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Driven by growing interest across the sciences, a large number of em-

pirical studies have been conducted in recent years of the structure of

networks ranging from the internet and the world wide web to biological

networks and social networks. The data produced by these experiments

are often rich and multimodal, yet at the same time they may contain

substantial measurement error [1–7]. Accurate analysis and understand-

ing of networked systems requires a way of estimating the true structure

of networks from such rich but noisy data [8–15]. Here we describe a

technique that allows us to make optimal estimates of network structure

from complex data in arbitrary formats, including cases where there may

be measurements of many different types, repeated observations, contra-

dictory observations, annotations or metadata, or missing data. We give

example applications to two different social networks, one derived from

face-to-face interactions and one from self-reported friendships.
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Most empirical studies of networks take a “naive” view of structural data, meaning

that one assumes that the data are the network. For instance, in a study of a

protein–protein interaction network [16–18] one might compile a list of known protein

interactions and represent them as a network of protein nodes joined by interaction

edges. But this network represents the pattern of measured interactions not the

pattern of actual interactions. The two could, and probably do, differ substantially,

because of both error in the measurements and missing data [5, 19]. As another

example, in studies of friendship networks [20,21] one commonly assembles a network

simply by asking people who their friends are. The resulting network thus represents

who people say they are friends with, not who they are actually friends with. The two

can differ if, for instance, participants and experimenters apply different standards

for what constitutes a friendship, or if participants fail to report some friendships at

all [1, 2, 8, 22].

At the same time, many studies return data much richer than just a simple mea-

surement of connections. Protein–protein interaction networks, for example, are com-

monly assembled from the results of many complementary experiments involving a

variety of techniques, further enriched by knowledge of protein function, genetics, or

other features. Friendship networks can likewise be probed in different ways, using

surveys, online data, observations of face-to-face interactions, and others, possibly

enhanced with metadata on participant location, occupation, age, and many other

characteristics. Taken together these many types of data may be able to give a more

accurate and nuanced picture of network structure than any single one can alone.

The problem of determining network structure from experimental data, which of-

ten goes under the heading of network reconstruction, has been studied particularly

in the biological sciences, for instance in the context of gene regulatory networks,

metabolic networks, and protein networks [5, 12, 23, 24]. A range of methods have

been developed for use with data from high-throughput laboratory techniques such

as microarrays, RNA sequencing, and tandem affinity purification [19, 25–29]. The
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issue of errors and unreliability in network data has also been recognized in the social

sciences, where there has been extensive discussion of sources of error in social sur-

veys, its effects on measurements, and ways of estimating and minimizing it [1,2,6–8].

There is also domain-specific literature on problems such as predicting missing nodes

or edges in networks [9,10,30–32] and name disambiguation in bibliometrics [33–36],

typically making use of assumptions about correlations in network structure. Com-

binations of these methods can be used to create hybrid algorithms for resampling

and Monte Carlo estimation of network structure [9–11, 13, 15]. There is also a sig-

nificant volume of work on the related problem of estimating network structure from

non-network data—see Brugere et al. [37] for a review.

Here we present a general formalism for the optimal inference of network structure

from rich but noisy data, and show how it can be applied to a range of data types.

Generically, the question we want to answer is this: given the results of a set of

measurements performed on a system of interest, what is our best estimate of the

structure of the underlying network? The data could take many forms. They could

be rich, hierarchical, multilevel, and multimodal, but they may also be unreliable and

error prone. Some of the data may have no bearing at all on the network structure.

Others maybe related only obliquely to it. And we may not know in advance which

data are relevant and which are not, or how accurate any of the measurements are.

Remarkably, under these seemingly daunting circumstances we can nonetheless make

progress.

Suppose that we are interested in the structure of a certain n-node network and for

the moment let us concentrate on the commonest case of an unweighted undirected

network. (We describe some generalizations to weighted and directed data below and

in the Supplementary Materials.) Let us denote the true structure of the network—

which we do not know—by an n×n symmetric adjacency matrix A, having elements

Aij = 1 if nodes i and j are connected by an edge and 0 otherwise. This structure,

commonly called the ground truth, is the thing we are trying to estimate.

3



We now make a set of measurements of the system, measurements that can take

many forms as discussed above, perhaps including direct measurements of network

structure but also potentially including indirect measurements, metadata, or “red

herrings” that have nothing to do with the network at all. The network structure

and the data are related to one another by a data model, expressed in the form of a

probability function P (data|A, θ) that specifies the probability of making the partic-

ular set of measurements we did, given the ground-truth network A plus, optionally,

some additional model parameters, which we collectively denote by θ. In general,

we do not know the form of this probability distribution—in most cases it will be a

complicated function—but the option to include parameters θ allows us to specify a

family of functions that encompass a broad spectrum of possibilities. Our goal will be,

given such a family, first to determine the values of the parameters, which effectively

chooses a particular member of the family and thereby fixes the relationship between

the network structure and the data, and then, given those values, to estimate the

network structure itself.

