

Available online at www.sciencedirect.com

ScienceDirect

Physics of Life Reviews 24 (2018) 143-145

www.elsevier.com/locate/plrev

Comment

Multilayer network modeling creates opportunities for novel network statistics Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

Sarah Feldt Muldoon

Mathematics Department and CDSE Program, University at Buffalo – SUNY, Buffalo, NY 14260, United States

Received 15 December 2017; accepted 21 December 2017

Available online 23 December 2017

Communicated by J. Fontanari

As described in the review by Gosak et al., the field of network science has had enormous success in providing new insights into the structure and function of biological systems [1]. In the complex networks framework, system elements are network nodes, and connections between nodes represent some form of interaction between system elements [2]. The flexibility to define network nodes and edges to represent different aspects of biological systems has been employed to model numerous diverse systems at multiple scales.

The use of network approaches at the cellular scale is not as common as at other scales, and Gosak et al. provide an excellent description of how network analysis can be useful in characterizing the cellular dynamics in islets of Langerhans [1] which will hopefully spur others to perform network analysis at this level. In addition to emphasizing the utility of network analysis across scales, the authors also point out that traditional network modeling is unable to capture certain dynamical features of cells and identify multilayer networks as the next emerging technique in modeling biological systems. As nicely described in the review, traditional network modeling approaches limit researchers to modeling static networks where only a single type of interaction is captured in the model. However, multilayer networks overcome these limitations by introducing a framework for modeling more complex interactions and relationships [3,4]. The multilayer network framework allows one to build multidimensional networks where a single layer describes a traditional network, and inter-layer links provide connections between single layers, thus linking scales, time, modalities, or a multitude of other network features.

Gosak et al. also discuss how multilayer networks can be used to introduce new modeling paradigms and link dimensions of data that could not previously be integrated in order to gain insight into system properties. In their review, they focus on the diverse range of biological systems that can be more thoroughly described by multilayer modeling approaches. The adoption of multilayer modeling to better characterize multiple types of interactions across scales and time in these systems is certainly exciting and worth encouraging. However, many challenges and opportunities remain that will need to be addressed as the use of the multilayer formalism is increasingly adopted by the complex networks community.

DOI of original article: https://doi.org/10.1016/j.plrev.2017.11.003. *E-mail address*: smuldoon@buffalo.edu.

Multilayer networks introduce a uniting framework to give coherent descriptions of systems across multiple scales, features, and/or time, but the mathematical analysis of the structure of multilayer networks requires the development and advancement of network statistics that are defined to work within this new framework. Indeed, many traditional network statistics such as those for detecting centrality [5,6], motifs [7], and community structure [8,9] have been extended to the multilayer setting. However, one must be careful in the interpretation of these metrics, as the construction of the network requires one to define both intra- and inter-layer links describing interactions between nodes. Intra-layer links can be interpreted in the same sense as connections in a traditional network, but the interpretation of inter-layer edges requires additional scrutiny and will be dependent on the specific construction of the network. Although some work such as that described by Gosak et al. has explored defining inter-layer edges experimentally by measuring time delay [10], calculating correlations between frequency bands [11], or using decay functions to model time-dependent relationships between network layers [12], in many applications, inter-layer connections are a parameter of the network construction that is set by the user. For example, when constructing either categorical or temporal networks and applying dynamic modularity maximization, inter-layer connections represent self-identity links that indicate the same node throughout layers [8]. However, the strength of these connections is a parameter of the modularity function, and different choices of strength can impact the resulting community detection. While some work has explored the effects of various parameter choices [13,14], more efforts are needed to address this important aspect of dynamic community detection.

Although much work remains in understanding the role and characterization of inter-layer links, the use and analysis of multilayer networks have already proven to be a useful tool in modeling complex biological systems. This is especially true in the emerging field of network neuroscience [15,16] where their use has led to insights into brain structure-function relationships, network evolution, multi-scale relationships, and disease [17]. Many new approaches to characterizing brain networks have utilized the extension of the popular method of modularity maximization to define community structure in the multilayer setting. When applied to temporal brain networks, this results in the detection of brain communities throughout time. By defining a coherent description of communities throughout time, researchers have also been able to define novel metrics such as flexibility [18], cohesion and disjointedness [19], and promiscuity [20] which describe how brain regions move between communities to work together over time or task.

