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Abstract The field of neuroscience is facing an unprecedented expanse in the vol-
ume and diversity of available data. Traditionally, network models have provided key
insights into the structure and function of the brain. With the advent of big data in
neuroscience, both more sophisticated models capable of characterizing the increasing
complexity of the data and novel methods of quantitative analysis are needed. Recently,
multilayer networks, a mathematical extension of traditional networks, have gained
increasing popularity in neuroscience due to their ability to capture the full informa-
tion of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer
networks and their applications in neuroscience, showing how incorporating the multi-
layer framework into network neuroscience analysis has uncovered previously hidden
features of brain networks. We specifically highlight the use of multilayer networks
to model disease, structure—function relationships, network evolution, and link multi-
scale data. Finally, we close with a discussion of promising new directions of multilayer
network neuroscience research and propose a modified definition of multilayer net-
works designed to unite and clarify the use of the multilayer formalism in describing
real-world systems.
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1 Introduction

The human brain is a complex system organized by structural and functional rela-
tionships between its elements. Recent experimental advances have resulted in an
unprecedented amount of data describing brain structure and function that now allows
the brain to be modeled as a network through the measurement of pairwise interactions
between its units. This modeling can occur across multiple scales, where the nodes of
the network represent the units of the brain, whether they be proteins, neurons, brain
regions, or some other measured unit (Feldt et al. 2011; Bassett and Sporns 2017).
Edges of the network represent the strength of connection between two units and are
typically chosen to measure either physical connections (structural networks) or sta-
tistical relationships between nodal dynamics (functional networks) (Bullmore and
Sporns 2009). The rich theory of networks has been successfully utilized in studying
the brain by quantifying network structure through the calculation of descriptive and
inferential network statistics which expose otherwise hidden phenomenon. Measures
of centrality, degree distribution, clustering, small-worldness, and more (Newman
2003; Boccaletti et al. 2006; Muldoon et al. 2016) have been used to study disease,
task, learning, behavior, and structure (Sporns et al. 2004; Bullmore and Sporns 2009;
Braun et al. 2015a; Mattar and Bassett 2016; Bassett and Sporns 2017).

The success of network theory in uncovering the complex organization of the human
brain is not without limits, however, as traditional networks capture only a single mode
of interaction between units. Recording technologies such as functional magnetic reso-
nance imaging (fMRI), magnetoencephalography (MEG), and electroencephalogram
(EEG) capture brain dynamics across time and across multiple frequency bands, and
it is important to retain the information of the full frequency spectrum (Bassett et al.
2006; Liao et al. 2013; Sasai et al. 2014; Jingyuan 2015; Thompson and Fransson
2015; De Domenico et al. 2016b) or the full temporal profile (Bassett et al. 2011;
Wymbs et al. 2012; Bassett and Wymbs 2013a; Bassett et al. 2015) of such record-
ings. In addition to measuring functional interactions through fMRI or EEG, structural
recording techniques such as diffusion-weighted imaging (DWI) measure the presence
and strength of physical connections between the various regions of the brain. The
emergence of such increasingly large and multimodal data sets therefore necessitates
a quantitative model that is rich and flexible enough to both describe interactions
between multiple scales and modalities and allow for meaningful analysis of the data
to provide new and powerful insights into the organization of the brain. Unfortunately,
traditional networks are not equipped to model these multiple interactions across time,
frequency, or modality.

In order to meet these new challenges, recent work in network neuroscience has
begun to explore the use of multilayer networks to model the multiple complex inter-
actions that traditional networks are not suited to capture (Muldoon and Bassett 2016;
De Domenico 2017). A multilayer network is a generalization of a traditional network
that retains the simplicity of a network yet provides flexibility in modeling multimodal
data. A mathematical definition is given in Sect. 2, but intuitively a multilayer net-
work can be thought of as a network of networks, or of a collection of interconnected
networks, each of which represents some interaction between its agents. While the
field of multilayer networks is still in its infancy, multilayer networks have begun to
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Fig.1 A multilayer network created from recording both fMRI and DTI data from a single brain. (Reprinted
with permission from Battiston et al. 2017)

be used successfully in diverse topics such as protein interactions (Ou-Yang et al.
2014), ecology (Pilosof et al. 2017), language (Martin¢i¢-Ipsic et al. 2016), disease
(Halu et al. 2017), transportation (Gallotti and Barthelemy 2015), and trade (Gao et al.
2015) among others.

Recent work in neuroscience has also drawn upon the versatility of the multilayer
framework to model the complex relationships in neural data. For example, given
fMRI (functional) and diffusion tensor imaging (DTI; structural) data for a single
subject, one can build a multilayer network with two layers: one representing the
fMRI network, and the other, the DTI network (Battiston et al. 2017). From the fMRI
data, one can build a functional network with the nodes representing brain regions and
the edges representing coherence between regional activity. Given the DTI data, one
can build a structural network by again parcellating the brain into regions and then
measuring the strength of physical connections between these regions. Finally, the
multilayer network is formed by considering each of these networks as a layer of the
multilayer network and adding edges from a brain region in the fMRI layer to itself
in the DTI layer (see Fig. 1).

