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Introduction

Continuing from [18], we prove a finiteness principle for interpolation of data
by nonnegative C™ functions. Our result raises the hope that one can start
to understand constrained interpolation problems in which e.g. the interpo-
lating function F is required to be nonnegative.

Let us recall some notation used in [18].

We fix positive integers m, n. We write C™ (R") to denote the Banach
space of all real valued locally C™ functions F on R", for which the norm

[Fllmgn) = sup max [0°F (x|
is finite.

We will also work with the function space C™ M (R™). A given continuous
function F : R™ — R belongs to C™ ' (R") if and only if its distribution
derivatives 9PF belong to L* (R™) for || < m. We may take the norm on
C™h (R™) to be

 of | F + = maxess. sup |0PF (x)].
| ”c L1(Rn) iBl<m xeR}J ( ]|
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Expressions ¢ (m,n), C (m,n), k (m,n), etc. denote constants depending
only on m, n; these expressions may denote different constants in different
occurrences. Similar conventions apply to constants denoted by C (m,n, D),
k (D), etc.

If X is any finite set, then # (X) denotes the number of elements in X.

We are now ready to state our main theorem.

Theorem 1 For large enough k* =k (m,n) and C¥* = C (m,n) the follow-
ing hold.

(A) C™ FLAVOR Let f: E — [0,00) with E C R™ finite. Suppose that
for each S C E with # (S) < k¥, there exists F° € C™ (R™) with norm
[F*|| ey < 15 such that F> = on S and F* >0 on R™

Then there exists F € C™(R™) with norm ||F||cmgn, < C#, such that
F=fonE and F >0 on R™.

(B) C™ ' FLAVOR Let f: E — [0,00) with E C R"™ arbitrary. Suppose
that for each S C E with # (S) < k¥, there exists F> € C™ b1 (R™) with
norm |[F|| e i gny < 1, such that F¥ =f on' S and F* > 0 on R™.

Then there exists F € C™ M (R™) with norm [[F||cm 11 gny < C¥#, such
that F=f on E and F > 0 on R™.

Our interest in Theorem 1 arises in part from its possible connection to
the interpolation algorithm of Fefferman-Klartag [15,16]. Given a function
f:E — R with E C R" finite, the goal of [15,16] is to compute a function
F € C™(R") such that F = f on E, with [[F|[cmgn) as small as possible up
to a factor C(m,n). Roughly speaking, the algorithm in [15,16] computes
such an F using O(NlogN) computer operations, where N = #(E). The
algorithm is based on an easier version [10] of Theorem 1. Our present result
differs from the easier version in that we have added the hypothesis FS >0
and the conclusion F > 0. Accordingly, Theorem 1 raises the hope that we
can start to understand constrained interpolation problems, in which e.g. the
interpolant F is required to be nonnegative everywhere on R™.

For results related to Theorem 1, we refer the reader to our paper [18]
and references therein.

In the following sections, we will set up the notation; then we will recall
a main theorem in [18] and use it to prove Theorem 1.

This paper is part of a literature on extension, interpolation, and selection
of functions, going back to H. Whitney’s seminal work [33], and including
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fundamental contributions by G. Glaeser [19]. Y. Brudnyi and P. Shvartsman
4.6-9,23-31], J. Wells [32], E. Le Gruyer [21], and E. Bierstone, P. Milman,
and W. Pawlucki [1-3], as well as our own papers [10-17]. See e.g. [14] for
the history of the problem, as well as Zobin [34,35] for a related problem.
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1 Notation and Preliminaries

1.1 Background Notation

Fix m, n > 1. We will work with cubes in R™; all our cubes have sides parallel
to the coordinate axes. If Q is a cube, then 8¢ denotes the sidelength of Q.
For real numbers A > 0, AQ denotes the cube whose center is that of Q,
and whose sidelength is Adg.

A dyadic cube is a cube of the form I) x I; x -+ x [, € R™, where each
I, has the form [2% - i,,2%- (i, + 1)) for integers iy, -+ ,in. k. Each dyadic
cube Q is contained in one and only one dyadic cube with sidelength 28:
that cube is denoted by Q.

We write B, (x, 1) to denote the open ball in R™ with center x and radius
r, with respect to the Euclidean metric.

We write P to denote the vector space of all real-valued polynomials of
degree at most (m — 1) on R". If x € R™ and F is a real-valued C™' function
on a neighborhood of x, then J, (F) (the “jet” of F at x) denotes the (m — i
order Taylor polynomial of F at x. i.e.,

Py = Y o) (y—x)*.

