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Abstract—This paper presents a Principal Component Analysis
(PCA)-based method for online characterization of outliers in syn-
chrophasor measurements. To that end, a linearized framework
is established to analyze dynamical response from a system under
nominal and off-nominal (e.g. faulted) conditions, which are
contained in the same window of synchrophasor data. Inspired by
the singular value perturbation theory, a bound on the change in
the norm of the Principal Component (PC) scores as a function of
system state matrices is presented. It is shown that in presence
of bad data outliers these bounds for higher dimensional PC
scores will be significantly larger compared to lower-dimensions.
The effect of the number of samples in the data window on the
results of the analysis is established. Case studies on a simulated
test system and on field data collected from a US utility are
presented to support the analytical results. Finally, an online
classifier for characterization of outliers is developed to illustrate
the usefulness of the proposed framework for machine learning-
based methods.

Index Terms—PCA, Bad data, Outlier, SVD, Perturbation
theory

NOMENCLATURE

x, u, z State, input, and algebraic variables, respectively of
the nonlinear model.

∆x,∆u

∆y,∆z

State, input, output, and algebraic variables, respec-
tively of the linearized model.

An, Bn

Cn

State, input, and output matrices, respectively of the
linear model under nominal condition.

Af , Bf

Cf

State, input, and output matrices, respectively of the
linear model under faulted condition.

θ Variance of the measurement noise.
Ts Sampling time of the synchrophasor output.
Ybus Bus admittance matrix.
[Y ] Synchrophasor measurements of ‘p’ signals with

nominal system response in a matrix.[

Ỹ
]

Synchrophasor measurements of ‘p’ signals with
nominal system response and outlier samples in a
matrix.
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U,Σ
V

Matrices containing left singular vectors, singular
values, and right singular vectors, respectively ob-
tained from Singular Value Decomposition.

ϑ [n] Noise at the nth sample in measurement matrix [Ỹ ].
⇀

ς̃ i PC score in the ith principal direction.
[ξ] Perturbation matrix of the same size as [Y ].
σ(·) Minimum singular values.
σ(·) Maximum singular values.
℘ Orthogonal projection onto the column space of the

unperturbed matrix [Y ].

I. INTRODUCTION

PHasor Measurement Units (PMUs) play a major role
in wide-area monitoring, protection, and control systems

(WAMPAC) [1]–[3], and power system security assessment [4].
Errors in PMU measurement are direct consequences of
limited measurement precision, telecommunication equipment
noise, two-way communication systems [5], interference from
devices, and cyber-attacks such as eavesdropping, GPS spoof-
ing, and data tampering [6]. Events such as faults and line
tripping cause the system to deviate from its quasi-steady state
operating condition and appear as outliers in PMU measure-
ments. Bad data can have similar appearance as of fault out-
liers which can jeopardize decision-making and determining
the true state of the network. As an example, Fig. 1 shows
outliers in frequency measured by PMUs installed at a US
utility for two cases: a) Case 1 - spurious bad data outlier, and
b) Case 2 - disturbance outlier. In this paper we aim to address
the broad research question: how to develop an analytical
framework for online characterization of synchrophasor data
outliers?

There is a significant amount of work done on bad data
detection in the literature - pertaining to state estimation
[7]–[19]. Literature on detection of bad data originated by
cyber attacks in PMU dynamic data samples include a com-
mon path algorithm [20], a hybrid intrusion detection sys-
tem [21], and a Bayesian-based approximation filter proposed
in [22]. Researchers have also focused on event detection
algorithms that have proposed clustering methods [23], ellip-
soid method [24] combined with decision tree [25], an event
unmixing method [26], and Principal Component Analysis
(PCA) [27]–[29].

In reference [27] lower dimensional signatures of the states
of the power system are obtained by PCA. It was shown that
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Fig. 1. Field PMU data obtained from a US utility for two cases: 1) bad data
and 2) disturbance outlier. Outliers in frequency measurement are highlighted.

the occurrence of a system event will alter the core subspaces
of the PMU data, which can be used as an early event detector.
In contrast to [27]–[29] and prior works focused on event
detection, the contributions of this paper are:

1) First, in section II, we establish a linearized framework
that relates the system’s intrinsic properties (via its state
matrices) to synchrophasor measurements on a sliding
window which includes mixed data, i.e., pre-disturbance
(nominal) data as well as new (incoming) data - triggered
by genuine faults or disturbances.

2) Second, in section III, using singular value perturbation
analysis, we establish bounds on deviations in the Prin-
cipal Component (PC) scores in terms of the system
matrices. These bounds explicitly show the effect of the
system matrices associated with the nominal and faulted
states on these deviations, thereby serving as a basis
to distinguish between data induced by faults versus
measurement anomalies. These results also allow one
to quantify the effect of bad data outliers on PCs in the
higher versus lower dimensional subspaces.

3) Finally, in section IV, we validate the analytical results
with dynamic simulations on: a) the 16-machine New
England-New York system and b) actual field-recorded
PMU data originating from a utility-owned transmission
network in the U.S. The applicability of these concepts is
shown through a nonlinear classifier using PC scores for
discriminating outliers in synchrophasor data streams.