We write

P (A, θ|data) =
P (data|A, θ)P (A)P (θ)

P (data)
, (1)

then, summing over all possible network structuresA, we get P (θ|data) =
∑

A
P (A, θ|data),

which we maximize to find the most probable value of the parameters θ given the ob-

served data, the so-called maximum a posteriori (or MAP) estimate. In fact, for con-

venience, we maximize not P (θ|data) but its logarithm, whose maximum falls in the

same place. Employing the well-known Jensen inequality log
∑

i xi ≥
∑

i qi log(xi/qi),

we can write

logP (θ|data) = log
∑

A

P (A, θ|data) ≥
∑

A

q(A) log
P (A, θ|data)

q(A)
, (2)

where q(A) is any probability distribution over networks A satisfying
∑

A
q(A) = 1.

It is trivially the case that exact equality between left- and right-hand sides of Eq. (2)
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is achieved when

q(A) =
P (A, θ|data)

∑

A
P (A, θ|data)

, (3)

and hence this choice maximizes the right-hand side with respect to q. A further

maximization with respect to θ will then give us the optimal parameter values we

seek. To put that another way, a double maximization of the right-hand side of (2)

with respect to both q and θ will give us our answer for θ. This can be easily carried

out by maximizing first with respect to q(A) using Eq. (3) and then with respect to θ,

repeating until the result converges. Differentiating (2) while holding q(A) constant,

we find the maximum with respect to θ to be the solution of

∑

A

q(A)∇θ logP (A, θ|data) = 0. (4)

Our calculation consists of iterating Eqs. (3) and (4) from random initial values to

convergence. The final result is a value for the parameters θ, which we can then use to

estimate the ground-truth network. In fact, however, it turns out that this last step

is unnecessary: the calculations we have already performed give us the ground-truth

network structure as a by-product, indeed they give us the entire posterior probability

distribution over structures, since from Eq. (3) the quantity q(A) is none other than

q(A) = P (A, θ|data)/P (θ|data) = P (A|data, θ). In other words it is precisely the

probability of the network having true structure A given the observed data and the

parameters θ.

The method derived here is an example of an expectation–maximization or EM

algorithm [38]. As described the method is a general one that can be used with many

different networks and data models. Let us see how it is applied in practice.

Our first example application is to a social network of US university students. The

data come from the “reality mining” study of Eagle and Pentland [39], which aimed

to establish the real-world social network of a set of individuals by measuring their

physical proximity over time. The 96 students participating in the study were given
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mobile phones that used special software to record when they were in proximity with

one another. The resulting record of pairwise proximity measurements is both richer

and poorer than a direct network measurement, in exactly the manner considered

in this paper. It is richer in the sense that interactions between individuals may be

measured repeatedly and not just once, but poorer in the sense that proximity is

an error-prone indicator of actual interaction—two individuals may find themselves

coincidentally in proximity, as they pass on the street say, without being acquainted

or having any social interaction.

We take as our data set the measurements made during the reality mining study

for eight consecutive Wednesdays in March and April of 2005. (We choose weekly

observations to remove weekly periodic effects, and March and April because they

fall during the university term.) This gives us eight sets of observations, one for each

day, in which an observed edge means that two individuals were in physical proximity

at some time during that day.

The data model we adopt for these data is a particularly simple one, in which the

edge measurements—the observations of proximity—are assumed to be independent

identically distributed random variables, conditioned on the ground truth Aij. That

is, the probability of observing an edge between nodes i and j depends only on

the matrix element Aij and in the same way for all i, j. This dependence can be

parametrized by two quantities: the true-positive rate α, which is the probability of

observing an edge where one truly exists, and the false-positive rate β, the probability

of observing an edge where none exists. (Note that these are the empirical true- and

false-positive rates—the frequency with which the measurements agree or disagree

with the ground truth—rather than the true- and false-positive rates for our final

inferred networks, which we cannot normally calculate.) In addition, we will assume

a uniform prior probability ρ of the existence of an edge in any position, so that our

model is parametrized by three parameters α, β, and ρ.

If for each node pair i, j we make N measurements and observe an edge to be
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present in Eij of them then, as shown in the Methods, our EM equations give the

following estimates for the three parameters:

α̂ =

∑

i<j EijQij

N
∑

i<j Qij

, β̂ =

∑

i<j Eij(1−Qij)

N
∑

i<j(1−Qij)
, ρ̂ =

1
(

n

2

)

∑

i<j

Qij. (5)

(We use hatted symbols to denote estimated values of variables.) The quantity Qij

appearing here is the posterior probability that there is an edge between nodes i and j

for these parameter values, which is given by

Qij =
ρ̂α̂Eij(1− α̂)N−Eij

ρ̂α̂Eij(1− α̂)N−Eij + (1− ρ̂)β̂Eij(1− β̂)N−Eij

. (6)

The full calculation involves iterating Eqs. (5) and (6) until convergence is reached,

and the results tell us the estimates of the three parameters α, β, and ρ, as well as the

entire posterior probability distribution over possible ground-truth networks, which

is given by P (A|data, θ) =
∏

i>j Q
Aij

ij (1−Qij)
1−Aij . The posterior distribution allows

us to compute estimates of any other network quantities we might be interested

in, such as degrees, correlations, or clustering coefficients (see Section S.5 in the

Supplementary Materials) and can also be used as an input to further calculations,

for instance of community structure [14].