[al<m—1

Thus, J« (F) € P.



For each x € R", there is a natural multiplication © on P (“"multiplica-
tion of jets at x") defined by setting

PoyQ =], (PQ) for P,Q € P.

If F is a real-valued function on a cube Q. then we write F € C™(Q) to
denote that F and its derivatives up to m-th order extend continuously to
the closure of Q. For F € C™ (Q), we define

Fll smiyy = sup max |0*F (x)] .
I ”C Q) xegiﬂlﬂml (x)]

The function space C™(Q) and the norm || -+ ||em-11(q) are defined
analogously.

If Fe C™(Q) and x belongs to the boundary of Q, then we still write
Jx (F) to denote the (m —1)™" degree Taylor polynomial of F at x, even
though F isn’t defined on a full neighborhood of x € R™.

Let S € R™ be non-empty and finite. A Whitney field on S is a family of
polynomials

P= (PY),es (each PY € P),

parametrized by the points of S.
We write Wh (S) to denote the vector space of all Whitney fields on S.
For P = (PY),cs € Wh(S), we define the seminorm

p [0 (P — P¥) ()
I7.... = max ()l
cm(s) xYEeS,(x#yllal<m |x T ylmula.
(If S consists of a single point. then Pl =0.)
cm(s)

We also need an elementary fact about convex sets.

Helly’s Theorem Let Ky, -+, Ky € RY be convez. Suppose that Ki, N==:N
Kip., is nonempty for any iy,--- ,ips1 € {1,--+ yN}L. Then Ky N - N Ky is
nonempty.

See [22].



1.2 Shape Fields

Let E ¢ R™ be finite. For each x € E, M € (0,00), let T(x,M) C P
be a (possibly empty) convex set. We say that I' = (I'(x,M)) ¢ po0 18 @
shape field if for all x € E and 0 < M’ < M < o0, we have

Mx,M) CT(x,M).

Let T = (T (x, I\/l}]er‘M>0 be a shape field and let C,,, 8,0 be positive
real mumbers. We say that I is [Cyvy dunax J-convex if the following condition

holds:
Let 0 <8 < 8paxs X € E, M € (0,00), Py, P2. Qi, Q; € P. Assume that

(1) Py, P €T (x,M);

(2) [0B(Py —Py)(x)| < M&™ ¥ for |B] <m —1;
(

(

3) 10PQi(x)| <5 P for Bl <m—1fori=1,2;

4) Qo +Q:60:Q =1
Then

(5) P:=Qy1 @y Q1 @y Py + Q2 & Q2 & Py € Tx, C,uM).

1.3 Finiteness Principle for Shape Fields

We recall a main result proven in [18].

Theorem 2 For a large enough X# determined by m. n, the following holds.
Let Ty = (Tp (x, M) cem=o be a(Cy, B max ) -convex shape field and let Qy C R™
be a cube of sidelength dg, < dyax- Also, let xo € EN5Qp and My > 0 be
given. Assume that for each S C E with # (S) < X# there exists a Whitney
field PS — [P"]zes such that

®

|, < My,
cm(§)

and

P* € Ty (z,M) forallz€S.

Then there exist P° € Ty (xo, Mo) and F € C™(Qq) such that the following
hold, with a constant C, determined by C,,, m, n:
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e J.(F) € Iy (z,C.My) for all z € EN Qo.

o 108 (F—P°) ()| < C.Modg ! for all x € Qo, |Bl < m.

e [n particular,

(x)} < CuMy for all x € Qo, Bl =m

2 (C™ Interpolation by Nonnegative Functions

In this section, ¢, C, C', etc.

denote constants determined by m and n.

These symbols may denote different constants in different occurrences. For

x € R™ and M > 0, define

(1) T, (M) = {

P € P: There exists F € C™ (R") with [[F||cmgn <M,

F>0onR" J,(F)=P.

It is not immediately clear how to compute I'; we will return to this issue
in a later section. Let E C R™ be finite, and let f : E — [0,00). Define

Ff = (T¢(x, M))XGE,M>07 where

(2) Tr(x, M) ={P €T (x,M):P(x) =1(x)}

Lemma 1 T} is a (C, 1)-convex shape field.

Proof. It is clear that I} is a shape field, i.e., each T¢(x, M) is convex, and
M’ < M implies T¢(x, M’) C T¢(x, M). To establish (C, 1)-convexity, suppose

we are given the following:

3) 0<8<1,x€E M>0;

(4) Py, P, €T (x, M) satisfying

(5

(6

)
)
)
) Q1,Q; € P satisfying
(7)
)

8) Qo Qi+ Q20 Qa=1.