II. PROPOSED FRAMEWORK FOR ANALYZING SAMPLED
DYNAMIC RESPONSE FROM DIFFERENT SYSTEMS IN SAME

SYNCHROPHASOR DATA WINDOW

First, let us consider the problem of online characterization
of outliers caused by system disturbances (e.g. faults) using a
moving-window PCA-based algorithm. For that, a linearized
framework is established in this section, which will be able to
analyze pre-disturbance data samples along with the outliers
that just entered the window. In general, from a ‘systems’
standpoint this framework will be capable of analyzing re-
sponses from different system models contained in the same
window.

The model of the power system can be expressed in the
form of nonlinear differential and algebraic equations as

ẋ = f (x, u, z)
0 = g (x, u, z)

(1)

where, x, u and z are the state variables, input variables, and
algebraic variables, respectively. Linearizing the model around
a nominal operating condition (x0, u0, z0), and considering the
measurement noise ϑ(t) as zero-mean independent Gaussian
noise, we can write

∆ẋ(t) = An∆x(t) +Bn∆u(t)
∆y(t) = Cn∆x(t) + ϑ (t) , ϑ (t) ∼ N(0, θ)

(2)

where, An, Bn, and Cn are the state matrix, input matrix,
and output matrix, respectively of the nominal model; and
θ is the variance of the measurement noise. Let us now
consider a faulted condition, which is modeled as a high
shunt conductance connected to a node that modifies the bus
admittance matrix Ybus. With this modified Ybus, we can run
loadflow, initialize the dynamic model and linearize it around
the faulted condition (xf , u0, zf ). The following points should
be noted for such linearization -

• The loadflow needs to converge, which may not be
guaranteed even after relaxing the upper and lower limits
of voltages. As an example, we were able to obtain
convergence with fault conductance of 100.0pu on a
100MVA base in certain buses in the 16-machine 5-area
New England-New York system, described later.

• Linearization will only make sense if the control limits
are not hit under the operating condition.

Assuming the measurement noise remains unchanged, the
linearized model under faulted condition is

∆ẋ(t) = Af∆x(t) +Bf∆u(t)
∆y(t) = Cf∆x(t) + ϑ (t)

(3)

where Af , Bf , and Cf are the state matrix, input matrix, and
output matrix of the faulted model.

Let us consider that the initial state of the nominal system
is ∆x0 and the fault takes place at t = t0. The system states
at fault instant are given by ∆x(t0), which cannot change
instantaneously. Therefore, the expression for output signals
can be written as:

∆y (t) = Cn [H (t)− H(t− t0)]

{

eAnt∆x0 +
t
∫

0

eAn(t−τ)Bn∆u (τ ) dτ

}

+CfH(t− t0) e
Af t

{

eAnt0∆x0 +
t0
∫

0

eAn(t0−τ)Bn∆u (τ ) dτ

}

+CfH(t− t0)
t
∫

0

eAf (t−τ)Bf∆u (τ ) dτ + ϑ (t)

(4)
where, H(·) is the Heaviside step function. Considering ∆y(t)
as the measured signal, this equation expresses the signal as
a function of two different system models. In practice, these
measured signals will come from synchrophasors in the form
of discrete samples.

Now, let us consider a data window of the measured signals
from t = [0, t1] in which the fault took place at t = t0.
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Discretizing the linear systems in (2) and (3), we get

t = [0, t0]

{
∆x [k + 1] = Fn∆x [k] +Gn∆u [k]

∆y [k] = Cn∆x [k] + ϑ [k]

t = [t0, t1]

{
∆x [k + 1] = Ff∆x [k] +Gf∆u [k]

∆y [k] = Cf∆x [k] + ϑ [k]
Fn = eAnTs , Gn = A−1

n

(
eAnTs − I

)
Bn,

Ff = eAfTs , Gf = A−1

f

(
eAfTs − I

)
Bf ,

ϑ [k] ∼ N(0, θd) , θd = θ

(5)

where, Ts denotes the sampling time of synchrophasor output.
We will assume that control input u(t) (e.g. exciter voltage

reference of generators) have not changed in the interval [0, t1]
and that the fault instant t0 is an integral multiple of sampling
time Ts, which leads to

∆u (t) = 0, r =
t0

Ts

, r ∈ N (6)
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Fig. 2. Schematic representation of the proposed linearized framework for
analyzing data samples from nominal and faulted systems in the same window.
The state variable in the faulted system is reset to the corresponding value
from the nominal system at the rth sample, where r =

t0
Ts

.

We are now in a position to formulate the proposed lin-
earized framework to analyze the sampled synchrophasor data
in the time window [0, t1]. The following points should be
noted in this context -

• When the fault occurs at t = t0, the dynamic state ∆x[ t0
Ts
]

of the nominal state-space model cannot change instantly.
• The measured output changes instantly at t = t0.