In this review, we focus on (i) providing a basic mathematical introduction to
multilayer networks for those unfamiliar with the topic, and (ii) surveying the use of
this formalism across a wide range of applications in neuroscience. A complementary
review that highlights the implementation of multilayer analysis in neuroimaging data
from human brain networks can be found in De Domenico (2017). The outline of this
review is as follows. We first introduce the general concept of multilayer networks. We
next describe applications of the multilayer framework to problems in neuroscience,
followed by a discussion of currently available network statistics for use in the analysis
of such data. Finally, we offer insight into future directions of multilayer networks and
their use in neuroscience, and present a modified definition of a multilayer network
meant to unify research in this developing field.
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2 General Introduction to Multilayer Networks
2.1 Mathematical Definition

In the following, we provide a general introduction and mathematical definition of
multilayer networks. For a more detailed description of multilayer networks, please
see the comprehensive review by Kivela et al. (2014).

In order to describe a multilayer network, we first review the definition of a tradi-
tional network. A traditional network, N, can be formalized as atuple N = (V, E, w)
where V is a set of nodes, E = V x V is a set of edges, and w : E — R is a function
on the edges called a weight function. It is clear from this definition that a network
can be represented as a matrix, A, with A;; = w(v;, v;). This matrix is called the
adjacency matrix of the network. One may specialize to a certain class of networks
by imposing constraints on the weight function w. For example, if one assumes w
is symmetric, i.e., w(vy, v2) = w(va, v1), then the network is said to be undirected.
When edge weights are restricted to binary numbers (i.e., R = {0, 1}), the network is
said to be unweighted. Because the full information about the network is contained
in the adjacency matrix, we often use the formal definition of the network and its
adjacency matrix interchangeably.

A multilayer network builds upon the traditional network with the addition of an
extra labeling function, / : V — L from the nodes to a set of labels, L, i.e., M =
(V, E, w, ). The labeling set is assumed to take the form L = L{ x Ly X --- X Ly,
where each set L; is called a dimension, or aspect, of the multilayer network, and the
network is said to be d-dimensional. Mathematically, the only difference between a
network and a multilayer network is that in a traditional network, each node is assigned
alabel v € V, while in a multilayer network, each node is instead assigned a vector
label I[(v) = (vy, v2, ..., vg). The true power of multilayer networks is the ability to
select subsets of nodes, which we call layers, based on their labels.

Thus, in a multilayer formalism, one can essentially build multiple layers of tradi-
tional networks, where each layer describes some feature (aspect/dimension) of the
data. Intra-layer edges serve the same purpose as in a traditional network, describing
network connections which represent a single feature of the data, while inter-layer
edges provide connections between features. This allows a multilayer network to cap-
ture several modes of interaction between its nodes.

We must also clarify our vocabulary when we discuss network nodes in a multilayer
framework. For notational convenience, we identify each node v € V with its label

v~v=IWw) = (v, v2,...,04).

However, this can lead to confusion between nodes in different layers of the network.
For clarity, we will therefore make a distinction between network nodes and vertices
in our multilayer setting. The nodes should be thought of as the unique objects of
interest in the network, for example brain regions or neurons, and the vertices should
be thought of as the abstract underlying vertex set of the full multilayer network. A
node can be present in all layers of the network, but does not have to be (e.g., if nodes
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represent neurons and layers represent time, new neurons could be born over time and
old neurons could die).

Mathematically, we will denote L; = N as the set of node identities representing
physical objects. We will therefore call the elements i € N the nodes of a network
and v € V the vertices of the network to distinguish between them. This distinction
is visually depicted in Fig. 2, where panels (a—b) highlight the nodes of the network
partitioned into layers, and panels (c—d) showcase the vertex set of the underlying
network.

Multilayer networks can also be represented by a matrix in the same way as a
traditional network, although in the multilayer framework, we refer to this matrix as
the supra-adjacency matrix. For every pair of vertices in the network v;, v;, we have a
weight, w(v;, v;), that describes the edge between v; and v;. If A;; = w(v;, v;), then
the pair (A, [) defines the supra-adjacency matrix, where [ is the labeling function of
the multilayer network. We often suppress the function / but maintain its information
by labeling the ith row of A by the vector /(v;) (see Fig. 2).