Applying Eqs. (5) and (6) to the reality mining data, the algorithm converges

rapidly and reliably to parameter estimates α̂ = 0.4242, β̂ = 0.0043, and ρ̂ = 0.0335.

The small value of β tells us that there are very few false positives: an edge is

observed where none exists less than 1% of the time. On the other hand, even if the

false-positive rate is low, the probability of being wrong when one does observe an

edge can still be high. This probability, called the false discovery rate, is given by

(1 − ρ)β/[ρα + (1 − ρ)β], which has estimated value of 0.2270 in the present case,

meaning that more than one in every five observed edges is in error. Moreover, the

relatively small value of α implies that there are also a large number of false negatives:

around 58% of pairs of individuals who are in fact connected in the underlying network
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are not observed in proximity on any one day. This is understandable. Most people

do not see all of their acquaintances every day.

Figure 1a shows the inferred ground-truth network, with edge thicknesses varying

to indicate the probability Qij of individual edges. In Fig. 1b we show the relation-

ship between the number of observations Eij of a particular edge and the posterior

probability Qij. As the figure shows, an edge observed only zero or one times implies

a low Qij (less than 0.1), so a single observation is probably a false alarm. But two

or more observations of the same edge result in a much larger Qij (greater than 0.9),

indicating a strong inference that the edge exists in the ground truth. The sharp

transition between low and high values of Qij means that it is possible to infer the

presence or absence of edges with good reliability despite the high error rate in the

data.

For our second example we study a more traditional friendship network, taken from

the National Longitudinal Study of Adolescent Health (the “AddHealth” study) [21].

This study compiled networks of friendships between students at a number of US high

schools by asking participants to name their friends. Again the data are both richer

and poorer than a simple network measurement. They are richer in the sense that

we have two measurements of each friendship, from the point of view of each of the

two participants, but poorer in the sense that those measurements can (and often do)

disagree, indicating that respondents are not reliable in the reports they give or that

they are employing different standards for what constitutes a friendship. Following [8]

we represent this situation by giving each participant i their own individual true- and

false-positive rates αi and βi. Once again one can derive closed-form expressions for

these parameters and for the posterior probabilities Qij of edges in the ground-truth

network—see the Methods. The analysis can be applied to any of the schools in the

AddHealth study; we use one of the smaller ones as our example, solely because it

allows us to make a clear picture of the resulting network.

Again the EM algorithm converges quickly and reliably, giving a network-average
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estimated true-positive rate 〈α̂〉 = 0.6083, false-positive rate 〈β̂〉 = 0.0096, and prior

edge probability 〈ρ̂〉 = 0.0235. These values indicate that non-existent friendships are

rarely falsely reported as existing (low average βi), although, once again, arguably the

more interesting quantity is the false discovery rate, the probability of a friendship

that is reported being false. This probability, which is equal to (1− ρ)βi/[ραi + (1−

ρ)βi], is significantly larger, having a network-average estimated value of 0.3309. In

other words, about one in three reported friendships doesn’t really exist. There is

also a relatively high rate of failure to report friendships that do exist (many of the

αi are significantly less than 1). The latter is perhaps less surprising given the design

of the study: students were limited to naming at most ten friends, so those with more

than ten would be obliged to omit some.

Figure 1c shows the inferred network of friendships, with edge widths again indi-

cating the probability Qij that an edge exists, and node sizes now varying to indicate

how reliable the nodes are, in terms of the fraction of reported friendships that ac-

tually exist (which is equal to one minus the false discovery rate, also called the

precision). Reports made by nodes depicted with large diameter are reliable, those

made by smaller nodes are not. Armed with these results, one can now calculate a

multitude of further quantities, including any function of network structure.

These are just two examples of possible applications. The particular data models

applied here are quite flexible and could be applied to other networks, but there

are also many other models one could use. Note for instance that the two models

above both make the assumption that edges are conditionally independent. This

works well for these particular examples but is by no means a requirement. The

methods described can be applied to models with dependent edges too, which might

be appropriate for instance for data sets derived from longitudinal (time-dependent)

network studies. See the Supplementary Materials for further discussion and a number

of additional examples of possible models.
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Methods

In the reality mining example, edge observations are assumed to be independent

(Bernoulli) random variables, conditioned on the ground truth Aij for the appropriate

node pair i, j, with true-positive rate α and false-positive rate β. Suppose that for

each node pair i, j we make Nij measurements and observe an edge to be present

in Eij of those measurements. Then, under this independent edge model,

P (data|A, θ) =
∏

i<j

[

αEij(1− α)Nij−Eij
]Aij

[

βEij(1− β)Nij−Eij
]1−Aij . (7)

If the prior probability of an edge in any position is ρ then the prior probability of

the entire network is P (A|ρ) =
∏

i<j ρ
Aij(1− ρ)1−Aij . We also assume that the prior

probability distributions on α, β, and ρ themselves are all uniform in the interval [0, 1].