Figure 2 shows the schematic representation of the proposed
linearized framework. The state variable in the faulted system
is reset to the corresponding value from the nominal system at
the rth sample, where r = t0

Ts
. The input and the output signals

are also switched to the faulted discrete model at the same
instant. Considering p signals in synchrophasor measurements,
the window of measured data can be represented by a matrix[

Ỹ
]

as follows:

[

Ỹ
]T

=



∆y [1]∆y [2] · · ·∆y [r − 1]
︸ ︷︷ ︸

Nominal

∆y [r] · · ·∆y [n]
︸ ︷︷ ︸

Faulted





p×n

(7)
where, n = t1

Ts
is the number of samples from each signal

present in the window. Noting that ∆y[r] = Cf∆x[ t0
Ts
] +

ϑ
[
t0
Ts

]

we can rewrite the data matrix as:

[

Ỹ
]T

=




Cn CnFn · · · CnF

r−2
n

︸ ︷︷ ︸

Nominal

CfF
r−1
n CfFfF

r−1
n · · · CfF

n−r
f F r−1

n
︸ ︷︷ ︸

Faulted




∆x [1]

+
[
ϑ [1] ϑ [2] · · · ϑ [n]

]

(8)
The data matrix can be reconstructed after full PCA decom-

position of
[

Ỹ
]

as sum of p orthonormal basis functions
⇀

ṽ1

to
⇀

ṽp as shown in (9)
[

Ỹ
]

=





ς̃1,1

ς̃n,1




⇀

ṽ1+





ς̃1,2

ς̃n,2




⇀

ṽ2+ · · ·+





ς̃1,p

ς̃n,p




⇀

ṽp (9)

The PC scores [30] for each observation in the ith principal
direction can be expressed as

⇀

ς̃ i =
[
ς̃1,i ς̃2,i · · · ς̃n,i

]T (10)
These are calculated by applying Singular Value Decompo-

sition (SVD) [31] on the data matrix
[

Ỹ
]

of size (n, p) given
by [

Ỹ
]

= UΣV T (11)

where the principal vectors as columns of U1 can be obtained
by selecting first p columns of left singular vectors, U shown
below.

U =
[
u1 u2 . . . up| up+1 . . . un

]

=
[
U1 U2

]

n×n

(12)

Also, the matrix Σ can be written as

Σ =

[
Σ1

0

]

n×p

(13)

where, Σ1 is a diagonal matrix of size (p, p) that contains p

singular values for the matrix
[

Ỹ
]

in its diagonal elements.
The right singular vectors are given by

V =
[

~̃v
T

1
~̃v
T

2 . . . ~̃v
T

p

]

p×p
(14)

Finally, the coefficients of the PCs are calculated as:

Ξ̃ =
[

⇀

ς̃ 1

⇀

ς̃ 2 · · ·
⇀

ς̃ p

]

n×p
= U1Σ1 (15)

As an orthogonal transformation, PCA maps the higher di-
mensional data to a lower dimensional subspace while preserv-
ing correlation between the original variables and maintaining
maximum variance of the original data in its lower dimensional
representation.

III. BOUND ON THE CHANGE IN NORM OF PC SCORES: A
SINGULAR VALUE PERTURBATION VIEWPOINT

A. Presence of Disturbance Outliers

Let us now consider the case where a sliding window of n
samples over p PMU signals are taken into account and the
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fault outlier enters the window as the last sample. Therefore,
(8) can be written as
[

Ỹ
]T

=

[

Cn CnFn · · · CnF
n−2
n

︸ ︷︷ ︸

Nominal

CfF
n−1
n

︸ ︷︷ ︸

Fault

]

∆x [1]

+
[
ϑ [1] ϑ [2] · · · ϑ [n]

]

(16)
The challenge is to quantify the alteration in the PC scores
when the fault outliers enter the window. We propose to
approach this problem from a singular value perturbation
viewpoint.

To that end, let us consider the system response in absence
of any fault, which is denoted by a data matrix [Y ] given by

[Y ]T =

[

Cn CnFn · · · CnF
n−2
n

︸ ︷︷ ︸

Nominal

CnF
n−1
n

︸ ︷︷ ︸

Nominal

]

∆x [1]

+
[
ϑ [1] ϑ [2] · · · ϑ [n]

]

(17)
We view the faulted data matrix

[

Ỹ
]

as a perturbed matrix of
[Y ], where the perturbation is denoted by [ξ]

[

Ỹ
]

= [Y ] + [ξ] (18)

The perturbation matrix can be written as

[ξ]
T
=

[
0 0 · · · 0 (Cf − Cn)F

n−1
n

]
∆x [1] (19)

Applying the classical perturbation bound derived by
Weyl [32] we obtain ∀i = 1(1)p:
∣
∣
∣

∥
∥
∥

⇀

ς̃ i

∥
∥
∥−

∥
∥
∥

⇀
ς i

∥
∥
∥

∣
∣
∣ ≤

∥
∥
∥(∆x [1])

T (
Fn−1
n

)T (
CT

f − CT
n

)
∥
∥
∥
2

(20)

where,
∥
∥
∥

⇀
ς i

∥
∥
∥ is the spectral radius of the ith PC score of the

unperturbed matrix. From now on, the 2-norm (‖•‖
2
) will be

considered everywhere unless indicated otherwise. Using well-
known norm inequalities we can write

∣
∣
∣∆

∥
∥
∥

⇀

ς̃ i

∥
∥
∥

∣
∣
∣ ≤

∥
∥
∥(∆x [1])

T
∥
∥
∥

∥
∥
∥

(
Fn−1
n

)T (
CT

f − CT
n

)
∥
∥
∥ (21)

∣
∣
∣∆

∥
∥
∥

⇀

ς̃ i

∥
∥
∥

∣
∣
∣
max

∝
∥
∥
∥

(
Fn−1
n

)T (
CT

f − CT
n

)
∥
∥
∥ (22)

�Remarks: Equation (22) presents the bound on the alteration
of the spectral radius of the ith PC score as a function of
the system matrices. Since the disturbance occurred at the last
sample in the window and the system states do not change
instantaneously, this bound is not a function of Ff . Notably,
the above framework is generic and one can find such a bound
on change in PC scores if more than one sample under faulted
condition is considered where Ff will also be a part of the
expression, as observed in equation (8).