Set

0P (P} — P2) (x)] < M&™ P for [B] < m —1;

(7) [0°Qi () <& ¥ for [Bl < m—1,i=1,2, and

|



(9) P=Q; ©x Q1 ©x P1 + Q2 ®y Q2 @ Pa.
We must prove that
(10) P e Ty (x,CM).
Thanks to (4), we have
(11) Py (x) = f(x) and Py (x) = f(x),
and there exist functions Fy, F, € C™(R") such that
(12) [[Fillemgn) <M (i=1,2),
(13) F;>0on R" (i=1,2), and
(14) Jx(F) =P (i=1,2).

We fix Fy, F, as above. By (8), we have |Q;(x)| > VL"E for i = 1 or for
i = 2. By possibly interchanging Q; and Q3. and then possibly changing Q;
to —Q. we may suppose that

1
(15) Qi (x) > &,
For small enough cp. (7) and (15) yield
(16) Qi (y) > 1 for [y — x| < cob.

Fix ¢p as in (16). We introduce a C™ cutoff function x on R™ with the
following properties,

(17) 0 < x < 1 on R™; x = 0 outside B, (x,¢pd): x = 1 in a neighborhood
of x;

(18) |aPx| < C& 7 on R™. for |B] < m.

We then define 8, = X Q1+ (1 —x) and 0, = x - Q..
These functions satisfy the following: éi € C™(R") and |aﬁéi| < Cs5
on R for IBl < m,i=1,2: 0, > Tl(") on R™: ], (él) = Q, for i =1, 2; outside

N ~ . - =2 =12
By (x,¢00) we have 0, = 1 and 0; = 0. Setting 0; = 0; - (Bl + 63) for
i=1, 2, we find that



(19) 0; € C™(R™) and [3P0;| < C& Pl on R for |B] <m, i=1,2;
(20) 03 +05=1o0n R™;
(21) Jx (6;) = Q; for i = 1,2 (here we use (8)); and
(22) outside By, (x,c0) we have 0; =1 and 0, = 0.
Now set
(23) F=07F + 03F, = Fy + 03 (F, — Fy) (see (20)).

Clearly F € C™(R™). By (14), we have J,(F, — Fy) = P, — Py; hence (5)
yields the estimate

0P (F, — Fy) (x)] < CM&™ Pl for [B] <m —1.
Together with (12), this tells us that
0P (F, — Fy)| < CM&™ *l on By, (x,c8) for |B < m.
Recalling (19), we deduce that
0P (05 - (F2—Fy))| < CM&™ P on B, (x,¢od) for [B] < m.
Together with (12) and (23), this implies that
[0PF| < CM on By, (x,cod),

since 0 < & < 1 (see (3)). On the other hand, outside By(x,cyd) we have
F =T by (22), (23); hence [0PF| < CM outside B, (x,cod) for || < m, by
(12). Thus, [0PF| < CM on all of R™ for || < m, i.e.,
(24) [IFllcmzn) < CM.

Also, from (13) and (23) we have
(25) F>0on R™Y

and (9), (14), (21), (23) imply that
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(26) Jx(F)=Q1 0« Qi1 &« P1 + Q20 Q2 & P, =P.
Since F € C™ (R") satisfies (24), (25), (26), we have
(27) P €T, (x,CM).
Moreover,

(28) P(x) = (Qy (x))* £ (x) + (Q2 (x))* f(x) = f(x),

thanks to (8), (9), (11).
From (27), (28) we conclude that P € I(x, CM), completing the proof of
Lemma 1. m

Lemma 2 Let (PY)
Suppose that

et be a Whitney field on the finite set E, and let M > 0.

(29) P* €T, (x, M) for each x € E,
and that

(30) |8 (P*—P¥) (x)| < MIx —x'"" forx,x' € E and |B| < m—1.
Then there exists F € C™(R") such that

(31) ||Fllememn) < CM,

(32) F >0 on R", and

(33) Jx (F) = P* for all x € E.