Combining Eqs. (1) and (7) we then have

P (A, θ|data) =
1

P (data)

∏

i<j

[

ραEij(1− α)Nij−Eij
]Aij

[

(1− ρ)βEij(1− β)Nij−Eij
]1−Aij .

(8)

Taking the log, substituting into Eq. (4), and differentiating with respect to α, we

find that the maximum a posteriori estimate α̂ of the true-positive rate satisfies

∑

A

q(A)
∑

i<j

Aij

(

Eij

α̂
−

Nij − Eij

1− α̂

)

= 0. (9)

Defining the posterior probability of an edge between i and j by Qij = P (Aij =

1|data, θ) =
∑

A
q(A)Aij and rearranging Eq. (9), we then get

α̂ =

∑

i<j EijQij
∑

i<j NijQij

. (10)
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Similarly, differentiating with respect to β and ρ we arrive at

β̂ =

∑

i<j Eij(1−Qij)
∑

i<j Nij(1−Qij)
, ρ̂ =

1
(

n

2

)

∑

i<j

Qij. (11)

For the data set considered here the Nij all take the same value N , in which case

Eqs. (10) and (11) reduce to Eq. (5).

To calculate q(A) we evaluate (8) at the estimated parameter values and substitute

the result into Eq. (3) to get

q(A) =

∏

i<j

[

ρ̂α̂Eij(1− α̂)Nij−Eij

]Aij
[

(1− ρ̂)β̂Eij(1− β̂)Nij−Eij

]1−Aij

∑

A

∏

i<j

[

ρ̂α̂Eij(1− α̂)Nij−Eij

]Aij
[

(1− ρ̂)β̂Eij(1− β̂)Nij−Eij

]1−Aij

=
∏

i<j

[

ρ̂α̂Eij(1− α̂)Nij−Eij

]Aij
[

(1− ρ̂)β̂Eij(1− β̂)Nij−Eij

]1−Aij

∑

Aij=0,1

[

ρ̂α̂Eij(1− α̂)Nij−Eij

]Aij
[

(1− ρ̂)β̂Eij(1− β̂)Nij−Eij

]1−Aij

=
∏

i<j

Q
Aij

ij (1−Qij)
1−Aij , (12)

where

Qij =
ρ̂α̂Eij(1− α̂)Nij−Eij

ρ̂α̂Eij(1− α̂)Nij−Eij + (1− ρ̂)β̂Eij(1− β̂)Nij−Eij

. (13)

Note that if we make no measurements for a pair of nodes i, j, so that Nij = Eij = 0

(the case of “missing data”), this expression correctly gives Qij equal to the estimated

prior edge probability ρ̂.

Turning to the AddHealth friendship network example, measurements of edges in

this data set come from unilateral statements made by participants. Let Eij in this

case represent the number of times node i identifies node j as a friend. (Normally this

number will be zero or one, but we allow arbitrary values for the sake of generality.)

In effect, Eij constitutes a directed network, and self-reported friendship networks

are sometimes depicted as being directed. We consider the underlying ground-truth

network, however, to be undirected. Only our observations of it are directed.

Study participants may vary in the reliability with which they identify their
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friends. A participant whose identifications agree, by and large, with those of their

friends, is probably a reliable observer; one whose identifications disagree is probably

not. We do not have to impose these assumptions on our calculation, however. They

will be automatically reflected in the solution found by the EM algorithm.

In our calculations we employ a data model in which each node i has its own true-

positive rate αi and false-positive rate βi. Then the likelihood of a set of observations

given a ground-truth network A is

P (data|A, θ) =
∏

i<j

[

α
Eij

i (1− αi)
Nij−Eij

]Aij
[

α
Eji

j (1− αj)
Nji−Eji

]Aji

×
[

β
Eij

i (1− βi)
Nij−Eij

]1−Aij
[

β
Eji

j (1− βj)
Nji−Eji

]1−Aji , (14)

where Nij is the total number of observations of node j made by node i. Note that we

explicitly include terms in Eij and Eji separately, since these numbers are distinct.

(On the other hand, Aij = Aji since the ground-truth network is assumed undirected.

We write Aij and Aji separately in the above expression purely to preserve symmetry.)

Again assuming a prior probability of ρ on each ground-truth edge and uniform

priors on the parameters, applying Eq. (1), and taking logs, we arrive at the log-

likelihood:

logP (A, θ|data) =
∑

i<j

[

AijEij logαi + Aij(Nij − Eij) log(1− αi)

+ AjiEji logαj + Aji(Nji − Eji) log(1− αj)

+ (1− Aij)Eij log βi + (1− Aij)(Nij − Eij) log(1− βi)

+ (1− Aji)Eji log βj + (1− Aji)(Nji − Eji) log(1− βj)

+ Aij log ρ+ (1− Aij) log(1− ρ)
]

− logP (data). (15)

Applying Eq. (4), performing the derivatives, and rearranging, we then find the fol-
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lowing estimates for the parameters:

α̂i =

∑

j EijQij
∑

j NijQij

, β̂i =

∑

j Eij(1−Qij)
∑

j Nij(1−Qij)
, ρ̂ =

1
(

n

2

)

∑

i<j

Qij. (16)

As before, Qij is the posterior probability of an edge between i and j, which can

be calculated by a method analogous to the one we used for our first model above.