Although (22) presents a bound on the change in the norm
of PC scores in general, it does not give any indication on the
variation of these bounds across different dimensions. We will
apply a variant of the classical perturbation theorem proposed
by Stewart [33] to obtain a clearer picture on these bounds

across different dimensions:
∥
∥
∥

⇀

ς̃ i

∥
∥
∥

2

=
(∥
∥
∥

⇀
ς i

∥
∥
∥+ γi

)2

+ η2i (23)

|γi| ≤ ‖℘ξ‖ , σ
(
℘⊥ξ

)
≤ ηi ≤ σ

(
℘⊥ξ

)
, ℘⊥ = (I − ℘) (24)

where, ℘ is the orthogonal projection onto the column space of
the unperturbed matrix [Y ], and σ(·) and σ(·) are the minimum
and maximum singular values, respectively.

Therefore, we can write the following equations:

℘ = Y
(
Y TY

)−1
Y T =








℘11 ℘12 · · · ℘1n

℘21 ℘22 · · · ℘2n

...
...

. . .
...

℘n1 ℘n2 · · · ℘nn








(25)

|γi| ≤ ‖℘ξ‖ =
∥
∥
[
℘1n ℘2n · · · ℘nn

]∥
∥ ‖β‖ (26)

0 ≤ ηi ≤
∥
∥
[
−℘1n −℘2n · · · (1− ℘nn)

]∥
∥ ‖β‖

(27)
∆
∥
∥
∥

⇀

ς̃ i

∥
∥
∥ ≤ −

∥
∥
∥

⇀
ς i

∥
∥
∥+

[∥
∥
[
−℘1n −℘2n · · · (1− ℘nn)

]∥
∥
2

×‖β‖
2

+
( ∥

∥
∥

⇀
ς i

∥
∥
∥+

∥
∥
[
℘1n ℘2n · · · ℘nn

]∥
∥ ‖β‖

)2
] 1

2

(28)
where, β = (∆x [1])

T (
Fn−1
n

)T
(

CT
f − CT

n

)

. Equation (28)
expresses the bound on the change in the norm of individual
PC scores as a function of system state matrices.

B. Presence of Bad Data Outliers
Let us consider a case where bad data outliers exist in some

of the PMU signals and enters the window at the last sample.
We present the following arguments to quantify the bound on
change in scores in lower and higher dimensional subspace.

� Lower dimensional subspace: As described before, out-
liers originating from a system disturbance follow its dynam-
ical characteristics. In contrast, the spurious outlier will not
have this property. Let us express the data matrix

[

Ỹ
]

with
signature anomaly that just entered the window as:

[

Ỹ
]T

=

[

Cn CnFn · · · CnF
n−2
n

︸ ︷︷ ︸

Nominal

ΓFn−1
n

︸ ︷︷ ︸

Anomaly

]

×∆x [1] +
[
ϑ [1] ϑ [2] · · · ϑ [n]

]

(29)
Here, we have expressed the anomaly as a modification in

the output matrix Cn of the system with matrix Γ. As before,
viewing the data matrix

[

Ỹ
]

as a perturbed matrix of the
nominal system response [Y ], the norm of the perturbation
matrix [ξ] is given by:

‖ξ‖ =
∥
∥
∥(∆x [1])

T (
Fn−1
n

)T (
ΓT − CT

n

)
∥
∥
∥ (30)

We assume that such modifications due to spurious outliers
will take place only in a limited number of signals, thereby
altering only the corresponding rows in Cn. Therefore, most
of the entries in

(
ΓT − CT

n

)
will be zeros. Hence the value

of ‖ξ‖ in this case can be expected to be smaller than the
faulted scenario. Note that with an increasing number of bad
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Fig. 3. Single-line diagram of 16-machine, 5-area New England-New York
system with PMUs installed at major inter-tie buses highlighted in red.

data outliers, this will not be true, as will be evident from the
studies in section IV-C.

Since the norm of PC scores
∥
∥
∥

⇀
ς i

∥
∥
∥ in the lower dimensions

represent the system’s dynamical information, those PC scores
will have the most significant magnitude. So, it is reasonable
to assume

∥
∥
∥

⇀
ς i

∥
∥
∥ >> ‖ξ‖. Therefore, the first term in equa-

tion (23) dominates, which leads to
∥
∥
∥

⇀

ς̃ i

∥
∥
∥ ∼=

∥
∥
∥

⇀
ς i

∥
∥
∥+ γi

⇒ |∆
∥
∥
∥

⇀

ς̃ i

∥
∥
∥ | ≤ ‖℘ξ‖

(31)

For p << n, i.e. for reasonably large number of time-
samples in the window compared to the number of syn-
chrophasor channels, ‖℘ξ‖ << ‖ξ‖. Therefore, as the window
size increases, the bound on |∆

∥
∥
∥

⇀

ς̃ i

∥
∥
∥ | will be tighter in the

lower dimensional subspace. This will be demonstrated in
section IV-B Case 1.