The supra-adjacency matrix is a popular data structure for multilayer networks.
It retains the full information of the network and the layers of the network appear
in the supra-adjacency matrix as blocks. The diagonal blocks consist of intra-layer
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Fig. 2 Four representations of the same multilayer network. The adjacency matrices are shown at the
bottom with intra-layer and inter-layer edges colored green and blue, respectively, and white representing
no edge present. a The multilayer network visualized with an emphasis on the partition of the network into
layers. Intra-layer edges are solid, and inter-layer edges are dashed. b The adjacency matrix labeled with an
empbhasis on the partition of the network into layers. ¢ The multilayer network shown as a network whose
nodes are vector labeled. d The vector labeled adjacency matrix (Color figure online)
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edges, and the off-diagonal blocks consist of inter-layer edges. The supra-adjacency
matrix has the nice property that, up to row labels, it is identical to the adjacency
matrix of the underlying network. Many methods of analysis on multilayer networks
reduce to careful manipulation of this matrix. However, unlike in a traditional network
the rows/columns of the supra-adjacency matrix do not simply represent network
nodes—they represent the full set of vertices. Therefore, it is essential to equate each
row/column of the adjacency matrix with the full vertex label as in Fig. 2(c—d).

Another choice of data structure for a multilayer network is an adjacency tensor
M}% which indicates the relationship between node i in layer o and node j in layer
B (De Domenico et al. 2013). The two structures are complimentary: one may flatten
the adjacency tensor to a supra-adjacency matrix. Conversely, one may form a tensor
from the supra-adjacency matrix as long vector row labels are observed (i.e., layers
are carefully tracked). While the differences between the two structures are mostly
conceptual and the choice of representation is largely a matter of preference, there
are some important distinctions to be made. With the tensor formulation, every node
must be present in every layer. If a node does not exist in a given subset of layers,
then all edges to the node in these layers may be set to 0, but one must keep this
interpretation in mind when calculating network statistics. This problem is not present
with the supra-adjacency matrix since the matrix is only defined on the vertices of a
network. However, while up to permutation of labels (nodes and layers), the adjacency
tensor is unique, the supra-adjacency matrix has a weaker form of uniqueness. The
supra-adjacency matrix is only unique up to permutation of labels and ordering of
layers. That is, one may permute the layers of a supra-adjacency matrix, in any order,
to obtain another valid supra-adjacency matrix of the underlying graph. Although one
should be aware of this distinction, it should not cause any problems in practice as
these permutations preserve all the linear properties of the matrix. It should be noted
that both structures are justified (De Domenico et al. 2013) and both are used in the
comprehensive review (Kivela et al. 2014).

2.2 Example: Temporal Networks

One of the most common applications of the multilayer formalism to neuroscience
data thus far has been through defining temporal networks based on time-series data
collected from multiple brain regions or electrodes. A temporal network is an example
of a multilayer network with two dimensions: nodes and time. Each layer depicts the
state of the network at a specific point in time, and the layers are sequentially linked,
representing the flow of time. As an example, consider a data set that consists of the
activity of 50 brain regions measured over 10 time windows. Then, there are 500 data
points: one for each brain region in each time window. We can build a multilayer
network such that V consists of the 500 data points and / : V — N x T with
N={1,2,...,50}and T = {1, 2, ..., 10}. Then, v = (n, t) identifies a data point
with a brain region at a specific time.

For each time window, we can define the intra-layer edge between region i and
region j to reflect an empirical measure of similarity between the activity of the two
regions in that time window. Inter-layer edges between time windows are added only
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Fig. 3 A visualization of a temporal network. Each layer of the network corresponds to a time window.
Intra-layer edges run vertically and inter-layer edges run horizontally. a A temporal network with 10 time
layers. b The same network as in a where the layer of the network corresponding to time window 4 has
been highlighted

between a node and itself in an adjacent time window (i.e., there is an edge between
(m, s) and (n, t) if and only if m = n and s = ¢ £ 1). The weight of each inter-layer
edge is generally set to some constant, @, which then becomes a parameter of the
network. It is worth noting that typically a temporal network has undirected inter-
layer edges so that the flow of time is used mainly for ordering layers as opposed
to understanding the one-way directional relationships between layers. In Fig. 3, the
temporal network is visualized as a two-dimensional network with intra-layer edges
running vertically and inter-layer edges running horizontally. For compactness only
the first 5 out of 50 brain regions are shown.

2.3 Utility of Multilayer Networks

As we have stated, a multilayer network is simply an extension of the traditional net-
work in which network nodes are labeled by vectors. In light of this, it is natural to
ask what is the utility of a multilayer network? Why not just model each aspect of
the data as an independent network? One power of a multilayer network is, in fact,
mostly conceptual and organizational. The vector labels give identifications of mean-
ingful subsets of the full data set. The analytic power of a multilayer network comes
from comparing statistics across these subsets. Until recently when one was presented
with network data that was inherently multi-dimensional, a common approach was to
aggregate this information into a single-layer network, for example by averaging. With
the advent of multilayer networks and network statistics designed to operate across
layers, the full multi-dimensional information can be retained, allowing for a richer
analysis that could not be obtained from the aggregated single-layer network. For
example, in De Domenico et al. (2016b), the authors show that a multilayer represen-
tation of a human brain network gives higher classification accuracy between healthy
and schizophrenic patients than the single-layer and aggregate counterpart networks.
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Considering the inverse problem further illuminates the power of a multilayer net-
work. Starting with the data of a network and the goal of making comparisons across
meaningful subsets of the network, it is first necessary to find those meaningful sub-
sets, a problem without a clear or easy solution. A multilayer network, however,
comes with distinguished subsets from which one can easily make comparisons. These
subsets have meaning which reflects the experiments or data from which they were
derived. Data often naturally come partitioned, for example, by sampling multiple
frequencies, times, subjects, or scales (Muldoon and Bassett 2016; Bassett and Sporns
2017; De Domenico 2017). The multilayer network is a natural model for these data
sets.