Combining Eqs. (1) and (14) and using Aij = Aji, we write

P (A, θ|data) =
1

P (data)

∏

i<j

[

ρα
Eij

i (1− αi)
Nij−Eijα

Eji

j (1− αj)
Nji−Eji

]Aij

×
[

(1− ρ)β
Eij

i (1− βi)
Nij−Eijβ

Eji

j (1− βj)
Nji−Eji

]1−Aij .

(17)

We evaluate this probability at the estimated values of the parameters and the com-

plete posterior distribution over ground-truth networks A is then given by

q(A) = P (A|data, θ) =
P (A, θ|data)

∑

A
P (A, θ|data)

=
∏

i<j

Q
Aij

ij (1−Qij)
1−Aij , (18)

where

Qij =
ρ̂α̂

Eij

i (1− α̂i)
Nij−Eij α̂

Eji

j (1− α̂j)
Nji−Eji

ρ̂α̂
Eij

i (1− α̂i)Nij−Eij α̂
Eji

j (1− α̂j)Nji−Eji + (1− ρ̂)β̂
Eij

i (1− β̂i)Nij−Eij β̂
Eji

j (1− β̂j)Nji−Eji

.

(19)

Note that this expression is explicitly symmetric with respect to the indices i and j,

as it should be, since Qij = Qji by definition.

This calculation returns not only an estimate of the ground-truth network but also

an estimate of the reliability of each of the nodes, parametrized by their true-positive

and false-positive rates, which tell us both how often a node truthfully reports an

edge that does exist and how often it falsely reports an edge that does not. Note

that even in the (common) case where each edge is observed at most once, so that

Eij can take only the values zero and one, the parameter estimates α̂i and β̂i and the
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posterior probabilities Qij can take a wide range of values, by contrast with the case

of the reality mining network, where there are only as many possible values of Qij

as there are values of Eij (see Fig. 1b). For instance, even if both of nodes i and

j report the existence of an edge between them (Eij = Eji = 1), if neither node is

considered reliable then the algorithm may say that the probability Qij of the edge

actually existing is low. If either of them is considered reliable, on the other hand,

then Qij will be larger. And if one is unreliable and claims an edge, while the other

is reliable but does not, then Qij will be particularly small.
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available on the web from the original authors of the respective studies. The “re-

ality mining” data were collected by Eagle and Pentland [39] and can be down-
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Figure 1: Application of the methods described here to two example networks.

The EM algorithm derived in this paper was applied to a data set of proximity measure-
ments between a group of US university students (the “reality mining” study [39]) and to a
friendship network derived from a survey of students in a US high school (the “AddHealth”
study [21]). (a) Inferred ground-truth network for the reality mining data set. Edge widths
indicate the inferred probabilities Qij . Edges that are never observed are omitted, as are
singleton nodes with no observed edges. The figure reveals a dense core of about twenty
nodes that are with high probability connected to one another and a sparser periphery of
nodes for whom the surety of connection is much lower. The thickest edges shown have
Qij > 0.999, while the thinnest have Qij < 0.1. (b) Inferred edge probability as a func-
tion of the number of observations Eij for the reality mining data set, showing a relatively
sharp transition between Eij = 1 and Eij = 2. (c) Inferred network for the AddHealth
friendship data. Edge widths again indicate inferred probabilities, while node diameters are
proportional to the so-called precision ραi/[ραi + (1 − ρ)βi], which is the estimated frac-
tion of reported friendships that actually exist. Some nodes are invisible because they are
unreliable—their precision is very small—though these nodes may nonetheless have edges
if another (reliable) node reports a connection. Unobserved edges and singleton nodes are
again omitted.
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S.1 Additional results for the reality mining network

Our EM algorithm works by finding the values of the model parameters that give the best fit of

the data model to the observed data. The method does not, however, guarantee that we will get

a good fit. Even the best fit may still be a bad one if the model itself is not capable of capturing

the form of the data. As an analogy, imagine a set of data points on a graph that follow an

intrinsically curved path across the page. We can fit a straight line through such points, but even

the best fit will not be a good one. There simply is no good fit of a straight line to curved data.

For the case of the reality mining data set of mobile phone proximities, a “good fit” to the data

means one that captures accurately the numbers of proximity observations for pairs of individuals

in the network. Since the observations are assumed independent, only their number matters and

not other features such as the specific days on which proximity is observed. Figure S1 shows a

histogram of pairs of individuals in the network as a function of the number of days on which

they are observed in proximity. Because the network is sparse and a large majority of pairs never

meet, most of the weight of the histogram is in the “zero observations” bin, although significant

numbers of pairs fall in the other bins as well. The circles show the values of the same quantities

for the best-fit model—the one given by the parameter values in the paper. As the figure shows,

the fit is a reasonably good one, although there is some deviation between data and fit if one

looks closely.

Another way to assess the quality of the results is to rerun the algorithm with an independent

data set from the same source to see if we get a similar outcome. A nice feature of the reality

mining study is that we have exactly such an independent data set available. Recall that the

results given in the paper are based on observations made on eight consecutive Wednesdays. It

is straightforward to perform the same analysis using data from a different day of the week.