� Higher dimensional subspace: In the higher dimensional
subspace for the cases where

∥
∥
∥

⇀
ς i

∥
∥
∥ ∼ ‖ξ‖, the second term ηi

will dominate and for p << n, the value of
∥
∥℘⊥ξ

∥
∥ will be

significant. This will result in substantially higher bound on
|∆

∥
∥
∥

⇀

ς̃ i

∥
∥
∥ | in the higher dimension.

IV. CASE STUDY

A. Simulated Case
We have considered the 16-machine, 5-area New England-

New York system [34] with PMUs installed at major inter-
tie buses highlighted in red, which are shown in Fig. 3. De-
trending was performed on all signals, and each angle signal
was normalized with respect to its initial value before applying
PCA.
1) Linear Analysis Results: To validate the concepts laid

out in sections II and III, we linearized the test system (Fig. 3)
model around 4 faulted conditions - faults at buses 53, 54,
60, and 61, respectively. The linearization was possible when
a fault conductance of 100.0pu on a 100MVA base was
assumed. The model was discretized using a sampling time

5 10 15 20

4

6

8

10

12

14

|∆
V
61
|,

pu

×10−3

With Bad Data

With Fault at 53

5 10 15 20

4

6

8

10

12

14

|∆
V
53
|,

pu

×10−3

5 10 15 20

samples

4

6

8

10

|∆
V
27
|,

pu

×10−3

5 10 15 20

samples

0.008

0.01

0.012

|∆
V
60
|,

pu

18 19 20

8

10

12
×10−3

Fig. 4. Linear analysis results: Trajectories of 4 voltage magnitudes (out of 9)
with two conditions - fault at bus 53 (black trace) and bad data outlier injected
in bus voltage 53 (grey trace). Both outliers occur at the 20th sample.
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Fig. 5. Linear analysis results: Calculation of bounds on the change in the
norm of PC scores in the first 5 dimensions obtained from equations (20)
and (28) for faults. These bounds were also computed from (23) for bad data
outliers deliberately injected in voltages. The bounds were computed using a
20−sample window and are expressed as a percentage of ‖ξ‖2. Color code:
Lightest for 1st dimension, Darkest for 5th dimension.

Ts = 0.0167s to consider the PMU output data rate of 60Hz.
We considered ∆x[1] to be 1.0% of the nominal steady-state
values of the system states. Voltage magnitudes from buses
18, 27, 41, 42, 49, 53, 54, 60, 61 were used as output signals
and a 20-sample window was selected in which fault was sim-
ulated at the 20th sample as described in section II. Separately,
two bad data outliers were injected in different simulations at
20th sample in two individual voltage measurements at buses
18 and 53, respectively. Figure 4 shows the trajectories of 4
voltage magnitudes under the two conditions mentioned above.

Figure 5 shows the calculation of bounds on the change in
the norm of PC scores in the first 5 dimensions obtained from
equations (20) and (28) for faults and using equation (23) for
bad data outliers. The bounds are expressed as a percentage
of ‖ξ‖

2
. It can be seen that spurious outliers coming from

bad data injection (BDI) results in smaller relative bounds
for change in the norm of PC scores in the 1st and the
2nd dimensions as compared to the faulted cases, which is
in agreement with discussions in section III-B. The relative
bounds for changes in the higher dimensions is comparable
for both cases.
2) Nonlinear Simulation Results: Nonlinear time-domain

simulation was conducted using the test system with the initial
values of dynamic states deviated from their respective nom-
inal conditions by 1.0% of steady state values. Uncorrelated
zero mean gaussian noise is injected at different load buses
to emulate quasi-static operation of power system. For this
study the voltage magnitudes and angles of buses highlighted
in Fig. 3 were measured and a 300-sample data window
was considered. A sub-cycle fault was emulated by a shunt
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th dimension.

conductance of 100.0pu at the same four buses as was done
for the linear simulation (section IV-A1). Simultaneous BDI
in four randomly-chosen variables - |V18|, |V41|, ∠V49, ∠V54

were simulated. Figure 6 right column shows these variables
(after normalization and de-trending) with bad data and the
left column shows the corresponding variables following the
fault at bus 53. The fault and BDI was simulated at the 300th

sample.
Figure 7 shows the calculation of bounds on the change

in the norm of PC scores in the first 10 dimensions obtained
from equation (23) for different faults and BDI. The bounds
are expressed as a percentage of ‖ξ‖

2
and are calculated using

a 300-sample window. Figure 8 shows the actual changes of
the PC norms from [Y ] to

[

Ỹ
]

as a percentage of ‖ξ‖
2
. These

results are consistent with the linearized analysis in suggesting
that:
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Fig. 8. Nonlinear simulation results: Calculation of change in the norm of PC
scores in the first 10 dimensions for different faults and BDI using 300-sample
window, the outliers being at the last sample. The changes are expressed as
a percentage of ‖ξ‖2. Color code: Lightest for 1

st dimension, Darkest for
10th dimension.
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• For spurious data not triggered by physical system events,
the deviations in PC norms are significantly greater in the
higher dimensions compared to lower dimensions.

