram, S. A.;
683 Saito, T. Contact Doping with Sub-Monolayers of Strong
684 Polyelectrolytes for Organic Photovoltaics. *Adv. Energy Mater.* **2014**,
685 *4* (13), 1400439.

686 (30) Müller, L.; Rhim, S.-Y.; Sivanesan, V.; Wang, D.; Hietzschild, S.;
687 Reiser, P.; Mankel, E.; Beck, S.; Barlow, S.; Marder, S. R. Electric-
688 Field-Controlled Dopant Distribution in Organic Semiconductors.
689 *Adv. Mater.* **2017**, *29*, 1701466.

690 (31) Gao, W.; Kahn, A. Controlled P Doping of the Hole-Transport
691 Molecular Material N,N'-diphenyl-N,N'-bis(1-Naphthyl)-1,1'-bi-
692 phenyl-4,4'-diamine with Tetrafluorotetracyanoquinodimethane. *J.
693 Appl. Phys.* **2003**, *94* (1), 359–366.

694 (32) Qi, Y.; Sajoto, T.; Kröger, M.; Kandabarow, A. M.; Park, W.;
695 Barlow, S.; Kim, E.-G.; Wielunski, L.; Feldman, L. C.; Bartynski, R. A.;
696 et al. A Molybdenum Dithiolene Complex as P-Dopant for Hole-
697 Transport Materials: A Multitechnique Experimental and Theoretical
698 Investigation. *Chem. Mater.* **2010**, *22* (2), 524–531.

699 (33) Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.;
700 Roehling, J. D.; Li, J.; Zhang, G.; Augustine, M. P.; Mascal, M.;
701 Moule, A. J. Comparison of Solution-Mixed and Sequentially
702 Processed P3HT:F4TCNQ Films: Effect of Doping-Induced
703 Aggregation on Film Morphology. *J. Mater. Chem. C* **2016**, *4* (16),
704 3454–3466.

705 (34) Hynynen, J.; Kiefer, D.; Yu, L.; Kroon, R.; Munir, R.; Amassian,
706 A.; Kemerkink, M.; Müller, C. Enhanced Electrical Conductivity of
707 Molecularly P-Doped Poly(3-Hexylthiophene) through Under-
708 standing the Correlation with Solid-State Order. *Macromolecules* **2017**, *50*
709 (20), 8140–8148.

710 (35) Fujimoto, R.; Yamashita, Y.; Kumagai, S.; Tsurumi, J.;
711 Hinderhofer, A.; Broch, K.; Schreiber, F.; Watanabe, S.; Takeya, J.
712 Molecular Doping in Organic Semiconductors: Fully Solution-
713 Processed, Vacuum-Free Doping with Metal–organic Complexes in
714 an Orthogonal Solvent. *J. Mater. Chem. C* **2017**, *5* (46), 12023–
715 12030.

716 (36) Dai, A.; Wan, A.; Magee, C.; Zhang, Y.; Barlow, S.; Marder, S.
717 R.; Kahn, A. Investigation of P-Dopant Diffusion in Polymer Films
718 and Bulk Heterojunctions: Stable Spatially-Confined Doping for All-
719 Solution Processed Solar Cells. *Org. Electron.* **2015**, *23*, 151–157.

720 (37) Li, J.; Rochester, C. W.; Jacobs, I. E.; Aasen, E. W.; Friedrich,
721 S.; Stroeve, P.; Moulé, A. J. The Effect of Thermal Annealing on
722 Dopant Site Choice in Conjugated Polymers. *Org. Electron.* **2016**, *33*,
723 23–31.

724 (38) Berriman, G. A.; Holdsworth, J. L.; Zhou, X.; Belcher, W. J.;
725 Dastoor, P. C. Molecular versus Crystallite PCBM Diffusion in
726 P3HT:PCBM Blends. *AIP Adv.* **2015**, *5* (9), 097220.