Figure S2 shows the network structure inferred from the Wednesday data (the same structure

depicted in Fig. 1a in the main paper) alongside the equivalent structure inferred from data for

eight Thursdays over the same time period. As the figure shows, the two networks are qualitatively

similar, with a dense core and sparse periphery. Some notable features, such as the tightly-

connected satellite group of nodes to the left of center in the figure, are common to both networks.

But some individual details also differ from one network to the other—edges present in one are

absent in the other and so forth. This is natural: the whole point about error-prone data is

that if we measure the same thing twice we do not expect to get exactly the same result. Some
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Figure S1: Comparison of observations and fitted model for the reality mining data. The
histogram shows the number of node pairs i, j with each possible value of Eij , the number of days on which
the corresponding pair of individuals were observed in proximity. The circles represent the predictions
made by the model for the parameter values that give the best fit to the data.

variation between different measurements is expected, and indeed the extent of this variation

could in principle be used to estimate the size of the experimental error. In this case, however,

we don’t necessarily need to do this, since the model parameters—the true- and false-positive

rates—already give us an estimate of the size of our errors.

S.2 Tests against synthetic data

How do we know if our method gives good results? It gives us a best estimate (in the maximum-

likelihood sense) of a network and its parameters, but is that estimate actually good? Under

normal circumstances we cannot compare our estimated network to the true structure to evaluate

performance because, by definition, we do not know the true structure. A common alternative

therefore is to evaluate performance against computer-generated or “synthetic” data. One can

create a network with known structure (or use one that already exists) and artificially introduce

errors into some fraction of its edges, then see whether our algorithms are able to accurately

recover the true structure of the network, errors notwithstanding.

Figure S3 shows results from a set of such tests using the independent edge data model of

Eqs. (5) and (6) in the main paper. In these tests we generated random networks of 200 nodes

with average node degree 10 and then randomly introduced both false positive and false negative

errors. For simplicity we fixed the true-positive rate and precision for the introduced errors to take

the same values. For each network we generated either N = 4, 8, or 16 sets of measurements then

fed the resulting data into our EM algorithm. The plot shows the performance of the algorithm

in terms of the recall, i.e., the fraction of edges that were correctly recovered by the algorithm as

a function of the rate of introduced errors.
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(a) Wednesdays (b) Thursdays

Figure S2: Networks inferred from observations made on different days of the week. The
“reality mining” network was reconstructed in two different ways, using proximity observations made on
Wednesdays and on Thursdays. (a) The network reconstructed from observations made on Wednesdays,
as described in the main text. (This is the same network as in Fig. 1a, but redrawn for the purposes of this
figure.) (b) The equivalent network reconstructed from observations made on Thursdays over the same
eight-week period in March and April 2005. We limit ourselves to the same set of nodes as in panel (a),
laid out in the same positions, to allow easy comparison between networks.

As the figure shows, the success of the algorithm depends, as one would expect, on both the

number N of measurements available to it and the quality of the data. As the error rate goes to 1

the algorithm fails to recover the network at all, but it has significant success for lower error rates.

When both the true-positive rate and the precision of the measurements are 0.5, for instance, the

algorithm succeeds with about 70% recall even with only 4 measurements of each network to work

with, and with 16 measurements it has better than 98% recall.

S.3 Other data models

We have given two examples of possible data models. There are however many others that could

be used within the inference framework described, depending on the specific data available and

the questions one wants to answer.

Edge strengths or weights: A simple variation on the model we used for the reality mining

data set is one in which the underlying network can have edges with different strengths. Many

social network studies only consider pairs of individuals to be “acquainted” or “not acquainted.”

But a more nuanced representation might divide them into “not acquainted,” “casual acquain-

tances,” or “well acquainted,” and the frequency with which people meet might well differ between

these classes: casual acquaintances might be more likely to meet than people who don’t know

each other at all, but less likely than people who are close friends.

Such a situation could be represented using a weighted adjacency matrix A in which each

element now has three possible values 0, 1, and 2, with corresponding prior probabilities ρ0, ρ1,

and ρ2 such that ρ0 + ρ1 + ρ2 = 1. At the same time the two parameters α and β that we used in

the previous model would now become three—say α0, α1, and α2—representing the probability

of observing an edge in each of the three states. With all other variables defined as before, the
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Figure S3: Tests of the method on synthetically generated networks. This plot shows the recall
rate of our EM algorithm when used to reconstruct artificially generated networks with errors introduced
into them at a controlled rate. For each data point we generated 100 networks of 200 nodes each using the
standard (Bernoulli) random graph model and from each network we generated 4, 8, or 16 independent
measurements of the network structure with random errors introduced with varying frequency. Both false
positives and false negatives were introduced: the true-positive rate and precision were set to the same
value, shown on the horizontal axis. The vertical axis measures the algorithm’s ability to successfully
recreate the original network from the error-prone data in terms of the recall, which is the fraction of edges
correctly identified by the algorithm. An edge is considered to be identified if its existence is inferred to
be more likely than not, i.e., if Qij > 1