• For outliers that are triggered by genuine physical distur-
bances (i.e. faults), the changes in PC norms are most
apparent in the lower dimensions.

B. Field PMU Data from a US Utility
We have considered synchrophasor data from the transmis-

sion network of a US utility. Fifty five signals from different
PMUs containing measurement of voltage magnitudes, angles,
current magnitudes, and frequencies were analyzed for two
outlier case studies. As described in section IV-A, all signals
are normalized and de-trended before applying PCA.
1) Case 1 - Spurious Outliers: Figure 9 shows four signals

with outliers at the 2529th sample.
� Bound on alteration of PC norms & effect of window

size: Based on our previous convention, field PMU data is
denoted by the notation

[

Ỹ
]

. To obtain the unperturbed matrix
[Y ], the samples at the outlier location were replaced with the
preceding samples, i.e. non-outliers. We have applied concepts
described in section III and calculated the bounds on the
change in the norm of PC scores in the first 10 dimensions
using equation (23). Figure 10 shows the variation of these
bounds with changing window size. For each case the last
sample is considered to be the outlier. As the window size
increases the following can be observed:

•

∥
∥℘⊥ξ

∥
∥
2

becomes significantly higher compared to ‖℘ξ‖
2

and determines the bound on higher dimensions.
• Alteration of PC norm in the lowest dimension is bounded

consistently by ‖℘ξ‖
2

as per equation (31). Clearly,
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alteration is observed only in the higher (3rd and 5th) dimensional subspace when the 2529th sample enters the window.

1700 1800 1900 2000 2100
358.5

359

359.5

360

|V
|,

k
V

PMU data from case− 2 : 4 out of 55 signals shown

1700 1800 1900 2000 2100
-4

-3

-2

-1

6
V
,
d
eg

1700 1800 1900 2000 2100
samples

550

600

650

700

|I
|,

A

1700 1800 1900 2000 2100
samples

59.98

59.99

60

f
,
H
z

Fig. 12. Case 2 - Disturbance Outliers: Four signals out of fifty five with
multiple outliers at 1926 − 1928th sample.

bound in the lower dimension gets progressively tighter
as the window size increases.

• These observations suggest that these outliers can be clas-
sified as bad data. This will be shown more conclusively
by looking at the actual changes in PC scores using a
sliding window PCA.

� Sliding window PCA for online outlier characterization:
For an online characterization of the outlier, PCA was per-
formed using a sliding window. The PC scores obtained from
the previous window is subtracted from the current window to
obtain the change in PC scores. Figure 11 shows the alteration
in the norm of PC scores in the first 5 dimensions in two
separate 3-D plots for a 100-sample sliding window PCA
starting at the 2200th sample of PMU data (Fig. 9). The
PC score samples from each window are color-coded in the
side bar. Significant alteration is observed only in the higher
(3rd and 5th) dimensional subspace when the 2529th sample
enters the window. There is hardly any change in the lower
dimensions, which implies that these outliers are bad data.
2) Case 2 - Disturbance Outliers: Figure 12 shows four

signals with multiple outliers in 1926th − 1928th sample.
�Bound on alteration of PC norms & effect of window size:

Similar to Case 1 we applied the singular value perturbation
theory on data from Case 2 and observe the effect of window
size. Unlike Case 1 we do not observe the alteration in the
lowest dimension to be bounded by ‖℘ξ‖

2
. Also, the none of
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Fig. 13. Case 2: Calculation of bounds on the change in the norm of PC
scores in the first 10 dimensions obtained from equation (23) for different
window sizes. For each window the last sample is the outlier. Color code:
Lightest for 1st dimension, Darkest for 10th dimension.

the alterations in higher dimensions are bounded by
∥
∥℘⊥ξ

∥
∥
2
.

Therefore, it is likely that these outliers are disturbance outliers.
We will confirm this by a sliding window PCA described next.

� Sliding window PCA for online outlier characterization:
As before, PCA was performed using a sliding window. The
PC scores obtained from the previous window are subtracted
from the latest window to obtain the change in PC scores.
Figure 14 shows the alteration in the norm of PC scores in
the first 5 dimensions in two separate 3-D plots for a 100-
sample sliding window PCA starting at the 1700th sample.
The PC score samples from each window are color-coded in
the side bar. Significant alteration is observed only in the lower
(1st and 2nd) dimensional subspace when 1926th − 1928th

sample enters the window consecutively. This implies that
these outliers are induced from system disturbance.