Proof. We modify slightly Whitney's proof [33] of the Whitney extension
theorem. We say that a dyadic cube Q € R" is “OK” if #(EN5Q) < 1 and
dg < 1. Then every small enough Q is OK (because E is finite), and no Q
of sidelength 8o > 1 is OK. Also, let Q, Q' be dyadic cubes with 5Q C 5Q".
If Q" is OK. then also Q is OK. We define a Calderén-Zygmund (or CZ)
cube to be an OK cube Q such that no Q' that strictly contains Q is OK.
The above remarks imply that the CZ cubes form a partition of R"; that
the sidelengths of the CZ cubes are bounded above by 1 and below by some
positive number; and that the following condition holds.
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(34) “Good Geometry™: If Q,Q" € CZ and 2Q N £Q’ # 0, then 38¢ <
dgr < 28g.

We classify CZ cubes into three types as follows.
Qe CZisof

Type 1 if EN5Q # 0
Type 2 if EN5Q =0 and dg < 1.
Type 3 if EN5Q =0 and 8¢ = 1.

Let Q € CZ be of Type 1. Since Q is OK, we have #(EN5Q) < 1. Hence
EN>5Q is a singleton, EN5Q = {xg}. Since P*¢ € T, (xg, M), there exists
Fo € C™(R") such that

(35) [[Follem@ny < M, Fo >0 on R", ], (Fq) = P*e.

We fix Fg as in (35).

Let Q € CZ be of Type 2. Then 8¢+ < 1but Q" is not OK; hence # (EN5Q") >
2. We pick xg € EN5Q™. Since P*@ €T, (xq, M), there exists Fg € C™ (R")
satisfying (35). We fix such an Fg.

Let Q € CZ be of Type 3. Then we set Fg = 0. In place of (35), we have
the trivial results

(36) ”FQ”Cm[fRn‘] =0 and Fg > 0 on R".

Thus, we have defined Fq for all Q € CZ, and we have defined xq €
EN5QT for all Q of Type 1 or Type 2. Note that

(37) Jx(Fo) = P* for all x € EN5Q.

Indeed, if Q is of Type 1, then (37) follows from (35) since EN5Q = {xq}.
If Q is of Type 2 or Type 3. then (37) holds vacuously since EN5Q = (.
Now suppose Q, Q" € CZ and £Q g—gQ’ # (0. We will show that
(38) |0 (Fo —Fo)| < M85 ™ on £Q N EQ’ for Bl < m.

To see this, suppose first that Q or Q" is of Type 3. Then 8¢ or 8¢ is
equal to 1, hence 8g > % by (34). Consequently, (38) asserts simply that
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(39) |aB (Fo —FQ,]| < CM on %Q N 24—5Q’ for |B| < m,
and (39) follows at once from (35), (36). Thus, (38) holds if Q or Q' is of
Type 3. Suppose that neither Q nor Q" is of Type 3. Then xg € EN5Q",
xqr € EN5(Q), %Q N g—iQ’ # 0, %SQ < d¢r < 28g. Consequently,
(40) Ixqg —xq/l < Cdq, and
(41) [x —xgl, [x —xq/| < Cdq for all x € {g—Q N —j—gQ’.
Applying (35) to Q and to Q’, we find that
(42) |9 (Fo —P*@) (x)| < CM [x —xo|™ ™ < CM&g ", and
(43) |9 (Fy — PXe') (x)| < CMIx — xq/™ ™ < cM5g 7,

for x € %Q N gQ" IB] < m.
Also, (30), (40), (41) imply that

(44) [9F (Pe —P*') (x)| < CMSy " for x € EQ N EQ', B < m.

(Recall, P*@ — P*Q” is a polynomial of degree at most m —1.)

Estimates (42), (43), (44) together imply (38) in case neither Q nor Q'
is of Type 3. Thus, (38) holds in all cases.

Next, as in Whitney [33], we introduce a partition of unity

(45) 1= 2 gccz 0@ on R™,
where each 0 € C™(R"), and
16) support C 2Q. < Chs" Jor <m, >0 on R™.
(46) 0g C 5Q. |9P0g| < €5, for |l < m, B > 0 on R™
We define
(47) F = ZQECZ GQFQ on R“.
Thus, F € C3.(R") since CZ is a locally finite partition of R", and F > 0

on R" since 0g > 0 and Fg > 0 for each Q. Let ® € R", and let Q be the
one and only CZ cube containing X. Then for |B| < m., we have

11



(48) BPF (R) = 9PFq (R) + X gecz 0% (8 - (Fo —Fp)) (R).

A given Q € CZ enters into the sum in (48) only if X € %Q: there are
at most C such cubes Q, thanks to (34). Moreover, for each Q € CZ with
R € g—gQ‘ we learn from (38) and (46) that

9% (8 - (Fo — Fp)) (R)] < CM55 ™ < CM for |B] < m, since 8¢ < 1.