727 (39) Watts, B.; Belcher, W. J.; Thomsen, L.; Ade, H.; Dastoor, P. C.
728 A Quantitative Study of PCBM Diffusion during Annealing of
729 P3HT:PCBM Blend Films. *Macromolecules* **2009**, *42* (21), 8392–
730 8397.

731 (40) Treat, N. D.; Mates, T. E.; Hawker, C. J.; Kramer, E. J.;
732 Chabinyc, M. L. Temperature Dependence of the Diffusion
733 Coefficient of PCBM in Poly(3-Hexylthiophene). *Macromolecules*
734 **2013**, *46* (3), 1002–1007.

735 (41) Mills, T.; Kaake, L. G.; Zhu, X.-Y. Polaron and Ion Diffusion in
736 a poly(3-Hexylthiophene) Thin-Film Transistor Gated with Polymer
737 Electrolyte Dielectric. *Appl. Phys. A: Mater. Sci. Process.* **2009**, *95* (1),
738 291–296.

739 (42) Kaneto, K.; Agawa, H.; Yoshino, K. Cycle Life, Stability, and
740 Characteristics of Color Switching Cells Utilizing Polythiophene
741 Films. *J. Appl. Phys.* **1987**, *61* (3), 1197–1205.

742 (43) Li, J.; Koshnick, C.; Diallo, S. O.; Ackling, S.; Huang, D. M.;
743 Jacobs, I. E.; Harrelson, T. F.; Hong, K.; Zhang, G.; Beckett, J.; et al.
744 Quantitative Measurements of the Temperature-Dependent Micro-
745 Conjugated Polymer. *Macromolecules* **2017**, *50* (14), 5476–5489.

746 (44) Hedenqvist, M.; Gedde, U. W. Diffusion of Small-Molecule
747 Penetrants in Semicrystalline Polymers. *Prog. Polym. Sci.* **1996**, *21* (2),
748 299–333.

749 (45) Frisch, H. L.; Stern, S. A. Diffusion of Small Molecules in
750 Polymers. *Crit. Rev. Solid State Mater. Sci.* **1983**, *11* (2), 123–187.

751 (46) Fujita, H. Diffusion in Polymer-Diluent Systems. In *Fortschritte
752 Der Hochpolymeren-Forschung*; Springer: Berlin, 1961; pp 1–47.

753 (47) Cohen, M. H.; Turnbull, D. Molecular Transport in Liquids
754 and Glasses. *J. Chem. Phys.* **1959**, *31* (5), 1164–1169.

755 (48) Petropoulos, J. H. Quantitative Analysis of Gaseous Diffusion
756 in Glassy Polymers. *J. Polym. Sci. Part A-2 Polym. Phys.* **1970**, *8* (10),
757 1797–1801.

758 (49) Koros, W. J.; Paul, D. R. CO₂ Sorption in Poly(ethylene
759 Terephthalate) above and below the Glass Transition. *J. Polym. Sci.,
760 Polym. Phys. Ed.* **1978**, *16* (11), 1947–1963.

761 (50) Paul, D. R.; Koros, W. J. Effect of Partially Immobilizing
762 Sorption on Permeability and the Diffusion Time Lag. *J. Polym. Sci.,
763 Polym. Phys. Ed.* **1976**, *14* (4), 675–685.

764 (51) Dai, A.; Zhou, Y.; Shu, A. L.; Mohapatra, S. K.; Wang, H.;
765 Fuentes-Hernandez, C.; Zhang, Y.; Barlow, S.; Loo, Y.-L.; Marder, S. R.;
766 et al. Enhanced Charge-Carrier Injection and Collection Via
767 Lamination of Doped Polymer Layers P-Doped with a Solution-
768 Processible Molybdenum Complex. *Adv. Funct. Mater.* **2014**, *24* (15),
769 2197–2204.