C. Case 3 : Effect of Number of Bad Data Outliers on Sliding
Window PCA for Online Outlier Characterization

In order to study the effect of number of bad data outliers
on sliding window PCA for online outlier characterization, we
have examined the presence of bad data outlier in multiple (1
to 6) signals simultaneously out of 20 signals obtained from
the nonlinear simulation case. Corresponding results with the
increase in number of corrupted channels at the 300th sample
are shown in Fig. 15 in 6 subplots. The alteration in the
norm of PC scores in the 1st, 3rd, and the 5th dimensions
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Fig. 15. Case 3: Comparison of change in the norm of PC scores in the 1
st, 3rd, and 5

th dimensions with a 100-sample sliding window PCA starting at the
1st sample for the nonlinear simulation. The six subplots include bad data outliers injected in a specific number of signals out of 20 simultaneously at the
300th sample. Significant alteration is observed only in the higher (5th) dimensional subspace around the 300th sample for all the cases but also in lower
(1st) dimensional subspace when 6 variables are corrupted with bad data outlier.

are shown in the 3-D plots for a 100-sample sliding window
PCA. The results are shown with the moving window PCA
starting at the 1st sample on nonlinear simulation data up to
the 310th sample. For up to 5 signals out of 20 being corrupted
simultaneously, significant alteration in change in norm of
PC scores is observed only in the higher (5th) dimensional
subspace when bad data outliers at the 300th sample enter the
window.

However, significant deviation is observed in the 1st di-
mension as well when more than 5 signals are affected
simultaneously by bad data. As the number of bad data outliers
increases up to 6 or more than 6 out of 20, lower dimensional
subspace gets affected. This leads to the following concluding
remarks on this experiment:

• Beyond a certain amount of bad data outliers injected

at any instant, the lower dimensional subspaces get af-
fected. This is inline with the explanation provided in
section III-B following equation (30).

• Since the distinguishing characteristics between the bad
data and fault outliers rely on a significant deviation in
higher dimensional subspace and minimal deviation in
lower dimensional subspace, simultaneous injection of
bad data can be tolerated in about 25% of the signals.

D. Case 4: PCA Feature-Driven Nonlinear Classifier
The results in this section are only meant to illustrate the

utility of the proposed framework for machine learning-based
methods. Here, we show for example, how an Artificial Neural
Network (ANN)-based classifier capable of providing online
bad data detection using the PC scores across different dimen-
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sions can be developed. The performance of the classifier is
evaluated for several operating conditions on the 16 machine
test system (Fig. 3). A Monte Carlo (MC) simulation with
550 runs was performed with zero mean white Gaussian noise
added to the loads with measurements sampled at 60 Hz.
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Fig. 16. Case 4: Four signals out of twenty from test system during fault
near bus 50 at the 400

th sample and /or injected bad data in signals from
buses 18, 40, 42, 54 obtained from two different MC runs.

Each run includes a 1−3% perturbation in the initial system
states and 400 samples are collected. Five hundred runs are
obtained with bad data injected in 4 random measurements and
the rest with fault near a randomly-selected bus at the 400th

sample. One typical MC run with bus 50 fault and another with
bad data for buses 18, 42, 40 and, 54 are shown in Fig. 16.
The norm of PC scores are extracted from the 1st to the 4th

dimension at any instant obtained from a 300 sample moving
window data and these features in 4 dimensions are utilized
as input to ANN classifier for training and testing. A 5-fold
cross-validation methodology is employed for examining the
classifier performance for the proposed features. ANN with 4
input neurons, 1 output neuron, and 2 hidden layer neurons is
trained with 70% MC trials of bad data and 70% MC trials
of fault cases for each of the 5 subsamples. Table I highlights
the results of confusion matrix obtained from trained ANN
when the remaining 30% of MC trials for one subsample
were used as ‘testing data’. The average percentage of correct
detection for good data is 99.99% and that for bad data is 96%.
This shows that the proposed features are sufficient and robust
enough for distinguishing outliers caused due to disturbance
as well as due to bad data from normal operating condition.
The average CPU time taken for detection of the data type
after receiving measurement samples for the current instance
is 0.0096s for this study.

TABLE I
CONFUSION MATRIX RESULTS ON THE PREDICTIVE PERFORMANCE FOR

A SMALL TEST DATA SET FROM THE SYSTEM SHOWN IN FIG. 3

Data True # Good True # Bad Correct
Type Data Samples Data Samples Prediction

Output # Good 13167 2 (13167/13169)
Data Samples (99.75%) (0.02%) (99.98%)
Output # Bad 3 28 (28/31)
Data Samples (0.02%) (0.21%) (90.32%)

Correct (13167/13170) (28/30) (13195/13200)
Detection (99.99%) (93.33%) (99.96%)

E. Case 5: Effect of Window Size on Proposed Classifier
In Case 4, a 300-sample moving window was used. To

analyze the impact of window size on the confusion matrix

shown in Table I, three window sizes of samples 100, 200,
and 350 were considered. The confusion matrices in Tables II,
III, and IV summarize the results corresponding to different
window sizes.