Since also |aBFQ [‘2)| < CM for |B] < m by (35), (36). it now follows from
(48) that lBBF [’:2]| < CM for all || < m. Here, R € R" is arbitrary. Thus.
Fe C™(R") and |[Fllemzn) < CM.

Next, let x € E. For any Q € CZ such that x € gQ, we have J,(Fg) = P*,
by (37). Since support 8 C g—i—Q for each Q € CZ. it follows that ],(0qFq) =
Jx(0g) @y P* for each Q € CZ, and consequently,

K(F)= Y J«(BqFq) = [Z JX(BQ)] &, P =P*, by (45).
QeCZ QeCZ

Thus, F € C™ (R"), [IF||C,.1[R“] < CM, F>0on R" and J, (F) = P* for each
x € E.
The proof of Lemma 2 is complete. =

Theorem 3 (Finiteness Principle for Nonnegative C™ Interpolation)
There exist constants k¥, C, depending only on m., n, such that the following
holds.

Let E ¢ R"™ be finite, and let f: E — [0,00). Let My > 0. Suppose that
for each S C E with #(S) < kX*, there exists PS = (P*)yes € Wh(S) such that

e P* e Ty(x, My) for each x € S, and

o [0P(PX —PY)(x)| < Molx —y[™ P! forx,y €S, Bl <m 1.
Then there exists F € C™(R"™) such that

e [|Fllenmny £ CM,,

e F>0 onR", and

e F=fonkE.
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Proof. Suppose first that E C Qo for a cube Qo of sidelength 8q, = 1.
Pick any xp € E. (If E is empty. our theorem holds trivially.)

Let S C E with #(S) < k.

Our present hypotheses supply the Whitney field ps required in the hy-
potheses of Theorem 2.

Hence, recalling Lemma 1 and applying Theorem 2, we obtain

(49) Po < rf[XQ,CMg)
and
(50) F € C™(Qo)
such that
(51) Jo(F°) € Te(x,CM,) forall x e ENQoy =E
and
(52) [9%(P® —F°)| < CM, on Q. for |B| < m.
From (1). (2). (49), we have |[9PP°(xg)| < CM, for [B| < m —1.
Since PY is a polynomial of degree at most m — 1, and since xo € E C Qo
with 8g, = 1. it follows that [9PP®| < CM, on Q, for B[ < m.
Together with (52). this tells us that

(53) [9PF°| < CM, on Q for |B] < m.

Note that F® needn’t be nonnegative.
Set P* = ] (F°) for x € E. Then

(54) P* € It (x,CM,) for x € E, and

(55) |98 (P*—PY) (x)| < CMolx —y™ ™ for x,y € E, IBl < m 1.
By Lemma 2, there exists F € C™ (R") such that

(56) [IFllcmmn) < CMo,

(57) F >0 on R", and
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(58) Jx (F) = P* for each x € E.

From (54) and (2), we have P¥(x) = f(x) for each x € E; hence, (58)
implies that

(59) F(x) = f(x) for each x € E.

Our results (56), (57), (59) are the conclusions of our theorem. Thus, we
have proven Theorem 3 in the case in which E C %Qg with 8¢g, = 1.

To pass to the general case (arbitrary finite E € R"™), we set up a partition
of unity 1 = )} x, on R", where each x, € C"(R") and x, > 0 on R",
[Xyllemzn) < C, support x, C 3Qy, with 8q, = 1, and with any given point
of R™ belonging to at most C of the Q,.

For each v, we apply the known special case of our theorem to the set
E=EN lev and the function f, = flg,. Thus, we obtain F, € C™(R"),
with [|Fy||cm@n) < CMg, Fy > 0 on R™, and F, = f on EN 3Q,.

Setting F = ) x,Fv € Ci.(R"), we verify easily that F € C™(R"),
|IF||cm@n) < CMy, F> 0 on R™, and F = f on E.

This completes the proof of Theorem 3. m

Remark Conversely, we make the following trivial observation: Let E C R™
be finite, let f: E — [0,00), and let My > 0. Suppose F € C™(R") satisfies
IFllem@n) < Mo, F>0 on R", F=f on E. Then for each x € E, we have

o P* = Ji(F) € Ti(x,Mq) by (1), (2); and
o [0B(P*—PY)(x)| < CMqlx —y|™ ' for x,y € E, |l <m—1.