770 (52) Mohapatra, S. K.; Zhang, Y.; Sandhu, B.; Fonari, M. S.;
771 Timofeeva, T. V.; Marder, S. R.; Barlow, S. Synthesis, Character-
772 ization, and Crystal Structures of Molybdenum Complexes of
773 Unsymmetrical Electron-Poor Dithiolene Ligands. *Polyhedron* **2016**,
774 *116*, 88–95.

775 (53) Glaser, T.; Beck, S.; Lunkenheimer, B.; Donhauser, D.; Köhn,
776 A.; Kröger, M.; Pucci, A. Infrared Study of the MoO₃ Doping
777 Efficiency in 4,4'-bis(N-Carbazolyl)-1,1'-Biphenyl (CBP). *Org.
778 Electron.* **2013**, *14* (2), 575–583.

779 (54) Beck, S.; Gerbert, D.; Glaser, T.; Pucci, A. Charge Transfer at
780 Organic/Inorganic Interfaces and the Formation of Space Charge
781 Regions Studied with Infrared Light. *J. Phys. Chem. C* **2015**, *119* (22),
782 12545–12550.

783 (55) Kühn, M.; Mankel, E.; Köhn, A.; Mayer, T.; Jaegermann, W.
784 Doping Mechanism of MoO₃ in 4,4'-Bis(N-Carbazolyl)-1,1'-
785 Biphenyl: A Photoelectron Spectroscopic Study. *Phys. Status Solidi
786 B* **2016**, *253* (9), 1697–1706.

787 (56) Müller, L.; Nanova, D.; Glaser, T.; Beck, S.; Pucci, A.; Kast, A.;
788 K.; Schröder, R. R.; Mankel, E.; Pingel, P.; Neher, D.; et al. Charge-
789 Transfer–Solvent Interaction Predefines Doping Efficiency in P-
790 Doped P3HT Films. *Chem. Mater.* **2016**, *28* (12), 4432–4439.

791 (57) Hopkinson, P. E.; Stanić, P. A.; Pearson, A. J.; Dunbar, A. D.;
792 F.; Wang, T.; Ryan, A. J.; Jones, R. A. L.; Lidzey, D. G.; Donald, A. M.;
793 A Phase Diagram of the P3HT:PCBM Organic Photovoltaic System:
794 Implications for Device Processing and Performance. *Macromolecules*
795 **2011**, *44* (8), 2908–2917.

796 (58) Tenderholt, A. L.; Szilagyi, R. K.; Holm, R. H.; Hodgson, K. O.;
797 Hedman, B.; Solomon, E. I. Electronic Control of the “Bailar Twist”
798 in Formally D⁰–D² Molybdenum Tris(dithiolene) Complexes: A
799 Sulfur K-Edge X-Ray Absorption Spectroscopy and Density Func-
800 tional Theory Study. *Inorg. Chem.* **2008**, *47* (14), 6382–6392.

801 (59) Mayer, T.; Hein, C.; Mankel, E.; Jaegermann, W.; Müller, M.;
802 Kleebe, H.-J. Fermi Level Positioning in Organic Semiconductor
803 Phase Mixed Composites: The Internal Interface Charge Transfer
804 Doping Model. *Org. Electron.* **2012**, *13* (8), 1356–1364.

805 (60) Amundson, N. R. A Note on the Mathematics of Adsorption in
806 Beds. *J. Phys. Colloid Chem.* **1948**, *52* (7), 1153–1157.

808 (61) Hugger, S.; Thomann, R.; Heinzel, T.; Thurn-Albrecht, T.
809 Semicrystalline Morphology in Thin Films of poly(3-Hexylthio-
810 phene). *Colloid Polym. Sci.* **2004**, *282* (8), 932–938.
811 (62) Lee, C. S.; Dadmun, M. D. Important Thermodynamic
812 Characteristics of poly(3-Hexyl Thiophene). *Polymer* **2014**, *55* (1),
813 4–7.