2
. Error bars are comparable in size with the data points and are

omitted.

log-likelihood would then take the form

logP (A, θ|data) =
∑

i<j

{

1Aij=0

[

Eij logα0 + (Nij − Eij) log(1− α0)
]

+ 1Aij=1

[

Eij logα1 + (Nij − Eij) log(1− α1)
]

+ 1Aij=2

[

Eij logα2 + (Nij − Eij) log(1− α2)
]

+ 1Aij=0 log ρ0 + 1Aij=1 log ρ1 + 1Aij=2 log ρ2
}

− logP (data), (S1)

where 1 is the indicator function. Then, applying Eq. (4) in the paper, we derive the estimates

α̂w =

∑

i<j EijQ
(w)
ij

∑

i<j NijQ
(w)
ij

, ρ̂w =
1
(

n
2

)

∑

i<j

Q
(w)
ij , (S2)

for w = 0, 1, 2, where Q
(w)
ij =

∑

A
1Aij=w q(A) is the posterior probability that Aij = w, which is
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given by

Q
(w)
ij =

ρ̂wα̂
Eij
w (1− α̂w)

Nij−Eij

∑

w′ ρ̂w′α̂
Eij

w′ (1− α̂w′)Nij−Eij

. (S3)

This approach can be extended to any number of levels or strengths of connection between

node pairs—Eqs. (S2) and (S3) carry over unchanged. Interesting questions arise about how we

decide the ideal number of levels to include in the calculation (if we don’t know a priori), which

can be addressed using generalizations of standard model selection methods. For instance, one

could perform a χ2 test on the distribution of values of Eij , choosing the minimum number of

levels for which the model is not rejected by the test to some predetermined degree of significance.

Note that within this framework the levels of the edges are not ordered: there is nothing in

the mathematical formulation that stipulates that level 2 is “stronger” than level 1. In practice

this means that the parameter values returned by the EM algorithm may be permuted from the

canonical order—all permutations give equally good fits to the data. If we want the higher levels

to correspond to stronger edges in the sense of greater values of αw, then we may need to manually

permute the levels after the algorithm completes its work.

Multimodal data: Another possibility is that of “multimodal” network data, by which we mean

data that quantify the structure of a network in several different ways, such as a social network

probed using traditional interviews or questionnaires, and then probed again using data from an

online social networking site. Such data are sometimes referred to as “multilayer” networks [1,2].

An example is the Copenhagen Networks Study [3], in which the interactions of a thousand

individuals in Copenhagen were cataloged using measurements of face-to-face meetings, electronic

communications, and online social networks.

Suppose that we have data that measure, directly or indirectly, a specific network A in several

different ways or modes, which we label by integers m = 1, 2, 3 . . . There is only one type of

edge in the network itself—the matrix elements Aij take the values 0 and 1 only—but they can

be measured in multiple ways. The existence, or non-existence, of an edge between node pair i, j

is measured N
(m)
ij times in mode m. (The most likely values are N

(m)
ij = 1—the pair was observed

once, the usual situation in most network studies—or N
(m)
ij = 0—the case of “missing data,”

where we have no information about a particular pair. For the sake of generality, however, we

allow the possibility of higher values.) Generalizing our earlier models, we also define E
(m)
ij to be

the number of times an edge is actually observed between nodes i, j in mode m, and we assume the

measurements to be independent, both for different modes and for different nodes, conditioned on

the underlying ground truth Aij . But we allow for the (likely) situation in which measurements in

different modes have different levels of accuracy, meaning that there are different true- and false-

positive rates for each mode m, which we denote αm and βm. In a social network, for instance,

we might find that exchange of electronic communications such as emails or phone calls is a more

reliable indicator of acquaintance than proximity measurements.

The log-likelihood for this model is given by

logP (A, θ|data) =
∑

i<j

{
∑

m

[

AijE
(m)
ij logαm +Aij(N

(m)
ij − E

(m)
ij ) log(1− αm)

+ (1−Aij)E
(m)
ij log βm + (1−Aij)(N

(m)
ij − E

(m)
ij ) log(1− βm)

]

+Aij log ρ+ (1−Aij) log(1− ρ)
}

− logP (data), (S4)
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where ρ is once again the prior probability of an edge. Substituting this form into Eq. (4) of the

main paper and performing the derivatives, we get

α̂m =

∑

i<j E
(m)
ij Qij

∑

i<j N
(m)
ij Qij

, β̂m =

∑

i<j E
(m)
ij (1−Qij)

∑

i<j N
(m)
ij (1−Qij)

, ρ̂ =
1
(

n
2

)

∑

i<j

Qij , (S5)

where Qij =
∑

A
q(A)Aij is once again the posterior probability of an edge between nodes i and j.