Therefore, for any S C E, the Whitney field PS = (P¥)yes € Wh(S)
salisfies

e P e I(x,CMy) forx € S, and
o [98(P* —PY)(x)| < CMolx —y|™® forx,y €S, Bl <m—1.

Note that Theorem 1 (A) follows easily from Theorem 3.
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3 Computable Convex Sets

In this section, we discuss computational issues regarding the convex set
(1) T, (x, M) = {]x (F): F€ C™ (RY), [|Fllemgn) < M, F >0 on R“}.

We write ¢, C. C', ete., to denote constants determined by m and n.
These symbols may denote different constants in different occurrences.

We will define convex sets I'.(x, M) C P. prove that
(2) l:,[x,cM] clh(x,M)C f;[x,CM] forall x e R", M > 0,

and explain how (in principle) one can compute T, (x, M).
We may then use

(3) Ty (x, M) = {P € fL(x,M):P(x) = f[x)}

in place of Ty(x, M) in the statement of Theorem 3. (The assertion in terms
of Ty follows trivially from (2) and the original assertion in terms of T7.)
To achieve (2), we will define

(4) Tu(x,M) = {MP (-+x)):Pe l‘o}, for a convex set Tp.
We will prove that
(5) N(0,¢) € Iy c I.(0,C).

Property (2) then follows at once from (1), (4), and (5).

Thus, our task is to define a convex set T satisfying (5), and explain how
(in principle) one can compute 15

Recall that P is the vector space of (m — 1)-jets. We will work in the
space of m-jets. In this section, we let P* denote the vector space of real-
valued polynomials of degree at most m on R", and we write ] (F) to denote

the m'™-degree Taylor polynomial of F at x. i.e.,

1
KA =) —(@FX) (y—x*

jel<m

We define



PePr:|0fP(0)] <1 for Bl < m;P(x)+[x|™ >0 for all x € RY
(6) Ty = and for every € > 0, there exists & > 0 such that
P(x) +elx]™ >0 for x| <§.

Later, we will discuss how Ty may be computed in principle.
We next establish the following result.

Lemma 3 For small enough ¢ and large enough C, the following hold.
(A) If Fe C™R"), ||Fllcm@n) < ¢, F>0 onR", then J5(F) €T

(B) IfP €Ty, then there exists F € C™(R™) such that ||F||cmgn) < C, F>0
on R™, and J; (F) = P.

Proof. (A) follows trivially from Taylor’s theorem. We prove (B).
Let P € Ty be given. We introduce cutoff functions ¢, x € C™ (R™) with
the following properties.

(7) lIxllem@ny < €, x = 1in aneighborhood of 0, x = 0 outside B, (0, 1/2),
and 0 <x <1onR™

(8) llellempny <C, @=1for 1/2<|x| <2, ¢ >0 onR",

and @ (x) =0 unless 1/4 < |x| < 4.

For k > 0, let
(9) @r(x) =@ (2%x) (x € R").
Thus,

(10) l@xllem@pn) < C2™, @k > 0 on R, @ (x) =1 for 2717 < |x| < 27K,
@y (x) = 0 unless 2727% < |x| < 277,

Also, for k > 0, we define a real number by as follows.

(11) by =0if P(x) > 0 for |x| <275 by = —min {P (x) : [x| <27} other-
wise.

Since P € Ty, the by satisfy the following:

(12) 0 < by < 27™ for all k > 0.
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(13) by 2™ — 0 as k — oo.
By definition of the by, we have also for each k > 0 that
(14) P(x)+by >0 for x| < 27K,

We define a function F on the closed unit ball B, (0, 1) by setting

(15) F(x) = P(x) + X2 be@x (x) for x € B, (0,1).

(The sum contains at most C nonzero terms for any given x.)
We will check that

(16) F >0 on B, (0,1).

Indeed, F(0) = P(0) > 0 since each @y(0) = 0 and P € ly. For R €
Ba(0,1) \ {0} we have 27" * < |R] < 27* for some kK > 0.

We then have @¢(R) = 1 by (10), hence P(R) + bg@g(R) > 0 by (14).
Since also by (R) > 0 for all k. it follows that

F(R) = [P (R) +bgog (R)] + ) by (x) > 0,

k#k
completing the proof of (16).
Next, we check that
F m (B, (0,1) F < +{F) =
(a7 Fecm (B, 0,1). HF — % (F) =».

To see this, let
(18) Fx =P+ X o by for K> 0.