Perhaps the most compelling reason for utilizing the multilayer framework is its
ability to provide a coherent and linked representation of network attributes across
aspects. Consider the simple example of a temporal network. It is reasonable to believe
that in time-series data, one time point (window of data) is not independent from the
previous point. The inter-layer edge weight, w, allows one to control the strength
of interaction between layers, i.e., how much influence one layer has on the next.
In the context of a temporal network, this also means that one can coherently track
network properties throughout time. This is especially apparent when performing
dynamic community detection, which we discuss in detail in Sect. 3.3. One is able to
define and track network communities throughout time, allowing for a much richer
description of the evolution of network structure: communities can be born, commu-
nities can die, and nodes can change their community affiliation over the course of
time.

3 Multilayer Networks in Neuroscience

How does the brain change with learning? What are the neurobiological markers of
diseases such as autism, Alzheimer’s disorder (AD), epilepsy, or schizophrenia, and
can we provide better interventions or diagnoses? How are the neurons in our brain
connected to each other, and how does this relate to brain function? These are only
a handful of broad questions of interest to the neuroscientist. As we have already
emphasized, the investigation of these questions naturally spans multiple spatial and
temporal scales, results in the use of multiple modalities to record data, and often
involves comparison across multiple subjects or between subject groups. A multilayer
network is a suitable tool for reconciling these data in a coherent and consistent manner.
Its nodes (e.g., brain regions) can be coherently linked across many modes of analysis
resulting in a single structure which encapsulates the full information of the data. As
we will see shortly, new insights into the above questions have been found through
the use of multilayer networks.

3.1 Disease
Networks of the brain have long been used to study neurological disease (Braun

et al. 2015a; Bassett and Bullmore 2009; Fornito et al. 2015), but new methods
using multilayer analysis of data from healthy and diseased patients have recently
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Fig.4 Constructing a multilayer frequency network from an MEG signal. (Reprinted with permission from
Yu et al. 2017)
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been employed to study a variety of disorders. The comparison of multilayer network
measures between control (healthy) groups and disease groups can provide powerful
insights into multiple disorders.

One paradigm for creating a multilayer network from fMRI, MEG, or EEG data
is to first decompose the signal into several frequency bands for each brain region
and then measure functional similarity between brain regions in each of these fre-
quency layers (see Fig. 4). Inter-layer edges can be added by different means (Buldd
and Porter 2017), such as by coupling all brain regions to themselves across layers
(De Domenico et al. 2016b; Yu et al. 2017) or by measuring similarity between signals
across layers (Brookes et al. 2016; Tewarie et al. 2016). This is in direct contrast to
traditional approaches which either first select a frequency of interest and then con-
struct a single-layer, frequency-specific network, or consider all layers corresponding
to distinct frequencies but then aggregate them into a single network by summing
edges across layers. In the case of fMRI, it has been indicated that important infor-
mation may be contained in typically excluded frequency bands (Bassett et al. 2006;
Jingyuan 2015; Liao et al. 2013; Thompson and Fransson 2015), motivating the need
to retain the full frequency information during analysis.

Single-layer networks have been successfully employed in the study of AD (Supekar
et al. 2008; Tijms et al. 2013; Guillon et al. 2017) and schizophrenia (van den Martijn
2014; Lynall et al. 2010; Lee et al. 2004; Calhoun et al. 2009), and recently multilayer
frequency networks have been applied to the study of these diseases (Yu et al. 2017;
De Domenico et al. 2016b; Brookes et al. 2016). The centrality of a node in a network
is a measure of its importance within the network, and measures of centrality have
been leveraged to uncover interesting brain organization. Many measures of centrality,
including PageRank (Page et al. 1999), have been extended to the multilayer setting
(Sola et al. 2013; Battiston et al. 2014; De Domenico et al. 2015a; Iacovacci and
Bianconi 2016). In De Domenico et al. (2016b), multilayer PageRank centrality (De
Domenico et al. 2015a) is used as an input to a classifier, which is able to discriminate
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between healthy and schizophrenic individuals significantly better than the single-layer
counterparts. In addition, multilayer Aubs (highly central nodes) were used to identify
regions distinctive to schizophrenic brains. In Yu et al. (2017), frequency-specific
and multilayer frequency networks were constructed from MEG data to investigate
AD. Using a measure of degree centralility (Battiston et al. 2014), the multilayer
networks in patients with AD were characterized by loss of nodal centrality compared
to the healthy group, whereas no such difference was found in the frequency-specific
networks. This was the first MEG study that identified selectively vulnerable hubs in
AD, and importantly, these hubs are consistent with hubs reported in previous studies
using DTI, MRI and fMRI data. This suggests that a multilayer approach may be
essential in future analysis of MEG data.