Following the same line of argument as in the Methods, we find that

Qij =
ρ̂
∏

m α̂
E

(m)
ij

m (1− α̂m)N
(m)
ij

−E
(m)
ij

ρ̂
∏

m α̂
E

(m)
ij

m (1− α̂m)N
(m)
ij

−E
(m)
ij + (1− ρ̂)

∏

m β̂
E

(m)
ij

m (1− β̂m)N
(m)
ij

−E
(m)
ij

. (S6)

To understand how the different modes are weighted by the algorithm, it is helpful to consider

the odds ratio for an edge between nodes i and j:

Qij

1−Qij
=

ρ̂

1− ρ̂

∏

m

(

α̂m

β̂m

)E
(m)
ij

(

1− α̂m

1− β̂m

)N
(m)
ij

−E
(m)
ij

. (S7)

Note how, in modes m for which α̂m is large and β̂m is small, the E
(m)
ij observed edges contribute

a large increase to the odds ratio (first term in parentheses) and the N
(m)
ij − E

(m)
ij non-edges

contribute a large decrease (second term). These modes are precisely the reliable ones—those

with high true-positive rates and low false-positive rates—and hence it is appropriate that they

contribute strongly to our inference of the network structure.

S.4 Computation of network properties

The primary output of our EM algorithms is the posterior probability distribution q(A) =

P (A|data, θ) over possible ground-truth networks. Given this distribution, one can in princi-

ple calculate the expected value or distribution of any other quantity that depends on network

structure, such as degree distributions, clustering coefficients, correlation measures, spectral prop-

erties, and so forth. If we have some quantity X(A) whose value is a function of the network

structure A, then its expected value, given the observed data, is

µX =
∑

A

q(A)X(A), (S8)

and the variance about that expectation is

σ2
X =

∑

A

q(A)[X(A)− µ]2. (S9)

These expressions are primarily of use for quantities whose distribution is approximately normal.

In other cases one can compute the complete probability distribution of X thus:

P (X = x|data, θ) =
∑

A

q(A)1X(A)=x, (S10)
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where 1 is the indicator function again.

These expressions can be used in place of more traditional “naive” estimates of network

properties, i.e., estimates made directly from the observed network data. They allow us to give

best estimates of network quantities of interest as well as estimates of the uncertainty on those

quantities. This approach puts network measurements on a similar standing to measurements in

other fields of science, where providing error estimates on observed quantities is standard practice.

In some cases it is possible to employ the expressions above directly. Take for example the

calculation of the degree of a node i. For any of the data models described in this paper, or any

other model for which one can derive an explicit expression for the marginal probability Qij of

an edge between two nodes, we can write the expected degree of node i as

di =
∑

A

q(A)
∑

j

Aij =
∑

j

∑

A

q(A)Aij =
∑

j

Qij . (S11)

In other cases, particularly those in which the quantity of interest is a nonlocal function of

network structure, such as a correlation function or an eigenvalue, it may not be possible to

perform the sum over networks A in closed form, in which case one can estimate expectations,

variances, or complete distributions using Monte Carlo sampling, whereby one draws a number

of networks from the posterior distribution q(A), computes the quantity of interest on each of

them, and then calculates the desired statistics.

In the particular case in which the posterior distribution factors into independent probabilities

on each edge—as in all of the models considered in this paper—Monte Carlo sampling of networks

is trivial. One simply generates each edge independently with the appropriate probability Qij , and

there exist straightforward algorithms for doing this efficiently [4]. In cases where the edges are

not independent, one can generate networks using Markov chain importance sampling, in which

one repeatedly makes small changes A → A′ to the network, such as the addition or removal

of a single edge, then accepts those changes with the standard Metropolis–Hastings acceptance

probability

Pa =

{

q(A′)/q(A) if q(A′) < q(A),

1 otherwise.
(S12)

As an example, consider the calculation of the clustering coefficient C, which is a measure

of the density of triangles or “closed triads” of edges in a network. In social network terms, the

clustering coefficient measures the average probability that two of your friends will also be friends

with each other. It is defined by

C =
3× (number of triangles in network)

(number of connected triples)
, (S13)

where a connected triple means an unordered pair of nodes that are both neighbors of the same

third node [5].

Consider the example of the network of high school friendships in Fig. 1c in the main paper.

Taking the output of our EM algorithm, we generate 1000 networks with edges sampled randomly

with the probabilities Qij given by the algorithm, then calculate the clustering coefficient for each

network and compute the mean and standard deviation of the 1000 resulting values. This gives us a

best estimate of C = 0.185±0.009 for the clustering coefficient. For comparison, the “naive” value

of the clustering coefficient for the same network, calculated directly from the raw friendship data,

7



is 0.269, in significant disagreement with the best estimate. If we were to calculate the clustering

coefficient from the raw data in this case we would be introducing a substantial error.

References

[1] Boccaletti, S. et al. The structure and dynamics of multilayer networks. Physics Reports 544,

1–122 (2014).

[2] De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of multilayer networks.

Nature Physics 12, 901–906 (2016).

[3] Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLOS One

9, e95978 (2014).

[4] Ramani, A. S., Eikmeier, N. & Gleich, D. F. Coin-flipping, ball-dropping, and grass-hopping

for generating random graphs from matrices of edge probabilities. Preprint arxiv:1709.03438

(2017).

[5] Newman, M. E. J. Networks: An Introduction (Oxford University Press, Oxford, 2010).

8