Since P € Ty, we have |85P [O)l < 1 for |B] < m, hence
(19) ”P“C"H(Bn[o"l]] <C

Also, (10) and (12) give

||bk(pkllcm[3n[o‘]]] < C for each k.

Since any given x € B, (0, 1) belongs to at most C of the supports of the
@y. it follows that
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20) | o beor| ) < ©

From (18), (19), (20), we see that

(21) Fxe C™ (B (0, 1)) and

F“ Y

cm(Balo,)) —

Also, (10) and (18) tell us that
(22) 13 (ifK) = P for each K.

Furthermore for K; < K,. (18) gives Fy, — Fg, = 2 K, <k<k, Dx@x. Let
€ > 0. From (10) and (13) we see that

(08X 1Bk @i cm (Bao)) < € if Ky is large enough.

Since any given point lies in support @y for at most C distinct k, it follows
that

Z brx

Ky <k<K3

< Ce if K; > K; and K is large enough.

cm(Bal0,1])

. Thus, [FK k>0 is a Cauchy sequence in C™(B,(0,1)). Consequently, Fx —
Fs in C™(B,(0, 1))-norm for some Fo € C™(B,(0,1)). From (21) and (22),

we have

|F-

< [= 4 i:m - P.
cm(Baio,)) Cand 35 ( )

On the other hand, comparing (15) to (18), and recalling that any given
x belongs to support 0y for at most C distinet k, we conclude that Fx = F
pointwise as K — o0. .

Since also Fx — Fo pointwise as K — oo, we have Fo.=F

Thus, F € C™ ( n(0,1) ) FH < C, and J§ (f‘).: P, complet-

™ (Bn(0,1))
ing the proof of (17). i

Finally, we recall the cutoff function x from (7)., and define F = xF on
R™.
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From (16), (17), and the properties (7) of x, we conclude that F €
™ BE™), ”F”Cm[R“l <C,F>0onR" and J; (F) =P.

Thus, we have established (B).

The proof of Lemima 3 is complete. m

Now let 7t : P* — P denote the natural projection from m-jets at 0 to
(m — 1)-jets at 0, namely, 7P = Jo (P) for P € P*.

We then set Iy = 7l .

From the above lemma, we learn the following.

(A’) Let F e C™(R") with ||F||cmgn) < ¢, F>0on R". Then J,(F) € To.

(B) Let P € . Then there exists F € C™ (R") such that ||F|[cmgn < C.
F>0on R" and Jo (F) = P.

_ Recalling the definition (1), we conclude from (A’), (B’) that T, (0,¢) C
o C T, (0, C).

Thus, our Iy satisfies the key condition (5).

We discuss briefly how the convex set Ty may be computed in principle.
Recall [20] that a semialgebraic set is a subset of a vector space obtained
by taking finitely many unions, intersections. and complements of sets of the
form {P > 0} for polynomials P. Any subset of a vector space V defined by E =
{x € V:® (x) is true}, where @ is a formula of first-order predicate calculus
(for the theory of real-closed fields) is semialgebraic; moreover, there is an
algorithm that accepts @ as input and exhibits E as a Boolean combination
of sets of the form {P > 0} for polynomials P. For any given m. n, we see,
by inspection of the definitions of Iy and Mo, that Iy € P* is defined by a
formula of first-order predicate caleulus; hence, the same holds for Ty C P.

Therefore, in principle, we can compute Ty as a Boolean combination of
sets of the form {P € P :TT(P) > 0}, where TT is a polynomial on P.

In practice, we make no claim that we know how to compute M.

It would be interesting to give a more practical method to compute a
convex set satisfying (5).

4 C™ ! Interpolation by Nonnegative Func-
tions

In this section we will establish Theorem 1 (B) and discuss computational
issues for C™ M interpolation by nonnegative functions.

19



We note that the derivatives 3PF of F € C™ ™ (R") of order [B| < m —1
are continuous. Also. Tayvlor's theorem holds in the form

PEy)— 5 — [0 ()] (y—x)"| < CFlem rgan -y — X"
IBHHyI<m~—1
for x,y € R".
Similar remarks apply to C™ "' (Q) and C™ (Q) for cubes Q C R™.
Therefore, we may repeat the proofs [18] of Lemmas 1 and 2 in Section
2, to derive the following results.

Lemma 4 Forx € R", M >0, let

PeP:3F e C™ M (R") such that
,' —
ey { [Fllem-11@n) < MyF >0 on R™, Jy (F) = P } :

Let f: E — [0,00), where E C R™ is finite. Forx € E, M > 0, let

F(x, M) ={PeT,(x,M):P(x) =f(x)}.