3.2 Structure

The structural organization of the brain of even the most elementary species is
immensely complex with an enormous number of connections. To date, C.elegans
is the only species for which we have a complete structural map, consisting of 302
neurons and approximately 7000 connections (White et al. 1986).

As with functional data, structural data are inherently multiplex, with structure
occurring at different scales and in different modes. For example, structural connec-
tions are measured at the microscale cellular level between neurons (as with C. elegans)
and are also measured at the mesoscale level by estimating the number of white matter
tracts connecting different brain regions. Even for a fixed level of measurement, for
example the cellular level, there are multiple modes of structural connections between
neurons, i.e., synaptic and extra-synaptic connections. For example, the structural net-
work of C. elegans has been modeled as a multilayer connectome in which each layer
represents a different mode of anatomical connection between neurons (De Domenico
et al. 2015b, c; Nicosia and Latora 2015; Bentley and Branicky 2016). In Bentley
and Branicky (2016), C. elegans was represented as a 4- layer network where the
layers described synaptic, gap junction, monoamine, and neuropeptide coupling (see
Fig.5), and multilayer measures of network topology (Battiston et al. 2014), including
clustering, assortivity, path length, modularity and motif analysis, were employed to
probe the structure of this network. In particular, it was shown that synaptic and extra-
synaptic connection networks exhibit distinct network topologies and simultaneously
share certain network multilayer motifs and hubs, indicating that these networks may
work both independently and in unison.

In addition to understanding the structure of the nervous system, it is important to
understand the relationship between structure and function, which also leads naturally
to a multilayer representation (Crofts et al. 2016; Battiston et al. 2017). A network
motif is a subgraph of the network which occurs more frequently than expected by
chance. In Battiston et al. (2017), the authors construct a multilayer network consisting
of a structural and functional network (see Fig 1) and analyze the motif structure of
this network. Their results indicate that the functional brain network is constrained by
its structure and that structural connections may be necessary for positive functional
correlations.
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Fig. 5 Four layers (synaptic, gap junction, monoamine, neuropeptide) of the multilayer neural communi-
cation network of C. elegans. (Reprinted with permission from Bentley and Branicky 2016)

3.3 Network Evolution

It is often necessary to ask how brain networks evolve over time, as many brain func-
tions are by definition temporal processes. For example, resting state brain dynamics
are unconstrained and individuals engage in several types of mental activity during
rest (Delamillieure et al. 2010), and data-driven network methods for understanding
these spontaneous fluctuations were proposed in Allen et al. (2014). Learning is also
an inherently temporal process, and characterizing the mechanisms, signatures, and
predictors of learning is a broad and fundamental goal of neuroscience. As previously
discussed, a temporal network is a natural model for capturing brain dynamics through
time. Like the other uses of multilayer networks previously mentioned, a temporal net-
work has the advantage of retaining the full information of the data without the need
to aggregate connections into a single network.

Multiple studies have used temporal networks to investigate the dynamic commu-
nity structure of brain networks to reveal otherwise hidden phenomenon in human
brain dynamics during learning (Bassett et al. 2011; Wymbs et al. 2012; Bassett and
Wymbs 2013a; Bassett et al. 2015; Braun et al. 2015b; Chen et al. 2016; Telesford
et al. 2016; Brovelli et al. 2017; Telesford et al. 2017a). These studies build func-
tional temporal networks using fMRI data by parcellating the brain into regions and
calculating functional similarity for intra-layer edges and using temporal inter-layer
coupling as described in Sect. 2.2. Communities (groups of nodes with strong internal
connections and weak external connections) have played an important role in network
neuroscience [see Sporns and Betzel (2016)] for a review of communities in brain
networks) and also play a crucial role in exposing underlying phenomenon temporal
networks.
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Detecting communities in networks is a difficult problem with a long history of
research [see Porter et al. (2009) for areview]. Several methods of community detection
have been extended to multilayer networks (Mucha et al. 2010; Gauvin et al. 2014; De
Domenico et al. 2015d; Matias and Miele 2017; Paul and Chen 2016; Boutemine and
Bouguessa 2017; Zhang et al. 2017). A popular method of community detection that
is commonly used in neuroscience is the method of maximum modularity (Newman
2006), which uses a Louvain-like heuristic (Blondel et al. 2008; Jeub et al. 2011-2017)
to maximize a quality function. The method of maximum modularity, or modularity
for short, has known problems (Good et al. 2010) yet can be made robust (Bassett et al.
2013b) and performs well on benchmark graphs (Yang et al. 2016). The heuristic for
modularity maximization is fast, and the use of multilayer modularity has provided
good results in practice (Bassett et al. 2011; Bassett and Wymbs 2013a; Bassett et al.
2015; Braun et al. 2015b; Telesford et al. 2016).