TABLE II
WITH WINDOW SIZE OF 100 SAMPLES : CONFUSION MATRIX RESULTS

ON THE PREDICTIVE PERFORMANCE FOR A SMALL TEST DATA SET FROM
THE SYSTEM SHOWN IN FIG. 3

Data True # Good True # Bad Correct
Type Data Samples Data Samples Prediction

Output # Good 13160 6 (13160/13166)
Data Samples (99.7%) (0.08%) (99.95%)
Output # Bad 10 24 (24/34)
Data Samples (0.08%) (0.18%) (70.59%)

Correct (13160/13170) (24/30) (13184/13200)
Detection (99.92%) (80%) (99.88%)

TABLE III
WITH WINDOW SIZE OF 200 SAMPLES : CONFUSION MATRIX RESULTS

Data True # Good True # Bad Correct
Type Data Samples Data Samples Prediction

Output # Good 13161 1 (13161/13162)
Data Samples (99.7%) (0.07%) (99.99%)
Output # Bad 9 29 (29/38)
Data Samples (0.07%) (0.22%) (76.32%)

Correct (13161/13170) (29/30) (13190/13200)
Detection (99.93%) (96.67%) (99.92%)

TABLE IV
WITH WINDOW SIZE OF 350 SAMPLES: CONFUSION MATRIX RESULTS

Data True # Good True # Bad Correct
Type Data Samples Data Samples Prediction

Output # Good 13170 1 (13170/13171)
Data Samples (99.77%) (0.001%) (99.99%)
Output # Bad 0 29 (29/29)
Data Samples (0.0%) (0.22%) (100%)

Correct (13170/13170) (29/30) (13199/13200)
Detection (100%) (96.67%) (99.99%)

Further, the mean efficiency for correct detection of True
Bad data samples were calculated using a 5-fold cross val-
idation for each of these window sizes. The results are
summarized in the bar graph in Fig. 17.

Based upon the above analysis, we conclude that a typical
window size of 300 samples is adequate in this particular case.

We would like to offer the following guidelines for selecting
the window size –

• The larger the window size, the better the performance
of the classifier would be.

• Increase in the window size comes at the cost of increased
computational burden.

• Beyond a certain window size the performance gain will
taper off. This window size will vary depending on the
number of signals considered and can be determined from
extensive offline studies.

• For a practical situation, the above guidelines should
lead to a suitable window size based on the accuracy
vs computational burden tradeoff.

F. Case 6: Comparison with an Outlier Detection Technique
Finally, we have compared the proposed method for char-

acterizing the outliers with a popular technique used for
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Fig. 17. Nonlinear simulation results: Mean efficiency of bad data detection
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Fig. 19. Case 6: Comparison of ellipsoid volumes and rate of change of
ellipsoid volume plots of a 50-sample sliding window-based minimum volume
enclosing ellipsoid (MVEE) for fault case and bad data case.

event detection known as minimum volume enclosing ellipsoid
(MVEE) [24]. MVEE uses a certain number of data samples
of selected signals to construct a minimum volume enclosing
second order surface by solving an optimization problem. The
event detection capability of the method depends upon changes
observed in the geometrical properties such as volume, rate of
change in volume, etc. of the constructed ellipsoid.

In this work, we have compared the ellipsoids formed at the
instances of bad data sample and fault sample in the measured
data collected from selected PMUs of the nonlinear simulation
case. The selected signals are the voltage magnitudes of the
buses 18, 41, and 49, and their trajectories during a disturbance
and bad data outliers upto the 310th samples are shown in
Fig. 18. MVEE technique was applied on a sliding window
of 50 samples as used for event detection in [24]. The plots
of volume and the rate of change of volume of the ellipsoids
shown in Fig. 19 have similar appearances and overlap very
closely for both the disturbance and bad data cases.

Similarly, the change in norm of PC scores in the 1st, 3rd,
and 5th dimensions from the sliding window analysis used
in the proposed method are plotted in Fig. 20. The most
significant deviation due to fault outliers is observed in the
1st dimension in Fig. 20, however that due to bad data is
observed only in the 5th dimension. This trait can be very
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Fig. 20. Case 6: Comparison of change in the norm of PC scores in the 1
st, 3rd, and the 5

th dimensions in two separate 3-D plots for fault case and bad
data injection case with a 100-sample sliding window PCA starting at the 1st sample for the nonlinear simulations. The PC score samples from each window
are color-coded in the side bar. Significant alteration is observed only in the lower (1st) dimensional subspace around the 300th sample for fault case and
in higher (5th) dimensional subspace for bad data case.
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useful for distinguishing bad data from disturbance outlier. In
summary,

• Popular event detection methods such as MVEE are ca-
pable of detecting outliers, but fail to distinguish between
genuine outliers due to disturbance and those due to bad
data.

• The proposed method of analysis with change in norm of
PC scores successfully characterizes disturbance and bad
data outliers with the distinguishing features observed in
higher and lower dimensions.

V. CONCLUSION

This paper presents a PCA-based method for online de-
tection of “bad data”outliers in synchrophasor measurements
which may closely resemble genuine disturbance data. A
linearized framework to analyze dynamical response with
mixed data (nominal and faulted or outliers) is established.
Exploiting concepts from singular value perturbation theory,
explicit bounds are derived to quantify the deviations in PC
scores in terms of the system’s state matrices. Using both
simulated and field data, it is shown that in the presence of
spurious data, the deviations in these bounds are relatively
greater in the higher dimensions compared to the lower dimen-
sions, in sharp contrast to data induced by genuine physical
system disturbances where deviations are strongest in the
lower dimensions. The proposed framework also allows one to
quantify how these bounds are affected in the lower and higher
dimensions, and by the window size. The results presented
in this paper provide both theoretical and numerical insight
into using PC-score based metrics for online classification as
demonstrated by a nonlinear classifier.
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