Then ﬁi = (7 (%, M) e mso 8 @ (Cy 1)-convex shape field, where C depends
only on m, n.

Lemma 5 Let E. f, T’ (x,M) be as in Lemma 4. and let M > 0, P =
(P¥)cg € Wh(E). Suppose we have P* € T, (x,M) for all x € E, and
|0f (P* —PY) (x)| < MIx—y™ ™ for x,y € E, Bl € m—1. Then there
exists F € C™ W (R") such that ]y (F) = P* for allx € E, and |Fll cm LiEn) S
CM, where C depends only on m, n.

Similarly, by making small changes in the proof [18] of Theorem 3, we
obtain the following result.

Lemma 6 There exist k*, C, depending only on m. n for which the follow-
ing holds.

Let E C R™ be finite, let f: E — [0,00), and let My > 0. Suppose that
for each S C E with #(S) < k¥ there exists P® = (P)yes € Wh(S) such
that P* € T} (x,Mo) for all x € S, and [® (P*—PY)| < Mqlx —y[™ ' for
xyesS, pl<m-—1,

Then there exists F € C™ M (R™) such that IFllem mn < CMp, F20
on R", and F=f on E.
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Now we can easily deduce the following result.

Theorem 4 (Finiteness Principle for Nonnegative C™!'-Interpolation)
There exists constants k7, C, depending only on m,n for which the following
holds.

Let f: E — [0,00), with E C R™ arbitrary (not necessarily finite). Let

Mo > 0. Suppose that for each S C E with #(S) < k¥ there exists P —
(P¥)yes € Wh(S) such that

o P* e T{(x,My) for allx €S,

o [0F (P*—PY) (x)] < Molx —y™ P forx,y €S, Bl <m—1.
Then there exists F € C™ b (R™) such that

o [[Fllem11@n) < CMy,

e F>0, and

e F=fonkE.

Proof. Suppose first that E C Q for some cube Q C R™. Then by Ascoli’s
theorem,

{F € C™ M (Q): [[Flem 11q) < CMo, F 2 0 on Q} =X

is compact in the C™(Q)-norm topology.

For each finite Ey C E, Lemma 6 tells us that there exists F € X such that
F=1fon E,.

Consequently, there exists F € X such that F = f on E. That is,

(1) Fe C™H(Q), [Fllem-11(q) < CMo, F>00on Q, F=f on E.

We have achieved (1), assuming that E C Q.

Now suppose E C R™ is arbitrary.

We introduce a partition of unity 1 =) 6, on R", with 6, > 0 on R",
0, € C™(R"), [[0y]lcm(gn) < C, support 8, C Q, for a cube Qy C R", with
(say) dqg, = 1, and such that any given x € R™ has a neighborhood that
intersects at most C of the Q. (Here C depends only on m,n.)
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Applying our result (1) to flgng, : ENQy — [0, 00) for each v, we obtain
functions F, € C™ " (Q,) such that HF-\;”Cm._I.I[Qv] < CM,, F, > 0 on Q,.
Fv=fTon ENQ,.

(Here C depends only on m,n.)

We define F = 3 0,F, on R". One checks easily that ||F||cm 1150 <
C'M; with C" determined by m, n: F > 0 on R"; and F = f on E.

This completes the proof of Theorem 4. m

Note that Theorem 4 easily implies Theorem 1 (B).

As in the case of nonnegative C™-interpolation, we want to replace I7(x, M)
by something easier to calculate. In the C™ -setting, it is enough to make
the following observation.

Define

o PE'P:|BBP[0) <T1for [B|<m~—1and
I P(x)+ [x|™ > 0 for all x € R" '

Then
(2) T/ (0,¢) € T§ € T (0,C) with ¢, C depending only on m, n.

Indeed, the first inclusion in (2) is immediate from the definitions and
Taylor's theorem. To prove the second inclusion, we let P € I be given,
and set F(x) = x(x)(P(x) +|x|™). where x is a nonnegative C™ function with
norm at most C, (depending only on m, n), satisfying Jo(x) = 1 and support
X C B,(0,1).

We then have F € C™ " (R"), ||F||cm tign) < C (depending only on m,
n), F> 0on R", Jo(F) = P. Hence. P € T’ (0, C). completing the proof of
(2).

This concludes our discussion of interpolation by nonnegative C™ ! func-
tions.
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