In the multilayer setting (Lambiotte et al. 2014; Mucha et al. 2010), the modularity
function takes the form

Q =) [(Aijs — ¥ Pj)d(s, 1) + wjs 18 (cir cis).

ijrs

Here, A;jy is the adjacency matrix of layer s, and P;j, is the associated null matrix.
The term yy is a resolution parameter, and wj, is the link between node j in layer
r and node j in layer s. In functional dynamic brain networks, the inter-layer edges
wjrs are not typically measured empirically and are set as

w s=r=xl
Wijrs = .
0  otherwise.

Thus, nodes are only connected to themselves in adjacent time windows, and all inter-
layer edges are set to the same value w. In this way, @ becomes another parameter of the
modularity function. The multilayer modularity function therefore has three param-
eters: the resolution parameter y, the inter-layer coupling parameter w, and the null
network P; ;. We mention that other methods of multilayer community detection do not
rely on null models (De Domenico et al. 2015d) or user-tuned parameters (Boutemine
and Bouguessa 2017) and that in practice the method of community detection chosen
should be deliberate, and the user should be aware of the benefits and drawbacks of
each method.

Because multilayer community structure defines the evolution of communities
throughout time, novel network statistics have been developed to exploit this new
network feature (Bassett et al. 2011, 2015; Telesford et al. 2017b; Papadopoulos et al.
2016). For example, one can ask questions about a node’s community affiliation over
time. Flexibility, f;, is defined as the number of times a node changes its commu-
nity assignment divided by the total possible number of such changes (Bassett et al.
2011). The flexibility of the network is then defined as the average flexibility of all its
nodes: F' = % >, fi. Flexibility has been used to measure a core—periphery structure
in brain networks, where nodes that have significantly high flexibility are considered
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Fig. 6 Module allegiance matrix for four different scanning sessions. Subjects were scanned while per-
forming a motor task over four different sessions (naive, early, middle, and late). In between scanning
sessions, subjects practiced the motor tasks at home. a The full module allegiance matrix calculated across
all subjects. b A zoomed-in view of the module allegiance matrix corresponding to only the visual and
motor systems. (Reprinted with permission from Bassett et al. 2015)

periphery nodes, whereas nodes with significantly low flexibility are considered core
nodes (Bassett and Wymbs 2013a). Flexibility and core—periphery structure have then
been linked to the adaptive architecture of the brain in task performance and learning
(Bassett et al. 2011; Bassett and Wymbs 2013a; Braun et al. 2015b; Telesford et al.
2016). For example in Bassett and Wymbs (2013a), the authors show that individuals
with stronger core—periphery structure learn a simple motor task better than individ-
uals with weaker core—periphery structure. In Chen et al. (2016), the flexibility of the
salience network is shown to correlate with cognitive flexibility. Moreover, the highly
flexible salience network also exhibited spatiotemporal diversity, indicating that it may
facilitate interactions between multiple functional systems.

Another novel measure of network structure resulting from employing multilayer
community detection is the module allegiance matrix, P. Let 7;; be a matrix whose 7, j
entry is the number of times that nodes i and j were assigned to the same community

over all the layers of a multilayer network. Then P;; = % where C is the total number
of layers. Thus, P;; is the probability that i and j are in the same community across
the layers. This can be defined even more broadly. Given N communities labels per
node, then define P = % For example, in Bassett et al. (2015) the authors measure
the fMRI signal for a number of subjects over a number of scanning trials per subject.
For each scanning session, a dynamic functional brain network is formed and 7;; is
the number of times brain regions i and j are assigned the same community over all
layers, scans, and subjects. Analysis of the structure of the module allegiance matrix
shows that as subjects learn a task, the motor and visual system decouple. Further,
the non-motor and non-visual system becomes less integrated through training (see
Fig. 6). This supports the intuitively plausible idea that cognitive control is critical
during skill acquisition and becomes less so as skills become automatic. Importantly,
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Fig.7 a A cartoon illustrating how glia serve to distribute resources neural synapses. b A simplified graph
representing the two-layer glia-neuron network model. (Reprinted with permission from Virkar et al. 2016)

the decoupling of the motor and visual system was not detectable through the fMRI
signal proving the module allegiance matrix, whose input includes a temporal network
for each subject and each scan, is essential in detecting this dynamic configuration of
the brain during learning.

3.4 Linking Scales

Learning is not only a temporal process but is also a multi-scale process. Synaptic
plasticity, the microscale process through which neurons change their synaptic con-
nections, is thought to play a key role in learning. In Virkar et al. (2016), the authors
build a two-layer network consisting of neurons and glia, cells responsible for dis-
tributing metabolic resources to neural synapses (see Fig. 7). Using this multilayer
model, the authors show that the glia resource distribution can serve as a simple,
realistic mechanism for preserving the stability of learning neural systems.