The adoption of multilayer modeling techniques to understand biological systems is still in its early stages and Gosak et al. are correct in their observation that multilayer modeling represents the future of complex networks. However, as more researchers adopt this exciting new paradigm, we must also place a special importance on evaluating how to properly characterize and interpret multilayer network structure, as much of the mathematical formalism is still in its infancy. This should not be seen as a disadvantage of using multilayer modeling techniques, but instead as a motivation for researchers to ask difficult questions about how to interpret multilayer models and to develop novel network statistics, driven by the many diverse applications and uses of multilayer network modeling.

Acknowledgements

SFM would like to acknowledge support from the National Science Foundation (SMA-1734795) and the Army Research Laboratory (contract number W911NF-10-2-0022). The content is solely the responsibility of the author and does not necessarily represent the official views of any of the funding agencies.

References

- [1] Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A, et al. Network science of biological systems at different scales: a review. Phys Life Rev 2018;24:118–35 [in this issue].
- [2] Newman MEJ. The structure and function of complex networks. SIAM Rev 2003;45:167–256.
- [3] Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex Netw 2014;2:203–71. https://doi.org/10.1093/comnet/cnu016.
- [4] Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, et al. The structure and dynamics of multilayer networks. Phys Rep 2014;544:1–122. https://doi.org/10.1016/j.physrep.2014.07.001.
- [5] Solá L, Romance M, Criado R, Flores J, García del Amo A, Boccaletti S. Eigenvector centrality of nodes in multiplex networks. Chaos 2013;23:033131. https://doi.org/10.1063/1.4818544.
- [6] De Domenico M, Solé-Ribalta A, Omodei E, Gómez S, Arenas A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat Commun 2015;6:6868. https://doi.org/10.1038/ncomms7868.

- [7] Battiston F, Nicosia V, Chavez M, Latora V. Multilayer motif analysis of brain networks. Chaos 2017;27:047404. https://doi.org/10.1063/ 1.4979282.
- [8] Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 2010;328:876–8. https://doi.org/10.1126/science.1184819.
- [9] Bassett DS, Porter MA, Wymbs NF, Grafton ST, Carlson JM, Mucha PJ. Robust detection of dynamic community structure in networks. Chaos 2013;23:013142. https://doi.org/10.1063/1.4790830.
- [10] Gosak M, Dolenšek J, Markovič R, Rupnik MS, Marhl M, Stožer A. Multilayer network representation of membrane potential and cytosolic calcium concentration dynamics in beta cells. Chaos Solitons Fractals 2015;80:76–82. https://doi.org/10.1016/j.chaos.2015.06.009.
- [11] Brookes MJ, Tewarie PK, Hunt BAE, Robson SE, Gascoyne LE, Liddle EB, et al. A multi-layer network approach to MEG connectivity analysis. NeuroImage 2016;132:425–38. https://doi.org/10.1016/j.neuroimage.2016.02.045.
- [12] Murata T. Comparison of inter-layer couplings of multilayer networks. In: 11th International conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE; 2015. p. 448–52.
- [13] Bazzi M, Porter MA, Williams S, McDonald M, Fenn DJ, Howison SD. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model Simul 2016;14:1–41. https://doi.org/10.1137/15M1009615.
- [14] Weir W, Emmons S, Gibson R, Taylor D, Mucha P. Post-processing partitions to identify domains of modularity optimization. Algorithms 2017;10:93. https://doi.org/10.3390/a10030093.
- [15] Bassett DS, Sporns O. Network neuroscience. Nat Neurosci 2017;20:353-64. https://doi.org/10.1038/nn.4502.
- [16] Muldoon SF, Bassett DS. Network and multilayer network approaches to understanding human brain dynamics. Philos Sci 2016;83:710–20.
- [17] Vaiana M, Muldoon SF. Multilayer brain networks. arXiv:1709.02325 [q-bio.NC], 2017.
- [18] Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 2011;108:7641–6. https://doi.org/10.1073/pnas.1018985108.
- [19] Telesford QK, Ashourvan A, Wymbs NF, Grafton ST, Vettel JM, Bassett DS. Cohesive network reconfiguration accompanies extended training. Hum Brain Mapp 2017;38:4744–59. https://doi.org/10.1002/hbm.23699.
- [20] Papadopoulos L, Puckett JG, Daniels KE, Bassett DS. Evolution of network architecture in a granular material under compression. Phys Rev E 2016;94:032908. https://doi.org/10.1103/PhysRevE.94.032908.