4 Multilayer Network Statistics

In the previous section, we described examples of how multilayer network analysis
has provided novel insights into neuroscience data. These studies both relied on the
application of traditional network statistics that have been extended to the multilayer
framework [PageRank centrality (De Domenico et al. 2015a), degree centrality (Bat-
tiston et al. 2014), modularity(Mucha et al. 2010)], as well as led to the development
of novel network statistics designed specifically for multilayer applications [flexibility
(Bassett et al. 2011), core—periphery (Bassett et al. 2011), integration and recruitment
(Bassett et al. 2015)].
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While they have not necessarily been utilized in the context of neuroscience, many
more measures for multilayer networks exist. Multilayer networks have been studied
in the context of community structure (Lambiotte et al. 2014; Mucha et al. 2010;
De Domenico et al. 2015d; Bazzi et al. 2016b, a; Bassett et al. 2013b, 2011; Bassett
and Wymbs 2013a; Bassett et al. 2015; Taylor et al. 2016; Sarzynska et al. 2015;
Gauvin et al. 2014; Zhang et al. 2017; Matias and Miele 2017; lacovacci et al. 2015;
Papadopoulos et al. 2016), centrality (De Domenico et al. 2015a; Sola et al. 2013;
De Domenico et al. 2016b; Iacovacci and Bianconi 2016), percolation and dynamics
(De Domenico et al. 2016a; Arenas and De Domenico 2016; Khambhati et al. 2017,
Majhi et al. 2016; Makarov et al. 2016; Boccaletti et al. 2014; Maksimenko et al.
Nov 2016; Cellai et al. 2013), motifs (Battiston et al. 2017), and (broadly) structure
(Battiston et al. 2014; Nicosia et al. 2017; de Arruda et al. 2016; Rombach et al.
2017; Danziger et al. 2016; Kiveld and Porter 2015; De Domenico et al. 2015¢e). As
the multilayer framework is increasingly incorporated into studies involving network
neuroscience, research will benefit from incorporating more of these measures into
the analysis of brain networks.

5 Future Directions

Network science is poised to be a primary tool of quantitative analysis of brain net-
works (Muldoon and Bassett 2014; Bassett and Sporns 2017; De Domenico 2017,
Medaglia et al. 2015), and the future of network science will be driven by the goal of
understanding quantitative and qualitative properties of multilayer networks and the
dynamics that take place on them (Muldoon and Bassett 2016). Here, we highlight
some specific areas of active research that will benefit both general network researchers
and neuroscientists alike.

5.1 Novel Modeling Paradigms

In Sect. 3, we detailed some of the common paradigms for multilayer networks in
neuroscience, including networks built with frequency layers and temporal networks
built with time layers. Each paradigm has provided powerful insights and was explicitly
shown to reveal more information than its single- layer counterpart. To date, we are
unaware of any study that has utilized a three-dimensional network with labeling set,
N x F x T (nodes, frequency, and time), which has the potential to exploit the power
of both the frequency and temporal networks simultaneously. Using the definition
and ideas in Sect. 5.4 to conceptually frame the analysis of this three-dimensional
network, this model has the potential to exploit the full information from inherently
multiplex and temporal data. We note that it is possible to build such a network
by simply combining the methodologies employed to build each the frequency and
temporal networks so constructing such a network poses no technical challenges. One
must keep in mind, that throughout, we have assumed that temporal networks have
undirected time edges. Although this assumption is not mathematically required, this
simplification is currently necessary as directed time edges cause technical challenges
in computing network measures such as community structure. The incorporation of
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directed inter-layer edges into temporal networks should be an active area of future
research.

5.2 Null Models

One of the powers of network theory is its ability to compare a measure against the
same measure on a random network. Traditional network theory has developed several
useful random network models each based on different assumptions. For example, the
configuration model (Luczak 1989) is a randomized version of a given network that
preserves the degree sequence. In cases where the degree distribution is an important
feature of a network, one can use this model to compare a measure for a given network
to that of arandom network exhibiting the same degree distribution. Other examples of
popular null models include the Erdos-Renyi (1960) random graph and the stochastic
block model (Decelle et al. 2011).

In order to discover meaningful information in multilayer networks, it is also impor-
tant to compare a given measure to that of a null model for the network just as is the case
for traditional networks. Some steps in this direction have been taken (Bassett et al.
2013b; Sarzynska et al. 2015; Paul and Chen 2016; Bazzi et al. 2016b, a), but more
research is needed. It will be particularly important to develop null models that are
specifically designed to represent the features of neural data, perhaps by considering
spatial and geometrical constraints naturally imposed on the brain.

5.3 Inter-Layer Edges

The role of inter-layer edges in a multilayer network is simple but critical. These
edges serve to tie together several disparate networks, usually through means of an
identity link, which connects a node to itself in a different layer. While it is possible to
experimentally determine the strength of inter-layer edges, as opposed to considering
them simply as a model parameter, few studies to date have taken this approach
(Brookes et al. 2016; Tewarie et al. 2016; Gosak et al. 2015). Future work will be
needed to understand the effects of inter-layer coupling on the structure and dynamics
of the resulting network. While some work has been performed in the context of
community detection that indicates that it is possible to set the value of inter-layer
edges as a parameter in a principled way (Bassett et al. 2013b; Bazzi et al. 2016b;
Weir et al. 2017), the parameter is not well understood. Even less is understood about
the difference between experimentally measuring inter-layer edges (when possible)
or considering inter-layer edges to be a tunable model parameter. Even in the case
that inter-layer edges are measured experimentally, it is still possible to weight their
importance relative to intra-layer edges by a global parameter. Future work is needed in
order to understand the effect these edges play in different network measures including,
for example, community structure and centrality.
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5.4 Unifying Definition

Finally, we believe a direction of future research in multilayer networks should consist
of a general and unifying definition of the object of study. In Sect. 2.1, we hinted at
the fact that our assumption that the first label set L1 = N is unnecessary. While often
convenient in practice, the assumption is arbitrary and obscures some mathematical
properties of multilayer networks, as noted in Kiveld and Porter (2015). We therefore
propose a more general definition of both a multilayer network and its layers that lift
this constraint and give an example in which this definition is better suited to handle
interesting queries of realistic data.

In the modified definition, we define a multilayer network as a tuple M =
(V,E,w,l) withl/ : V — Lj x Ly x --- x Lg a labeling function. We do not
assume that L is a distinguished set of nodes. To form a layer of this network, we

choose ¢ < d many indices, ji, jo, ..., je, and we choose a vector of length ¢ given
bya = (aj,,...,aj) € Lj x---x Lj.Thevertices in layer Ly are v € V such that
if [(v) = (v1,v2,...,vg) thenv; =« fork =1,2,...,c. Thatis, the vertices in

layer L are those whose components in the L j, are fixed and equal to the components
of @ and whose other components vary freely over the remaining labels.

Again consider the temporal network of Sect. 2.2. If we fix a time @ = (#p), then
we can form the time layer at time ¢ by taking all vertices v such that /(v) = (n, tp).
This is the usual partition of the network into layers based on time. We could also fix
a brain region o = (ng) and form the « layer by taking all vertices v = (ng, ¢). This
layer consists of a single brain region and all of its instances through time. When the
inter-layer edges are not measured empirically, but instead set as a constant w, this
layer may not be particularly interesting. Figure 8 shows examples of these two types
of layers in panels (b—c).

Now consider a three-dimensional multilayer network whose labels are brain
regions, time, and subjects. Suppose, like in the previous example, there are 50 brain
regions, 10 time windows and assume there are three subjects. We can choose many
different layers to investigate. For example, we can fix a subject, « = (so). The result-
ing layer is a temporal network corresponding to subject sg. Or we could fix both a
subject and a time o = (7, o), and the resulting layer is the network of brain regions
at time 7 in subject so. We could also fix a brain region and compare the activity across
time and subjects. See Figure 9 for examples of these types or layers.
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With this definition, the layers of a multilayer network are linear slices of the
dimensions of the network. This allows for some conceptual freedom in choosing and
analyzing layers of the same multilayer network. For example, when inter-layer edges
are measured, instead of set as a parameter, it makes sense to consider the network
formed by fixing a brain region, and properties of this network might contain valuable
information. It also allows for mathematical freedom when investigating the structure
of multilayer networks. The mathematics should be agnostic to the choice of labels
for the nodes as the underlying structure of the network is agnostic to this choice. We
believe our definition aids in framing the choice of layers conceptually, but it is impor-
tant to note that forming such layers is possible with the current tensorial framework
for multilayer networks (De Domenico et al. 2013). Choosing slices of the network
in the way we describe corresponds to taking projections of the appropriately defined
tensor. This again illustrates the complimentary nature between data structures for
multilayer networks and demonstrates that any truly unifying picture of multilayer
networks can only be complete through understanding these structures and their rela-
tionships. We therefore encourage the neuroscience and general networks community
to adopt this modified notation.

6 Conclusion

The human brain is a complex system of interacting units operating on multiple spa-
tial and temporal scales with multiple modes of interaction. As recording technology
becomes more sensitive, diverse, and ubiquitous, and data sets become larger and
richer so too must the method of analysis. Multilayer networks are a simple, yet flex-
ible data structure that provide unique quantitative analysis of complex data and have
proven to be an indispensable tool to the neuroscientist due to their ability to retain
information and structure otherwise lost using traditional approaches. The retention
of additional information combined with the development of novel network statistics
has successfully unveiled insight into the structure and function of the human brain
that was previously unobserved. However, with these successes also come challenges.
Despite the utility of multilayer networks, to date, there are relatively few neuro-
scientific studies that incorporate the multilayer framework. It will be important for
future research to utilize the ever-expanding knowledge base and set of measures for
multilayer networks as well as drive development of measures with improved sen-
sitivity and specificity for the many potential applications. The multilayer network
framework has the potential to become the prominent mode of network analysis in the
future, as neuroscientists face increasingly multimodal, multi-temporal, or multi-scale
data. Multilayer network science is in its infancy, and comprehensive research into the
structure and function of brain networks will be necessary as both multilayer networks
and neuroscience develop in tandem.
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